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A simultaneous investigation of the space- and timelike electromagnetic form factors of the charged

kaon is presented within the framework of light-cone QCD, with perturbative kT factorization including

Sudakov suppression. The effects of power suppressed subleading twists and the genuine soft QCD

corrections turn out to be dominant at low- and moderate-energies/momentum transfers. Our predictions

agree well with the available moderate-energy experimental data, including the recent results from the

CLEO measurements and certain estimates based on the phenomenological analyses of J=c decays.
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I. INTRODUCTION

Electromagnetic form factors are interesting physical
observables in hadronic physics which directly provide
insights into the hadronic constituents, charge distribu-
tions, currents, color, and flavor within the hadrons. Their
precise knowledge is of fundamental importance for a
realistic and accurate description of exclusive nuclear re-
actions that serve as ideal testing grounds for understand-
ing the dynamics of confinement in QCD that have been
grappling with physicists ever since the discovery of
asymptotic freedom.

In the last few decades, there has been significant ex-
perimental efforts in extracting hadronic form factors
(e.g., see [1–3] for the charged pion form factors) from
various exclusive processes. However, in the case of the
charged kaon form factors, their behavior was very se-
verely constrained due to absence of reliable experimental
data. Since the mid-90s, kaon photo/electroproduction
experiments on reactions such as Að�;KÞYB and
Aðe; e0KÞYB (target A, produced hyperon Y and recoil B)
have invited some renewed interest in the study of kaon
form factors, although the existing data is still too limited,
restricted only to the very low spacelike region, as low as
�q2 � 0:2 GeV2 [4]. In the timelike region, there are
more scattered data up to several GeV2 (albeit with very
large error bars) for timelike processes such as �� !
KþK�, extracted from annihilation reactions such as
J=c ! eþe� ! hþh� ðh ¼ �;K; . . .Þ by applying suit-
able experimental cuts. A compilation of previously
extracted kaon form factors for q2 ¼ Q2 < 10 GeV2 is
given in [2]. Recently, high precision measurements
by the CLEO Collaboration with first ever identified
timelike kaons for Q2 > 4 GeV2 have yielded the follow-

ing results: jGKð13:48 GeV2Þj ¼ 0:063 � 0:004ðstatÞ �
0:001ðsystÞ andQ2jGKð13:48GeV2Þj¼0:85�0:05ðstatÞ�
0:02ðsystÞGeV2 [3]. Note that in this paper, we shall use
the symbol GK for the timelike kaon form factor to dis-
tinguish it from the spacelike counterpart FK.
Notwithstanding the aforementioned problem of paucity

of quality statistics of the existing kaon data, the purpose of
this paper is an effort to make a prediction for the charged
kaon form factors using the framework of perturbative
factorization [5,6]. In this way, we hope to throw some
light on their possible behavior, especially at the phenome-
nological intermediate energy region, where significant
nonperturbative effects tend to spoil the asymptotic per-
turbative QCD (pQCD) results like the celebrated
quark counting rule that predicts the scaling behavior
fF;GgKðQ2Þ � 1=Q2 [5,7]. Analyses of the pion form fac-
tors convincingly show that the standard pQCD with only
twist-2 effects are much too small to explain the currently
available experimental data at low and moderate energies.
This calls for the inclusion of nonperturbative corrections
from the genuine soft QCD [8–12] and the subleading
twists that can give rise to unnaturally large contributions
at moderate range of Q2 values, in particular, twist-3
enhancements were seen to be quite large in the previous
studies for the spacelike pion form factor [13–17], the
spacelike kaon form factor [17,18], and in the studies of
B ! � transition form factors [19–22]. In fact, the analysis
presented in [23] shows a possible scenario where the
contributions from the twist-3 terms in the timelike region
can turn out to be exceptionally large. This seemed to
resolve the bulk of the existing experimental discrepancy
between the space- and the timelike pion data.
In this paper, following [17,23] we extend the analysis to

the space- and the timelike kaon form factors, where in
addition to the twist-2 and twist-3 terms we explicitly
include twist-4 corrections. Thereby, we show that the
large twist-3 contributions are indeed a nontrivial aspect
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of our result in comparison with the other twist contribu-
tions, e.g., the 2-particle twist-4 contributions are explicitly
shown to be about a third of the magnitude of the twist-2
terms. The paper is organized as follows: the second sec-
tion briefly reviews the theoretical background, the third
section deals with the details of our numerical analysis,
results, and discussions of the essential features of our
results, and finally, we give our conclusions. For the pur-
pose of bookkeeping, we provide a collection of relevant
mathematical formulas in the Appendix.

II. HARD AND SOFT KAON FORM FACTORS

A. Factorized pQCD

The basic definitions of the space- and timelike electro-
magnetic form factors are given in terms of the following
local matrix elements of the electromagnetic quark cur-
rents Jem� :

eðP0 þ PÞ�FKðQ2Þ ¼ hK�ðP0ÞjJem� ð0ÞjK�ðPÞi;
eðP0 � PÞ�GKðQ2Þ ¼ hKþðP0ÞK�ðPÞjJem� ð0Þj0i;
Jem� ¼ X

f

ef �qf��qf;

(1)

where e is the electronic charge and f is the flavor of the
valence quark qf with charge ef. In terms of light cone

coordinates, P ¼ ðQ=
ffiffiffi
2

p
; 0; 0TÞ and P0 ¼ ð0; Q=

ffiffiffi
2

p
; 0TÞ

are the incoming and outgoing external kaon momenta
in the Breit frame. In the spacelike domain, q2 ¼ ðP0 �
PÞ2 ¼ �Q2 � 0, whereas for the timelike domain q2 ¼
ðP0 þ PÞ2 ¼ Q2 � 0. Here, Q is assumed to be much
larger compared to the kaon mass mK, so that P and P0
almost lie along the light cone directions.

In our approach, the total contributions to the charged
kaon form factors come from the factorizable ‘‘hard’’ parts
fF;GghardK ðQ2Þ calculable within a perturbative framework,
and the nonfactorizable ‘‘soft’’ parts fF;GgsoftK ðQ2Þ relying
on some nonperturbative techniques. The calculation of the
hard parts rests on the essential assumption that at suitable
high-energy scales, the form factors are factorizable, i.e.,

separable into parts dominated by short- and long-distance
dynamics. The short-distance dynamics are represented by
the kernel of interactions between highly off-shell partons,
above the so-called factorization scale �F. While the
long-distance dynamics below the factorization scale are
implicitly encoded within the kaonic wave functions/
distribution amplitudes (DA) with near-on-shell partons.
Note that due to the well-known impulse or frozen approxi-
mation applicable for all high-energy exclusive mecha-
nisms, the dominant contributions come entirely from the
leading Fock states, i.e., the q �q valence quark configura-
tions. The higher Fock states are neglected with contribu-
tions relatively suppressed by higher powers of 1=Q2.
Figure 1 shows two representative Feynman diagrams
(there are 4 diagrams each for the space- and timelike
cases) with leading order (in the QCD coupling) hard
kernels each having a single hard gluon exchange. These
are convoluted with the incoming and outgoing kaon DAs
to obtain the hard factorized kaon form factors. In this
analysis, we calculate fF;GghardK ðQ2Þ up to twist-4 accuracy
in the 2-particle sector, including explicit ‘‘kT’’ or trans-
verse momentum dependence (TMD) of the constituent
valence partons. The nonfactorizable soft contributions,
on the other hand, can either be calculated using Drell-
Yan-West type of overlapping wave functions ansatz [24],
or from QCD sum rules incorporating the local quark-
hadron duality principle [8]. Both of these approaches to
parametrize the genuine soft contributions are known to
give very similar results. In this work, we follow the latter
approach. The above assertion can then be summarized by

fF;GgKðQ2Þ ¼ fF;GgsoftK ðQ2Þ þ fF;GghardK ðQ2Þ;
fF;GghardK ðQ2Þ ¼ �fF;Ggtwist2K ðQ2Þ þ �fF;Ggtwist3K ðQ2Þ

þ �fF;Ggtwist4K ðQ2Þ: (2)

The principal inputs for determining the factorized kaon
form factors are the collinear/light cone DAs which encode
all the nonperturbative physics. They are universal in na-
ture (frame or process independent); in a sense, once
they are determined at a certain process, they could yield

FIG. 1 (color online). Leading order Feynman diagrams in pQCD for hard contributions to the charged kaon form factors in the
spacelike (left) and the timelike (right) region.
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predictions for another. To next-to-leading order in con-
formal twist expansion there is one 2-particle twist-2 DA
�2;K with an axial-vector structure, two 2-particle twist-3

DAs (�p
3;K with a pseudoscalar structure and ��

3;K with a

pseudotensor structure), and finally, two 2-particle twist-4
DAs (A4;K and B4;K ¼ g4;K ��2;K) both having pseudo-

scalar structures [25–27]. As an example for K�, we dis-
play the twist-2 DA in terms of the following pseudoscalar
matrix element with � ¼ 2x� 1:

h0j �uðzÞ���5sð�zÞjK�ðPÞi ¼ iP�

Z 1

0
dxei�ðPzÞ�2;Kðx;�2Þ;

(3)

with the normalization condition

N2;K ¼
Z 1

0
�2;Kðx;�2Þdx ¼ fK

2
ffiffiffiffiffiffiffiffiffi
2Nc

p ; (4)

where fK is the kaon decay constant defined in the local
limit z ! 0 by

h0j �uð0Þ���5sð0ÞjK�ðPÞi ¼ ifKP�: (5)

In the above equations, x is the collinear/light cone mo-
mentum fraction (xi ¼ kþ=Pþ) carried by the individual
valence quarks (x for the s quark and �x ¼ 1� x for the
antiquark �u). Note that the gauge-connection factor in
the above matrix element is assumed implicitly. To the
leading logarithmic accuracy, �2;K satisfies the well-

known Efremov-Radyushkin-Brodsky-Lepage evolution
equation [5,6] and can be expressed as an irreducible
representation of the special collinear conformal group
SLð2;RÞ, in terms of standard Gagenbauer polynomials

C3=2
n ð�Þ:

�2;Kðx;�2Þ ¼ �ðasÞ
2;KðxÞ

X1
n¼0

aKn ð�2
0ÞC3=2

n ð�Þ
�
�sð�2

0Þ
�sð�2Þ

��4�ð0Þ
n =9

þOð�sÞ; (6)

with the asymptotic twist-2 DA given by

�ðasÞ
2;KðxÞ ¼ �2;Kðx;�2 ! 1Þ ¼ 3fKffiffiffiffiffiffiffiffiffi

2Nc

p xð1� xÞ: (7)

The standard QCD MS running coupling �sð�2Þ to 2-loop
accuracy is given by

�sð�2Þ
�

¼ 1

�0 lnð�2=�2
QCDÞ

� �1 lnðlnð�2=�2
QCDÞÞ

�3
0ln

2ð�2=�2
QCDÞ

(8)

with �QCD � 0:2 GeV, �0 ¼ ð11Nc � 2NfÞ=12 ¼ 9=4,

and �1 ¼ ð51Nc � 19NfÞ=24 ¼ 4 for Nc ¼ Nf ¼ 3. The

ratio of the QCD couplings represents the renormalization
group evolution of the Gagenbauer moments aKn from the
normalization scale �0 � 1 GeV to the generic scale �,
with the leading order (in QCD coupling) anomalous di-
mensions given by

�ð0Þ
n ¼ 4

3

�
1

4
þ Xnþ1

k¼2

1

k
� 1

2ðnþ 1Þðnþ 2Þ
�
� 0: (9)

The Gagenbauer moments represent the genuine nonper-
turbative inputs to the DAs and are usually determined
using lattice simulations or from QCD sum rules. In this
work, we use the latter inputs, since the moments for the
higher twist DAs are yet to be determined precisely in
lattice QCD. Note that the lower order moments in both
approaches are known to be in good agreement with each
other. However, dealing with such an infinite number of
terms in the nonasymptotic DAs becomes a matter of
technical challenge as the higher-order moments are ex-
tremely difficult to determine. Hence, for practical sim-
plicity of calculation, one truncates the infinite series up to
the first couple of terms only. Moreover, the increasing
anomalous dimensions tend to suppress the higher-order
terms. In this analysis, we consider the series up to the term
with the second moment aK2 . The rest of the nonasymptotic
collinear DAs, i.e., the 2-particle twist-3 and twist-4 DAs,
which we also consider in this work, have more elaborate
expressions and are, therefore, relegated to the Appendix
along with their renormalization group evolutions. A sum-
mary of the relevant DA parameters determined from
QCD sum rules at the normalization scale of �0 �
1 GeV is presented in Table I.
A common feature of light cone DAs is that they are

endpoint dominated due to large kinematic enhancements
when the light cone momentum fractions tend to the end-
points (i.e., x ! 0, 1). One possible way to suppress such
artificial enhancement is to use the Brodsky-Huang-
Lepage Gaussian parametrization [29], where the intrinsic
transverse momentum dependence of the valance partons
within the full kaon wave function �t;K (for each twist

TABLE I. Various input parameters for twist-2, twist-3, and twist-4 wave functions.

K� parameters At �0 ¼ 1 GeV Units K� parameters At �0 ¼ 1 GeV Units

mu;d 5:6� 1:6 [27] MeV aK2 0:25� 0:15 [27] � � �
ms 137� 27 [27] MeV fK 1:22f�, f� ¼ 131 [28] MeV

Mu;d 0.33 GeV f3K 0:0045� 0:0015 [27] GeV2

Ms 0.45 GeV !3K �1:2� 0:7 [27] � � �
mK 493 MeV 	2

K 	 	2 0:20� 0:06 [27] GeV2

aK1 0:06� 0:03 [27] � � � !4K 0:2� 0:1 [27] � � �

SPACE- AND TIMELIKE ELECTROMAGNETIC KAON . . . PHYSICAL REVIEW D 82, 114012 (2010)

114012-3



t ¼ 2, 3, 4) is explicitly modeled by including an addi-
tional wave function �t;K, i.e.,

�t;Kðx;kT; �
2;Mfu;d;sgÞ

¼ At;K�t;Kðx;�2Þ�t;Kðx;kT;Mfu;d;sgÞ; (10)

where the form of �t;K is chosen similar to that of a

harmonic oscillator wave function that can maximally
suppress such endpoint effects and given by

�t;Kðx;kT;Mfu;d;sgÞ

¼ 16�2�2
t;K

xð1� xÞ exp

�
��2

t;K

�
M2

s þ k2
T

x
þM2

u;d þ k2
T

1� x

��
:

(11)

Note that the constituent quark masses Mfu;d;sg are intro-

duced to parametrize the QCD vacuum effects, while the
parameters At;K and �t;K for the individual twists are

phenomenologically extracted as described in the next
section (also, see [17]). Next to obtain the full TMD-

modified kaon DAs ~P t;K in the impact parameter or b
representation, we use the Brodsky-Lepage definition of
the DA [5], yielding

~P t;Kðx; b;�2;Mfu;d;sgÞ

¼
Z 1=b2

0

d2kT

16�3
�t;Mðx;kT; �

2;Mfu;d;sgÞ

¼ At;K�t;Kðx;�2Þ exp
�
��2

t;K

�
M2

s

x
þM2

u;d

1� x

��


 exp

�
� b2xð1� xÞ

4�2
t;K

�
: (12)

In Figs. 2 and 3, we show the various collinear DAs
(which are endpoint enhanced) and the TMD-modified
Gaussian DAs (which are endpoint suppressed), respec-
tively. We also display the corresponding asymptotic forms
of the DAs.

The inclusion of the transverse momentum dependence
in the hard scattering kernel at the same time also serves as
a natural regulator for possible endpoint enhancements.
However, this leads to the appearance of large logarithms
in the kernel due to an incomplete cancellation between
soft gluon bremsstrahlung and radiative corrections that
may spoil the perturbative convergence and, hence, the
validity of the collinear factorization. While the large
single logarithms such as �s lnQ

2 can be effectively
tackled using usual renormalization group techniques
like ultraviolet divergences, the large double logarithms
or Sudakov logarithms involving ‘‘kT’’ dependence such as
�sln

2ðQ2=k2TÞ, arising from the overlap of the leading soft
and collinear kinematic regions of radiative gluons, cannot
be similarly handled in ordinary fixed order perturbation
theory. The alternative is to use resummation techniques to
all orders in the strong coupling constant �s, which organ-

izes the double logarithms within exponential Sudakov
factors to eventually get systematically absorbed by a
redefinition of the DAs. Such Sudakov factors represent
the perturbative tail of the DAs and suppress nonperturba-
tive enhancement that arise from constituent partonic
configurations, which involve large impact space separa-
tions. For a review of the Sudakov form factors and their
application to exclusive physics, the reader is referred to
[11,22,30,31]. There may be other radiative collinear
double logarithms such as �sln

2x, which may be re-
summed using threshold resummation [20,21] to suppress
additional collinear enhancements in the kernel. The
threshold resummation along with the Sudakov resumma-
tion arising from different subprocesses in pQCD factori-
zation provides natural suppression to the endpoint and
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FIG. 2 (color online). The collinear twist-2 and the 2-particle
twist-3 and twist-4 DAs for the kaon (modulo, the normaliza-
tions Nt;K), shown using solid (red) lines, i.e., (a) �2;Kðx;�2

0Þ,
(b) �p

3;Kðx; �2
0Þ, (c) ��

3;Kðx;�2
0Þ, (d) m2

KA4;Kðx; �2
0Þ, and

(e) m2
Kg4;Kðx;�2

0Þ, along with their respective asymptotic DAs,

shown using dashed (green) lines. The DAs are defined at the
scale �0 ¼ 1 GeV.
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other nonperturbative enhancements and are relevant in the
range of currently probed energy/momentum transfer val-
ues. The upshot is that the hard perturbative contributions
are enhanced relative to the nonperturbative contributions
improving convergence significantly and making pQCD
evaluation of exclusive form factors self-consistent toward
lower values ofQ2, where it may not be otherwise justified.

Such techniques of systematic organization of the po-
tentially large logarithmic contributions is a modification
from the standard collinear factorization and is generally
termed as the ‘‘kT factorization’’ that has been widely
applied to inclusive as well as exclusive processes [32].
However, unlike the familiar collinear factorization theo-
rem, the kT factorization is currently considered only at the
level of a conjecture, which is yet to be proven to all orders

in perturbation theory (this is a highly debatable issue and,
in fact, not yet fully recognized, e.g., see [33] for a different
viewpoint). To demonstrate that kT factorization is indeed a
systematic tool demands higher-order calculations, which
may be very challenging. However, in this paper, we shall
implicitly assume the validity of such a modified factoriza-
tion without proving it and restrict ourselves at the tree
level analysis of the kT-dependent hard kernel. Moreover,
in [34], the kT factorization was proven at the level of
twist-2 accuracy, while the collinear factorization was
explicitly shown to be valid at the twist-3 accuracy in the
case of the ��� ! � transition form factor. Our analysis,
therefore, is based on the key assumption that the same
formalism could be straightforwardly extended to the elas-
tic kaon form factors.
At the leading order �1=Q2, the twist-2 and the

2-particle twist-4 terms contribute to the hard kernels,
which have exactly the same expression given by

Tðt¼2;4;LOÞ
hard ðx; y;Q2;kT; lT; �

2Þ

¼ �16�CF�sð�2ÞxQ2

ðxQ2 � k2
TÞðxyQ2 � ðkT � lTÞ2Þ

; (13)

while, the Oð1=Q4Þ power suppressed 2-particle twist-3
and twist-4 hard kernels are, respectively, given by

Tðt¼3Þ
hard ðx; y;Q2;kT; lT; �

2Þ

¼ 32�CF�sð�2Þx
ðxQ2 � k2

TÞðxyQ2 � ðkT � lTÞ2Þ
;

Tðt¼4;NLOÞ
hard ðx; y;Q2;kT; lT; �

2Þ

¼ 48�CF�sð�2Þ
ðxQ2 � k2

TÞðxyQ2 � ðkT � lTÞ2Þ
: (14)

In the above expressions, CF ¼ 4=3, the ‘‘þ’’ signs corre-
spond to the spacelike case and the ‘‘�’’ signs correspond
to the timelike case; kT and lT are, respectively, the initial
and final relative transverse momenta of the valence
quarks, and x and y are the corresponding light cone
momentum fractions. Note that the factors in the denom-
inators that arise from the parton propagators develop poles
in the timelike region.
To obtain the hard form factors, we use the following

momentum space projection operator for the DAs with the
different twist structures:

MK
�� ¼ i

4

�
P6 �5

�
�2;K � 1

4
m2

K�
A
4;K@

2
kT

�

þm2
K�5

� �P6
�P � P

@

@x

�Z x

0
�B

4;K

�
��A

4;K@kT

�

��K�5

�
�p

3;K � i

6
��
n

� �n

@

@x
��

3;K

þ i

6
��
P

���
3;K@



kT

��
��

; �P ¼ jPj �n; (15)
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FIG. 3 (color online). The TMD-modified twist-2 and the
2-particle twist-3 and twist-4 Gaussian DAs for the kaon
(modulo, the normalizations Nt;K), shown using solid (red)

lines, i.e., (a) ~P 2;Kðx; �2
0Þ, (b) ~P p

3;Kðx; �2
0Þ, (c) ~P�

3;Kðx;�2
0Þ,

(d) m2
K
~PA
4;Kðx;�2

0Þ, and (e) m2
K
~P g
4;Kðx;�2

0Þ, along with their

respective asymptotic DAs, shown using dashed (green) lines.
The DAs are defined at the scale �0 ¼ 1 GeV.
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where �K ¼ m2
K

muþms
GeV is the ‘‘chiral-enhancement’’ pa-

rameter arising in the standard definition of the 2-particle
twist-3 DAs (see, the Appendix), �B

4;K ¼ �g
4;K ��2;K,

@kT 	 ��@=@k
�
T , n ¼ ð1; 0; 0TÞ the unit vector in the

‘‘þ’’ direction, and �n ¼ ð0; 1; 0TÞ the unit vector in the
‘‘�’’ direction. Setting the renormalization/factorization

scale to the magnitude of the incoming or outgoing kaon

momentum, i.e., � ¼ jPj ¼ jP0j ¼ Q=
ffiffiffi
2

p
and convolving

the projection operators for the kaon DAs with the hard
kernels using the factorization formula (symbolically,

My
K;out � TLO

hard �MK;in), we have

ðP0 � PÞ�fF;GghardK ðQ2Þ ¼
Z 1

0
dxdy

Z d2kT

16�3

d2lT
16�3

�
4��sðtÞCF

3

�
exp½�ikT � b1 � ilT � b2�


 Tr

�
�
My

K;out�
kinternal��MK;in

ðk2internal þ i�Þðk2g þ i�Þ þ 3 diagrams

�
URGEðt; �ÞStðxÞ


 exp½�Sðx; y; jkTj � 1=b1; jlTj � 1=b2; �Þ�; (16)

where kinternal and kg are the internal quark and gluon
momenta, respectively, as shown in Fig. 1. Also, in the
above equation

U RGEðt; �Þ ¼ exp

�
4
Z �

t

d ��

��
�qð�sð ��2ÞÞ

�
;

�qð�sð ��2ÞÞ ¼ ��sð ��2Þ
�

;

(17)

represents the renormalization group evolution or
‘‘RGE’’ factor for the scattering kernel from the ‘‘upper-
factorization’’ scale t ¼ maxð ffiffiffi

x
p

Q; 1=b1; 1=b2Þ to the re-
normalization scale � ¼ Q=

ffiffiffi
2

p
, and �q is the quark

anomalous dimension. The expression for the Sudakov
exponent Sðx; y; b1; b2; QÞ (after absorbing the RGE factor
from the kernel) is given by [31]

Sðx; y; b1; b2; QÞ
¼ sðxQ; b1Þ þ sðð1� xÞQ; b1Þ þ sðyQ; b2Þ
þ sðð1� yÞQ; b2Þ þ 2

Z t

1=b1

d ��

��
�qð�sð ��2ÞÞ

þ 2
Z t

1=b2

d ��

��
�qð�sð ��2ÞÞ; (18)

where

sðxQ;1=bÞ 	 sðx�;1=bÞ

¼
Z x�

1=b

d ��

��

�
ln

�
x�

��

�
Að�sð ��2ÞÞþBð�sð ��2ÞÞ

�
;

(19)

where the ‘‘lower-factorization’’ scales 1=b1, 1=b2 >
�QCD serve to separate the perturbative from the nonper-
turbative transverse distances, which are also typically the

scales that provide a natural starting point of the evolution
of the kaon wave functions. In the above equations, the so-
called ‘‘cusp’’ anomalous dimensions A and B, to 1-loop
accuracy are given by

Að�sð�2ÞÞ ¼ CF
�sð�2Þ

�
þ

��
67

27
� �2

9

�
Nc � 10

27
Nf

þ 8

3
�0 ln

�
e�E

2

���
�sð�2Þ

�

�
2
;

Bð�sð�2ÞÞ ¼ 2

3

�sð�2Þ
�

ln

�
e2�E�1

2

�
: (20)

The exact form of the threshold resummation ‘‘jet’’ func-
tion StðxÞ in Eq. (16) involves a one parameter integration,
but in practice it is more convenient to take the simple
parametrization proposed in [20,21]

StðxÞ ¼ 21þ2c�ð3=2þ cÞffiffiffiffi
�

p
�ð1þ cÞ ½xð1� xÞ�c; (21)

where the parameter c � 0:3 for light pseudoscalar mesons
like the pion and the kaon.
Now we present the factorized result for the hard kaon

form factors up to twist-4 corrections as follows:

fF;GghardK ðQ2Þ ¼ 	fF;Ggtwist2K ðQ2Þ þ 	fF;Ggtwist3K ðQ2Þ
þ 	fF;Ggtwist4K ðQ2Þ;

	fF;Ggtwist4K ðQ2Þ ¼ 	fF;Ggtwist4;LOK ðQ2Þ
þ 	fF;Ggtwist4;NLOK ðQ2Þ; (22)

where the leading twist-2 and twist-4 corrections are ex-
pressed by the following integral representations in the
impact parameter space
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	fF;Ggtwist2K ðQ2Þ þ 	fF;Ggtwist4;LOK ðQ2Þ ¼ 32�Q2CF
Z 1

0
xdxdy

Z 1

0
b1db1b2db2�sðtÞ

�
� 1

2
P 2;Kðx; b1ÞP 2;Kðy; b2Þ


m2
K

b22
8
P 2;Kðx; b1ÞPA

4;Kðy; b2Þ 
m2
K

b21
8
PA

4;Kðx; b1ÞP 2;Kðy; b2Þ

þOðm4
Kb

4
1; m

4
Kb

4
2Þ
�
H�ðx; y;Q; b1; b2Þ exp½�Sðx; y; b1; b2; QÞ�StðxÞ; (23)

while, the power suppressed twist-3 and twist-4 corrections are given by

	fF;Ggtwist3K ðQ2Þ þ 	fF;Ggtwist4;NLOK ðQ2Þ ¼ 32�Q2CF
Z 1

0
dxdy

Z 1

0
b1db1b2db2�sðtÞ

�
�2

K

Q2

�
�xP p

3;Kðx; b1ÞP p
3;Kðy; b2Þ

þ ð1þ xÞ
6

@

@x
P�

3;Kðx; b1ÞP p
3;Kðy; b2Þ þ

1

2
P�

3;Kðx; b1ÞP p
3;Kðy; b2Þ

�

þ 3m2
K

2Q2

�Z x

0
d�PB

4;Kð�; b1Þ
��

P 2;Kðy; b2Þ �m2
K

b22
4
PA

4;Kðy; b2Þ
�

þOðm4
Kb

4
1; m

4
Kb

4
2Þ
�
H�ðx; y;Q; b1; b2Þ exp½�Sðx; y; b1; b2; QÞ�StðxÞ; (24)

where P t;Kðx; bÞ 	 ~P t;Kðx; b; 1=b2;Mfu;d;sgÞ, and PB
4;K ¼

P g
4;K � P 2;K. Note that the superscripts ‘‘LO’’ and

‘‘NLO’’ used in the above equation should not be confused
with the usual terminologies associated with perturbative
expansions in terms of �s, but rather in the sense of
operator product expansion terms. In the impact represen-
tation, the space- and timelike hard kernels (the part of the
scattering kernel that is common to all the twists) could be
expressed in terms of standard Bessel functions K0, I0, J0,
and Hð1Þ

0 and are given by

Hþðx; y;Q; b1; b2Þ
¼ K0ð ffiffiffiffiffi

xy
p

Qb2Þ½
ðb1 � b2ÞK0ð
ffiffiffi
x

p
Qb1ÞI0ð

ffiffiffi
x

p
Qb2Þ

þ 
ðb2 � b1ÞK0ð
ffiffiffi
x

p
Qb2ÞI0ð

ffiffiffi
x

p
Qb1Þ�; (25)

H�ðx; y;Q; b1; b2Þ
¼

�
i�

2

�
2
Hð1Þ

0 ð ffiffiffiffiffi
xy

p
Qb2Þ½
ðb1 � b2ÞHð1Þ

0 ð ffiffiffi
x

p
Qb1Þ


 J0ð
ffiffiffi
x

p
Qb2Þ þ 
ðb2 � b1ÞHð1Þ

0 ð ffiffiffi
x

p
Qb2ÞJ0ð

ffiffiffi
x

p
Qb1Þ�;

(26)

where Hþ is a real-valued function and H� is a complex-
valued function of real arguments.

Apropos of our derived formulas Eqs. (23) and (24), it is
noteworthy to mention that in [35] it was suggested that the
Sudakov factors must be analytically continued from the
spacelike to the timelike case. This may not be generally
true. The Sudakov factors in [36] (see, Sec. 3.1 of this
reference) arise directly from ‘‘form factor-type’’ kernels,
which are not universal quantities and may vary with
processes. There the analytic continuation is perfectly
justified. However, for an approach based on the factoriza-
tion theorem, one uses ‘‘universal’’ Sudakov factors SðQÞ
arising from the overlap of the soft and collinear processes

below the factorization scale, as in the present context. As
explained in [37], these Sudakov factors are to be consid-
ered as an integral part of the DAs and, thus, they are
universal quantities as well, depending only on the magni-
tude of the energy scale Q � 0. Note that the Q depen-
dence of the Sudakov factor in Eqs. (18) and (19), stems
from the dependence on the collinear components of the

external pion 4-momenta which are given by Pþ ¼ P0� ¼
Q=

ffiffiffi
2

p
, in the Breit frame. As such, it is important that one

does not analytically continue but rather use the same
Sudakov factor in both the space and timelike cases.

B. Nonfactorizable Soft QCD

In [8] it was shown that the spacelike low-energy pion
data below Q2 � 10 GeV2 is dominated by the soft pion
form factor which accounts for more that 70% of the data.
Such soft QCD contributions are nonfactorizable and are
beyond the realm of ordinary perturbation theory. Since no
systematic method is currently available to calculate these
nonperturbative effects, one is compelled to use some
model ansatz to obtain a rough estimate of their contribu-
tions, viz., in [8] the soft pion form factor in the spacelike
region was calculated using the local duality or LD model
in QCD sum rules. In our present work, we extend the
same result to the spacelike kaon form factor which is then
given by

Fsoft
K ðQ2ÞjLD ¼ 1� 1þ 6s0=Q

2

ð1þ 4s0=Q
2Þ3=2

� 6s0
Q4

þO
�
1

Q6

�
; s0 � 4�2f2K: (27)

Now, on one hand, an ab initio derivation of the corre-
sponding timelike soft form factor seems a priori unfea-
sible using QCD sum rules, since the local duality principle
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is strictly applicable for the spacelike region only. On the
other hand, a naive analytic continuation of the spacelike
formula, i.e., by a replacement of Q2 ! �Q2, leads to an
undesirable pole in the denominator of the soft form factor:

Gsoft
K;analyticðQ2Þ ) 1� 1� 6s0=Q

2

ð1� 4s0=Q
2Þ3=2 �

6s0
Q4

þO
�
1

Q6

�
:

(28)

Since here our primary goal is to obtain an estimate for the
smooth continuum part of the kaon spectra for intermediate
energies, which in reality is, however, dominated by low-
energy timelike resonances that obscure the smooth con-
tinuum. With the ‘‘oversimplified’’ assumption that these
resonance peaks behave as background ‘‘noise,’’ superim-
posed on a smooth continuum spectrum, we choose the
functional form of the timelike soft form factor to be the
same as that of the spacelike expression, which is a smooth
function for the entire range of Q2, we consider, i.e.,

Gsoft
K ðQ2Þ ¼ 1� 1þ 6s0=Q

2

ð1þ 4s0=Q
2Þ3=2 þO

�
1

Q6

�
: (29)

Moreover, for large enough Q2� above 5 GeV2, both
expressions Eqs. (27) and (28) when expanded in inverse
powers ofQ2 yield the same leading term ofOð 1

Q4Þ. Hence,
the particular choice of the soft form factors should not
matter significantly at large-Q2 values where the perturba-
tive predictions become more reliable and dominant.

In the present context, a vital aspect deserves some
consideration. Since the inclusion of the soft form factors
has been somewhat ad hoc, without any correspondence
among the hard and the soft contributions, there could be
chances of possible double counting of contributions es-
pecially at low energies. Thus, it becomes clear that we
must correct the hard factorized results in the low-Q2

region to ensure that the respective contributions lie within
their domains of validity. This is achieved by enforcing
the gauge invariance condition through the vector Ward
identity fF;GgKðQ2 ¼ 0Þ ¼ 1, which is a priori not en-
sured in perturbative calculations. Since the soft form
factors satisfies fF;GgsoftK ðQ2 ¼ 0Þ ¼ 1, we must have
fF;GghardK ðQ2 ¼ 0Þ ¼ 0. But this is unfortunately not sat-
isfied by Eqs. (23) and (24) where the contributions tend to
diverge rapidly in the vicinity of Q2 ¼ 0. Therefore, the
essential task is to match the large-Q2 results of
fF;GghardK ðQ2Þ with the low-Q2 results of fF;GgsoftK ðQ2Þ.
Here we shall modify the argument given in [12] for the
twist-2 case to be applicable for the twist-3 and twist-4
power corrections. The simplest way is to ‘‘power correct’’
for the singular �1=Q2 (leading twist-2 and twist-4) and
�1=Q4 (subleading twist-3 and twist-4) behaviors, respec-
tively, at small Q, by introducing some characteristic low-
energy mass scale M0 that may lead to the onset of the
genuine nonperturbative soft dynamics. For the soft form
factors modeled via the local duality principle, the scale

M2
0 ¼ 2s0 is a natural choice [38]. It can then be shown that

for the leading twist-2 and twist-4 hard corrections, it is
sufficient to make the modification [12]

	fF;Ggtwist2K ðQ2Þ þ 	fF;Ggtwist4;LOK ðQ2Þ
! �fF;Ggtwist2K ðQ2Þ þ�fF;Ggtwist4;LOK ðQ2Þ

¼
�

Q2

2s0 þQ2

�
2ð	fF;Ggtwist2K ðQ2Þ

þ 	fF;Ggtwist4;LOK ðQ2ÞÞ: (30)

For the case of the subleading twist-3 and twist-4 hard
corrections, we perform the following replacement:

	fF;Ggðt¼3;4Þ
K ðQ2Þ ¼ g	fF;Ggðt¼3;4Þ

K ðQ2ÞM
4
0

Q4

! g	fF;Ggðt¼3;4Þ
K ðQ2Þ M4

0

M4
0 þQ4

; (31)

where we write 	fF;Ggðt¼3;4Þ
K 	 	fF;Ggtwist3K þ

	fF;Ggtwist4;NLOK for brevity. Now, to maintain the Ward
identity, we correct for the wrong Q2 ¼ 0 limit of the
above expression

�fF;Ggðt¼3;4Þ
K ðQ2Þ ¼ � g	fF;Ggðt¼3;4Þ

K ðQ2Þ�nðQ2=M2
0Þ

þ g	fF;Ggðt¼3;4Þ
K ðQ2Þ M4

0

M4
0 þQ4

; (32)

where we introduce the smooth function �nðzÞ (with z ¼
Q2=M2

0) with the essential property that �nð0Þ ¼ 1 and

z�nðzÞ ! 0 as z ! 1, for a suitable choice of the positive

integer n, to preserve the asymptotics of 	fF;Ggðt¼3;4Þ
K ðQ2Þ.

A natural choice for �nðzÞ could be �nðzÞ ¼ 1=ð1þ znÞ2,
concurrent with the �1=Q2n scaling behavior of the re-
spective power suppressed terms. For the present purpose,
it is sufficient to take n ¼ 2, yielding

�fF;Ggðt¼3;4Þ
K ðQ2Þ ¼ g	fF;Ggðt¼3;4Þ

K ðQ2Þ M4
0

M4
0 þQ4



�
1� M4

0

M4
0 þQ4

�

¼ 	fF;Ggðt¼3;4Þ
K ðQ2Þ

�
Q4

M4
0 þQ4

�
2
: (33)

In principle, this can also be achieved with larger integer
values of n that would lead to ðQ2n=ðM2n

0 þQ2nÞÞ2 in front
of the hard parts. However, as n ! 1, this factor becomes
a step function, which is no longer smooth. Hence, a
minimal value of n is preferable and we arrive at the
Ward identity modified result:
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	fF;Ggtwist3K ðQ2Þ þ 	fF;Ggtwist4;NLOK ðQ2Þ
! �fF;Ggtwist3K ðQ2Þ þ�fF;Ggtwist4;NLOK ðQ2Þ

¼
�

Q4

4s20 þQ4

�
2ð	fF;Ggtwist3K ðQ2Þ

þ 	fF;Ggtwist4;NLOK ðQ2ÞÞ: (34)

The prefactors only alter the low-energy behavior of the
hard contributions and ensure the correct power law in
maintaining a smooth matching between the large-Q2

behavior of fF;GghardK ðQ2Þ to the low-Q2 behavior of
fF;GgsoftK ðQ2Þ (see, Fig. 4). This leads to our final expres-
sion for the total electromagnetic kaon form factors, cor-
rect up to Oð 1

Q4Þ accuracy, given by

fF;GgKðQ2Þ ¼ fF;GgsoftK ðQ2Þ þ�fF;Ggtwist2K ðQ2Þ
þ �fF;Ggtwist3K ðQ2Þ þ�fF;Ggtwist4K ðQ2Þ;

where

fF;GgsoftK ðQ2Þ ¼ 1� 1þ 6s0=Q
2

ð1þ 4s0=Q
2Þ3=2 ;

�fF;Ggtwist2K ðQ2Þ ¼
�

Q2

2s0 þQ2

�
2
	fF;Ggtwist2K ðQ2Þ;

�fF;Ggtwist3K ðQ2Þ ¼
�

Q4

4s20 þQ4

�
2
	fF;Ggtwist3K ðQ2Þ;

�fF;Ggtwist4K ðQ2Þ ¼
�

Q2

2s0 þQ2

�
2
	fF;Ggtwist4;LOK ðQ2Þ

þ
�

Q4

4s20 þQ4

�
2
	fF;Ggtwist4;NLOK ðQ2Þ;

(35)

where the 	’s are replaced by the �’s to include the
respective prefactors.

III. RESULTS AND DISCUSSION

To obtain the Gaussian parameters of the kaon wave
functions, we use the following two sets of constraints
valid for the individual twists (t ¼ 2, 3, 4): the first set of
constraints is obtained from the leptonic decay K ! �þ

�, and given by

Z 1

0
dx

Z d2kT

16�3
�t;Kðx;kT; �

2
0;Mfu;d;sgÞ ¼ Nt;K; (36)

withNt;K being the normalization constant for the collinear

DAs; and the second follows from the phenomenological
fact that the average transverse momentum of the valence

partons in light mesons is about hk2
Ti1=2�;K;���� � 0:35 GeV,

i.e.,

hk2
TiK ¼

R
dx

R
d2kTjk2

Tjj�t;Kðx;kT; �
2
0;Mfu;d;sgÞj2R

dx
R
d2kTj�t;Kðx;kT; �

2
0;Mfu;d;sgÞj2

:

(37)

The Gaussian parameters determined in this way for �0 �
1 GeV are collected in Table II. Note that due to the rather
mild scale dependences of these parameters, which practi-
cally remain constant for the entire range of intermediate
energies that is considered in this work, their scale varia-
tions have been kept fixed to reduce the numerical com-
plexity. However, we do consider their variation with the
changes in the collinear DA parameters, summarized in
Table I, that is required for our estimation of the theoretical
error. Once all the phenomenological parameters are de-
termined, we proceed to calculate the hard contributions.
For calculations, we use the full nonasymptotic collinear
DAs derived from light cone QCD sum rules [25–27].
In Fig. 4, we plot the individual terms of Eq. (35), i.e.,

fF;GgsoftK , �fF;Ggtwist2K , �fF;Ggtwist3K , and �fF;Ggtwist4K ,
which should give an idea about the relative magnitude
of each contribution for intermediate values of Q2 up to
30 GeV2. For comparison, we also display the results
obtained without including the prefactor modifications,
which do not show any appreciable difference for Q2

values beyond �5–10 GeV2. As expected, the standard
twist-2 contributions are much smaller compared to the
soft QCD and the twist-3 power corrections at moderate
energies. However, the twist-4 contributions are seen to be
indeed small (about 1=3 of the magnitude of the twist-2),
which are, in fact, negative in the spacelike region. In the
timelike region, since all the hard contributions are com-
plex, it only makes sense to plot the modulus of the
individual twist corrections. It is notable that the general
enhancement of all the timelike hard contributions relative
to the spacelike ones can be attributed to the timelike
parton propagators developing poles that are absent in
the spacelike region. To illustrate this point, it is useful
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FIG. 4 (color online). Relative contributions of the soft
fF;GgsoftK (double-dot black lines), twist-2 �fF;Ggtwist2K (thick

double-dot dashed orange lines), twist-3 �fF;Ggtwist3K (thick

dotted blue lines), and twist-4 �fF;Ggtwist4K (thick solid red lines)

terms in Eq. (35). The same terms without the prefactor mod-
ifications are also displayed.
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to plot the part of the hard kernel H�ðx; y;Q; b1; b2Þ that is
common to all the twist corrections to the hard form
factors. Figure 5 shows the variation of the space- and
timelike kernels H� (in the impact parameter space) as a
function of Q2 for some arbitrary fixed values of the
parameters x, y, b1, and b2. It immediately becomes clear
that the real-valued spacelike kernel Hþ has a rapidly
decaying exponential behavior, whereas the complex-
valued timelike kernel H� has rather large amplitude
oscillatory real and imaginary components which decay
very gradually with increasingQ2. In reference to Eqs. (13)
and (14), we note that if fx; yg � 1 ) fxQ2; xyQ2g �
fk2

T; l
2
Tg � Q2, and if fx; yg � 1 ) fxQ2; xyQ2g �Q2, so

that the terms in the denominators tend to cancel each other
in the timelike but not in the spacelike domain. This
explains why the amplitude of the timelike oscillations in
H� grow larger and larger near the endpoints x, y ! 0.

The most striking feature of our results in Fig. 4 is the
anomalously large twist-3 contribution in the timelike
region, similar to what was seen for the pion [23], domi-
nating all the other corrections for the entire range of low
and moderate energies. This huge asymmetry between the

space- and timelike twist-3 contributions comes from the
additional parametric enhancement of the twist-3 DAs due
to the chiral parameter �K which makes them particularly
sensitive to the chiral scale. It is the combination of this
parametric enhancement along with the occurrence of
the timelike poles in the hard kernel that leads to such a
characteristic anomalous twist-3 behavior which is com-
pletely missing in the twist-2 or even in the twist-4. At this
point, one may also worry about possible large contribu-
tions from the 3-particle twist-3 sector (related to the
2-particle twist-3 sector through QCD equations of mo-
tion) that was not considered in this work. Here, we note
that such a possibility can safely be precluded since the
3-particle twist-3 DA receives large parametric sup-
pression from the nonperturbative parameter f3K �
0:0045 GeV2, numerically very much smaller compared
to the analogous 2-particle twist-3 parameter �K �
1:5 GeV, which greatly enhances the contribution from
the 2-particle sector.
Further, it is important to note that (a) the ‘‘active’’ soft

gluons that may also arise from the 3-particle twist-3 DA or
higher twist DAs likewise, bring about additional power

TABLE II. The phenomenologically determined Gaussian parameters for twist-2, twist-3 and
twist-4 wavefunctions. The numbers in the parentheses ð� � �Þas correspond to parameters for the
asymptotic wavefunctions.

At;Kðt ¼ 2; 3; 4Þ At �0 ¼ 1 GeV Units ð�t;KÞ2ðt ¼ 2; 3; 4Þ At �0 ¼ 1 GeV Units

A2;K 2:06ð2:07Þas � � � ð�2;KÞ2 0:78ð0:89Þas GeV�2

Ap
3;K 2:23ð2:28Þas � � � ð�p

3;KÞ2 0:71ð0:79Þas GeV�2

A�
3;K 2:08ð2:07Þas � � � ð��

3;KÞ2 0:88ð0:89Þas GeV�2

AA
4;K 2:07ð2:00Þas � � � ð�A

4;KÞ2 0:91ð0:93Þas GeV�2

Ag
4;K 5:22ð2:28Þas � � � ð�g

4;KÞ2 0:57ð0:79Þas GeV�2
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FIG. 5 (color online). The space- and timelike hard kernels H�ðx; y;Q; b1; b2Þ in the impact space representation for two sets of
choices for the collinear momentum fractions with arbitrary fixed b1, b2: x ¼ y ¼ 0:1 (left plot) and x ¼ y ¼ 0:9 (right plot).
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corrections and, therefore, can be safely neglected at
large-Q2 values, and (b) the ‘‘long-distance’’ soft gluons
that may be a possible source of the breakdown of kT
factorization, cannot probe the small ‘‘color-dipole’’ con-
figurations of the q �q hadronic bound state at high enough
Q2 (color transparency). The remaining collinear gluons
are assumed to be effectively tackled within the present
kT-factorization scheme, where the inclusion of the
2-particle twist-3 corrections indeed turn out to be the
most crucial aspect at the moderate-Q2 regime. Note,
however, that all such nonperturbative power corrections
including the soft contributions rapidly fall off with in-
creasing Q2, and beyond �50–100 GeV2 the standard
twist-2 terms start dominating the asymptotic regime,
yielding back numerically the bona fide asymptotic behav-
ior given by the Farrar and Jackson result [7]

fF;GgasyK ðQ2Þ ¼ 8��sðQ2Þf2K
Q2

: (38)

Our final prediction for the total scaled electromagnetic
kaon form factors fF;GgK [from Eq. (35)] up to twist-4
accuracy in the range of intermediate energies/momentum
transfers is presented in Fig. 6, along with the result for the
soft form factors fF;GgsoftK and the standard asymptotic
QCD result of Farrar and Jackson [7] for comparison. To
estimate the theoretical error, we studied the variation of
the wave function parameters provided in Tables I and II.
In addition, we varied the chiral parameter �K ¼
m2

K=ðmu þmsÞ which is often taken to be slightly lower
�1:3–1:5 GeV in the literature [17,19–23,26,39,40] than
its naive value about 1.7 GeV expressed in terms of the
current quark masses. In this analysis, we take�K ¼ 1:5�
0:2 GeV and include its variation in the error estimate. The
shaded area, thus obtained, can be regarded as our rough

estimate for the theoretical error, where the solid (red)
curve corresponds to the central values of the parameters.
While our result is relatively insensitive to the choice of the
parameters in the spacelike region, the timelike result turns
out to be very sensitive to the choice of�K whose variation
alone amounts for more than 90% of the error bar. The
error due to the rest of the model parameters is generously
overestimated to include possible uncertainties due to the
soft parts which we do not a priori take into account. Thus,
we should stress that our pQCD based error estimate in
the low-Q2 region (which apparently looks small) must be
considered in a very conservative sense and cannot be
taken seriously below �5 GeV2. A more rigorous error
analysis is impossible at the moment due to poor quality of
the experimental data.
Several comments are now in order:
(i) The width of our error bar is large enough to com-

pletely subsume effects due to further inclusion of
higher twists (e.g., twist-5 and twist-6), subleading
Fock states and higher helicity components whose
contributions should be tiny, not exceeding even 1%.

(ii) Our leading order (in �s) scattering kernels are
apparently gauge dependent arising from the con-
tributions of the single hard gluon propagator.
However, in the context of the ��� ! � transition
form factor, it can be shown through a systematic
order by order calculation using kT factorization
that there is indeed a cancellation of the gauge
dependences between the quark-level diagrams of
the hard kernel and the effective diagrams of the
pion wave function [41], so that the net result turns
out to be gauge invariant to all orders. It is, thus,
believed that the same technique can be straightfor-
wardly extended to other hadronic elastic and tran-
sition form factors, including the present context of
the kaon form factors, at least up to the level of next-
to-leading-order (in �s) corrections.

(iii) The factorized hard form factors further suffer from
renormalization/factorization scale dependent am-
biguities that typically emerge from the truncation
of the perturbative series and would be absent if
we were able to obtain an all-order result in the
QCD coupling �s. To minimize the scale depen-
dence in our present investigation, we adhere to a
fixed prescription with the scales set to the momen-
tum transfer Q [37,41], as mentioned previously in
the context of the Sudakov factor. In this way, we
hope to improve the reliability and self-consistency
of the perturbative prediction and reduce the influ-
ence from higher-order corrections.

(iv) Nevertheless, a naive estimation of the twist-2 next-
to-leading order (in �s) contributions to the kaon
form factors, using available next-to-leading-order
radiative corrections for the pion form factor in
asymptotic QCD, can be roughly expressed as [42]
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FIG. 6 (color online). The total scaled kaon form factors,
denoted by the thick solid (red) lines; the soft form factors
fF;GgsoftK , denoted by the double-dot (black) lines; and the
asymptotic QCD result [7], denoted by the short-dashed (orange)
lines. The shaded area is our estimated theoretical error. The
experimental data taken from [2,3] and the phenomenological
result [45] is shown for comparison.
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Q2fF;GgNLOK � ð0:903 GeV2Þ�2
sðQ2Þ f

2
K

f2�
; (39)

which yields a rather nominal contribution
�20%–30% that is roughly of the same order of
magnitude as the twist-4 contributions obtained in
our analysis. It is to be noted that the above esti-
mation is based on the usual collinear factorization
approach [42] which do not take transverse degrees
of freedom into account. The inclusion of the kT
dependence of the kernel may further reduce the
magnitude of the next-to-leading order radiative
corrections, as was shown in the cases of the pion
[43] and the nucleon [44] form factors. It goes
without saying that a full systematic next-to-
leading order calculation (including the subleading
twist-3) within the kT-factorization scheme, which
is missing until now, would be indispensable in
resolving this issue about the definitive magnitude
of the subleading corrections.

On the experimental side, as seen in Fig. 6, currently the
spacelike region is completely devoid of data points at Q2

values higher than �0:2 GeV2. This makes it difficult, if
not impossible, to compare such low-energy data with our
predictions based on a pQCD approach which becomes
unreliable and diverges rapidly in the vicinity of the
Landau pole �QCD � 0:2 GeV. For the timelike region,

there existed some older kaon data at relatively higher
energies but with very poor statistics [2]. For such mea-
surements the data above Q2 > 4:7 GeV2 had either upper
limits or errors � 50%. However, the recent CLEO mea-
surements [3] atQ2 ¼ 13:48 GeV2, apparently with a very
small error bar of �15%, can provide first possible oppor-
tunity to critically test theoretical predictions, although
they do not shed light on the variation with Q2, which is
a distinguishing feature of our result. Clearly, not only
the moderate-energy timelike data seems reasonably
reconciled, at higher energies both the CLEO result and
the recent phenomenological prediction from J=c decays:
M2

J=c jGKðM2
J=c ¼ 9:59 GeV2Þj ¼ 0:81� 0:18 GeV2 [45]

lie within reasonable range of our prediction for the total
timelike form factor. This is surprisingly consistent with
the pion form factor results presented in [23], also obtained
within the light cone kT-factorization approach, that agreed
well with most of the available moderate-energy data (with
statistics far better than the kaon data), including the CLEO
data and a similar phenomenological prediction [46] based
on J=c decay analysis. Note that in the analysis [23], the
central value of the twist-3 chiral parameter �� was also
taken to be 1.5 GeV.

To this end, we consider the pion to kaon form factor
ratios. In Fig. 7, using the central result for the pion form
factors from [23] (with �� ¼ 1:5 GeV) we plot its varia-
tion withQ2. The theoretical errors of the present work and
[23] are added in quadrature to obtain the error band as

shown in the figure. The large error should not come as a
surprise as the errors of both the pion and kaon factors are
large. We now compare this result with other theoretical
predictions and available experimental data. Note that the
standard asymptotic pQCD result of Farrar and Jackson [7]
yields a Q2 independent ratio,��������fF;Gg

asy
� ðQ2Þ

fF;GgasyK ðQ2Þ
��������¼ f2�

f2K
¼ 0:67: (40)

Clearly, the central value of our timelike ratio deviates
appreciably from the asymptotic value at low and moderate
Q2, but however, it gradually approaches the asymptotic
value at large Q2, and so does the spacelike ratio. While
our prediction fails to agree with the very low-energy
timelike data points [2], showing the limitations of
pQCD at such low-Q2 values, the higher Q2 � 4 GeV2

data points can somewhat be accommodated within our
error bars. At the same time, our timelike ratio at Q2 ¼
13:48 GeV2, i.e.,��������G�ð13:48 GeV2Þ

GKð13:48 GeV2Þ
��������¼ 1:06� 0:46; (41)

is surprisingly close to the CLEO value: 1:19� 0:17 at
Q2 ¼ 13:48 GeV2 [3], and the result obtained by taking
the ratio of the phenomenologically estimated timelike
pion form factor [46] and the timelike kaon form factor
[45], with the respective errors again added in quadrature

��������G�ðM2
J=c ¼ 9:48 GeV2Þ

GKðM2
J=c ¼ 9:48 GeV2Þ

��������¼ 1:16� 0:55: (42)

It is also noteworthy mentioning that the recent analyses
[47,48] based on relativistic quark models up to �q2 �
10 GeV2, yielded the ratio of the form factors quite similar
to what we obtain in the spacelike region. Finally, in Fig. 7,
we compare our result, evidently working better towards
large-Q2 values, with the soft QCD results obtained from
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FIG. 7 (color online). Variation of the ratio of the pion and
kaon timelike form factors with Q2 in different approaches. The
pion and kaon experimental data are taken from [1–4].
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QCD sum rules, which are instead known to yield reliable
predictions at low- and moderate-Q2 values. For example,
the plot corresponding to the LD-model result [8] not only
agrees well with the very low-Q2 spacelike data (not
resolved in the figure), but also with the low-energy time-
like data when naively used in the timelike region. While,
the analytically continued timelike LD-model result [see,
Eq. (28)] [10] at low energies yields a plot very different
from that of [8], but toward larger-Q2 values both yield
very similar predictions. Nevertheless, the QCD sum rules
results significantly differ from the CLEO result and the
one obtained from the phenomenological J=c decay
analysis. It is to be noted that in spite of the additional
inclusion of the hard contributions, our spacelike ratio of
the total form factors does not differ significantly from that
of [8], except at the very low Q2 � 0:2 GeV2 below which
our result rapidly blows up.

To sum up, in this paper we tried to systematically study
the higher twist effects, namely, the twist-3 and twist-4
corrections to the standard twist-2 pQCD charged kaon
form factors by adopting minimal model dependence aris-
ing from the inclusion of (a) the transverse degrees of
freedom in the kaon wave functions/distribution ampli-
tudes, and (b) the nonfactorizable soft QCD corrections
via local duality. The work presented here extends and
completes the analyses of the previous work [17,23].
Assuming the validity of the kT-factorization ansatz
through the explicit transverse momentum dependence of
the scattering kernel, we showed a nontrivial twist-3 con-
tribution in the 2-particle sector which along with the large
soft QCD corrections turn out to be the real hallmark of the
‘‘TMD-modified pQCD þ soft QCD’’ approach to deter-
mine the space- and timelike kaon form factors. Other
corrections, such as the 2-particle twist-4, were explicitly
shows to have minor contributions only. To this end, the
available moderate-energy experimental kaon data seems
to be reasonably reconciled with the range of our predic-
tions. It is also reassuring that the same approach works
equally well independently for the electromagnetic pion
form factors, which adds confidence to the arguments used
in obtaining our results. It may, therefore, be speculated
why the factorized result works so well for both the pion
and kaon form factors in obtaining estimates, at least in the
correct ‘‘ballpark,’’ in spite of factors like the resonances,
hadronization, and other final state interaction, naively
neglected in this approach, that may render the factorized
pQCD result questionable at the presently probed phe-
nomenological region. However, to draw definite con-
clusion it is invaluable to have more high precision inter-
mediate energy data, rather than to base our conclusions on
such poor quality data.
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APPENDIX

2-particle collinear distribution amplitudes

The 2-particle twist-3 collinear DAs for the
charged kaon (say, K�) are defined at the scale of
�0 � 1 GeV, in terms of the following nonlocal matrix
elements [25–27]:

h0j �uðzÞi�5sð�zÞjK�ðPÞi ¼ �K

Z 1

0
dxei�ðPzÞ�p

3;Kðx;�2
0Þ;

h0j �uðzÞ����5sð�zÞjK�ðPÞi
¼ � i

3
�K

�
1�

�
mu þms

mK

�
2
�
ðP�z� � P�z�Þ



Z 1

0
dxei�ðPzÞ��

3;Kðx;�2
0Þ (A1)

with �K ¼ m2
K=ðmu þmsÞ and � ¼ 2x� 1. Note that the

gauge-link factors (Wilson line) in the matrix elements are
to be implicitly understood. The normalization conditions
for the above twist-3 DAs are given by

Np;�
3;K ¼

Z 1

0
dx�p;�

3;K ðx;�2Þ ¼ fK
2

ffiffiffiffiffiffiffiffiffi
2Nc

p ; (A2)

which have the following asymptotic forms:

�pðasÞ
3;K ðxÞ ¼ fK

2
ffiffiffiffiffiffiffiffiffi
2Nc

p ; ��ðasÞ
3;K ðxÞ ¼ 3fKffiffiffiffiffiffiffiffiffi

2Nc

p xð1� xÞ:
(A3)

The explicit formulas for the nonasymptotic 2-particle
twist-3 collinear DAs, expressed as a series expansion
over conformal spins at next-to-leading order, are given
by [26]

�p
3;Kðx;�2Þ¼�pðasÞ

3;K ðxÞf1þð30�3Kð�2Þ� 5
2�

2
Kð�2ÞÞC1=2

2 ð�Þ
þð�3�3Kð�2Þ!3Kð�2Þ� 27

20�
2
Kð�2Þ

� 81
10�

2
Kð�2ÞaK2 ð�2ÞÞC1=2

4 ð�Þg;
��

3;Kðx;�2Þ¼��ðasÞ
3;K ðxÞf1þð5�3Kð�2Þ� 1

2�3Kð�2Þ!3Kð�2Þ
� 7

20�
2
Kð�2Þ� 3

5�
2
Kð�2ÞaK2 ð�2ÞÞC3=2

2 ð�Þg
(A4)

with

�3K ¼ f3K
fK

1

�K

; �K ¼ mK

�K

;

the nonperturbative parameters f3K and !3K being defined
through the following matrix elements of local twist-3
operators:
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h0j �uð0Þ��
�5gsG��sð0ÞjK�ðPÞi
¼ if3KðP�P�g
� � P�P
g��

� P�P�g
� þ P�P
g��Þ;
h0j �uð0Þ����5½iD�; gsG���sð0Þ

� 3
7i@� �uð0Þ����5gsG��sð0ÞjK�ðPÞi

¼ 3
14if3KP�P�P�!3K þOðhigher twistÞ; (A5)

where gs is the strong coupling and G�� is the gluon field

tensor. To the leading order, the scale dependence of
various twist-3 parameters are given by

�Kð�2Þ ¼ L�ð0Þ
3;s �u

=�0�Kð�2
0Þ; �ð0Þ

3;s �u ¼ 1;

�3Kð�2Þ ¼ L�ð0Þ
3;�

=�0�3Kð�2
0Þ; �ð0Þ

3;� ¼ 4
3CF þ 1

4CA;

!3Kð�2Þ ¼ L�ð0Þ
3;!

=�0!3Kð�2
0Þ; �ð0Þ

3;! ¼ � 7
24CF þ 7

12CA;

aK1 ð�2Þ ¼ L�ð0Þ
1
=�0aK1 ð�2

0Þ; �ð0Þ
1 ¼ 2

3CF;

aK2 ð�2Þ ¼ L�ð0Þ
2
=�0aK2 ð�2

0Þ; �ð0Þ
2 ¼ 25

24CF;

(A6)

where L ¼ �sð�2Þ=�sð�2
0Þ, CF ¼ ðN2

c � 1Þ=2Nc, and

CA ¼ Nc. However, the strange quark being massive, there
is operator mixing of the ones in Eq. (A6) with those of
twist-2 operators, so that the resulting leading order renor-
malization group equations give the following scale de-
pendences:

f3Kð�2Þ ¼ L55=36�0f3Kð�2
0Þ þ 2

19ðL1=�0 � L55=36�0Þ

 ½fKms�ð�2

0Þ þ 6
65ðL55=36�0 � L17=9�0Þ


 ½fKmsa
K
1 �ð�2

0Þ;
½f3K!3K�ð�2Þ ¼ L26=9�0½f3K!3K�ð�2

0Þ
þ 1

170ðL1=�0 � L26=9�0Þ½fKms�ð�2
0Þ

þ 1
10ðL17=9�0 � L26=9�0Þ½fKmsa

K
1 �ð�2

0Þ
þ 2

15ðL43=ð18�0Þ � L26=9�0Þ½fKmsa
K
2 �ð�2

0Þ:
(A7)

The 2-particle twist-4 collinear DAs modify the twist-2
axial matrix element and are given by

h0j �uðzÞ���5sð�zÞjK�ðPÞi
¼ iP�

Z 1

0
dxei�ðPzÞ

�
�2;Kðx;�2

0Þ þ
1

4
m2

Kz
2A4;Kðx;�2

0Þ
�

þ i

2
fKm

2
K

1

Pz
z�

Z 1

0
dxei�ðPzÞB4;Kðx;�2

0Þ; (A8)

where B4;K ¼ g4;K ��2;K, with the normalization condi-

tions expressed as

NA;g
4;K ¼

Z 1

0
dxfA; gg4;Kðx;�2Þ ¼ fK

2
ffiffiffiffiffiffiffiffiffi
2Nc

p ; (A9)

and the asymptotic forms, namely,

A ðasÞ
4;KðxÞ ¼

15fKffiffiffiffiffiffiffiffiffi
2Nc

p x2ð1� xÞ2; gðasÞ4;KðxÞ ¼
fK

2
ffiffiffiffiffiffiffiffiffi
2Nc

p :

(A10)

Next we display the explicit forms of the nonasymptotic
twist-4 collinear DAs at next-to-leading order in conformal
spin [26]:

A4;Kðx;�2Þ ¼ 3fK
N A

ffiffiffiffiffiffiffiffiffi
2Nc

p xð1� xÞ
�
16

15
þ 24

35
aK2 ð�2Þ þ 20�3Kð�2Þ þ 20

9
�4Kð�2Þ

þ
�
� 1

15
þ 1

16
� 7

27
�3Kð�2Þ!3Kð�2Þ � 10

27
�4Kð�2Þ

�
C3=2
2 ð�Þ

þ
�
� 11

210
aK2 ð�2Þ � 4

135
�3Kð�2Þ!3Kð�2Þ

�
C3=2
4 ð�Þ

�
þ fK

2N A
ffiffiffiffiffiffiffiffiffi
2Nc

p
�
� 18

5
aK2 ð�2Þ þ 21�4Kð�2Þ!4Kð�2Þ

�

 f2x3ð10� 15xþ 6x2Þ lnxþ 2�x3ð10� 15�xþ 6�x2Þ ln �xþ x �xð2þ 13x �xÞg;

g4;Kðx;�2Þ ¼ fK
2

ffiffiffiffiffiffiffiffiffi
2Nc

p
�
1þ

�
1þ 18

7
aK2 ð�2Þ þ 60�3Kð�2Þ þ 20

3
�4Kð�2Þ

�
C1=2
2 ð�Þ

þ
�
� 9

28
aK2 ð�2Þ � 6�3Kð�2Þ!3Kð�2Þ

�
C1=2
4 ð�Þ

�
; (A11)

where �x ¼ 1� x, and in the notation of [25], 	2 	 m2
K�4K and � 	 21=8!4K. Note that the additional factor N A � 3:5

in the denominator of A4;K is a contrast to the expression given in [26], which is introduced to normalize the DA. The
nonperturbative parameters �4K and !4K are defined through the following matrix elements of local twist-4 operators:
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h0j �uð0Þ��igs ~G�
sð0ÞjK�ðPÞi ¼ �1
3fKm

2
K�4KðP�g
� � P
g��Þ;

h0j �uð0Þ½iD�; igs ~G
����sð0Þ � 4
9i@� �uð0Þigs ~G
���sð0ÞjK�ðPÞi ¼ fKm

2
K�4K!4KðP�P
 � 1

4m
2
Kg�
Þ þOðtwist 5Þ;

(A12)

where ~G�
 ¼ 1
2 ��
��G

�� is the dual gluon field tensor. Taking into account the mixing with the operators of lower twists,
the leading order (in QCD coupling) renormalization group evolution of the twist-4 parameters are

�4Kð�2Þ ¼ L�ð0Þ
4;�

=�0�4Kð�2
0Þ þ 1

8ð1� L�ð0Þ
4;�

=�0Þ; �ð0Þ
4;� ¼ 2

3CF;

½�4K!4K�ð�2Þ ¼ L�ð0Þ
4;�!

=�0½�4K!4K�ð�2
0Þ; �ð0Þ

4;�! ¼ 5
6CA: (A13)

Finally, we present the various Gegenbauer polynomials used in the above formulas:

C1=2
0 ð�Þ ¼ 1; C1=2

1 ð�Þ ¼ �; C1=2
2 ð�Þ ¼ 1

2ð3�2 � 1Þ; C1=2
3 ð�Þ ¼ 1

2�ð5�2 � 3Þ;
C1=2
4 ð�Þ ¼ 1

8ð35�4 � 30�2 þ 3Þ; C3=2
0 ð�Þ ¼ 1; C3=2

1 ð�Þ ¼ 3�;

C3=2
2 ð�Þ ¼ 3

2ð5�2 � 1Þ; C3=2
3 ð�Þ ¼ 5

2�ð7�2 � 3Þ: (A14)
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