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Understanding the underlying mechanisms causing rapid thermalization deduced for high-energy heavy

ion collisions is still a challenge. To estimate the thermalization time, entropy growth for classical Yang-

Mills theories is studied, based on the determination of Lyapunov exponents. Distinct regimes for short,

medium and long sampling times are characterized by different properties of their spectrum of Lyapunov

exponents. Clarifying the existence of these regimes and their implications for gauge-field dynamics is

one of the results of this article. As a phenomenological application we conclude that for pure gauge

theories with random initial conditions thermalization occurs within a few fm=c, an estimate which can be

reduced by the inclusion of fermions, specific initial conditions, etc.
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I. INTRODUCTION

Experiments have shown that a new form of strongly
interacting matter with very high-energy density and un-
usual transport properties is created in collisions between
heavy nuclei at energies attainable at the Relativistic
Heavy Ion Collider (RHIC), up to 200 GeV per nucleon
pair in the center of mass [1]. Theoretical arguments as
well as circumstantial experimental evidence suggest that
this matter is a strongly coupled quark-gluon plasma [2].
The early thermalization of this matter leading to the
formation of a quark-gluon plasma is one of the largest
unexplained puzzles in RHIC physics. Hydrodynamic
simulations are consistent with a thermalization time of
1:5 fm=c or less [3]. It is generally believed that the
instability and consequent exponential growth of intense
gluon fields would be the origin of early thermalization.
Various plasma instabilities such as the Weibel instability
[4] and the Nielsen-Olesen instability [5] can cause the
exponential growth of the amplitude of unstable modes of
the SU(3) gauge field. The plasma instability may be
characterized by the negative curvature of the potential,
leading to the equation of motion

€X i ¼ �2
i Xi; (1)

where Xi denotes the field variable in the unstable mode.
The energy stored in the intense gauge field eventually
produces abundant particles and evolves towards a ther-
malized state. The thermalization mechanism governing
this transition is not yet clear, and the time scale on which it
occurs is not known. The equilibration problem is simpli-
fied, however, by the high occupation probability of the
unstable modes, which makes a quasiclassical treatment of
the thermalization process, at least of its initial stages,
possible.

In the classical dynamics, the apparent entropy of an
isolated system is produced by the increasing complexity

in phase space. The distance between classical trajectories
starting from very similar initial conditions grows expo-
nentially in the long-time evolution of a chaotic system,

j�XiðtÞj / e�it; (2)

where �Xi represents the separation of trajectories, and �i

is referred to as the Lyapunov exponent (LE). The entropy
production rate is given by the Kolmogorov-Sinaı̈ (KS)
entropy, which is defined as the sum of positive LEs,
dS=dt ¼ SKS �

P
�i>0�i. The production of entropy at

the quantum level poses additional problems such as the
decoherence of the quantum state of the system [6], since
the evolution in pure state generates no entropy and some
kind of coarse graining is necessary. Kunihiro, Müller,
Ohnishi, and Schäfer [7] proposed applying the Husimi
function, a smeared Wigner function with minimal wave
packets, to define a minimally coarse grained entropy,
the Wehrl entropy, and showed that it grows at the rate of
the KS entropy in the classical long-time limit, i.e., if the
system has enough time to sample the complete phase
space. For example, entropy production in the ‘‘preheat-
ing’’ phase after cosmic inflation was discussed in this
framework [7], and it was shown that the growth rate of
the Wehrl entropy equals that of the KS entropy in a simple
inflaton model. In addition, the Wehrl entropy was shown
to agree with the thermal entropy when the field modes are
highly occupied, as in the glasma [7].
Here we analyze the KS entropy of the classical Yang-

Mills (CYM) field which has a large number of degrees of
freedom. Our ultimate aim is to understand how the final
entropy is generated in heavy ion collisions; our present
study explores whether the growth of the coarse grained
entropy of the initially present strong Yang-Mills fields can
be a major contribution to it [8].
We analyze the chaotic behavior in the classical Yang-

Mills evolution, specifically, the exponentially growing
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behavior of the distances between the trajectories. We find
that we have to distinguish different regimes, depending on
sampling time, namely, a kinetic stage for short sampling
times, an intermediate- and a long-time regime. In each
case, we consider the growth rate of the distance between
two trajectories, which follows the equation of motion

� _XðtÞ ¼ H ðt; XÞ�XðtÞ; (3)

where H is the so-called Hesse matrix or Hessian, and
analyze the time evolution of the distance vector �X in
three different time scales.

(a) The instantaneous change of the distance is deter-
mined by the eigenvalues of the Hessian, which we
will refer to as the local Lyapunov exponents (LLE).

(b) The evolution of the distance on ergodic time scales
is described by the Lyapunov exponents (2), which
we will refer to as global Lyapunov exponents
(GLE).

(c) For the third, intermediate time period, the Hessian
changes due to the nonlinear coupling among the
different field modes, but the energy remains local-
ized among the primary unstable modes. As shown
in Sec. II B, we can numerically integrate the equa-
tion of motion for the tangent space �X, and con-
struct the time-evolution matrix for an intermediate
time period. We will refer to the eigenvalues of the
time-evolution matrix as intermediate Lyapunov ex-
ponents (ILE).

Because the ILEs describe the evolution of the strongly
excited Yang-Mills field modes during the time when the
field configuration is still far away from equilibrium and a
quasiclassical description of the dynamics of the Yang-
Mills field is appropriate, the ILEs are the most relevant
Lyapunov exponents for the early thermalization at RHIC.

Below we obtain the distribution of these three kinds of
Lyapunov exponents. Since they govern the growth rate of
the coarse grained entropy residing in the Yang-Mills field,
they will allow us to estimate the equilibration time as
�eq ’ �S=SKS, where �S is the increase of entropy neces-

sary for equilibration.
Since the CYM theory has no conformal anomaly (it

does not know about �QCD) all statistical quantities should

scale like "n=4, where " is the energy density and n is the
mass dimension of that quantity. For example, the KS

entropy has the mass dimension and scales as SKS / "1=4.
For the initial stage of high-energy heavy ion collisions the
relevant scale is the saturation scale Qs, which is related to
the initial energy density in the color glass condensate
model as " ¼ Q4

s=g
2, implying that the time scale of very

early dynamics is given by 1=Qs. Not surprisingly, Fries,
Müller, and Schäfer have indeed found that decoherence
(which is probably the fastest mechanism for entropy pro-
duction) happens indeed on this time scale [6]. However,
they also found that decoherence can only generate a

fraction of the entropy needed to justify a hydrodynamic
treatment. The real-time gauge-field dynamics discussed in
this article is treated numerically introducing a spatial
lattice with lattice constant a which accordingly has to be

chosen as a� "�1=4. We show that everything works out
exactly in this manner.
Here we consider the CYM dynamics for a system with a

fixed energy density, not for an expanding system. When
expansion is very fast, as it happens at very early times in
heavy ion collisions, this is expected to reduce the growth
rate of the unstable modes and thus delay the equilibration.
This paper is organized as follows. In Sec. II, we explain

how to obtain the LEs in the CYM theory. In Sec. III, we
show the time evolution of the distance and the eigenvalue
distribution of the Hessian. Next we show the ILE distri-
bution, and evaluate the KS entropy density in the CYM
theory. Finally, Sec. IV is devoted to the summary.

II. THEORETICAL BACKGROUND

A. Chaotic dynamics of Yang-Mills fields

In this section, following a brief review of previous
results, we discuss the method we use to analyze the
complexity evolution in the CYM theory for an intermedi-
ate time duration. We first introduce the intermediate
Lyapunov exponent which is applicable to general cases,
and apply it to the CYM evolution.
The chaotic properties of the classical evolution of

Yang-Mills fields has been known and studied for a long
time [9]. Chaos was first observed in the infrared limit of
the Yang-Mills theory [10]; later it was shown to exist also
in the compact lattice version of the classical Yang-Mills
theory [11]. The maximal global Lyapunov exponent may
be related to the plasmon damping rate of the thermal pure
Yang-Mills plasma [12].
The global KS entropy of the compact lattice gauge

theory (i.e., the rate of entropy growth close to thermal
equilibrium) was shown to be extensive, i.e., proportional
to the lattice volume [13], and the ergodic properties of the
compact SU(2) lattice gauge theory were investigated nu-
merically in detail by Bolte et al. [14].
Since we are here not interested in the ergodic properties

of the classical non-Abelian gauge theory, but in its dy-
namical properties far off equilibrium, we will mostly
make use of the noncompact formulation of the lattice
gauge theory. In the following, we set the stage for our
investigation by discussing three different kinds of insta-
bility exponents, which capture different aspects of the
dynamics of a nonlinear system with many degrees of
freedom, such as the CYM field.

B. Local and intermediate Lyapunov exponents

For a simple ‘‘rollover’’ transition, H ¼ p2=
2� �2x2=2, we have one positive and one negative
Lyapunov exponents, � and ��, which characterize both,
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the kinetic instability and the entropy production. This is
understood in the matrix form as follows. For a classical
trajectory, XðtÞ ¼ ðxðtÞ; pðtÞÞT , we consider a second tra-
jectory which differs a little in the initial condition. The
equations of motion for the tangent vector �XðtÞ ¼
ð�xðtÞ; �pðtÞÞT are written as

_XðtÞ ¼ 0 1
�1 0

� �
Hx

Hp

� �
; (4)

� _XðtÞ ¼ 0 1
�1 0

� �
Hxx Hxp

Hpx Hpp

� �
�XðtÞ; (5)

where we have introduced shorthand notations,
Hx ¼ @H=@x, Hxp ¼ @2H=@x@p, and so on. For an in-

verted harmonic oscillator, we put Hxx ¼ ��2, Hpp ¼ 1,

and find

� _XðtÞ¼A
� 0
0 ��

� �
A�1�XðtÞ; A¼ 1 �1

� �

� �
: (6)

This leads to an exponential expansion in the direction of
�xþ p and an exponential contraction in the direction
of ��xþ p. The entropy production rate in this simple
case was analyzed by Kunihiro, Müller, Ohnishi, and
Schäfer, who found to be given by dS=dt ! � for t ! 1.

In the case of many degrees of freedom, a similar
structure will appear as

� _XðtÞ ¼ Hpx Hpp

�Hxx �Hxp

� �
�XðtÞ � H ðtÞ�XðtÞ: (7)

Now the second derivatives should be regarded as matrices,
e.g. ðHxxÞij ¼ @2H=@xi@xj. We will refer to the matrix of

second derivatives, H , as the Hessian in this paper. The
eigenvalues of the Hessian are referred to as the LLE, �LLE.
The LLE plays the role of a ‘‘temporally local’’ Lyapunov
exponent, which specifies the departure of two trajectories
in an infinitesimal time period.

If H is constant, i.e., in the absence of mode coupling,
the LLEs are identical with the Lyapunov exponents, and
the KS entropy is defined as the sum of positive LLEs. In
general, however, for a system with many degrees of free-
dom, stable and unstable modes couple with each other.
Thus, the LLE does not generally agree with the Lyapunov
exponent in a long time period. In order to discuss the
exponentially growing behavior of the fluctuation, we in-
troduce the ILE.

We can formally solve the equation of motion (7) for a
finite time period �t as

�Xðtþ �tÞ ¼ Uðt; tþ �tÞ�XðtÞ; (8)

Uðt; tþ �tÞ ¼ T
�
exp

�Z tþ�t

t
H ðt0Þdt0

��
; (9)

where T denotes the time-ordered product. Numerically,
we can implement the time integral by the Trotter formula

expðAÞ ¼ limN!1fexpðA=NÞgN [15]. By making use of the
Trotter formula, the time-evolution matrix is given as

Uðt; tþ �tÞ ’ T
Y

k¼1;N

exp½H ðtk�1Þ�t�

’ T
Y

k¼1;N

½1þH ðtk�1Þ�t�; (10)

where �t ¼ �t=N. We diagonalize the time-evolution
matrix U, and define the ILEs as

UDðt; tþ�tÞ ¼ diagðe�ILE
1

�t; e�
ILE
2

�t; . . .Þ: (11)

Liouville’s theorem dictates that the determinant of the
time-evolution matrix U is unity, and thus the sum of all
positive and negative ILEs is zero. After a long enough
time for thermalization, the distribution of the ILEs is
expected to converge to that of the GLE,

�ILE !
�
�LLE ð�t ! 0Þ;
�GLE ð�t ! 1Þ: (12)

In general all three types of Lyapunov exponents, LLE,
ILE, and GLE, yield different results. Here we are inter-
ested in the rapid growth of the coarse grained entropy
when the gauge-field configuration is still far from equi-
librium, but has already had sufficient time to sample a
significant fraction of phase space. Our goal is not to
calculate how the entropy grows when a configuration
close to equilibrium relaxes further; this can be calculated
reliably in thermal quantum field theory. Instead, we focus
below on the ILEs, and estimate the KS entropy as

dS

dt
¼ SKS ¼

X
�ILE
i >0

�ILE
i : (13)

C. Classical Yang-Mills equation

We consider the pure Yang-Mills theory in the temporal
gauge, which permits a Hamiltonian formulation. The
continuum Hamiltonian is given in terms of the physical
chromoelectric and chromomagnetic fields, Ea

i and
Ba
i ¼ "ijkF

a
jk, by

H ¼ 1

2g2

Z
d3x

�X
a;i

Ea
i ðxÞ2 þ

1

2

X
a;i;j

Fa
ijðxÞ2

�
: (14)

We now define the dimensionless variables on the lattice
with lattice spacing a as (omitting vector and color indices)

AL ¼ aA; EL ¼ a2E; FL ¼ a2F: (15)

The time variable is rescaled as

tL ¼ t=a: (16)

The lattice spacing a is thus scaled out, and the dimen-
sionless lattice Hamiltonian is defined as
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HL ¼ ag2H: (17)

Here we make use of the fact that a rescaling of the
Hamiltonian (by g2) does not affect the classical equations
of motion. In the following we omit the superscript ‘‘L.’’
The Hamiltonian on the lattice is

H ¼ 1

2

X
x;a;i

Ea
i ðxÞ2 þ

1

4

X
x;a;i;j

Fa
ijðxÞ2; (18)

Fa
ijðxÞ¼@iA

a
j ðxÞ�@jA

a
i ðxÞþ

X
b;c

fabcAb
i ðxÞAc

jðxÞ; (19)

where @i is the central difference operator in the i direction,

i.e., @iAðxÞ � fAðxþ îÞ � Aðx� îÞg=2.
The classical equations of motion are given as

_A a
i ðxÞ ¼ Ea

i ðxÞ; (20)

_E a
i ðxÞ ¼

X
j

@jF
a
jiðxÞ þ

X
b;c;j

fabcAb
j ðxÞFc

jiðxÞ: (21)

There are two conserved quantities; total energy and color
charge. Because the system has instabilities, we must
check their behaviors along the numerical simulation.
The charge conservation is expressed by non-Abelian
Gauss’ law,

GaðxÞ ¼ X
i

@iE
a
i ðxÞ þ

X
b;c;i

fabcAb
i ðxÞEc

i ðxÞ: (22)

In the continuum pure Yang-Mills theory, it is always
satisfied as GaðxÞ ¼ 0. On the other hand, in the noncom-
pact lattice formalism, the lattice discretization violates the
charge conservation.

The Hessian of CYM theory is written as

H ¼ HEA HEE

�HAA �HAE

� �
; (23)

where the matrix elements are

HEE ¼ �ab�ij�x;y; (24)

HEA ¼ HAE ¼ 0; (25)

HAA ¼ 1

4
�abPþ 1

2

X
c

fabcQc þX
cde

facdfbceRde; (26)

with

P ¼ �ð�xþî;yþĵ � �xþî;y�ĵ � �x�î;yþĵ þ �x�î;y�ĵÞ
þ �ij

X
k

ð2�x;y � �xþk̂;y�k̂ � �x�k̂;yþk̂Þ (27)

Qc ¼ Ac
i ðyÞð�x;yþĵ � �x;y�ĵÞ � Ac

jðxÞð�xþî;y � �x�î;yÞ
þ �ij

X
k

fAc
kðxÞ þ Ac

kðyÞgð�xþk̂;y � �x�k̂;yÞ

þ 2Fc
ijðxÞ�x;y (28)

Rde ¼
�
�Ae

i ðxÞAd
j ðxÞ þ �ij

X
k

Ad
kðxÞAe

kðxÞ
�
�x;y: (29)

On the L3 lattice, the number of the eigenvalues is
6ðN2

c � 1ÞL3.

D. Physical scale

In order to fix the scale of the theory, we consider a
physical volume V ¼ a3L3 in which the gauge field is
thermalized at temperature T. The total energy is given by

hHi ¼ V"ðTÞ ¼ hHLi
g2a

¼ L3

g2a
"L; (30)

where "L ¼ hHLi=L3 is the energy per site, i.e., the energy
density in lattice units.
A CYM theory on the lattice is a classical system of

2L3ðN2
c � 1Þ oscillators and has the thermal energy density

"L ¼ 2ðN2
c � 1Þ 1

L3

X
k

jkj T
L

jkj ¼ 2ðN2
c � 1ÞCLT

L; (31)

where CL ¼ P
k=L

3 is a numerical coefficient of order
unity. The physical energy density of the lattice theory is

"clðTÞ ¼ "L

a4g2
¼ 2ðN2

c � 1ÞCL

T

a3
; (32)

where we have used the relation TL ¼ ag2T. On the other
hand, the energy density in the weakly interacting thermal
quantum Yang-Mills theory is

"ðTÞ ¼ 2ðN2
c � 1Þ

Z d3k

ð2�Þ3
jkj

ejkj=T � 1
¼ 2ðN2

c � 1Þ�
2

30
T4:

(33)

The classical theory only applies to those modes of the
continuum theory which are highly occupied and for which
the quantum corrections are not too large. This condition
imposes a lower limit on the lattice spacing of the classical
theory. One can either argue that the two expressions for
the energy density should coincide, or that a is the screen-
ing length of the corresponding quantum field theory. In
both cases this leads to the relation

a � �

T
; (34)

where � is a numerical constant of order unity and

T � "1=4 is introduced as a measure of the energy density.

(For example, "cl ¼ " leads to a ¼ ð30CL=�
2Þ1=3=

T ’ 1:45=T.)
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The KS entropy growth rate, i.e., the sum of all positive
Lyapunov exponents, in lattice units is given by

SðLÞKS ¼ cKSL
3ð"LÞ1=4: (35)

The KS entropy density in lattice units is thus

sðLÞKS ¼ cKSð"LÞ1=4: (36)

The equilibrium entropy density of the CYM theory in the
continuum with ultraviolet cutoff, is according to (32),

seqðTÞ ¼ 4

3

"cl
T

¼ 2ðN2
c � 1Þ 4CL

3a3
; (37)

the same result in lattice units is

sðLÞeq ¼ a3seqðTÞ ¼ 2ðN2
c � 1Þ 4CL

3
: (38)

The equilibration time in lattice units is thus

�ðLÞeq ¼ sðLÞeq

sðLÞKS

¼ 2ðN2
c � 1Þ 4CL

3cKS
ð"LÞ�1=4: (39)

Finally, the physical equilibration time is

�eq¼�ðLÞeq a��ðLÞeq �

T
¼2ðN2

c�1Þ 4CL�

3cKST
ð"LÞ�1=4: (40)

Note that some parameters, such as cKS, implicitly de-
pend on g. In this classical formalism, however, it is
difficult to determine the g dependence of the equilibration
time because g can be scaled out of the classical equations
of motion.

III. CLASSICAL YANG-MILLS EVOLUTION

A. Lyapunov exponents

We first discuss the Lyapunov exponents obtained by the
numerical simulations of SU(2) CYM systems. Initial con-
ditions are prepared with Ea

i ðxÞ ¼ 0 and random Aa
i ðxÞ � 0.

To see the chaotic time evolution, we measured the ‘‘dis-
tances’’ between two gauge configurations:

DEE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
x

�X
a;i

Ea
i ðxÞ2 �

X
a;i

E0a
i ðxÞ2

�
2

vuut ; (41)

DFF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
x

�X
a;i;j

Fa
ijðxÞ2 �

X
a;i;j

F0a
ij ðxÞ2

�
2

vuut : (42)

The two gauge configurations are set to be very close to each
other at the initial time t ¼ 0.

In Fig. 1, we show the numerical results on a 43 lattice.
After a short time, the distance of two trajectories start to
deviate, and exponentially grows in the intermediate time
region (50< t < 120). Later it saturates to a maximum
value (t > 120). The exponential growth rate of the dis-
tance, i.e., the linear slope of lnDFF, in the intermediate

time region is �D � 0:04. This growth rate �D is governed
by the maximum Lyapunov exponent for a finite time
period. The energy density is conserved with high precision,
and its value is " ¼ 0:014. In Fig. 2, we show the average
violation of Gauss’ law, G � P

x;ajGaðxÞj=fðN2
c � 1ÞL3g, in

this simulation. Gauss’ law is violated because of discreti-
zation error, as is explained in Sec. II C. However, the
violation does not diverge exponentially but grows only as
t0:3 (the solid curve in Fig. 2). This growth is even slower
than free diffusion, which grows as

ffiffi
t

p
. This means that the

Gauss law violation is not related to the instability of the
gauge field.
In Fig. 3, we show the lattice size dependence of the time

evolution. Apart from the irrelevant constant, the time
evolution is almost insensitive to the lattice size. This is
consistent with the expectation that the present lattice
calculation simulates a piece of hot matter occupying a
much larger volume.
We calculated the ILEs by using the time-evolution

matrix (10). In the practical calculation, we adopted the
following expression:

-8

-6

-4

-2

0

0 50 100 150 200 250

lo
g(

D
F

F
 )

  o
r 

 lo
g(

 D
E

E
)

t

DFF

DEE

FIG. 1 (color online). Time evolution of the distance in SU(2)
simulation on 43 lattice. All scales are given in the lattice unit.
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0.04

0.05

0 50 100 150 200 250

G

t

G

FIG. 2 (color online). The average violation of Gauss’ law G
in the SU(2) simulation of Fig. 1. All scales are given in lattice
units.
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1þH�t ’ 1 �t
�HAA�t 1�HAAð�tÞ2

� �
; (43)

which contains an Oð�t2Þ term and coincides with
1þH�t up to Oð�tÞ. The determinant of this matrix is
equal to unity and thus protects the symplectic property of
the evolution. The eigenvalues are real or pure imaginary.
These eigenmodes correspond to the exponentially grow-
ing or damping mode and the oscillating mode, respec-
tively. Since Liouville’s theorem ensures the sum of the
ILEs is zero, the positive and negative ILEs should appear
in a pairwise manner.

We show the ILE distribution in Fig. 4. The gauge
configuration is the same as in Fig. 1. The distribution at
t ¼ 0 corresponds to the LLEs of the initial condition. A
positive (negative) LLE corresponds to the temporally
local negative (positive) potential curvature, and the maxi-
mum LLE is larger than �D. Within a short time period
(0< t < 5), the maximal ILE rapidly decreases and the
number of positive ILEs increases. As the distribution of
ILEs no longer evolves for t > 50, the KS entropy is,
therefore, also constant for t > 50. In this time region,
the maximum ILE is �LLE

max � 0:04, which is close to �D.
This fact means that the ILE does correspond to the growth
rate for a finite time period.

B. Time evolution of gauge fields’ spectrum

Since the classical lattice theory is not ultraviolet (UV)
safe, the energy is exhausted in this limit mostly by UV
modes, which are sensitive to the lattice cutoff. We note
that the classical theory at nonzero temperature has no
well-defined continuum limit; e.g., the Rayleigh-Jeans for-
mula gives an energy density that diverges in that limit. To
wit, the thermal CYM theory on a lattice has no well-
defined continuum limit and the choice of lattice constant
has physical significance, as discussed above.
In order to examine further the role of IR and UV modes

we discuss next the momentum spectra of the gauge field
~AðpÞ. We perform SU(2) simulations on a L3 ¼ 203 lattice
with the energy density " ¼ 0:014, which is the same setup
as that in Sec. III A. The distance DFF then exhibits a
similar behavior as Fig. 1.

The gauge-field’s spectra ~AðpÞ are obtained with 3-dim
Fourier transformation of AðxÞ, where momenta piði ¼
1; 2; 3Þ are expressed as pi ¼ 2�ni=ðLaÞ with integers ni
that range from �ðL=2� 1Þ to L=2. We average j ~Aa

i ðpÞj
over direction and color, and show the time evolution of the

spectrum ~AðpÞ of AðxÞ in Fig. 5, where the spectra j ~AðpÞj
are plotted as functions of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2p1 þ sin2p2 þ sin2p3

p
.

Because of discretization of space one encounters
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FIG. 3 (color online). Time evolution in SU(2) simulation on
43, 103, and 203 lattices with the same energy density.
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doublers, which is why only half of the Brillouin zone is
plotted in Fig. 5.

At t ¼ 0, AðxÞ is randomly distributed and hence the
~AðpÞ are almost independent of p. After a short time the IR
modes are strongly excited, which would dominate the
exponential growth of the distance between gauge-field
configurations. The spectrum of IR modes approaches the
classical equilibrium (equipartition) distribution,

�1=
ffiffiffiffiffiffiffijpjp

, though it is not fully reached even at the last
stage of the exponential growth (t� 150). On the other
hand, the UV-region spectrum exhibits a plateau at all the
stages of time evolution.

Our results show, in addition, that at earlier times
(t < 50) one has IR modes with very rapid growth, which
appear to be the modes associated with the largest
Lyapunov exponents. This would fit the usual assumption
of a bottom-up thermalization [16], except that it is rather a
prethermalization, because phase space is filled rapidly, but
the full approach towards equilibrium sets in only with the
linear phase, i.e., for t > 50.

C. Equilibration time of SU(3) Yang-Mills theory

Next, we discuss the SU(3) CYM theory. In Fig. 6, we
show the time evolution ofDFF in SU(3) simulation on a 43

lattice for several energy densities. By changing the initial
amplitude of Aa

i ðxÞ, we calculated time evolutions with
different energy densities. In Fig. 7, we show the ILE
distributions after a long time period, which no longer
change along time evolution. Only the positive eigenvalues
are shown. These are qualitatively the same as the SU(2)
simulations.

In Table I and Fig. 8, we show the SU(3) results of the
Lyapunov exponents: the exponential growth of the dis-
tance �D, the largest LLE �LLE

max , the sum of the positive
LLEs �LLE

sum , the largest ILE �ILE
max, and the sum of the

positive ILEs �ILE
sum. As discussed in the previous section,

the Lyapunov exponents should scale as "1=4 because of the
conformal invariance. As shown in Fig. 8, �LLE

max and �LLE
sum

are indeed proportional to "1=4. Other Lyapunov exponents

slightly deviate from this scaling. This is because the
change of the field amplitude is not exactly the conformal
transformation, e.g., the dimensionless ratio of the electric
energy density to the magnetic energy density is changed.
Numerically, however, the best-fit prefactor is not much
affected by the difference of the exponent in the following
accuracy.
After all, we extract the Lyapunov exponent as a func-

tion of the energy density from this approximate scaling.
By fitting, we find that the numerical prefactors are

�D ’ 0:1� "1=4; (44)

�LLE
max ’ 1� "1=4; (45)

�LLE
sum =L3 ’ 3� "1=4; (46)

�ILE
max ’ 0:2� "1=4; (47)

�ILE
sum=L

3 ’ 2� "1=4: (48)

Thus, the KS entropy density is

sKS ¼ �ILE
sum=L

3 ¼ cKS � "1=4 ’ 2� "1=4: (49)

From this result, we can evaluate the equilibration

time of the SU(3) CYM theory. We take � ’
ð30CL=�

2Þ1=3 ’ 1:45 and CL ’ 1 and g ’ 2 as a typical

case, and then TL ¼ ag2T ’ g2ð30=�2Þ1=3 ’ 6 and
"L ¼ 2ðN2

c � 1ÞCLT
L ’ 90. Inserting these numbers into

Eq. (40), we obtain
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TABLE I. The Lyapunov exponents in the SU(3) CYM theory.

L3 " �D �LLE
max �LLE

sum �ILE
max �ILE

sum

43 0.05 0.05 0.55 80 0.06 32

43 0.20 0.08 0.77 114 0.11 62

43 0.86 0.14 1.14 174 0.20 115

43 3.16 0.23 1.64 265 0.32 191

43 19.4 0.39 2.89 474 0.59 328

43 90.9 0.59 4.60 708 0.95 474
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�eq ’ 5

T
þ �delay: (50)

Here �delay was introduced to take the initial phase into

account, in which DFF is more or less constant, because
the strongly growing modes are not yet relevant. One would
expect that �delay fulfills approximately [17]

1

6ðN2
c � 1ÞL3 e

�max�delay ’ 1; (51)

which is indeed in good agreement with our numerical
findings. When T ’ 350 MeV, the equilibration time is
�eq ’ 3 fm=c, with a systematicuncertaintywhich caneasily

account for a factor of 2.
If entropy is produced by very rapid processes, espe-

cially by decoherence, before the nonlinear dynamics an-
alyzed by us reaches the phase of linear entropy growth,
the real thermalization time is correspondingly shorter. In
[6] this decoherence entropy was estimated to be roughly
1=3 of what is needed by the hydrodynamical initial con-
ditions. This is consistent with results obtained in [18] in
k? factorized perturbation theory. In that calculation the
full observed particle number at central rapidities is only
reached from decohering the color glass condensate after
introducing a normalization factor. Without that factor one
would obtain between one half and one quarter of the total
particle number. On the other hand, simulations of the
combined decoherence and nonlinear dynamics stage of
the glasma in a longitudinally expanding, boost-invariant
geometry reaches 80% of the final particle number [19].
All of this indicates that it is probably a good guess
to assume that nonlinear gauge-field dynamics has to
generate about 2=3 of the entropy required by thermal

equilibrium and that the thermalization time is thus rather
of the order of 2 fm=c.

IV. SUMMARY

The main aim of this paper is to understand the fast
thermalization deduced for high-energy heavy ion colli-
sions, which is, in fact, one of the largest unexplained
puzzles in RHIC physics. We argue that entropy generation
plays the key role in this context.
The overall picture of entropy generation in heavy ion

collisions is involved. While some part of the entropy is
produced from the decoherence at very early times, i.e.,
times of order 1=Qs [6], most of entropy required by the
initial condition for the hydrodynamic phase must be gen-
erated within the first fm=c by nonequilibrium gluon dy-
namics. Entropy generation of quantum systems always
requires coarse graining. Coarse graining in turn relates it
to the Lyapunov exponents [6]. As the latter can be studied
in the corresponding classical gauge theories so can en-
tropy production in total.
More precisely, the entropy production rate in classical

systems is given by the KS entropy, defined as the sum of
positive Lyapunov exponents. The KS entropy describes
the entropy production also in quantum systems when
the coarse graining is introduced with a minimum wave
packet [7].
We have investigated classical Yang-Mills dynamics in

the noncompact ðA; EÞ scheme. We started from random
initial conditions and studied the resulting spectrum of
Lyapunov exponents. We found that their properties
change with time in a characteristic manner and identified
three distinct regimes: A short time regime, in which the
system has not yet sampled a large fraction of phase space,
a late time regime in which the system is already close to
thermal equilibrium and has sampled basically all of phase
space, and an intermediate regime which is dominated by
nonlinear gauge-field dynamics.
We have developed a method, making use of Trotter

formula, to evaluate the Lyapunov exponent in the inter-
mediate time scale (intermediate Lyapunov exponent),
which is the relevant time scale for the problem of ther-
malization in heavy ion collisions, and determined the
entropy production rate (Kolmogorov-Sinaı̈ entropy). The

obtained equilibration time scales as �eq / "�1=4 / 1=

T þ �delay, where " is the energy density and �delay is the

typical time to reach the intermediate time range, which we
also determined. In total the thermalization time is around
2 fm=c for T ¼ 350 MeV, if one assumes that 1=3 of the
required entropy is generated by decoherence, with rather
substantial systematic uncertainties. The most important
source of uncertainty is related to the choice of lattice
constant a. Since the classical Yang-Mills theory has con-
formal symmetry, the physical scale setting is provided by
the discretization scale a which thus acquires physical
importance. The choice of a is not free of ambiguities.
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Different arguments all lead to the form a ¼ c"1=4 with a
constant c of the order of 1 but varying within a factor of 2.

One also finds that the " dependence of a is crucial to
obtain the correct power scaling for all quantities of inter-
est from the classical Yang-Mills theory.

In the course of these investigations it was crucial to
understand the qualitative differences between the differ-
ent time ranges and corresponding Lyapunov spectra,
which also allows to reconcile previously not understood
observations [20].

A thermalization time of roughly 2 fm=c is somewhat
larger than the phenomenologically preferred value.
However, the inclusion of quarks may reduce this number
and could well bring it into the phenomenologically pre-
ferred range. In addition, a strong chromoelectric field in
the initial condition together with the chromomagnetic
field may promote faster equilibration. In order to remove
the Gauss law violation and include colored particles, it is
important to formulate the time evolution with strict charge
conservation. It is also interesting to consider the expan-
sion of the system and quantum corrections, both of which

may affect the thermalization time and the latter of which
introduces explicit g dependence.
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