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The overlap fermion propagator is calculated on 2þ 1 flavor domain-wall fermion gauge configura-

tions on 163 � 32, 243 � 64 and 323 � 64 lattices. With hyper-cubic (HYP) smearing and low eigenmode

deflation, it is shown that the inversion of the overlap operator can be expedited by �20 times for the

163 � 32 lattice and �80 times for the 323 � 64 lattice. The overhead cost for calculating eigenmodes

ranges from 4.5 to 7.9 propagators for the above lattices. Through the study of hyperfine splitting, we

found that the Oðm2a2Þ error is small and these dynamical fermion lattices can adequately accommodate

quark mass up to the charm quark. A preliminary calculation of the low-energy constant �mix which

characterizes the discretization error of the pion made up of a pair of sea and valence quarks in this mixed-

action approach is carried out via the scalar correlator with periodic and antiperiodic boundary conditions.

It is found to be small which shifts a 300 MeV pion mass by �10 to 19 MeVon these sets of lattices. We

have studied the signal-to-noise issue of the noise source for the meson and baryon. We introduce a new

algorithm with Z3 grid source and low eigenmode substitution to study the many-to-all meson and baryon

correlators. It is found to be efficient in reducing errors for the correlators of both mesons and baryons.

With 64-point Z3 grid source and low-mode substitution, it can reduce the statistical errors of the light

quark (m� � 200–300 MeV) meson and nucleon correlators by a factor of�3–4 as compared to the point

source. The Z3 grid source itself can reduce the errors of the charmonium correlators by a factor of �3.

DOI: 10.1103/PhysRevD.82.114501 PACS numbers: 11.15.Ha, 12.38.Gc

I. INTRODUCTION

A large scale endeavor has been undertaken by the RBC
and UKQCD collaborations in the last few years to simulate
2þ 1 flavor full QCD with dynamical domain-wall fermi-
ons (DWF) and Iwasaki gauge action on several lattices
with pion mass as low as �300 MeV and volume large
enough for mesons (m�L > 4) [1–3]. Three sets of lattices
163 � 32� LS and 243 � 64� LS at a�1 ¼ 1:73ð3Þ GeV
and 323 � 64� LS at a�1 ¼ 2:32ð3Þ GeV with the fifth
dimension LS ¼ 16 are available, each with 3 to 4 sea
quark masses with the lowest pion mass at �300 MeV.
With these lattices, one can proceed to perform chiral
extrapolation and continuum extrapolation assuming a2

dependence of the physical quantities. Since the domain-
wall fermion with LS ¼ 16 is a good approximation for the
chiral fermion satisfying Ginsparg-Wilson relation, it is
shown that they have good chiral properties and that most
of the chiral symmetry breaking effects are absorbed in the
residual mass which is reasonably small for these set of
lattices. As such, these dynamical fermion configurations

are very valuable and can be used to calculate physical
quantities reliably, at least for the mesons. It is suggested
from the study of the nucleon axial coupling gA and elec-
tromagnetic form factors that the present lattices are still
small and lattices with spatial dimension of 6 fm might be
needed in order to control the finite volume errors.
While combined chiral extrapolation and continuum ex-

trapolation are being carried out with valence domain-wall
fermions, we shall explore the viability of employing valence
overlap fermions on these DWF configurations. Both the
domain-wall fermion and the overlap fermion are chiral
fermions. As such, they do not have OðaÞ errors and non-
perturbative renormalization via chiral Ward identities or the
regularization independent/momentum subtraction (RI/
MOM) scheme can be implemented relatively easily [4–6].
Furthermore, the overlap fermion has additional desirable
features which one can take advantage of in order to improve
chiral symmetry as well as the quality of the numerical
results. First of all, the numerical implementation of the
overlap fermion allows a precise approximation of the matrix
sign function so that the errors on the sign function and thus
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the residual mass can be as small as 10�10 in practice [7].
The approximation to the exact chiral symmetry can also be
gauged from the Ginsparg-Wilson and the Gell-Mann-
Oakes-Renner relations. Its multimass algorithm permits
calculation of multiple quark propagators covering the range
from very light quarks to the charm on these sets of DWF
lattices. This makes it possible to include the charm quark for
calculations of charmonium and charmed-light mesons using
the same fermion formulation for the charm and light quarks
[8]. It is also possible to incorporate partially quenched data
in the chiral extrapolation. Since the overlap operator is a
normal matrix, it is easier to calculate its eigenmodes and
implement low-mode deflation in the matrix inversion. As
we shall see, this can speed up the inversion of small quark
mass by more than an order of magnitude with no critical
slowing down. Furthermore, these low-frequency modes can
be used together with the noise approximation of the high-
frequency modes to construct all-to-all or many-to-all corre-
lators. We shall show that using Z3 grid source on a time
slice is quite efficient in reducing variance for both the
meson and baryon correlators. We should point out that
although both the overlap and domain-wall fermions are
chiral fermions, using overlap valence on DWF gauge con-
figurations with HYP smearing at finite lattice spacing con-
stitutes a mixed-action approach. Mixed-action approaches
have been studied by many groups such as DWF valence on
staggered fermion sea [9], overlap valence on DWF sea [10],
overlap valence on clover sea [11], and overlap valence on
twisted fermion sea [12]. It is shown that the valence chiral
fermion has the advantage that it introduces only one extra
low-energy constant �mix in the mass of the pseudoscalar
meson with mixed valence and sea quarks which has the
same effect as partial quenching. The mixed-action partially
quenched chiral perturbation theory (MAPQ�PT) which has
been worked out for various physical quantities with various
combination of fermion actions will be the simplest for the
combination of overlap valence and DWF sea.

This manuscript is organized as follows: The formalism
for solving linear equation of the overlap operator with low
eigenmode deflation and Z3 noise grid for the many-to-all
correlators will be given in Sec. II. The numerical details
on the tuning of the negative mass parameter � in the
Wilson kernel of the overlap, the speedup due to HYP
smearing and low-mode deflation, and the role of the
zero mode will be presented in Sec. III. In Sec. IV, we
shall present the calculation of �mix and results for the
meson and nucleon correlators with point source, Z3 grid
source, and Z3 grid source with low-mode substitution. The
efficacy of the many-to-all approach will be discussed. We
will finish with a summary in Sec. V.

II. FORMALISM

The massless overlap operator [13] is defined as

Dovð�Þ ¼ 1þ �5�ðHWð�ÞÞ; (1)

where �ðHWÞ ¼ HW=
ffiffiffiffiffiffiffiffi
H2

W

q
is the matrix sign function and

HW is taken to be the HermitianWilson-Dirac operator, i.e.
HWð�Þ ¼ �5DWð�Þ. Here Dwð�Þ is the usual Wilson fer-
mion operator, except with a negative mass parameter
�� ¼ 1=2�� 4 in which �c < � < 0:25. As will ex-
plained later in Sec. III, we will use � ¼ 0:2 in our calcu-
lation which corresponds to � ¼ 1:5.
The massive overlap Dirac operator is defined so

that at the tree-level there is no mass or wave function
renormalization [7],

DðmÞ ¼ �Dovð�Þ þm

�
1�Dovð�Þ

2

�

¼ �þm

2
þ

�
��m

2

�
�5"ðHWð�ÞÞ: (2)

Throughout the paper, we shall use the lattice units for
dimensionful quantities, except the lattice spacing awill be
explicit in figures.

A. Deflation

It has been advocated [14] that using deflation with low
eigenmodes can speed up inversion of fermion matrices. It
has been applied to the Hermitian system [15,16] to speed
up the inner loop inversion of the overlap operator and to
non-Hermitian [17] and Hermitian system with multiple
right-hand sides [18]. Low-mode deflation has also been
applied to domain decomposition [19]. In addition to
speeding up inversions, substituting exact low eigenmodes
in the noise estimation such as in quark loops [20,21], and
all-to-all correlators [22–24] has demonstrated that better
results for the meson two- and three-point functions can be
obtained with reduced errors.
The massive overlap Dirac operator in Eq. (2) has the

same eigenvectors as the massless one, we shall consider
the massless Dirac overlap Dov. Because of the normality

of Dov, i.e. D
y
ovDov ¼ DovD

y
ov and the Ginsparg-Wilson

relation f�5; Dovg ¼ Dov�5Dov, the eigenvalues of Dov are
on a unit circle with the center at unity. The real and chiral
modes are at 0 and 2. Others on the circle are paired with
conjugate eigenvalues. In other words, if jii is an eigen-
vector of Dov

Dovjii ¼ �ijii; (3)

then �5jii is also an eigenvector with eigenvalue ��
i ,

Dov�5jii ¼ ��
i �5jii: (4)

To calculate the eigenmodes of Dov, one notes that due to

normality and �5 Hermiticity Dy
ov ¼ �5Dov�5, �5 com-

mutes with DovD
y
ov, i.e. ½DovD

y
ov; �5� ¼ 0. Therefore, one

can use the Arnoldi algorithm to search for eigenmodes of

DovD
y
ov with real eigenvalues j�ij2 which are doubly de-

generate with opposite chirality. To obtain the eigenmodes
of Dov, one can diagonalize the two chiral modes in Dov.
This is much easier than searching in the complex plane for
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the eigenmodes of non-normal fermions. Since the nonzero
modes are conjugate pairs (Eq. (4)), we need only to save
half of them, e.g. those with positive imaginary eigenval-
ues. When the eigenmodes are calculated, one can proceed
with deflation by solving the high-frequency part of the
propagator

DðmÞjXH
L;Ri ¼ ð1� PLÞj�L;Ri; (5)

where PL ¼ Pn0þ2nl
i¼1 jiihij is the projection operator to

filter out the low eigenmodes. n0 is the number of zero
modes which are either all left-handed or all right-handed
in each configuration. nl is the number of nonzero low-
frequency modes which come in conjugate pairs. In solv-
ing Eq. (5), we use the conjugate gradient solver (CGNE)
for DðmÞDyðmÞ. In this case, one can utilize the property

DovD
y
ov ¼ Dov þDy

ov to save a matrix multiplication in
each iteration with the chiral source j�L;Ri [15,16] and

the solution jXH
L;Ri has the same chirality as the source.

In this case, Eq. (5) can be written as

DðmÞjXH
L;Ri

¼ j�L;Ri�
Xn0þnl

i¼1

ðjiihij þ�5jiihij�5Þj�L;Ri
�
1� 1

2
	�i;0

�

¼ j�L;Ri�
Xn0þnl

i¼1

ð1��5Þjiihij�L;Ri
�
1� 1

2
	�i;0

�
; (6)

where the sum is over the zero modes and the low modes
on the upper half of the eigenvalue circle. Although we do
not calculate it this way, the high-frequency part of the
propagator can be written as

jXH
L;Ri ¼ D�1ðm;�Þj�L;Ri �

Xn0þnl

i¼1

� jiihij�L;Ri
��i þmð1� �i

2 Þ

þ ��5jiihij�L;Ri
���

i þmð1� ��
i

2 Þ
��

1� 1

2
	�i;0

�
: (7)

The total high-frequency part of the propagator will be, in
the end

jXHi ¼ jXH
L i þ jXH

R i; (8)

given that the source j�i ¼ j�Li þ j�Ri.
To accommodate the SUð3Þ chiral transformation with

	c ¼ T�5ð1� 1=2DovÞc [25] which leads to chirally
covariant flavor octet quark bilinear currents in the form
�c�Tð1� 1

2DovÞc , it is usually convenient to use the chir-

ally regulated field ĉ ¼ ð1� 1
2DovÞc in lieu of c in the

interpolation field and the currents. This turns out to be
equivalent to leaving unchanged the unmodified interpola-
tion field and currents and adopting instead the effective
propagator

D�1
eff �

�
1�Dov

2

�
D�1ðmÞ; (9)

which also serves to filter out the unphysical eigenmode at
� ¼ 2� [26].
Defining S � D�1

eff and S ¼ SH þ SL, where SH=SL is

the high/low-frequency part of the effective propagator, SH
originating from the source � can be obtained, after a few
steps of derivation, as

hxjSHj�i �
X
y

SHðx;yÞ�ðyÞ ¼
�
x

��������
�
1�Dov

2

���������XH

�

¼
�
1þ m

2��m

�
hxjXHi� 1

2��m
hxjð1�PLÞj�i:

(10)

It is worthwhile pointing out from Eq. (10) that once jXHi
is solved, there is no need to explicitly multiply Dov on
jXHi which involves an inversion of the kernel H2

W in the
Zolotarev approximation of the matrix sign function.
Similarly, the low-frequency part of S can be obtained
from spectral decomposition

hxjSLj�i �
X
y

SLðx;yÞ�ðyÞ ¼
�
x

��������
�
1�Dov

2

���������XL

�

¼ Xn0þnl

i¼1

�ð1� �i

2 Þhxjiihij�i
��i þmð1� �i

2 Þ

þ ð1� ��
i

2 Þhxj�5jiihij�5j�i
���

i þmð1� ��
i

2 Þ
��

1� 1

2
	�i;0

�
; (11)

Since the eigenmodes are available for the low-frequency
modes, one can obtain the all-to-all propagator for this part
of the spectrum

~SLðx; yÞ ¼
Xn0þnl

i¼1

�ð1� �i

2 Þhxjiihijyi
��i þmð1� �i

2 Þ

þ ð1� ��
i

2 Þhxj�5jiihij�5jyi
���

i þmð1� ��
i

2 Þ
��

1� 1

2
	�i;0

�
: (12)

In the above expressions, we have suppressed the Dirac and
color indices.

B. Low-mode substitution

It is shown [22–24] that when noise is used to estimate
the meson two- and three-point correlation functions in the
connected insertion, substituting the noise estimated low-
mode part of the correlator with the exact one improves
statistics. Consider, for example, the meson correlator from
the local interpolation fields Oi ¼ �c�ic where the two-
point correlator is

Cðt; ~p;�Þ ¼ X
~x; ~y

e�i ~p: ~xhTr½�1Sð ~x; t; ~y; 0Þ�ð ~yÞ

� �2�5S
yð ~x; t; ~y; 0Þ�yð ~yÞ�5�i; (13)

where the source � is on the t ¼ 0 time slice with support
on f ~yg. Since the quark propagator S is composed of the
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low-frequency and high-frequency parts S ¼ SH þ SL, the
two-point correlation function can be decomposed into the
following

C ¼ CHH þ CHL þ CLH þ CLL; (14)

where

CLL ¼ X
~x; ~y; ~y0

e�i ~p: ~xTrh�1SLð ~x; t; ~y; 0Þ�ð ~yÞ

� �2�5S
y
Lð ~x; t; ~y0; 0Þ�yð ~y0Þ�5i: (15)

The noise � has the property

h�ð ~xÞ�yð ~yÞi ¼ 	x;y; (16)

where h. . .i is the noise average. The standard error due to
the noise estimation of the correlation function averaged
over the gauge configurations is given by [27,28]

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

g

Ng

þ 
2
n

NnNg

vuut : (17)

where 
2
g=


2
n is the variance of the gauge/noise ensemble,

and Ng=Nn is the number of gauge/noise configurations.

How good the approximation is depends on the noise
estimation. Through the numerical study of the quark
loop for the energy-momentum tensor with the Wilson
fermion on quenched gauge configurations, it is learned
[28] that 
n is much larger than 
g with 
n=
g � 27ð46Þ
for the case with (without) 4-term unbiased subtraction. As
such, it is desirable to replace the noise estimate of CLL

with the exact correlator to reduce variance due to the noise
estimation. The low-mode substituted meson correlator is
then

Cðt; ~pÞsub ¼ C� CLL þ ~CLL; (18)

with

~CLL¼
X
~x; ~y�G

e�i ~p:ð ~x� ~yÞTrh�1
~SLð ~x;t; ~y;0Þ�2�5

~SyLð ~x;t; ~y;0Þ�5i;

(19)

where the sum of ~y runs over the set G with the same
support on f ~yg as the noise �.

In the case of baryon, one can use the Z3ðei2�k=3;
k ¼ 0; 1; 2Þ noise on a time slice for the quark source due
to the property

h�ð ~xÞ�ð ~yÞ�ð ~zÞin ¼ 	x;y	y;z; (20)

so that it is an approximation for the superposition of
multiple baryon source with three quarks in each of the
baryon originating from the same spatial location on the
support of the Z3 noise.

Similar to the meson case, one can substitute CLLL,
which is the part with all three quarks estimated by SL�,

with ~CLLL where all three quark propagators are given in

terms of ~SL. In addition, one can replace the CHLL part,

where one of the quark propagators is SH� and the other

two are SL�, by ~CHLL in which the product of the two SL�
is replaced by

P
~ySLð ~x; t; ~y; 0ÞSLð ~x0; t; ~y; 0Þ�yð ~yÞ.

Cðt; ~pÞsub ¼ C� CLLL þ ~CLLL � PfCHLLg þ Pf ~CHLLg
(21)

where Pfg refers to the set of correlators with permutation

of SH� and SL� (or ~SL) for the three different quarks in the

baryon. It is worthwhile pointing out that ~CHLL is like CHL

in the meson in the sense that the error due the noise is from

n associated with Eq. (16). To the extent that the baryon
correlator is dominated by CLLL and PfCHLLg in the time
window where the ground state baryon emerges, the vari-
ance reduction with the substitution in Eq. (21) is expected
to be similar to that of the meson case.

III. NUMERICAL DETAILS

The overlap propagators are calculated on three sets
of lattices of the 2þ 1 flavor domain-wall fermion
gauge configurations with the four-dimensional sizes of
163 � 32, 243 � 64 (a�1 ¼ 1:73ð3Þ GeV), and 323 � 64
(a�1 ¼ 2:32ð3Þ GeV) with several sea quark masses each.
These are generated by the RIKEN-Brookhaven-Columbia
(RBC) collaboration and the UKQCD collaboration [1–3].
The matrix sign function in the overlap Dirac operator is
calculated with 14th degree Zolotarev rational polynomial
approximation [7,29]. For the window [0.031, 2.5],
the approximation to the sign function is better than
3:3� 10�10 [7]. This is sufficiently accurate as the low-
mode deflation is used in the inversion of HW with HYP
smearing in the Zolotarev approximation, which is the
inner loop of the inversion of the overlap operator, and
the largest absolute values of the low-mode eigenvalues are
0.2, 0.125, and 0.22 on 163 � 32, 243 � 64, and 323 � 64
lattices with 100, 400, and 200 eigenvectors, respectively.
As shown in Figs. 1(a), 2(a), and 3(a), the largest absolute
values of the projected eigenvalues on the HYP smeared
configurations are larger than 0.031, the threshold for high
accuracy of the approximation of the sign function.

A. Speedup of propagator calculation

We employ HYP smearing [30] on the gauge links
which has the effect of depleting the density of the lowest
eigenvalues in HW [31]. As a result, the lowest eigenvalue
with HYP smearing after deflation with 100 to 200 eigen-
modes is about 3 times larger than those without HYP
smearing. This leads to �3 times speedup in the number
of inner loop conjugate gradient (CG) iterations as was
found in a previous study [31]. This is tabulated in Table I.
In addition, for the three lattices under study, the numbers
of HW=Dov eigenmodes used for deflation in the inner/
outer loop, the numbers of inner and outer iterations for
the cases without deflation, with deflation, and with both
deflation and HYP smearing. For the comparison study, we
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used light sea mass at ml ¼ 0:01, 0.005 and 0.004 for the
163 � 32ðlattice16Þ, 243 � 64ðlattice24Þ and 323 �
64ðlattice32Þ lattices which are, respectively, the lowest
light sea mass in these three lattice sets. For the valence
quark, we used the quark mass which corresponds to the
pion mass at �200 MeV in all three cases. We see from
Table I that the inner loop iteration number is reduced by a
factor of �3 due to HYP smearing. One can see from
Figs. 1(a), 2(a), and 3(a), that this is due to the fact that
after projecting out the small eigenvalues of H2

W , the
resultant lowest eigenvalue with smearing is about a factor
of 3 larger than those without smearing. On the other hand,
the number of outer iterations are greatly reduced due to
deflation of the low Dov eigenmodes. It is interesting to
note that the number of outer iteration for deflation with the

smearing case is �18%–25% higher than the correspond-
ing case without smearing. This is due to the fact that after
HYP smearing, the imaginary parts of the highest eigen-
values of the deflated eigenmode �max at 0:0707� i0:434
(lattice 16), 0:00857� i0:153 (lattice 24) and 0:0115�
i0:186 (lattice 32) are 46%, 51%, and 22% smaller than
those of the corresponding eigenvalues without smearing.
This can be seen in Figs. 1(b), 2(b), and 3(b). In the end,
when the total number of iterations are compared, the
speedup with deflation and smearing to the cases without
them are 23, 51, and 79 times, respectively, for the three
lattices for one test configuration each. The three selected
configurations have zero modes. We have also tested con-
figurations without zero modes. It turns out the total num-
bers of iterations for both the cases with and without
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FIG. 2 (color online). (color online) (a) The spectra of the lowest 400 eigenvalues for the kernel in the inner loop of the overlap
fermion for a 243 � 64 configuration with ml ¼ 0:005. (b) The same as (a) for the lowest 200 eigenvalues of the outer loop overlap
fermion. The unsmeared spectra are colored in grey and the HYP smeared spectra are colored in red.
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FIG. 1 (color online). (color online) (a) The spectra of the lowest 100 eigenvalues for the kernel in the inner loop of the overlap
fermion for a 163 � 32 configuration with ml ¼ 0:01. (b) The same as (a) for the lowest 200 eigenvalues of the outer loop overlap
fermion. The unsmeared spectra are colored in grey and the HYP smeared spectra are colored in red.
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smearing and deflation are about the same as those of
configurations with zero modes. This is so because the
absolute eigenvalues of the lowest eigenmodes for configu-
rations without zero modes (which are of the order 10�2 for
the 163 � 32 lattice, 10�3 for the 243 � 64 lattice, and
10�4 for the 323 � 64 lattice) are comparable to the small-
est quark masses on these lattices.

We should point out that the absolute values of the
above-mentioned �max of the low-frequency modes on
these lattices are much larger than the small valence quark
masses (ranging from 0.0014 to 0.01, for instance) so that
the small valence quark does not affect the speed of inver-
sion and, thus, there is no critical slowing down for the light
valence masses in inversions with low-mode deflation. Also
listed is the overhead for producing eigenmodes of the
overlap fermion for deflation. The cost is in the range of
4.5 to 7.9 propagators with both deflation and HYP smear-
ing (Dþ S). This cost is to be amortized when more
propagators are needed in calculations such as three-point
functions and quark loops. To comparewith inversion of the
Wilson-type fermion, we timed the inversion of the clover

fermion on 10 2þ 1 flavor dynamical clover configurations
with a size of 323 � 64 and pion mass of 156MeVat lattice
spacing a ¼ 0:09 fm from the PACS-CS Collaboration
[32]. Using the CG solver with odd/even preconditioning
and no HYP smearing, we find the average inversion of one
propagator with the same residual of 10�8 takes �11892
iterations. Taking the product of the inner and outer loop
iterations for the case of lattice 32 in Table I, the overlap
inversion with smearing and deflation has about 32% more
iterations than that of the clover fermion in this case.

B. Tuning of �

We carry out the valence quark propagator calculation
with 30 quark masses which cover the range from the
physical pion mass to the charm mass. There will be a
concern about the large finite volume effect for the pion
mass as low as the physical one, we shall use those below
m� ¼ 200 MeV for the finite volume study not in chiral
extrapolation. To include the charm mass entails making
sure that the heavy mass will have small enough Oðm2a2Þ
error to warrant reliable calculation for the charmonium

TABLE I. Speedup comparison of inversion with HYP smearing (S) and deflation (D) of the outer loop. The inner and outer iteration
numbers are the average of one column in one propagator with 12 columns of color-spin. The speedup refers to that between the case of
Dþ S vs the one with neither D nor S. The overhead of producing eigenmodes is measured in terms of the propagators with Dþ S
calculation.

163 � 32 243 � 64 323 � 64

residual w=o D D Dþ S w=o D D Dþ S w=o D D Dþ S

HW eigenmodes 10�14 100 100 100 400 400 400 200 200 200

Dov eigenmodes 10�8 0 200 200 0 200 200 0 400 400

Inner iteration 10�11 340 321 108 344 341 107 309 281 101

Outer iteration 10�8 627 72 85 2931 147 184 4028 132 156

Speedup 23 51 79

Overhead 4.5 propagators 4.9 propagators 7.9 propagators
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FIG. 3 (color online). (color online) (a) The spectra of the lowest 200 eigenvalues for kernel in the inner loop of the overlap fermion
for a 323 � 64 configuration with ml ¼ 0:004. (b) The same as (a) for the lowest 400 eigenvalues of the outer loop overlap fermion.
The unsmeared spectra are colored in grey and the HYP smeared spectra are colored in red.
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and charm-light mesons. To this end, we fine-tune
the negative mass parameter � in Eq. (2) in the range 1<
�< 2 to minimize the Oðm2a2Þ error. We conducted a test
on ten 163 � 32 (ml ¼ 0:01) configurations for the range
of 1:059<�< 1:917 to check the speed of inversion and
Oðm2a2Þ error assessed with the hyperfine splitting (the
difference between the vector and pseudoscalar meson
masses). It turns out that � ¼ 1:5 is close to the optimal
choice. It has about the fastest inversion and its m2a2 error
as measured by the hyperfine splitting in the charmonium
is the smallest. To illustrate what one means to have the
smallest Oðm2a2Þ error, we plot the hyperfine splitting as a
function of ma for the case of � ¼ 1:5 and 1.62 in Figs. 4
and 5 for comparison. The hyperfine splittings for � ¼ 1:5
and 1.62 are plotted in Figs. 4(a) and 5(a) as a function
of m. In view of the fact that the excitation scales for
the charmonium and the upsilon as measured from the 2S
to 1S and the average 13P to 13S splittings are about the
same, it is argued [33] based on nonrelativistic Schrödinger

equation that the size of the heavy quarkonium should
scale as

rQ �Q / 1ffiffiffiffi
m

p : (22)

This prediction is checked against the leptonic decay
widths, the fine and hyperfine splittings [33] of charmo-
nium and upsilon. In the case of the hyperfine splitting, the

perturbative spin-spin interaction has the form 4��s

9 �

1	
2

m1m2
j�ð0Þj2, where �ð0Þ is the vector meson wave func-

tion at the origin which is proportional to r�3=2

Q �Q
. Thus, the

hyperfine splitting of the heavy quarkonium is expected to
scale like

�EHFS / 1ffiffiffiffi
m

p (23)

to leading order in m. Based on this observation, we plot
the hyperfine splitting (HFS) for � ¼ 1:5 and 1.62 in
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FIG. 5 (color online). The hyperfine splitting is plotted as a function of ma in (a) and 1=
ffiffiffiffiffiffiffi
ma

p
in (b). This is for � ¼ 1:62.
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FIG. 4 (color online). The hyperfine splitting is plotted as a function of ma in (a) and 1=
ffiffiffiffiffiffiffi
ma

p
in (b). This is for � ¼ 1:5.
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Figs. 4(b) and 5(b) in terms of 1=
ffiffiffiffi
m

p
. We see that in both

cases, the HFS trends toward zero as m is heavier than 0.4,
except for a few points at the heavy end which show large
deviation from the trend. We interpret this as due to the
latticeOðm2a2Þ error. To find a threshold of usable range of
m where the estimated Oðm2a2Þ error is negligible (or
smaller than the statistical error), we fit the HFS to the form

�EHFS ¼ affiffiffiffi
m

p
�
1þ b

m

�
; (24)

which includes the next term in large m expansion.
From the fit in the range m ¼ 0:4=0:6 to 0.8 for
� ¼ 1:5=1:62 (which corresponds to 1=

ffiffiffiffi
m

p ¼ 1:58=1:29
to 1.12), we find a ¼ 0:0769ð6Þ=0:0690ð7Þ and b ¼
�0:0002ð19Þ=0:0004ð29Þ for � ¼ 1:5=1:62. We see that
the central value of b=m is much smaller than its error
and is thus consistent with zero in both cases. At the heavy-
mass end, the central values of the HFS are outside the fits.
We find that at m ¼ 0:88=0:75 for � ¼ 1:5=1:62, the cen-
tral value is beginning to be more than 2
 away from the
fitted HFS curve. We take it to be the critical value beyond
which there is discernible Oðm2a2Þ error. This suggests
that, given the same relative deviation, � ¼ 1:5 has a
longer range of usable m than � ¼ 1:62. Thus, we decide
to adopt � ¼ 1:5. In this case, the charm quark is at�0:73
where the central value of the HFS is consistent with the
fitted curve well within one sigma (relative error is about
1%). Through study of the Oðm2a2Þ error with different
lattice spacings for the overlap fermion, it is found [34] that
the critical mass is insensitive to the lattice spacing and
depends mostly on ma. For the 323 � 64 lattice at a�1 ¼
2:32 GeV, the charm mass is at m� 0:48, which is much
smaller than the critical mass ma ¼ 0:88.

We conclude that we can cover the quark mass range
from light all theway to the charmwith the overlap fermion
on the three sets of DWF configurations under study. The
critical mass of ma� 0:88 for a discernible Oðm2a2Þ error
in the HFS is higher than that of the quenched case where
the Oðm2a2Þ error becomes appreciable (5%) when ma�
0:5 [26]. This is presumably due to HYP smearing that is
adopted in the present calculation with dynamical fermion
configurations. HYP smearing is also known to improve the
locality of the overlap operator [31,35].

C. Zero mode issue

The role of zero modes and topology at finite volume has
been discussed extensively in the literature [36]. The cal-
culation of the quark condensate h �c c i with the chiral
fermion contains a term from the zero mode contribution
hjQji
mV where Q is the topological charge of the configuration

which, according to Atiya-Singer theorem, equals the
difference between the numbers of left-handed and right-
handed zero modes. This term vanishes in the limit V ! 1
(hjQji grows as ffiffiffiffi

V
p

) for finite m. It is shown [36] that as
long as one is working in the region where m�V 
 1, the

zero mode contribution to the quark condensate is negli-
gible as the number of zero modes per unit volume goes to
zero when the volume approaches infinity. Based on this
and the generalized Gell-Mann-Oakes-Renner relation

1

V

Z
d4xd4yh�aðxÞy�aðyÞi ¼ � 2

m
h �c c i; (25)

where �a ¼ �c�5�
a=2c , it is suggested [37,38] that, as

long as m�V 
 1, the contribution of the zeros to the
pseudoscalar correlator is negligible. In this case, one
expects to obtain the pseudoscalar mass from the exponen-
tial fall off of the correlator. To test this idea, we plot in
Fig. 6 the correlators for the pseudoscalar masses at�200,
350, 700 and 2980 MeV. on the 163 � 32 lattice for one
gauge configuration with and without zero mode contribu-
tions (there are two zero modes in this configuration) for
the purpose of illustration. We see that when the pion mass
is as low as 200 MeV, wherem�V � 1:8 is not much larger
than unity, the pion correlator is greatly affected. The pion
mass may not change very much, but the spectral weight is
reduced by an order of magnitude when the zero modes are
taken out. When the pion mass is �350=700 MeV where
m�V � 5:5=22, we see that the correlators are not affected
much when the zero modes are taken out. This seems to
conform with the above idea. However, when we plot the
correlator without the zero modes and examine the heavy
quark case where m�V 
 1 is satisfied, we see that the
correlators with and without the zero modes differ by
several orders of magnitude at large time separation, e.g.
t > 10. This is so because the zero mode contribution
normalized in the present volume is of the order >10�8

at large time separation; whereas, the signal for the pseu-
doscalar meson falls off exponentially with respect to time.
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FIG. 6 (color online). (color online) The pseudoscalar meson
correlators for pion masses at �200, 350, 700 and 2980 MeV
which correspond to the input quark masses at 0.006, 0.0172,
0.067, and 0.73 for a configuration of the 163 � 32 lattice with
and without zero mode contributions.
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Sooner or later, the signal will fall below the zero mode
contribution. In other words, the zero mode at any finite
volume is part of the physical spectrum. Except for quark
condensate and other rare cases, one cannot separate
out the zero mode contribution from the rest of the spec-
trum for physical observables in general. Even though it
may not make much of a difference numerically for the
meson correlator at relatively short range of t when
m�V 
 1, the large time separation will sooner or later
be affected and this problem is more acute for the heavy
quark.

IV. RESULTS

Since the overlap fermion is calculated on configura-
tions generated with domain-wall fermions, this constitutes
a mixed-action approach to chiral fermions. Mixed-action
approaches have been studied by several groups, such as
DWF valence on staggered fermion sea [9], overlap va-
lence on DWF sea [10], overlap valence on clover sea [11],
and overlap valence on twisted fermion sea [12]. In view of
the fact that it is numerically intensive to simulate chiral
fermions (DWF or overlap), it is practical to use the
cheaper fermion formulation for generating gauge configu-
rations and the chiral fermion for the valence as an expe-
dient approach toward full unquenched QCD simulation
with chiral fermions. Many current algebra relations de-
pend only on the chiral property of the valence sector. The
mixed-action theory with different fermions for the valence
and the sea is a generalization of the partially quenched
theory with different sea and valence quark masses. The
mixed-action partially quenched chiral perturbation theory
(MAPQ�PT) has been developed for Ginsparg-Wilson
fermion on Wilson sea [39] and staggered sea [40], and
has been worked out for many hadronic quantities to next-
to-leading order (NLO), such as pseudoscalar masses and
decay constants [39–41], isovector scalar a0 correlator
[42–45], heavy-light decay constants [46], and baryon
masses [45,47].

In the mixed-action chiral perturbation theory with chi-
ral valence fermion, it is shown [39] that to NLO, there is
no Oða2Þ correction to the valence-valence meson mass
due to the chiral symmetry of the valence fermion.
Furthermore, both the chiral Lagrangian and the chiral
extrapolation formulas for hadron properties to the one-
loop level (except 
-dependent quantities) are independent
of the sea fermion formulation [48]. The LO mixed-action
chiral Lagrangian invokes only one more term with Oða2Þ
discretization dependence which is characterized by a low-
energy constant �mix. The LO pseudoscalar meson masses
are given as

m2
vv0 ¼ Bovðmv þmv0 Þ;
m2

vs ¼ Bovmv þ Bdwðms þmresÞ þ a2�mix;

m2
ss0 ¼ Bdwðms þms0 þ 2mresÞ;

(26)

where mvv0=mss0 is the mass of the pseudoscalar meson
made up of valence/sea quark and antiquark. mvs is the
mass of the mixed valence and sea pseudoscalar meson. Up
to numerical accuracy, there is no residual mass for the
valence overlap fermion. The DWF sea has a residual mass
mres which vanishes as LS ! 1. The �mix enters in the
mixed meson mass mvs and is an Oða2Þ error which
vanishes at the continuum limit. We should note that,
unlike the partially quenched case, even when the quark
masses in the valence and sea match, the unitarity is still
violated due to the mixed-action. The degree of unitarity
violation at finite lattice spacing depends on the size of
�mix.

A. Calculation of �mix

�mix has been calculated for pseudoscalar mesons for
DWF valence and staggered fermion sea [44,49] which
gives �mix � ð708 MeVÞ4 [49] and �ð664 MeVÞ4 �
ð437 MeVÞ4 [44]. It is also calculated for overlap valence
and clover sea which yields �mix ¼ ð872 MeVÞ4 �
ð693 MeVÞ4 [50]. This means that for a valence pion of
300 MeV, the �mix produces, at a ¼ 0:12 fm, a shift of
�102–251 MeV for these cases, which is quite large.
Here we shall estimate �mix in our case with overlap

valence on DWF sea. To do so, we shall examine the meson
state which wraps around the time boundary. It is known
that a two-meson interpolation field can produce meson
states with two mesons propagating along opposite-time
directions [51–53]. On the other hand, the a0 isovector
scalar meson interpolation field �ud, together with the quark
loop from the sea, can produce a � and �ð�0Þ propagating
in different time direction [54]. This is illustrated in Fig. 7
where Fig. 7(a) displays the situation with both the valence
and the sea quarks wrapping around the time boundary
forming two pions propagating in different time directions;

FIG. 7. Cartoon showing the quark lines which form wrap-
around � and � mesons in the a0 correlator. (a) Both the valence
and the sea wrap around the time direction and form two pions
which are propagating in different time directions. (b) The
annihilation diagram where only the valence wraps around the
time boundary. Together with (a), it produces � and �ð�0Þ
propagating in different time directions.
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whereas, Fig. 7(b) shows the annihilation diagram where
the valence quark-antiquark pair wraps around the time
boundary while the sea quark loops do not. Together,
Fig. 7(a) and 7(b) form an opposite-time propagating �
and �ð�0Þ pair. The a0 correlator has, thus, the following
form

Ca0 ¼
X
i

Wiðe�Eit þ e�EiðT�tÞÞ þW��ðe�m�t�m�ðT�tÞ

þ e�m�t�m�ðT�tÞÞ;
¼ X

i

2Wie
�EiT=2 coshðEiðT=2� tÞÞ

þ 2W��e
�ðm�þm�ÞT=2 coshððm� �m�ÞðT=2� tÞÞ;

(27)

where Ei is the energy of one- or two-meson state which
propagates in the same time direction. Notice that the
second term in Eq. (27), which represents the � and �
wrapping around the time boundary, has an exponential
falloff which is proportional to the mass difference of �
and �, i.e., m� �m�. Since this is smaller than all the

other states in the a0 correlator,1 it appears as the lowest
state in the longest time separation in the correlator. This
low-lying state causes problems for fitting the scalar cor-
relator to obtain the a0 meson [54].

We shall take advantage of the existence of this state due
to the finite time extent to extract�mix. As we see in Fig. 7,
the structure of Fig. 7(b) is complicated. Yet, Fig. 7(a) is
simple in that it involves the mass difference of two pions,
not � and � as in Eq. (27). For the equal valence quark
mass case, the mass difference of the two pions vanishes
and one does not obtain any information about �mix. But if
the two valence quark masses are not the same, the mass
difference of the two pions becomes

mv1s �mv2s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bovmv1

þ Bdwðms þmresÞ þ a2�mix

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bovmv2

þ Bdwðms þmresÞ þ a2�mix

q
;

(28)

where mv1s=mv2s is the pion made of quarks with v1=v2

overlap fermion and the s domain-wall fermion. In this
case, one can extract �mix. To do so, one needs to remove
the annihilation diagram in Fig. 7(b) and all the states
which propagate in the same time direction. This can be
achieved by calculating the valence propagators with both
antiperiodic and periodic boundary conditions in time (the
DWF sea has antiperiodic B.C.), and taking the difference
of the two correlators. For the annihilation diagram in

Fig. 7(b), the valence quark traverses the time boundary
an even number of times so that it is independent of the
time boundary condition. On the contrary, the valence
quark in Fig. 7(a) traverses the time boundary an odd
number of times. So, taking the difference between corre-
lators with periodic and antiperiodic time B.C. for the
valence cancels out the annihilation diagram in Fig. 7(b)
as well as the contribution from states propagating in the
same time direction, and one is left with the contribution in
Fig. 7(a).
As a first attempt to extract �mix, we consider the

difference of scalar correlators from the 243 � 64 DWF
lattice (light sea mass at ml ¼ 0:005) with periodic and
antiperiodic B.C. in time. In this case, the difference cor-
relator at large time will be given by

�Ca0 ¼ CP
a0 � CAP

a0 ! 4W�1�2
e�ðmv1s

þmv2s
ÞT=2

� coshfðmv1s �mv2sÞðT=2� tÞg: (29)

As a first check, we plot, in Fig. 8, such a difference
correlator for the equal valence case (i.e. mv1

¼ mv2
). We

expect, from Eq. (29), that the correlator should be inde-
pendent of t. As we see in Fig. 8, where such correlators are
plotted for mv1

¼ mv2
¼ 0:0203 and 0.0489, which corre-

spond to pion masses at�372 and 577MeV, the correlators
are indeed quite flat. This is consistent with our expectation
that the large t behavior depends on the mass difference
mv1s �mv2s which is zero in this case. To extract �mix, we

want to find a range of quark mass where the tree-level
linear mass relation between m2

vv and mv holds so that
we can use Eq. (26). We plot m2

vv and m2
vv=mv from the

243 � 64 lattice with ml ¼ 0:005 as a function of mv in
Fig. 9.
We see that the ratiom2

vva
2=mva in Fig. 9(b) is fairly flat

for the rangemva� 0:0203–0:0489. We shall takemv1
and
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FIG. 8 (color online). The difference of the scalar (a0) corre-
lators with antiperiodic and periodic time boundary conditions
for the two equal valence masses which correspond tom� ¼ 372
and 577 MeV.

1We should note that there are states where � and � move
back to back with nonzero momenta which have smaller energy
differences, but they will be suppressed by the corresponding
prefactor e�ðE�þE�ÞT=2 as compared to e�ðm�þm�ÞT=2 in Eq. (27)
for the the zero-momentum �� � state for large T.
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mv2
from this range and fit the correlators to find mv1s �

mv2s which can be expressed in terms of the corresponding

pseudoscalar masses and �mix,

mv1s �mv2s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
ðm2

v1v1
þm2

ssÞ þ a2�mix

s

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
ðm2

v2v2
þm2

ssÞ þ a2�mix

s
: (30)

From the separately calculated mv1v1
and mv2v2

with the

valence overlap fermion and mss calculated with DWF [2],
we can extract �mix.

Since the range of mva� 0:0203–0:0489 is narrow, and
mv1v1

and mv2v2
are close, the errors on the extracted �mix

from Eq. (30) are large. We take several combinations of
mv1v1

andmv2v2
in the range [0.0203, 0.0489] and obtain an

average �mix

a2�mix ¼ �0:0112ð44Þ GeV2; (31)

for the 243 � 64 lattice with 50 configurations at
ml ¼ 0:005. With a�1 ¼ 1:73 GeV, we obtain

�mix ¼ �ð427 MeVÞ4 � ð338 MeVÞ4: (32)

This is quite small. To compare with those from other
mixed actions, we notice that the central value is�7 times
smaller than the case of DWF valence on staggered sea
[44,49] and �18 times smaller than that of overlap on
Wilson sea [11]. To put the magnitude in perspective,
consider a 300 MeV pion on the 243 � 64=323 � 64 lattice
with a� 0:12=0:085 fm, the shift in mass due to �mix is
�19=10 MeV which is substantially smaller than the
�102–251 MeV for the other mixed actions as alluded to
earlier. As mentioned above, the calculation of �mix using

the boundary condition method gives large errors. At this
stage, we are more interested in finding out how large �mix

is, roughly to see if it is practically small enough to carry
out chiral extrapolation with MAPQ�PT. For a more pre-
cise value, we shall use the mixed valence DWF and over-
lap propagators to directly evaluate �mix and check scaling
as is done in Refs. [11,44,49].
Coming back to the correlators in Fig. 8, we notice that

the magnitudes of these two correlators differ by 2 orders
of magnitude, a feature which is unusual for meson corre-
lators with pion masses which are not that different. In this

case, we note that there is a prefactor e�ðmv1s
þmv2s

ÞT=2 in
Eq. (29) which can be sensitive to slightly different pion
mass when T is large. Since we expect the ratio of the
spectral weight W�1�2

in Eq. (29) for the two correlators

with pion masses at �372 and 577 MeV to be within
�20% from unity when the mass dependence of the matrix
element and the normalization factor are taken into ac-
count, the primary difference of the correlators in Fig. 8 for
the equal masses case should come from the exponential
prefactor. Taking �mix into account, the ratio of the pre-
factor is 88(13) with T ¼ 64. This turns out to be quite
close to the jackknife ratio of the calculated correlators in
the time range [12,54] which is 83(9). This lends further
support for the existence of the wraparound states.

B. Z3 grid source and low-mode substitution

Noise has been used to estimate quark loops as well as
propagators in the all-to-all correlators. In particular, Z2

noise has been introduced to estimate the quark loops [55]
and it is shown [55,56] that its variance is minimal since,
unlike the Gaussian noise, it receives no contribution from
the diagonal matrix elements of the quark propagator.
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FIG. 9 (color online). (a) m2
� in GeV2 is plotted as a function of ma for the 243 � 64 lattice with m ¼ ½0:00275; 0:15�. (b) m2

�=ma in
GeV2 is plotted vs ma for the same range of quark masses.
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Complex Z2 (or Z4) has been adopted in many quark loop
calculations [57–60] and the stochastic estimation of
determinants [61]. However, the volume Z2 noise is not a
good estimator for connected insertion calculation where
the hadron correlator Cðt; 0Þ is needed for large time sepa-
ration. In this case, the signal falls off exponentially
(Cðt; 0Þ � e�mt), yet the variance decreases only as the
inverse power of the noise number [55]. To alleviate
this difficulty, dilution of the noise is suggested so that
the noise is applied to one time slice at a time and supple-
mented with low-mode substitution [23,24].

In the following, we shall consider the Z3 noise which
can be used for baryons as well as mesons.

1. Signal-to-noise ratio

We should first remark that the noise wall source, by
itself, does not reduce errors as compared to the point
source. To see this, we shall consider the variance of the
meson and baryon correlators. Besides the large time be-
havior first considered by Lepage [62], there are prefactors
associated with the noise source. The meson correlator in
Eq. (13) with a noise wall source has the following behav-
ior at large t,

CMðt; ~p ¼ 0Þ � V3e
�mMt; (33)

where V3 is the three-volume of the noise with its support
on a time slice. This comes from the noise estimate withP

~x; ~yh�yð ~xÞ�ð ~yÞi / V3. Thus, the signal from the noise

estimator is larger than that of a point source by a factor
of V3 according to our normalization convention of the
noise. On the other hand, the variance of the correlator at
large t is

N
2
MðtÞ � hGMðtÞ2i � hGMðtÞi2; (34)

where N ¼ Ng � Nn andGMðtÞ is the meson propagator in

each gauge and noise configuration as defined in terms of
the meson correlator in Eq. (13), i.e.

CðtÞ ¼ hGMðtÞi: (35)

In the case of the flavor nonsinglet meson, the lowest
energy state in the variance correlator of Eq. (34) is about
the mass of two pions. The noise from the first term
contributes a volume squared factor from the four quark
propagator, i.e.X

~x; ~y; ~x0; ~y0
h�yð ~xÞ�ð ~yÞ�yð ~x0Þ�ð ~y0Þi / V2

3 : (36)

Therefore, at large t


MðtÞ � V3ffiffiffiffi
N

p e�m�t (37)

The signal-to-noise ratio is

CMðt; ~p ¼ 0Þ

MðtÞ

� ffiffiffiffi
N

p
e�ðmM�m�Þt: (38)

The volume factor cancels out and there is no gain in
statistics with the noise wall source as compared to a point
source. For the pion correlator, the signal-to-noise ratio is
nearly constant at large t as noted before [62].
The baryon case is different. Consider the nucleon cor-

relator which has the generic form

CNðt; ~p ¼ 0Þ � hSðt; 0ÞSðt; 0ÞSðt; 0Þi; (39)

where Sðt; 0Þ is the u=d quark propagator and it is produced
with a Z3 wall source. We have suppressed the associated �
matrices in this expression. At large t,

CNðt; ~p ¼ 0Þ � V3e
�mNt: (40)

The V3 factor comes from the sum of the noises at the
source end, X

~x; ~y;~z

h�ð ~xÞ�ð ~yÞ�ð~zÞi ¼ V3: (41)

As for the variance

N
2
NðtÞ � hS3ðt; 0ÞSy3ðt; 0Þi � C2

Nðt; 0Þ; (42)

the lowest mass state in the first term at large t is 3 pions
which is lower than that of the second term which falls off
like e�2mNt. Besides the large time behavior, the variance
has a prefactor from the noiseX

~x; ~y;~z; ~x0; ~y0; ~z0
h�yð ~xÞ�yð ~yÞ�yð~zÞ�ð ~x0Þ�ð ~y0Þ�ð~z0Þi / V3

3 ; (43)

so that the signal-to-noise ratio is

CNðt; ~p ¼ 0Þ

NðtÞ

�
ffiffiffiffiffiffi
N

V3

s
e�ðmN�3=2m�Þt: (44)

It shows that, besides the familiar large time fall off,

there is an additional factor of V�1=2
3 due to the noise.

This makes the Z3 wall source worse than the point source
statistically.
To illustrate the above analysis numerically, we show the

relative errors of the pseudoscalar, vector, and nucleon
correlators from the Wilson fermion (� ¼ 0:154 which
corresponds to the strange quark mass) on 100 quenched
Wilson gauge configurations (� ¼ 6:0) with one Z3 wall
source. As shown in Fig. 10, the relative errors for the pion
[Fig. 10(a)] is about the same as that for a point source
which tends to level off in the range t ¼ ½7; 11� as ex-
pected. For the � [Fig. 10(b)] and nucleon [Fig. 10(c)], we
observe that, in addition to the expected rise of noise-to-
signal ratio at large t, the Z3 wall source result is worse for
the � and much worse for the nucleon than those of the
point source (N.B.; the scales for the ordinates are different
in the three subgraphs.) This is consistent with the extra
1=

ffiffiffiffiffiffi
V3

p
factor in Eq. (44) for the nucleon.

The undesirable large variance of the noise estimate is
rooted in the noise contamination from the neighboring
sites which goes down slowly with NnNg in Eq. (17)
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because 
n is more than an order of magnitude larger than

g [28]. To alleviate this difficulty, unbiased subtraction of

contamination from the neighboring sites has been em-
ployed to reduce the variance in the calculation of quark
loops [57–61]. In the case of connected insertions, it is
found that dilution in time slices [23,24] is effective in
reducing contamination from the nearby time slices. To
carry the suggestion further, dilution of space points within
a time slice should further reduce the variance [63]. To
check this idea, we use a Z3 grid source with support on
certain spatial grid points in a time slice to calculate the
quark propagator. This we refer to as the Z3 grid source.
The results are also included in Fig. 10. The 64=8 points
refers to the points of the grid which are separated by 4=8
lattice spacings in each spatial direction on a time slice of
the 163 � 24 lattice. We first observe that they are all better
than the Z3 wall source. In the case of pion, they are even
better than the point source at large t. For � and nucleon, it
is interesting to note from the inserts in Fig. 10(b) and 10(c)
that the relative errors of Z3 grids are smaller than those of
the point source roughly in the time ranges which are
smaller than the corresponding spatial separations of the
grid points. We will return to this point later when we
discuss heavy quarks.

2. Low-mode substitution (LMS)

From the above study, we conclude that the noise grid
source itself does not improve the statistics of the hadron
correlators over the point source except for the pseudosca-
lar meson. Next, we shall consider low-mode substitution.
Since the meson correlators at large time separation are
dominated by the low-energy modes, substituting the low-
frequency part of the noise estimated correlator CLL with

the exact one ~CLL from the eigenmodes, as is outlined in

Eq. (18), has been shown to reduce the variance [22–24].
However, the contributions from hadrons on different sites
of the source time slice are correlated, particularly among
the nearby neighbors. To see how correlated they are, we

plot the relative errors of ~CLL at large time separation for
the wall source as well as the grid sources with 1, 8, 64,
128, 256, and 512 grid points.
These grid points are spaced uniformly in each spatial

direction on the source time slice. Plotted in Fig. 11 are
relative errors for the pseudoscalar, vector, and axial-vector
mesons at a quark mass which corresponds to a pion mass
�200 MeV. These are calculated from the 400 pairs of
eigenmodes from 50 323 � 64 DWF lattice configurations
with ml ¼ 0:004. We see that the relative errors are practi-
cally the same from the whole wall down to 64 grid points.
This shows that there is no practical advantage to use the
noise wall source, since the low-mode contributions from
mesons emerging from different sites are highly correlated.
~CLL would be the same with as little as 64 grid points.
We have learned that if the grid points are too dense,

such as close to that of the wall, there is large noise
contamination from the neighboring sites. On the other

hand, the low-mode substituted part of the correlator ~CLL

is highly correlated among neighboring points. Thus, the
clear choice is to reduce the wall source to a grid source
with an optimal separation between the grid points to
reduce noise contamination and, at the same time, not to
sacrifice the variance reduction from low-mode substitu-
tion and the gain in statistics with multiple grid points. This
would be a many-to-all approach as opposed to the all-to-
all approach. It may not make much of difference for the
pion, but is expected to work better for other mesons and
the baryons. This optimal choice of grid points on a lattice
could depend on the number of eigenmodes and perhaps

(a) Pion (b) Rho (c) Nucleon

FIG. 10 (color online). Relative errors for (a) Pion, (b) Rho, and (c) Nucleon correlators for different Z3 sources. These are
calculated with Wilson fermion with � ¼ 0:154 and � ¼ 6.
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the hadrons, such as mesons vs baryons, in addition to the
balance between high- and low-modes. We have not done a
detailed analysis in this regard. We shall, nevertheless,
present results based on 50 DWF configurations on the
323 � 64 lattice (ml ¼ 0:004) with a Z3 grid source, which
has support on 64 points (4 points in each spatial direction
with 8 lattice spacings apart), and low-mode substitution
with 400 pairs of low-frequency modes plus the zero
modes.

We first plot in Fig. 12(a) the pseudoscalar correlators
from the point source, the Z3 grid source with 64 grid
points, and the Z3 grid source with low-mode substitution
for the case with pion mass at �200 MeV. Also plotted in
Fig. 12(b) are their respective relative errors as a function
of t. We see that the relative errors of the Z3 grid source
with or without low-mode substitution is about a factor of

3 smaller than that of the point source in practically all the
time range.
A similar situation exists for the strange quark. The

results with pseudoscalar mass at �670 MeV are plotted
in Fig. 13.
The case for the charm quark is different. We see in

Fig. 14(a) for the quark mass around the charm, that the
correlator from the Z3 grid source with low-mode substi-
tution levels off for t � 12 and its relative error becomes
larger those that of the point and the Z3 grid sources for
t � 7. This is the classic example where the signal falls off
exponentially and the noise estimate levels off at some
stage due to a constant variance. In this case, the results
from the low-mode substitution will not be useful. On the
other hand, we notice that the error from the Z3 grid is
about a factor of 3 smaller than that of the point source at
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FIG. 11 (color online). Relative errors from the low-frequency modes at large t separation (t ¼ 25 for the pseudoscalar meson and
t ¼ 20 for the vector and axial-vector mesons) with different number of grid points.
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FIG. 12 (color online). (color online) (a) The pseudoscalar meson correlators from the point (circle), the Z3 grid source with 64 grid
points (square) and the Z3 grid source with low-mode substitution (diamond) are plotted as a function of t. (b) The respective relative
errors are plotted as a function of t.
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large t which resembles the situation with the low-mode
substitution for the light quarks when the time separation is
less than that of the spatial separation of the grid points. It
is interesting to ponder why this is so. Although without a
proof, we venture to speculate that since the quarks are
confined and the charm quark velocity v is about 30% of
the speed of light, spatial separation �x of two grid points
greater than v times the Euclidean time separation �t, i.e.
�x > v�t, is ‘‘space like’’ in the Minkowski space sense,
and that would limit the interference of the two sources.

For the minimal spatial separation of 8 lattice spacings, this
limiting�t is 27 which is close to the mid point of the time
extent of 64. This is consistent with what we observed
earlier for the light quarks that the relative errors of Z3

grids are smaller than those of the point source roughly in
the time range shorter than the spatial minimal separation
of the grid points. In that case, the light quarks are expected
to propagate close to the speed of light.
In the case of the vector meson, we see in Fig. 15 that for

light quark mass (m� � 200 MeV), the relative error due
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FIG. 13 (color online). (color online) The same as Fig. 12 for the strange quark mass corresponding to pseudoscalar mass at
�670 MeV.
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FIG. 14 (color online). (color online) The same as Fig. 12 for the charm quark mass corresponding to pseudoscalar mass at
�2979 MeV.
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to the Z3 grid source with LMS is a factor of 4 to 5 times
smaller than those of the point and the grid sources. For the
strange quark mass region (Fig. 16), the LMS has smaller
relative error in the range t < 22 and then the error be-
comes larger than those of the point and the grid sources
beyond this range. The charm quark case in Fig. 17 is
similar to that of the pseudoscalar meson in Fig. 14.
Although we do not show them here, the axial and scalar
meson correlators are similar to the vector meson case.

We plot the results of the nucleon in Fig. 18 for the quark
mass which has a pion mass at�300 MeV. The left half of

the time range is the nucleon channel and the right half is
the S11 channel. For the nucleon, we see that the relative
error of the grid source becomes larger than that of the
point source at t� 7 which is again close to the 8 lattice
spacing separation of the grids. The points labeled by
Z3 LLL are those with LMS for all three quarks.
Z3 LLLþHLL represents those with LMS for two quarks
in addition to Z3 LLL. They are defined in Eq. (21). We
observe that the error from Z3 LLL is smaller than those of
the point and grid sources. This reverses the situation
where the Z3 grid source itself is worse than the point
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FIG. 15 (color online). (color online) The same as Fig. 12 for the vector meson correlator with light quark (m� � 200 MeV.)
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FIG. 16 (color online). (color online) The same as Fig. 13 for the vector meson correlator with strange quark mass corresponding to
pseudoscalar mass at �670 MeV.
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source as we remarked before. With more LMS from Z3

LLLþHLL, the relative error is further reduced and is
brought down below that of the point source by more than a
factor of 4 at large time separation.

V. SUMMARY

To summarize, we have carried out a study of calculating
overlap fermion propagators and hadron correlators on
the 2þ 1 flavor domain-wall fermion configurations
on 163 � 32, 243 � 64, and 323 � 64 lattices with both

deflation in the inversion and low-mode substitution in
constructing the correlators.
With HYP smearing and low-mode deflation, we find a

speed up from �23 for the 163 � 32 lattice with 200 pairs
of eigenmodes and sim 51 for the 243 � 64 lattice with 200
pairs of eigenmodes to �79 for the larger 323 � 64 lattice
with 400 pairs of eigenmodes. The cost of the overhead for
calculating eigenmodes is 4.5, 4.9 and 7.9 propagators for
the above lattices, respectively, which will be amortized
with calculation of propagators for more sources. We have
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FIG. 17 (color online). (color online) The same as Fig. 14 for the vector meson correlator with the charm quark mass corresponding
to pseudoscalar mass at �2979 MeV.
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FIG. 18 (color online). (color online) The same as Fig. 12 for the nucleon correlator with quark mass corresponding to pseudoscalar
mass at �300 MeV.
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calculated the quark mass dependence of the hyperfine
splitting and find that one can accommodate charm quarks
with small Oðm2a2Þ error. Since this is a mixed-action
approach with overlap on DWF sea, we use the finite
volume boundary condition property of the scalar correla-
tor to estimate the low-energy constant �mix for finite
lattice spacing which is needed for the mixed-action par-
tially quenched chiral perturbation theory extrapolation to
the physical point and the continuum limit. The prelimi-
nary result of �mix � ð427 MeVÞ4 turns out to be small. It
only shifts the 300 MeV mixed valence-sea pion mass by
�10 MeV at a�1 ¼ 2:32 GeV for the 323 � 64 lattice and
�19 MeV at a�1 ¼ 1:73 GeV for the 243 � 64 lattice.

We have examined the signal-to-noise issue for the
connected hadron correlators from the noise source on a
time slice and found that the noise wall source is worse
than the point source for all mesons except the pion. It is
worse still for the baryon (and multiquark systems) by affiffiffiffiffiffi
V3

p
factor where V3 is the 3-volume of the time slice. The

situation can be ameliorated by reducing the contamina-
tion from neighboring sites with less source points. This
introduces the idea of a noise grid source with support on
some uniformly spaced grid points on a time slice. On the
other hand, we find that the low-frequency part of the
multiple hadron source with exact eigenmodes is highly
correlated so that, beyond 64 grid points on a time slice of
the 323 � 64 lattice, the relative errors of the meson
correlators do not decrease. These observations led to a
suggestion of a new algorithm for the grid noise with low-
mode substitution to reduce the variance from noise con-
tamination while addressing the low-mode correlation at
the same time.

We decide to use 64 Z3 grid noise and low-mode sub-
stitution with 400 pairs of eigenmodes on the 323 � 64
lattice with the light sea mass ml ¼ 0:004 to calculate
both the meson and baryon correlators. We find that for
light quarks (pion masses at 200–300 MeV), the errors of
the mesons and nucleon masses can be reduced by a factor

of �3 to 4 as compared to the point source. In the strange
quark region, the statistical errors of the pion and nucleon
masses can be improved by a factor �3, but it is not much
improved for the vector meson.We find that the results from
low-mode substitution start to degrade beyond the strange
quark region. This is due to the fact that the signal falls off
quickly at large t and yet the variance of the noise estima-
tion of the high-frequency and the mixed high- and low-
frequency parts of the correlator does not fall. Luckily, the
Z3 grid results are still better than the point source and can
reduce the errors of the charmonium masses by a factor of
�3. One can use it to address the hadrons involving the
charm quark.We should point out that the interplay between
the noise grid source and low-mode substitution is quite
general and is not restricted to a particular fermion action.
So far the study of two-point functions has been favor-

able. The three-point function with Z3 grid source and low-
mode substitution will undoubtedly pose a different set of
challenges.
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[57] S. J. Dong, J.-F. Lagaë, and K. F. Liu, Phys. Rev. Lett. 75,

2096 (1995).
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