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I present results for top quark production in hadronic collisions at LHC and Tevatron energies. The soft-

gluon corrections to the differential cross section are resummed at next-to-next-to-leading-logarithm

accuracy via the two-loop soft anomalous dimension matrices. Approximate next-to-next-to-leading-order

differential and total cross sections are calculated. Detailed theoretical predictions are shown for the t�t

cross section and the top quark pT distribution at the Tevatron and the LHC.
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I. INTRODUCTION

The top quark occupies a unique position in the list of
elementary particles as the most massive particle discov-
ered to date. Its high mass suggests an important role for
the top quark in the physics of electroweak symmetry
breaking. After a long period of searches, the discovery
of the top quark via top-antitop production in proton-
antiproton collisions (p �p ! t�t) was announced in 1995
by the CDF and D0 Collaborations at the Fermilab
Tevatron Collider [1]. The t�t cross section has been mea-
sured with increasing precision at Run II of the Tevatron
[2,3] and there has also been data for the transverse
momentum, pT , distribution of the top quark [4]. More
recently single top quark production was observed by
D0 [5] and CDF [6]. Measurements of the top quark mass
have also been increasingly more precise [7]. The LHC is
expected to observe a very large number of top quark
events and to bring top quark physics to a new energy
frontier. For reviews of top quark physics at the Tevatron
and the LHC see Ref. [8] (experiment) and Ref. [9]
(theory).

The experimental measurements of the top quark cross
section and pT distribution at the Tevatron are currently in
good agreement with theoretical predictions. However, as
the experimental errors continue to get smaller with time,
precise theoretical calculations with smaller uncertainties
are required. Next-to-leading order (NLO) calculations of
the QCD corrections have been available for over two
decades [10,11] (electroweak corrections, which are
much smaller numerically, have also been calculated
more recently [12]) but the associated uncertainty is
much bigger than current experimental errors. The inclu-
sion of higher-order soft-gluon corrections enhances the
cross section and pT distribution and significantly reduces
the theoretical error [13,14].

Until recently, the state of the art in theoretical pre-
dictions was approximate next-to-next-to-leading order
(NNLO) calculations based on next-to-leading-logarithm
(NLL) resummation of soft-gluon corrections for the

differential cross section, supplemented with further sub-
leading terms [13,14]. These soft-gluon corrections are
dominant not only near the partonic threshold but also
away from it. The accuracy at NLL was achieved by the
calculation of the one-loop soft anomalous dimension
matrices for the partonic channels in top quark production
in Ref. [15].
To achieve next-to-next-to-leading-logarithm (NNLL)

accuracy in the resummation one needs to calculate the
soft anomalous dimensions at two loops. This is a much
more difficult undertaking. For massless quark scattering,
the two-loop soft anomalous dimension matrix was
first calculated in Ref. [16]. Further work on soft and
collinear singularities of dimensionally regularized scat-
tering amplitudes in massless gauge theories followed in
Refs. [17–21]. More recently, a lot of work on massive
two-loop soft anomalous dimensions has appeared in
Refs. [22–32]. The presence of a mass for the top quark
considerably complicates the calculation relative to the
massless case.
Soft-gluon resummation is a consequence of factoriza-

tion. The partonic cross section can be factorized into
functions associated with the hard scattering, collinear
and soft-gluon emission from the external partons, and
noncollinear soft-gluon emission that depends on the color
structure of the process [15]. The renormalization group
evolution of these functions results in expressions for the
resummed cross section. The resummation formalism
followed here has already been presented and reviewed
in numerous papers over a period of more than a decade
(see Refs. [13,15,28,29,33–35] and references therein) so
we will not repeat the derivation of resummation and we
will not repeat explicit expressions in this paper except for
new two-loop results in Sec. II. Resummation is performed
in Mellin moment space: we define a kinematical variable
s4 that measures distance from partonic threshold, and then
N is the moment variable conjugate to s4. For t�t production
the resummed partonic cross section in moment space is
given by
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(1.1)

The first exponent in the above expression resums soft and
collinear corrections from the incoming partons a and b
(quark-antiquark or gluon-gluon) while the second expo-
nent controls the factorization scale,�F, dependence of the
cross section. Hab is the hard-scattering function while Sab
is the soft function describing noncollinear soft-gluon
emission. The renormalization group evolution of the
soft function is controlled by the soft anomalous dimen-
sion, �Sab [15]. It is important to note that Hab, Sab, and
�Sab are matrices in the space of color structures of the
process [15,33,34]. In the next section we will present
explicit expressions for the new two-loop results for the
soft anomalous dimension matrices �Sq �q, for the q �q ! t�t

channel, and �Sgg, for the gg ! t�t channel. It is these

new ingredients that allow us to complete the NNLL
resummation in our formalism (for other approaches see
Refs. [25–27,30,32] and the discussion in Sec. V).

The resummed cross section, Eq. (1.1) can be expanded
at fixed order in �s to NLO, NNLO, etc., and inverted back
to momentum space, see, e.g., Refs. [13,33–35]. At each
order in �s, one encounters plus-distribution terms of the
form ½lnkðs4=m2Þ=s4�þ, wherem is the top quark mass and,
for the n-th order corrections, the power of the logarithm,
k, can range from the leading value of 2n� 1 down to the
lowest value of 0. Thus, at NLO k ¼ 1 or 0, while at NNLO
k can take the values 3, 2, 1, 0. FromNLL resummation one
can determine the coefficients of both, k ¼ 1, 0, powers of
the logarithms at NLO, but only the powers k ¼ 3, 2, 1
at NNLO (determining the NNLO k ¼ 1 term requires
matching with NLO). Partial results for the k ¼ 0 term at
NNLO were provided in Ref. [13] and also used in [14].
From NNLL resummation one can in addition fully deter-
mine the k ¼ 0 term at NNLO.

In the following section we present the soft anomalous
dimension matrices for the q �q ! t�t and gg ! t�t channels
at one and two loops. In Sec. III we use the NNLL
resummation to obtain approximate NNLO results for the
total t�t cross section and the top quark pT distribution in
proton-antiproton collisions at the Tevatron. In Sec. IV
corresponding results are given for proton-proton colli-
sions at LHC energies. A comparison with other ap-
proaches and conclusions are given in Sec. V.

II. SOFT ANOMALOUS DIMENSION MATRICES
FOR t �t PRODUCTION

We begin with the result for the soft (cusp) anomalous
dimension �S [22] for e

þe� ! t�t, which is an integral part
of the calculation for the soft anomalous dimension matri-
ces �Sq �q and �Sgg for t�t hadroproduction. The calculations

of soft anomalous dimensions involve diagrams with eiko-
nal lines representing the top quarks. The eikonal diagrams
are calculated in Feynman gauge in momentum space, and
we use dimensional regularization with d ¼ 4� � dimen-
sions to isolate the ultraviolet (UV) poles of the diagrams.
The soft anomalous dimension is then determined from

the coefficients of the UV poles [22]. Writing �S ¼
ð�s=�Þ�ð1Þ

S þ ð�s=�Þ2�ð2Þ
S þ . . . , we have the one-loop

expression

�ð1Þ
S ¼ CF

�
�ð1þ �2Þ

2�
ln

�
1� �

1þ �

�
� 1

�
¼ �CF½L� þ 1�;

(2.1)
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The two-loop soft (cusp) anomalous dimension, deter-
mined from the UV poles of two-loop eikonal diagrams, is
[22,29]
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where K ¼ CAð67=18� �2Þ � 5nf=9, with CA ¼ Nc and

nf ¼ 5 the number of light-quark flavors. We have written

the two-loop result �ð2Þ
S in Eq. (2.3) in the form of a term

which is a multiple of the one-loop soft anomalous dimen-
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This result, first obtained in [22], is written in terms of
logarithms, dilogarithms, and trilogarithms, and it provides
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a more explicit analytical expression than in an earlier
work [36]. Note that as � ! 1, M� ! ð1� �3Þ=2.

We can now proceed with the results for the two-loop
soft anomalous dimension matrices for the partonic
processes q �q ! t�t and gg ! t�t. The calculation involves
the two-loop soft (cusp) anomalous dimension for all
pairs of external lines in the process (cf. [22,28,29]) as
well as graphs with gluons connecting three external lines
(cf. [23,27,31]). We begin with top quark production
through light-quark annihilation,

qðpaÞ þ �qðpbÞ ! tðp1Þ þ �tðp2Þ: (2.5)

We define the kinematical invariants

s ¼ ðpa þ pbÞ2;
t1 ¼ ðpb � p1Þ2 �m2;

u1 ¼ ðpa � p1Þ2 �m2;

(2.6)

and s4 ¼ sþ t1 þ u1, where s4 measures distance from the
partonic threshold. The calculations are performed in a
color tensor basis consisting of singlet and octet exchange
in the s channel,

c1 ¼ 	ab	12; c2 ¼ Tc
FbaT

c
F12: (2.7)

Here the color indices for the incoming (light) quark and
antiquark are a and b, respectively, and for the outgoing
top quark and antiquark 1 and 2, respectively, and Tc

F are
the generators of SUð3Þ in the fundamental representation.

The matrix for q �q ! t�t in this c1, c2 color basis is

�Sq �q ¼ �q �q11 �q �q12

�q �q21 �q �q22

" #
: (2.8)

At one loop:
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The result in Eq. (2.9) is somewhat different from the
original in Ref. [15] because the original calculation used
the axial gauge while Eq. (2.9) is in Feynman gauge. Of
course this does not affect the complete resummed expres-
sion because other terms in the resummed cross section
compensate by also taking different forms in the two
gauges. We note that the ‘‘11’’ element of the matrix is
simply the cusp anomalous dimension, �S.

At two loops:
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comes from graphs with gluons connecting three external
lines, whose contribution were first calculated explicitly in
[27]. Note that N� is just a subset of the terms of M�,

Eq. (2.4), so all analytical structures already appear in
M�, and that as � ! 1, N� ! 0. The two-loop matrix,

Eq. (2.10), is not proportional to the one-loop matrix,
Eq. (2.9). This fact was first discussed in Ref. [22] and it
is to be contrasted with the simple proportionality relation
for the massless case that was found in Ref. [16].
We continue with the gg channel:

gðpaÞ þ gðpbÞ ! tðp1Þ þ �tðp2Þ: (2.12)

We choose the following basis for the color factors:

c1 ¼ 	ab	12; c2 ¼ dabcTc
12; c3 ¼ ifabcTc

12;

(2.13)

where dabc and fabc are the totally symmetric and anti-
symmetric SUð3Þ invariant tensors, respectively. We define
s, t1, and u1 for this channel as in Eq. (2.6).
The matrix for gg ! t�t in this basis is

�Sgg ¼
�gg11 0 �gg13

0 �gg22 �gg23

�gg31 �gg32 �gg22

2
64

3
75: (2.14)
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At one loop:

�ð1Þ
gg11 ¼ �CF½L� þ 1� ¼ �ð1Þ

S ;

�ð1Þ
gg31 ¼ 2 ln

�
u1
t1

�
;

�ð1Þ
gg13 ¼ ln

�
u1
t1

�
;

�ð1Þ
gg22 ¼ �CF½L� þ 1� þ CA

2

�
ln

�
t1u1
m2s

�
þ L�

�
;

�ð1Þ
gg32 ¼

N2
c � 4

2Nc

ln

�
u1
t1

�
;

�ð1Þ
gg23 ¼

CA

2
ln

�
u1
t1

�
:

(2.15)

The expression in Eq. (2.15) is again somewhat different
from the original in Ref. [15] because Eq. (2.15) is derived
in Feynman gauge.

At two loops:

�ð2Þ
gg11 ¼

K

2
�ð1Þ
gg11 þ CFCAM� ¼ �ð2Þ

S ;

�ð2Þ
gg31 ¼

K

2
�ð1Þ
gg31 þ CAN� ln

�
u1
t1

�
;

�ð2Þ
gg13 ¼

K

2
�ð1Þ
gg13 �

CA

2
N� ln

�
u1
t1

�
;

�ð2Þ
gg22 ¼

K

2
�ð1Þ
gg22 þ CA

�
CF � CA

2

�
M�;

�ð2Þ
gg32 ¼

K

2
�ð1Þ
gg32;

�ð2Þ
gg23 ¼

K

2
�ð1Þ
gg23:

(2.16)

As was the case for the q �q channel, we note that for the gg
channel the two-loop matrix, Eq. (2.16) is not proportional
to the one-loop matrix, Eq. (2.15).

The expressions in Eqs. (2.10) and (2.16) are different
from the corresponding ones in [27] due to different defi-
nitions and formalism.

With the two-loop soft anomalous dimension matrices at
hand we achieve NNLL accuracy in the resummed cross
section, Eq. (1.1). Expanding the resummed cross section
to NNLO we then calculate approximate NNLO cross
sections and transverse momentum distributions for top
quarks at the Tevatron and the LHC.

III. TOP CROSS SECTION AND pT DISTRIBUTION
AT THE TEVATRON

We now provide a detailed phenomenological study
of top quark production at the Tevatron collider, including
the total t�t cross section and the top quark pT distribution.
We present NLO and approximate NNLO calculations for
these quantities. The NNLO approximate results are com-
puted by adding the NNLO soft-gluon corrections (derived

from NNLL resummation) to the exact NLO quantities.
The total and differential cross sections depend on the
factorization scale, �F, and the renormalization scale,
�R. These two scales are often set equal to each other
and denoted simply as �, but they are in principle
independent.

A. t �t cross section at the Tevatron

In Fig. 1 we plot the cross section for top-antitop pro-
duction in proton-antiproton collisions at the Tevatron over
a top quark mass range 165 � m � 180 GeV at a factori-
zation and renormalization scale � ¼ m. The exact NLO
and the approximate NNLO cross sections are shown. The
enhancement from the NNLO soft-gluon corrections is
7.8%. Here we have used the MSTW2008 NNLO parton
distibution functions (pdf) [37]. We will use these pdf for
our calculations throughout this paper except where noted
otherwise.
Table I lists the values for the NNLO approximate cross

section at the Tevatron for top quark masses between
170 GeV and 175 GeV. There are two kinds of theoretical
uncertainties associated with the calculation: dependence
on the factorization/renormalization scale, and uncertain-
ties from the parton densities.
The scale dependence of the cross section for m ¼

173 GeV is plotted in Fig. 2 over a range of 2 orders of
magnitude, 0:2 � �=m � 10. It is clear that at leading
order (LO) the cross section is strongly dependent on the
choice of scale, varying by a factor of 5.45 between maxi-
mum and minimum values in the range shown. The NLO
corrections significantly stabilize the LO variation: the
NLO cross section varies by a factor of 1.61. The NNLO
soft-gluon corrections further reduce the scale dependence:
the NNLO approximate cross section varies by a factor of

165 170 175 180

m (GeV)

5

6

7

8

9

10

σ 
(p

b)

NNLO approx
NLO

pp -> tt   at  Tevatron      S
1/2

=1.96 TeV µ=m

FIG. 1 (color online). The NLO and approximate NNLO cross
section for t�t production at the Tevatron with

ffiffiffi
S

p ¼ 1:96 TeV
and MSTW2008 NNLO pdf.
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only 1.18. The improvement provided by the NNLO cor-
rections is even more impressive if one considers only the
variation 0:5 � �=m � 2 as traditionally used to estimate
errors. For this range the LO cross section varies by a factor
of 1.85, the NLO cross section by 1.16, while the NNLO
approximate cross section by a factor of only 1.034.

For a top quark mass of 173 GeV, the NLO cross section
is 6:57þ0:27þ0:34

�0:66�0:25 pb and the NNLO approximate cross sec-

tion is

�NNLOapprox
t�t ðm¼ 173 GeV;1:96 TeVÞ ¼ 7:08þ0:00þ0:36

�0:24�0:27 pb:

(3.1)

Here the first uncertainty is from scale variation over 0:5 �
�=m � 2 and the second is from the MSTW2008 NNLO
pdf errors at 90% C.L. (to be conservative, we do not use
the smaller 68% C.L. pdf errors). At NLO the scale uncer-
tainty is bigger than that from the pdf, but at NNLO the
scale uncertainty is much smaller than the pdf one. In fact
the scale uncertainty at NNLO is about 4 times smaller
than that at NLO, again highlighting the dramatic reduc-
tion of scale dependence provided by the higher-order

corrections. Adding the scale and pdf errors in quadrature,
the NNLO approximate result is 7:08� 0:36 pb, i.e., we
have a �5:1% total uncertainty, which is to be contrasted
with a much larger (þ 6:6%� 10:7%) total error (in
quadrature) at NLO.
One can also study the dependence of the cross section

separately on the factorization scale and the renormaliza-
tion scale. This can be important because in some cases
setting�F equal to�R may give a smaller uncertainty than
from varying the scales independently. In Fig. 3 we plot the
scale dependence of the cross section for m ¼ 173 GeV in
three different ways at NLO (top plot) and approximate
NNLO (bottom plot). The first way is to set� ¼ �F ¼ �R

and vary this common scale, exactly as we did in Fig. 2.
The second way is to vary the factorization scale �F while
keeping the renormalization scale fixed at �R ¼ m. The
third way is to vary �R while keeping �F ¼ m. It is clear
from the top plot that varying �F and �R independently
over the range m=2 and 2m does not give a wider range of
cross section values than varying the common scale � ¼
�F ¼ �R. In fact as can be seen from the figure this holds
true for a very wide range of scale variation. We also note
that setting�F ¼ m=2 and�R ¼ 2m or setting�R ¼ m=2
and �F ¼ 2m still gives a smaller variation than varying
the common scale � ¼ �F ¼ �R between m=2 and 2m.
Therefore, the NLO theoretical uncertainty that we pro-
vided above from scale variation is not increased by sepa-
rately varying �F and �R. For the approximate NNLO
cross section in the bottom plot of Fig. 3 we see that the
variation with � ¼ �F and �R ¼ m affects the upper
uncertainty (which was stated before as þ0:00) and this
new upper uncertainty is þ0:20. However the lower un-
certainty (� 0:24) is unaffected. So the result for the
approximate NNLO cross section for m ¼ 173 GeV with

TABLE I. The NNLO approximate t�t production cross section
in pb in p �p collisions at the Tevatron with

ffiffiffi
S

p ¼ 1:96 TeV and
in pp collisions at the LHC with

ffiffiffi
S

p ¼ 7 TeV and 14 TeV. We
set � ¼ m and use the MSTW2008 NNLO pdf [37].

NNLO approx t�t cross section (pb)

m (GeV) Tevatron LHC 7 TeV LHC 14 TeV

170 7.78 179 998

171 7.54 173 972

172 7.31 168 946

173 7.08 163 920

174 6.87 158 896

175 6.66 154 873

12.0 10

µ / m

0

2

4

6

8

10

12

σ 
(p

b)

LO
NLO
NNLO approx

pp -> tt   at  Tevatron      S
1/2

=1.96 TeV    m=173 GeV

FIG. 2 (color online). The scale dependence of the t�t cross
section at the Tevatron with

ffiffiffi
S

p ¼ 1:96 TeV and m ¼ 173 GeV.

12.0 10µ / m
4

6

8

σ 
(p

b)

NLO µ=µ
F
=µ

R
µ=µ

F
µ

R
=m

µ=µ
R

µ
F
=m

pp -> tt   at  Tevatron      S
1/2

=1.96 TeV    m=173 GeV

12.0 10
µ / m

4

6

8

σ 
(p

b)

NNLO approx µ=µ
F
=µ

R
µ=µ

F
µ

R
=m

µ=µ
R

µ
F
=m

FIG. 3 (color online). The �F and �R dependence of the t�t
cross section at the Tevatron with

ffiffiffi
S

p ¼ 1:96 TeV and m ¼
173 GeV. The top plot is at NLO and the bottom is at approxi-
mate NNLO accuracy.
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the scale uncertainty from independent �F and �R varia-
tion can be written as 7:08þ0:20þ0:36

�0:24�0:27 pb. Finally, we note

that not only is the scale variation with � ¼ �F ¼ �R

greatly reduced in going from NLO to approximate NNLO
but so is the separate �F variation and the separate �R

variation.
The MSTW2008 parton densities are the only ones

available at NNLO and so we use them for our best
predictions. It is interesting nevertheless to see if the results
change significantly using the new CT10 pdf [38], which
are at NLO, and the pdf errors associated with them. Using
CT10 pdf we find a NLO cross section for m ¼ 173 GeV
of 6:81þ0:35þ0:42

�0:75�0:30 pb, and an approximate NNLO cross

section of 7:38þ0:14þ0:45
�0:25�0:32 pb, where the first uncertainty is

from scale variation (with �F and �R independently var-
ied) and the second is from the pdf errors. We thus find both
a larger cross section and a larger uncertainty with CT10
pdf than with MSTW2008 NNLO pdf.

B. Top quark pT distribution at the Tevatron

The top quark transverse momentum distribution at the
Tevatron with m ¼ 173 GeV is plotted in Figs. 4 and 5
using the MSTW2008 NNLO pdf. Figure 4 shows the
differential distribution d�=dpT over a range 0 � pT �
300 GeV. Both NLO and NNLO approximate results are
shown for three different scale choices, � ¼ m=2, m, and
2m. The integrated pT distribution gives the same result for
the total cross section as found in the previous subsection,
which provides a good consistency check of the calcula-
tion. The scale variation of the pT distribution at NNLO is
again significantly smaller than at NLO. The NNLO soft-
gluon corrections enhance the NLO result but the shape is
similar.

Figure 5 presents the top quark pT distribution in a
logarithmic plot that makes it easier to see d�=dpT at

high pT values. Results are now shown up to a pT of
500 GeV. In Fig. 4 the central value for the scale was taken
to be � ¼ m as for the total cross section, and the scale
variation was around that central value. Another possible
scale choice for the top quark pT distribution is the trans-

verse mass mT , defined by mT ¼ ðp2
T þm2Þ1=2. In Fig. 5

we show our NLO and approximate NNLO results for both
� ¼ m and � ¼ mT . We find that the choice of scale, m
versus mT , makes very little difference even for high pT of
500 GeV—the curves are practically indistinguishable.
Joint threshold and recoil resummation for the pT dis-

tribution (at NLL accuracy only) has been studied in [39].
The effect of recoil is entirely negligible except at ex-
tremely high pT (� 800 GeV and above) so we do not
consider it further.

IV. TOP CROSS SECTION AND pT DISTRIBUTION
AT THE LHC

We continue with a detailed phenomenological study of
top quark production in proton-proton collisions at the
LHC. We present results for the current LHC energy of
7 TeVand the future (design) energy of 14 TeV, and also a
few results at 10 TeV.

A. t �t cross section at the LHC

In Fig. 6 we plot the NLO and approximate NNLO cross
section for top-antitop production at the LHC at 7 TeV
energy over a top quark mass range 165 � m � 180 GeV
at a factorization and renormalization scale � ¼ m
using the MSTW2008 NNLO pdf. The enhancement
from the NNLO soft-gluon corrections is 7.6%. Table I
lists the values for the NNLO approximate cross section at
the LHC at an energy of 7 TeV for top quark masses
between 170 GeV and 175 GeV.
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The scale dependence of the cross section for m ¼
173 GeV is plotted in Fig. 7 over a range of 2 orders of
magnitude, 0:2 � �=m � 10. Again, at LO the cross sec-
tion is strongly dependent on the choice of scale, varying
by a factor of 4.64 between maximum and minimum values
in the range shown. The NLO corrections stabilize the LO
variation: the NLO cross section varies by a factor of 1.85.
The NNLO soft-gluon corrections further reduce the scale
dependence: the NNLO approximate cross section varies
by a factor of 1.43. The improvement from the NNLO
corrections is again more impressive if one considers
only the traditional variation 0:5 � �=m � 2. For this
range the LO cross section varies by a factor of 1.75, the
NLO cross section by 1.27, while the NNLO approximate
cross section by a factor of only 1.08.

For a top quark mass of 173 GeV, the NLO cross section
is 152þ16þ8

�19�9 pb and the NNLO approximate cross section is

�
NNLOapprox
t�t ðm¼ 173 GeV;7 TeVÞ ¼ 163þ7þ9

�5�9 pb; (4.1)

where the first uncertainty is from scale variation over
0:5 � �=m � 2 and the second is from the MSTW2008
NNLO pdf errors at 90% C.L. At NLO the scale uncer-
tainty is about twice as big as the pdf one, but at NNLO it is
significantly smaller. The scale uncertainty at NNLO is
about 3 times smaller than that at NLO. Adding the
scale and pdf errors in quadrature the NNLO approximate
result is 163þ11�10 pb, i.e., we have a þ7:0%� 6:3% total

uncertainty, which is to be contrasted with a much larger
(þ11:8%� 13:8%) total error at NLO.
We also study the dependence of the cross section

separately on the factorization scale and the renormaliza-
tion scale. In Fig. 8 we plot the scale dependence of the
cross section in three different ways at NLO (top plot)
and approximate NNLO (bottom plot). The first way is to
set � ¼ �F ¼ �R and vary this common scale, as we did
in Fig. 7. The second way is to vary �F while keeping
�R ¼ m, and the third way is to vary �R while keeping
�F ¼ m. From the top plot we see that varying�F and�R

independently over the range m=2 and 2m does not give a
wider range of cross section values than varying the com-
mon scale � ¼ �F ¼ �R, and this actually holds true for
nearly the entire wide range of scale variation shown in the
plot. We also find that setting �F ¼ m=2 and �R ¼ 2m or
setting �R ¼ m=2 and �F ¼ 2m still gives a smaller
variation than varying the common scale � ¼ �F ¼ �R

between m=2 and 2m. Therefore, the NLO theoretical
uncertainty from scale variation provided previously is
not increased by separately varying �F and �R. For the
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approximate NNLO cross section in the bottom plot of
Fig. 8 we also see that the independent variation of�F and
�R does not affect the uncertainty that we wrote previ-
ously. Finally, we note that the separate �F variation and
�R variation are reduced when going from NLO to ap-
proximate NNLO.

Again we can check if the results change significantly
using the CT10 pdf, which are at NLO. Using CT10 pdf
we find a NLO cross section at m ¼ 173 GeV of
150þ18þ11

�20�10 pb, and an approximate NNLO cross section

of 162þ9þ12
�7�11 pb, so the results are very similar to those

with MSTW2008 NNLO pdf.
For reference, the cross section at a possible future LHC

energy of 10 TeV is plotted in Fig. 9 using the MSTW2008
NNLO pdf. For a top quark mass of 173 GeV, we find a
NLO cross section of 385þ41þ17

�45�18 pb, while at NNLO

�NNLOapprox
t�t ðm ¼ 173 GeV; 10 TeVÞ ¼ 415þ17þ18

�21�19 pb:

(4.2)

The cross section for the design LHC energy of 14 TeV
is plotted in Fig. 10 using the MSTW2008 NNLO pdf. The
enhancement from the NNLO soft-gluon corrections is
8.0%. Table I lists the values for the NNLO approximate
cross section at 14 TeV LHC energy for top quark masses
between 170 GeVand 175 GeV. The NLO cross section for
a top quark mass of 173 GeV is 852þ91þ30

�93�33 pb and the

approximate NNLO cross section is

�NNLOapprox
t�t ðm ¼ 173 GeV; 14 TeVÞ ¼ 920þ50þ33

�39�35 pb:

(4.3)

Again we observe a significant decrease in scale depen-
dence at NNLO relative to NLO, and also note that
the separate variation of �F and �R does not increase the
uncertainty. The pdf uncertainties at this high energy are
much smaller than the scale variation at NLO, and some-
what relatively smaller at NNLO. Adding the scale and
pdf errors in quadrature the NNLO approximate result
is 920þ60

�52 pb, i.e,. we have a þ6:5%� 5:7% total uncer-

tainty, which is to be contrasted with a much larger
(þ11:2%� 11:6%) total error at NLO.

B. Top quark pT distribution at the LHC

The transverse momentum distribution of the top quark
with m ¼ 173 GeV at the LHC at 7 TeV energy is plotted
in Figs. 11 and 12 using the MSTW2008 NNLO pdf.
Figure 11 shows NLO and approximate NNLO results
for the differential distribution d�=dpT over a range 0 �
pT � 350 GeV for three different scale choices, � ¼
m=2, m, and 2m. The scale variation of the pT distribution
at NNLO is much smaller than that at NLO.
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Figure 12 presents the results for d�=dpT in a logarith-
mic plot for high pT values up to 1000 GeV, using both
� ¼ m and � ¼ mT , where again mT is the transverse
mass. At very high pT the NNLO approximate corrections
become increasingly more significant and begin to change
the shape of the distribution relative to NLO. This is not
unexpected since the soft-gluon corrections are large
near partonic threshold, which is dominant at high pT .
The change of shape is more pronounced with the choice
� ¼ m than it is with � ¼ mT .

The pT distribution of the top quark with m ¼ 173 GeV
at the LHC at 14 TeV energy is plotted in Figs. 13 and 14.
Figure 13 shows NLO and approximate NNLO results
over a range 0 � pT � 400 GeV for three different scale
choices, � ¼ m=2, m, and 2m. Again, the scale variation

of the pT distribution at NNLO is much smaller than that at
NLO.
Figure 14 presents the results for d�=dpT in a logarith-

mic plot for high pT values up to 1500 GeV, using � ¼ m
and � ¼ mT . The NNLO soft-gluon corrections provide a
significant enhancement and change the shape of the NLO
distribution at very high pT . Again, the change in shape is
larger with the choice � ¼ m than it is with � ¼ mT .

V. COMPARISON WITH OTHER APPROACHES
AND CONCLUSIONS

In this paper we have resummed the soft-gluon loga-
rithms in top quark production to NNLL accuracy. This
work directly extends the earlier NLL resummation in
Ref. [15] and the further work in [33,34] and later in
[13,14]. To achieve NNLL (NLL) accuracy, it is necessary
to derive the soft anomalous dimension matrix at two (one)
loops for each partonic process. At NLL and NNLL the
color structure of the hard scattering enters the resumma-
tion in a nontrivial way. The soft anomalous dimension
matrices are explicitly dependent on the kinematical
variables s, t1, u1, and the resummation involves these
quantities and logarithms of s4, where s4 ¼ sþ t1 þ u1
measures distance from partonic threshold. Thus, this is a
fully differential calculation and the formalism in this
paper has been used to calculate not only total cross
sections but also differential cross sections, such as trans-
verse momentum distributions. Approximate NNLO dif-
ferential cross sections are extracted from the resummation
(higher-order contributions beyond NNLO are small, see,
e.g., Ref. [35]). The NNLO expansion avoids the need for
prescriptions to deal with Landau-pole divergences in the
resummation, and we prefer to take this approach since the
numerical discrepancies between different prescriptions
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are larger than the corrections beyond NNLO (see, e.g., the
discussion in [14,33]).

There also exist formalisms of resummation and finite-
order expansions for the total cross section only [40] that
are calculationally simpler, and only involve the variable

� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2=s

p
. Logarithms of � have been resummed

at NLL in [40,41] and at (partial) NNLL in [42] (Ref. [42]
made an incorrect assumption about the two-loop terms
which, as later understood, is not valid). This approach
does not, however, involve the exact differential kinematics
and hence numerical deviations from the exact kinematics-
sensitive result may appear. Furthermore this approach is
inapplicable to pT or other differential distributions, so it is
limited in scope. For further discussion of the differences
see also Refs. [14,30]. More recently, complete NNLL
results in logarithms of � have appeared in Ref. [25] using
soft-collinear and nonrelativistic effective theory, and in
Ref. [26] using resummation in moment space. Threshold
expansions to NNLO for the total cross section from this
ln� resummation have recently appeared in [43,44].
Again, all these results are for total cross sections only,
based on expansions in �. It is important to note that the
terminology ‘‘NLL’’ and ‘‘NNLL’’ means different things
in the approaches of Refs. [25,26,40–44] than it does in the
differential-level formalism of Refs. [13–15,33,34] and
of this paper because different types of logarithms are
resummed.

Another differential-level formalism that has recently
appeared [30,45] is based on soft-collinear effective theory
and heavy-quark effective theory. While the resummation
in [13–15,33,34] and this paper is done in moment space,
in [30] it is performed in momentum space. The total cross
section and invariant mass distribution at NNLL have been
presented in [30]. The total cross section results in [30] are
quite different from those in this paper. One major reason
for the difference is the different choice of kinematics, as
we describe below.

In Refs. [13,14,33,34] (based on the formalism of [15])
results were provided in both single-particle-inclusive
(1PI) and pair-invariant-mass (PIM) kinematics. The kine-
matics ambiguity was studied in detail in [34] and found to
be an important source of uncertainty. In 1PI kinematics
the soft-gluon logarithms are of the form ½lnkðs4=m2Þ=s4�þ
and the soft-gluon corrections to the double differential
cross section, d2�=ðdt1du1Þ, are calculated. In PIM kine-
matics, the soft logarithms are of the form ½lnkð1�
zÞ=ð1� zÞ�þ with z ¼ M2=s, and z ! 1 near threshold,
where M2 is the tt pair mass squared. In PIM kinematics,
the soft-gluon corrections to the double differential cross
section, d2�=ðdM2d cos
Þ, where 
 is the scattering angle
in the partonic center-of-mass frame, are calculated. The
cross section in PIM kinematics was found to be smaller
than the 1PI result. The results in Refs. [33,34] were based
on NLL resummation and were later improved by adding
subleading terms [13,14]. The kinematics ambiguity was

thus reduced in [13,14]. Still it was shown in [13] that the
PIM kinematics gives large negative results at NNLO for
the gg channel at LHC energies (for t�t production at the
LHC, the gg channel is by far dominant over the q �q
channel). These negative corrections are deemed unphys-
ical since already at NLO the PIM approximation for the
corrections does not reproduce well the exact NLO result
while the 1PI result is a much better approximation
(detailed graphs for the partonic scaling functions in 1PI
and PIM kinematics were shown in [34] and also [13]). In
the present paper we have thus used 1PI kinematics. In
contrast, Ref. [30] uses a modified PIM kinematics.
Although the modified PIM kinematics of Ref. [30] pro-
duces less negative results than PIM in [13,34], the overall
NNLO contribution in modified PIM is still negative. This
explains why both the NNLL resummed cross section and
the NNLO approximate cross section with modified PIM in
[30] is less than the NLO cross section at � ¼ m for both
Tevatron and LHC energies. This is in sharp contrast to the
1PI results here and in all our previous calculations (at both
NLL and NNLL accuracy) where the NNLO soft-gluon
corrections are found to provide a positive enhancement of
the NLO cross section. The 1PI kinematics provides an
excellent approximation as evidenced by the fact that the
NLO approximate 1PI corrections from the expansion of
the resummed cross section account for well over 98%
(up to 99.8%) of the exact NLO corrections in the gg
channel (with � ¼ m) at both Tevatron and LHC energies.
This is a far better agreement than can be attained with PIM
or modified PIM kinematics. We thus remain of the opinion
that the results in [30] do not accurately reflect the true
contribution of soft-gluon corrections.
It is also interesting to compare the results in this paper

with our previous results in [13,14]. Although NNLL
resummation requires calculation of the two-loop soft
anomalous dimension matrices as presented in this paper,
it was argued in [13,14] that the numerical contribution of
this matrix at two loops to the cross section is expected to
be small. In [13,14] many of the terms beyond NLL were
already included in the calculation and it was argued based
on the study of the scaling functions in 1PI and PIM
kinematics that these additional subleading terms were
relatively dominant. Now that the full two-loop NNLL
terms are known it is important to revisit the validity of
this argument. We find that indeed the new two-loop terms
from the soft anomalous dimension matrices contribute
very little to the total cross section, and hence the argument
was valid and the results in [13,14] were robust. For
example, using the MSTW2008 NNLO pdf [37] the cal-
culation at the accuracy of Ref. [14] for the top quark cross
section at the LHC at 7 TeV gives 165 pb, while in this
paper we find 163 pb based on NNLL resummation. The
difference between the two numbers is very small com-
pared with the overall theoretical uncertainty. Any differ-
ences in the numbers provided in [13,14], and the present
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work are overwhelmingly due to the use of different pdf
and only to a rather small extent due to the different
theoretical accuracy.

To conclude, we have shown in this paper that the top
quark cross section and transverse momentum distribution
receive significant enhancements from soft-gluon correc-
tions at NNLO. These corrections have been resummed at
NNLL accuracy by calculating the two-loop soft anoma-
lous dimension matrices for the partonic processes.
Approximate NNLO total and differential cross sections
have been derived from the NNLL resummed result. The
NNLO soft-gluon corrections enhance the total cross sec-

tion and the pT distribution and greatly reduce the
theoretical uncertainty from scale variation. The pdf un-
certainty of the cross section has also been presented. Our
NNLL resummation formalism can be used to calculate
other differential distributions of interest, such as the top
quark rapidity distribution. This will be a topic of future
work.
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