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A Borel summation scheme of subtracting the perturbative contribution from the average plaquette is

proposed using the bilocal expansion of the Borel transform. It is shown that the remnant of the average

plaquette, after subtraction of the perturbative contribution, scales as a dim-4 condensate. A critical review

of the existing procedure of renormalon subtraction is presented.
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I. INTRODUCTION

An old problem in lattice gauge theory is extracting the
gluon condensate from the average plaquette, which in
pure SU(3) Yang-Mills theory has the formal expansion
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where � denotes the lattice coupling and a the lattice
spacing. The difficulty of extracting the gluon condensate
is that the average plaquette is dominated by the perturba-
tive contribution and it is necessary to subtract it to an
accuracy better than one part in 104. The perturbative
coefficients cn were computed to 10-loop order using
the stochastic perturbation theory [1], but this alone does
not achieve the required accuracy. Therefore, any attempt
to extract the gluon condensate using the perturbative
expansion must involve extrapolation of the perturbative
coefficients to higher orders and, the perturbative expan-
sion being asymptotic, proper handling of them. Since
the large order behavior of perturbative expansion is
determined by the renormalon singularity of the Borel
transform, a natural extrapolation scheme would be based
on the renormalon singularity. A program along this line
was implemented by Burgio et al., and the authors obtained
a surprising result of power correction that scales as a
dim-2 condensate [2]. This is in contradiction with the
operator product expansion (1) that demands the leading
power correction scale as a dim-4 condensate.

The claim of the dim-2 condensate was since then
reexamined by several authors. In obtaining the perturba-
tive contribution, Horsley et al. employed an extrapolation
scheme based on the power law and truncation of the
perturbative series at the minimal element [3], and
Rakow used stochastic perturbation with boosted coupling
to accelerate convergence [4], and Meurice employed
extrapolations based on assumed singularity of the pla-
quette in the complex � plane as well as the renormalon

singularity, with truncation at the minimal element [5].
All these studies did not see any evidence of a dim-2
condensate but found the plaquette data were consistent
with a dim-4 condensate.
To help settle these conflicting views on the dim-2

condensate we present in this paper a critical review of
the renormalon-based approach of [2], and reveal a serious
flaw in the program of renormalon subtraction, and show
that the plaquette data, when properly handled, are con-
sistent with a dim-4 condensate.
Specifically, we shall show that the continuum scheme

employed for renormalon subtraction in [2] is not at all a
scheme where the perturbative coefficients follow a renor-
malon pattern, and therefore the claimed dim-2 condensate
is severely contaminated by the perturbative contribution
and cannot be interpreted as a power correction. We then
introduce a renormalon subtraction scheme based on the
bilocal expansion of the Borel transform, and show that the
plaquette data can be fitted well by the sum of a dim-4
condensate and the Borel summed perturbative contribution.

II. RENORMALON SUBTRACTION BY
MATCHING LARGE ORDER BEHAVIORS

In this section we give a critical review on the renorma-
lon subtraction procedure of [2]. The perturbative coeffi-
cients cn of the average plaquette at large orders are
expected to exhibit the large order behavior of the infrared
renormalon associated with the gluon condensate, but the
computed coefficients using stochastic perturbation theory
turn out to grow much more rapidly than a renormalon
behavior. This implies that the coefficients are not yet in
the asymptotic regime, which is expected to set in at
around order �n ¼ �z0 [z0 given below in (5)], which gives
�n� 30 for �� 6, far higher than the computed levels.
It therefore appears all but impossible to extract the gluon
condensate directly from using the stochastic perturbation
theory, since the perturbative contribution must be sub-
tracted, at least, to orders in the asymptotic regime.
In Ref. [2] this problem was approached by introducing

a continuum scheme in which the renormalon contribution
is subtracted by matching the large order behavior in the
continuum scheme to the computed coefficients in the*tlee@kunsan.ac.kr
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lattice scheme. Specifically, in order to relate cn of the
lattice scheme with the renormalon behavior, the average
plaquette is written, essentially, as

Pð�Þ ¼ Prenð�cÞ þ �Pð�cÞ þ PNPð�Þ; (2)

where

Prenð�cÞ ¼
Z bmax

0
e��cb

N
ð1� b=z0Þ1þ�

db (3)

with �c denoting the coupling in the continuum scheme
defined by

�c ¼ �� r1 � r2
�

(4)

and

z0 ¼ 16�2

33
; � ¼ 204

121
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In Eq. (2) the plaquette is divided into perturbative con-
tributions, made up of the renormalon contribution Pren

and the rest of the perturbative contribution �P, and non-
perturbative power correction PNP. In this splitting, the
asymptotically divergent behavior of the perturbative
contribution is contained in Pren, and �P denotes the rest
that can be expressed as a convergent series. (Here, the
renormalons other than that associated with the gluon
condensate and the subleading singularities at b ¼ z0 are
ignored, which, if necessary, can be incorporated in Pren.)

We now define PðNÞ
NP with

PðNÞ
NP ð�Þ � Pð�Þ � Prenð�cÞ �

XN
n¼1

ðcn � Cren
n Þ��n; (6)

where Cren
n denotes the perturbative coefficients of Pren in

power expansion in 1=�. Note that PðNÞ
NP is free of pertur-

bative coefficients to order N. The constants r1, r2 that
define the continuum scheme and the normalization con-
stant N are determined so that Cren

n converges to cn at
large orders. In the continuum scheme with

r1 ¼ 3:1; r2 ¼ 2:0 (7)

and an appropriate value for N , it was observed that Cren
n

converge to cn at the orders computed in stochastic pertur-
bation theory. The last term in (6) being a converging series

PðNÞ
NP will be well-defined at N ! 1, and this is precisely

the quantity that was assumed to represent the power

correction, and it was Pð8Þ
NP that was shown to scale as a

dim-2 condensate.

The essence of this procedure is that the isolation of the
renormalon contribution is obtained by matching the large
order behaviors in the lattice and continuum schemes,
in which the matching does not involve the low order
coefficients. Although the renormalon-caused large order
behaviors of any two schemes can be matched, indepen-
dently of the low order coefficients, it must be noted that
the matching would work only when the known coeffi-
cients in both schemes exhibit renormalon behavior.
Since, however, the computed coefficients in the lattice
scheme are far from being in the asymptotic regime and
do not follow the renormalon pattern, the matching cannot
be performed reliably; therefore, the conclusion of a
dimension-2 condensate based on it should be reexamined.
That the above matching has a serious flaw can be easily

shown by mapping the perturbative coefficients in the
lattice scheme to the continuum scheme (7). If the latter
is indeed a good scheme for renormalon subtraction, the
mapped coefficients should exhibit a renormalon behavior.
However, as can be seen in Table I, which is obtained by
mapping the central values of cn from the stochastic per-
turbation theory, the coefficients are alternating in sign and
far from being of a renormalon behavior. This shows that
when mapping the perturbative coefficients between the
lattice scheme and (7), the relatively high order coefficients
(say, 7- to 10-loop orders) are still very sensitive on the
low order coefficients. Therefore, the above large order
matching cannot be performed reliably with the computed
coefficients, and (7) cannot be the right scheme where one
can isolate and subtract the renormalon contribution.
Checking the internal consistency of the subtraction

scheme based on the matching of large order behavior
also shows the underlying problem. The nonperturbative
term in (2) can be written using (6) as

PNPð�Þ¼PðNÞ
NP ð�Þ�

�
�Pð�cÞ�

XN
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ðcn�Cren
n Þ��n

�
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For PðNÞ
NP to represent the power correction it is clear that

���������Pð�cÞ �
XN
n¼1

ðcn � Cren
n Þ��n

��������� PðNÞ
NP ð�Þ (9)

must be satisfied. Since �Pð�cÞ is by definition a conver-
gent quantity, it can be written in a series expansion

�Pð�cÞ �
X1
n¼1

Dn�
�n
c ; (10)

TABLE I. The perturbative coefficients of the average plaquette in the continuum scheme.

ccont1 ccont2 ccont3 ccont4 ccont5 ccont6 ccont7 ccont8

2.0 �4:9792 10.613 �10:200 �44:218 316.34 �1096: 1947.
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where Dn can be computed up to the order cn are known,
and (9) can be written approximately as

jPN
n¼1 Dn�

�n
c �P

N
n¼1ðcn � Cren

n Þ��nj
PðNÞ
NP ð�Þ

� 1: (11)

Now, in the scheme of (7), and at N ¼ 8 and � ¼ 6:0, 6.2,
and 6.4, for example, the ratios are 69, 59, and 42, respec-
tively: a severe violation of the consistency condition. This
again confirms that (7) cannot be a scheme suited for
renormalon subtraction.

III. RENORMALON SUBTRACTION BY
BOREL SUMMATION

It is now clear that one cannot subtract the perturbative
contribution in the plaquette by mapping the renormalon-
based coefficients in a continuum scheme to the lattice
scheme, and then matching them with the computed high
order coefficients. On the other hand, the lesson of our
review suggests that one must map the known coefficients
in the lattice scheme to a continuum one and look for a
scheme where the mapped coefficients follow a renorma-
lon behavior.

Once such a scheme is found one can perform Borel
summation to subtract perturbative contribution to isolate
the power correction. Borel summation is especially suited
for this purpose, since it allows a precise definition of the
power corrections in operator product expansion [6–8].
The nature of the renormalon singularity, hence of the
large order behavior of perturbation, was obtained through
the cancellation of the ambiguities in Borel summation and
power corrections [9]. An extensive review of renormalons
can be found in [10].

In this paper we shall assume that such a scheme exists
and perform Borel summation using the scheme of bilocal
expansion of the Borel transform [11]. To Borel-sum the
divergent perturbation to a sufficient accuracy for the ex-
traction of the power correction, one must have an accurate
description of the Borel transform in the domain that
contains the origin as well as the first renormalon singu-
larity in the Borel plane. Bilocal expansion is a scheme of
reconstructing the Borel transform in this domain, utilizing
the known perturbative coefficients and properties of the
first renormalon singularity. After Borel-summing the per-
turbative contribution, the sum of the Borel summation and
a dim-4 power correction can be fitted to the plaquette data.
A good fit would suggest then the power correction be of
the dim-4 type.

The Borel summation using the first N-loop perturba-
tions of the plaquette in bilocal expansion in a continuum
scheme is given in the form

PðNÞ
BR ð�Þ ¼

Z 1

0
e��cb

�XN�1

n¼0

hn
n!

bn þ N
ð1� b=z0Þ1þ�

�
db;

(12)

where the integration over the renormalon singularity is
performed with principal value prescription. The essential
idea of the bilocal expansion is to interpolate the two
perturbative expansions about the origin and about the
renormalon singularity to rebuild the Borel transform. By
incorporating the renormalon singularity explicitly in the
expansion, it can extend the applicability of the ordinary
weak coupling expansion to beyond the renormalon singu-
larity, and this scheme was shown to work well with static
interquark potential or heavy quark pole mass [11,12].
Here, N denotes the normalization constant of the large
order behavior and the coefficients hn are determined so
that the Borel transform in (12) reproduces the perturbative
coefficients in the continuum scheme when expanded at
b ¼ 0; thus hn depends on the continuum perturbative

coefficients as well as N . By definition, PðNÞ
BR ð�Þ, when

expanded in 1=�, reproduces the perturbative coefficients
of the average plaquette to N-loop order that were
employed in building the Borel transform. For details of
the bilocal expansion of the Borel transform we refer the
reader to [11,12].
The power correction can then be defined by

PðNÞ
NP ð�Þ � Pð�Þ � PðNÞ

BR ð�Þ; (13)

which, by definition, has vanishing perturbative expansions
to order N.
Using the perturbation to 10-loop order of the plaquette

we compute Pð10Þ
BR ð�Þ in the continuum scheme parame-

trized by Eq. (4). Although N can be computed perturba-
tively, using the perturbations of the average plaquette, it is
still difficult to obtain a reliable result using the known
coefficients, so here it will be treated as a fitting parameter.
Thus in our scheme, as in [2], the fitting parameters areN
and r1, r2 of Eq. (4).
Using the plaquette data for 6:0 � � � 6:8 from [13]

and the relation between the lattice spacing a and � from
static quark force simulation [14]

logða=r0Þ ¼ �1:6804� 1:7331ð�� 6Þ
þ 0:7849ð�� 6Þ2 � 0:4428ð�� 6Þ3; (14)

the fit gives N ¼ 165 and

r1 ¼ 1:611; r2 ¼ 0:246; (15)

values which are substantially different from those in (7).
The result of the fit is shown in Fig. 1, which shows that the
power correction is consistent with a dim-4 condensate.
The agreement improves as � increases, albeit with larger
uncertainties; the deviation at low � (�< 6) may be
attributed to a dim-6 condensate, which may be seen,
though not presented here, by that adding a dim-6 power
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correction in the fit improves the agreement in the whole
range of the plot. The error bars are from the uncertainty in
the simulated perturbative coefficients of the plaquette.
The uncertainty in the normalization constant does not
appear to be large; for example, a variation of 20% in N
causes less than a quarter of those by the perturbative
coefficients.

From the fit we obtain a dim-4 power correction of
PNP � 1:6ða=r0Þ4. Because of the asymptotic nature of
the perturbative series the power correction of the plaquette
is dependent on the subtraction scheme of the perturbative
contribution, and thus our result may not be directly
compared to those from other subtraction schemes.
Nevertheless, it is still interesting to observe that the result
is roughly consistent with 0:4ða=r0Þ4 of [4] and 0:7ða=r0Þ4
of [5]. Our result turns out to be a little larger than those
estimates; this may be partly accounted for by the fact that
the existing results were from the fit in the low � range of
� & 6, in which range the data are below our fitted curve.

IV. SUMMARY

We have reexamined the claim of the dim-2 condensate
in the average plaquette, and shown that the renormalon
subtraction procedure of [2] that gave rise to the dim-2
condensate fails consistency checks and cannot be reliably
implemented with the known results of stochastic pertur-
bation theory. We then introduced a renormalon subtrac-
tion scheme based on the bilocal expansion of the Borel
transform and found that the plaquette data are consistent
with a dim-4 condensate.
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FIG. 1. logPNP vs �. The solid line is for 4 logða=r0Þ þ 0:5.
The plot shows the power correction should be of the dim-4 type.
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