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We study the hierarchy of the coefficients in the 1=Nc expansion for the negative parity L ¼ 1 excited

baryons from the perspective of the constituent quark model. This is related to the problem of

determining the spin-flavor structure of the quark interaction. The most general two-body scalar

interaction between quarks contains the spin-flavor structures ta1t
a
2 ; ~s1 � ~s2 and ~s1 � ~s2ta1ta2 . We show that

in the limit of a zero range interaction all these structures are matched onto the same hadronic mass

operator S2c, which gives a possible explanation for the dominance of this operator in the 1=Nc expansion

for the L ¼ 1 states and implies that in this limit it is impossible to distinguish between these different

spin-flavor structures. Modeling a finite range interaction through the exchange of a vector and

pseudoscalar meson, we propose a test for the spin-flavor dependence of the quark forces. For the scalar

part of the quark interaction, we find that both pion exchange and gluon exchange are compatible with the

data.
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I. INTRODUCTION

The application of the 1=Nc expansion to the excited
baryons sector has produced a number of interesting re-
sults; see Ref. [1] for a recent review. Baryon properties
like masses or axial couplings can be expanded in a sys-
tematic way using an explicit representation of operators
acting on quark degrees of freedom [2–5]. Working to
order Oð1=NcÞ, there are two OðN0

cÞ and eight Oð1=NcÞ
operators in the expansion of the mass operator of the
nonstrange L ¼ 1 excited baryons [6]. In this paper we
will be concerned with the observed pattern of the coef-
ficients of the various operators in the 1=Nc expansion
when applied to the study of these negative parity excited
states.

The most prominent feature of the 1=Nc expansion
analysis is the dominance of the Oð1=NcÞ operator 1

Nc
S2c,

which is also confirmed by extending the analysis to flavor
SUð3Þ, including all the members of the 70-plet [7,8]. The
coefficients of the OðN0

cÞ and of the other Oð1=NcÞ opera-
tors are smaller than expected by 1=Nc power counting
alone, as their natural size is set by the coefficient of the
unit operator and is of the order of �500 MeV. The
dominance of the S2c operator has been explained in
Ref. [6] by assuming dominance of a pion-mediated inter-
action among constituent quarks.

In this paper we propose another explanation for this
hierarchy of the coefficients: the short range of the quark
interaction in the constituent quark model. We show that,
in the limit of a contact interaction, any scalar quark

interaction, regardless of its spin-flavor structure, is
matched onto the single operator S2c. This implies the
surprising conclusion that, within the scalar interactions,
it is impossible to distinguish between quark interactions
with different spin-flavor structures, such as the one-gluon
exchange model (OGE) [9,10] and the Goldstone-boson
exchange model (GBE) [11], as long as these effective
interactions are of very short range.
On the other hand, a more complex spatial dependence

of the quark forces will introduce two other operators ta1T
a
c

and ~s1 � ~Sc. Their strengths depend on the range of the
interaction, as already stated explicitly in Ref. [7] for the

case of the ~s1 � ~Sc operator, and are sensitive to the spin-
flavor structure. Modeling the quark interaction as medi-
ated by the exchange of a meson of mass � we discuss the
consequences of a finite range given by 1=� and propose
the sign of the ratio of two coefficients as a test for the spin-
flavor structure of the interaction. We finally use the wave
functions of the Isgur-Karl model [12] with a harmonic
oscillator potential to compute this ratio and constrain the
mass scale �.
The paper is organized as follows. In Sec. II we discuss

the matching of the three possible spin-flavor structures to
the effective operator expansion and point out that in the
case of a zero range interaction only one operator domi-
nates. In Sec. III we discuss the finite range correction and
propose a test for the spin-flavor structure of the interac-
tion. In Sec. IV we perform a model calculation of the
orbital reduced matrix elements. In Sec. V we summarize
and present our conclusions.
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II. ZERO RANGE SCALAR QUARK
INTERACTIONS

The most general quark Hamiltonian containing only
two-body interactions has the form [13]

Hqq ¼ H0 þ
X
i<j

ðf1ð ~rijÞtai taj þ f2ð~rijÞ ~si � ~sj

þ f3ð ~rijÞ ~sitai � ~sjtaj Þ þHs�o þHq; (1)

where ~rij ¼ ~ri � ~rj is the distance between quarks i, j, and

H0 is the part of the quark Hamiltonian which does not
depend on the quarks’ spin and flavor degrees of freedom.
We show explicitly only the part of the Hamiltonian which
transforms as a scalar (l ¼ 0) under SOð3Þ, the group of
orbital rotations—the scalar part of the quark Hamiltonian.
The Hs�o; Hq denote the spin-orbit and the quadrupole

interaction, which transform as a vector (l ¼ 1) and a
traceless and symmetric tensor of rank two (l ¼ 2) under
SOð3Þ, respectively.

We will consider in this section the case of a contact
scalar interaction

f�ð~rijÞ ¼ A��
ð3Þð ~rijÞ; � ¼ 1; 2; 3; (2)

and study the following question: What information can be
obtained from the coefficients ck of the 1=Nc studies of the
spectrum of L ¼ 1 negative parity baryons? The motiva-
tion for this investigation is related to the question of
distinguishing between different models of the quark in-
teraction. The two main models considered in the literature
are: i) the one-gluon exchange model (OGE) [9,10], and
ii) the Goldstone-boson exchange model (GBE) [11]. In
this paper we will consider a wider class of models, corre-
sponding to the most general two-body interaction with
arbitrary spin-flavor structure.

Our analysis will be completely general and will not
make any assumptions about the orbital wave functions of
these states. We will use the method described in Ref. [14]
for obtaining predictions in the quark model by exploiting
the transformation properties of the states and interaction
Hamiltonian under SN , the permutation group of the N
quarks. The application of the S3 symmetry in this context
was also considered in Ref. [15]. In particular, this allows
one to match any quark Hamiltonian onto the operators of
the 1=Nc expansion. The mass operator in the 1=Nc ex-
pansion has also been compared with the predictions of a

particular quark model in Refs. [16,17] using a different
approach. We give in the following a brief summary of the
results of Ref. [14] that will be used in this work.
Consider a general two-body quark Hamiltonian of the

form

Hqq ¼ X
i<j

X
�

f�ð ~rijÞOð�Þ
ij ; (3)

where Oð�Þ
ij act only on the spin-flavor degrees of freedom

of the quarks i, j, and f�ð ~rijÞ act only on their orbital

degrees of freedom. The index � runs over all distinct
spin-flavor structures. Using the transformation properties
of the states and operators under SN , the permutation group
of N objects, it has been shown in Ref. [14] that the mass
operator corresponding to the Hamiltonian Hqq has for

Nc ¼ 3 the general form

M ¼ 1

3

X
�

ðRð�Þ
S Oð�Þ

S þ Rð�Þ
MSO

ð�Þ
MSÞ; (4)

where Oð�Þ
S , Oð�Þ

MS ðRð�Þ
S ; Rð�Þ

MSÞ are the reduced matrix ele-

ments of the projections of the spin-flavor operators Oð�Þ
ij

(orbital operators f�ð ~rijÞ) onto the S, MS irreducible rep-

resentations of SN. For an explicit example, see Ref. [18].
Table I lists all possible scalar two-body spin-flavor

operators Oij and their projections onto irreducible repre-

sentations of S3. The projections can all be expressed in
terms of the three operators, which we choose as in
Ref. [13]:

O1 ¼ T2; O2 ¼ S2c; O3 ¼ ~s1 � ~Sc: (5)

A different but completely equivalent choice would be to
replace T2 by t1 � Tc, as T

2 ¼ T2
c þ 2t1 � Tc þ t21 and T

2
c ¼

S2c for a symmetric core. This change in the operator basis
would just reshuffle the coefficients c0, c1 and c2 defined
below.
The quark Hamiltonian Hqq is matched onto the had-

ronic mass operator

M ¼ c01þ c1T
2 þ c2S

2
c þ c3 ~s1 � ~Sc þ � � � ; (6)

where the ellipses denote terms arising from the tensor and
spin-orbit interactions, which are not considered here [19].
The operators Oi in Eq. (5) have been introduced in the
context of the 1=Nc expansion for the negative L ¼ 1

TABLE I. The projection of the most general scalar quark interaction onto irreducible representations of S3 allows us to express the
corresponding reduced matrix elements as matrix elements of the operators listed in the second and third columns. They are shown
again in the last column written in terms of O1, O2, O3 defined in the text, up to terms proportional to the unit operator. The quadratic
Casimir of the fundamental representation of the flavor group SUðFÞ is C2ðFÞ ¼ ðF2 � 1Þ=ð2FÞ.
Oij OS OMS

tai t
a
j

1
2T

2 � 3
2C2ðFÞ �T2 þ 3ta1T

a
c þ 3C2ðFÞ 1

2O1,
1
2O1 � 3

2O2

~si � ~sj 1
2
~S2 � 9

8 � ~S2 þ 3~s1 � ~Sc þ 9
4

1
2O2 þO3, �O2 þO3

~si � ~sjtai taj 1
2G

2 � 9
8C2ðFÞ 3gka1 Gka

c �G2 þ 9
4C2ðFÞ � 1

8O1 � 1
4FO2 � 1

2FO3, � 1
8O1 þ ð38 þ 1

2FÞO2 � 1
2FO3
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baryons in Ref. [6], where the matrix elements of these
operators on the relevant states have been computed.
Although we use the notation of that paper, in the present
discussion we will have Nc ¼ 3 throughout.

A note on the different type of operators that appear at
the level of the quark model description and the effective
theory is in order here. In the quark model interactions
given by Eq. (1), all possible quark pairs appear in a
symmetric way. The contribution of the excited quark
will be singled out only after taking the matrix elements.
In the effective theory all contributions involving the
orbital part of the wave functions and the operators are
already contained in the coefficients of the spin-flavor
operators. The spin-flavor operators are constructed by
singling out the excited quark as quark number one. The
effective theory can still reproduce exactly all the matrix
elements of a quark model by adjusting its coefficients,
without missing anything. An explicit example is the
matching of the Isgur-Karl model, as discussed in detail
in Ref. [18].

The reduced matrix elements of the scalar orbital opera-
tors are defined in terms of the matrix elements of f�ð ~r12Þ
taken between a basis of orbital wave functions �2;3 trans-

forming in the MS irreducible representation of S3

h�ijf�ð~r12Þj�ji¼1

3

2ðRð�Þ
S þRð�Þ

MSÞ Rð�Þ
S þRð�Þ

MS

Rð�Þ
S þRð�Þ

MS 2Rð�Þ
S �Rð�Þ

MS

 !
: (7)

The basis �2;3 is defined by its transformation properties

under S3 given in general by Eqs. (6)–(8) of Ref. [14],
which for Nc ¼ 3 read

P12�2 ¼ ��2; P12�3 ¼ �3 � �2;

P13�2 ¼ �2 � �3; P13�3 ¼ ��3;

P23�2 ¼ �3; P23�3 ¼ �2: (8)

The basis �2;3 is normalized according to h�ij�ji ¼
1þ �ij.

The coefficients of the operators appearing in the scalar
part of the mass operator Eq. (6) are

c1 ¼ 1

6
ðRð�Þ

S þ Rð�Þ
MSÞ

8>>><
>>>:

1

0

� 1
4

9>>>=
>>>;

�

;

c3 ¼ 1

6
ðRð�Þ

S þ Rð�Þ
MSÞ

8>>><
>>>:

0

2

� 1
F

9>>>=
>>>;

�

; (9)

c2¼1

6
ðRð�Þ

S þRð�Þ
MSÞ

8>>><
>>>:

�3
2

�1
2

3
8þ 1

4F

9>>>=
>>>;

�

þ1

6
ðRð�Þ

S �Rð�Þ
MSÞ

8>>><
>>>:

3
2

3
2

�3
8� 3

4F

9>>>=
>>>;

�

;

(10)

where the index � ¼ 1, 2, 3 corresponds to the three

possible two-body operators Oð�Þ
ij ¼ tai t

a
j ; ~si � ~sj; ~sitai � ~sjtaj .

It is interesting to notice that the mass operator for
excited baryons in symmetric spin-flavor multiplets, like
the ½56; L ¼ 2; 4� studied in Refs. [20,21], does not require
the explicit separation of core and excited quark operators,
as only symmetric spin-flavor operators are needed. This

can be seen in Eqs. (9) and (10) by setting Rð�Þ
MS ¼ 0, which

results in the correlation c3 ¼ 2c2 among the coefficients

of ~s1 � ~Sc and S2c and allows the replacement of these two
operators by the total (symmetric) spin operator S2. In the
following we will discuss excited baryons in a mixed
symmetric spin-flavor multiplet, where this correlation
among the coefficients c2;3 does not hold.
Taking the index � ¼ 2 corresponds to the OGE model,

and � ¼ 3 to the GBE model. We note the following
relations for the coefficients ci, already pointed out in
Ref. [13], which hold irrespective of the orbital depen-
dence of the interactions:

OGE : c1 ¼ 0; (11)

GBE : c1 ¼ F

4
c3: (12)

The numerical values of the reduced matrix elements
RS, RMS depend on the detailed form of the hadronic wave
functions, and of the spatial functions fð~rijÞ. It has been
shown in Ref. [18] that, in the case of a contact interaction

fð ~rijÞ � �ð3Þð ~rijÞ, the symmetric and mixed symmetric re-

duced matrix elements RS, RMS are related as

RS ¼ �RMS: (13)

We recall briefly the proof of this relation, which follows
from the formula h�2jfð~r12Þj�2i ¼ 2

3 ðRS þ RMSÞ; see

Eq. (7). The basis of MS states �2;3 is defined such that

P12�2 ¼ ��2, which implies that �2 is antisymmetric
under an exchange of the quarks 1, 2, and thus it vanishes
for ~r12 ¼ 0. This implies that for a contact interaction

fð ~r12Þ � �ð3Þð ~r12Þ, the relation Eq. (13) holds among the
two reduced matrix elements RS, RMS.
Using the relation Eq. (13) we find that the coefficients

c1;2;3 are given, in the limit of a contact scalar interaction,

by

c1 ¼ c3 ¼ 0; c2 ¼ 1

3
Rð�Þ
S

8>>><
>>>:

3
2

3
2

� 3
8 � 3

4F

9>>>=
>>>;

�

: (14)

Very surprisingly, all three possible zero-range two-body

interactionsOð�Þ
ij ¼ tai t

a
j ; ~si � ~sj; ~sitai � ~sjtaj are matched onto

the same operator O2 ¼ S2c in the effective theory. This
means that there is no way to distinguish between these
three types of scalar interactions if they are contact
interactions.
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Experimentally, at Nc ¼ 3 one can determine only two
linear combinations of the three coefficients c1;2;3 (as

functions of �N1) [13] from the mass spectrum and mixing
angles of the negative parity L ¼ 1 baryons, which can be
taken as

~c 1 ¼ c1 � 1

2
c3; ~c2 ¼ c2 þ c3: (15)

This choice corresponds to eliminate the operator O3 ¼
~s1 � ~Sc using the exact relation T2 � 2S2c þ 2~s1 � ~Sc ¼
�c01 with �c0 ¼ � 9

4 for F ¼ 2 and �c0 ¼ 0 for F ¼ 3,

that holds on the physical states [22].
The coefficients ~c1;2 can be expressed in terms of the

nonstrange hadron masses and mixing angles as

~c1 ¼ 1

18
ð�Nð1535Þsin2�N1 � Nð1650Þcos2�N1

� 2Nð1520Þsin2�N3 � 2Nð1700Þcos2�N3

� 3N5=2 þ 2�1=2 þ 4�3=2Þ; (16)

~c2 ¼ 1

6
ððNð1535Þ � 2Nð1650ÞÞsin2�N1 þ ðNð1650Þ

� 2Nð1535ÞÞcos2�N1 þ ð2Nð1520Þ
� 4Nð1700ÞÞsin2�N3 þ ð2Nð1700Þ
� 4Nð1520ÞÞcos2�N3 þ 3N5=2Þ: (17)

The mixing angles �N1;N3 are related by the correlation

1

2
ðNð1535Þ þ Nð1650ÞÞ þ 1

2
ðNð1535Þ � Nð1650ÞÞ

� ð3 cos2�N1 þ sin2�N1Þ � 7

5
ðNð1520Þ þ Nð1700ÞÞ

þ ðNð1520Þ � Nð1700ÞÞ
0
@� 3

5
cos2�N3 þ

ffiffiffi
5

2

s
sin2�N3

1
A

¼ �2�1=2 þ 2�3=2 � 9

5
N5=2: (18)

Equations (16)–(18) hold in the most general constituent
quark model containing only two-body quark interactions
[13].

Using Eqs. (9) and (10), the observable coefficients ~c1;2
for the most general scalar interaction are given by

~c1 ¼ 1

6
ðRð�Þ

S þ Rð�Þ
MSÞ

8>>><
>>>:

1

�1

� 1
4 þ 1

2F

9>>>=
>>>;

�

; (19)

~c2 ¼ 1

6
ðRð�Þ

S þ Rð�Þ
MSÞ

8>>><
>>>:

� 3
2

3
2

3
8 � 3

4F

9>>>=
>>>;

�

þ 1

6
ðRð�Þ

S � Rð�Þ
MSÞ

8>>><
>>>:

3
2

3
2

� 3
8 � 3

4F

9>>>=
>>>;

�

: (20)

In the limit of a zero-range scalar interaction, using the
relation Eq. (13), this gives

~c 1 ¼ c1 � 1

2
c3 ¼ 0; (21)

~c2 ¼ c2 þ c3 ¼ 1

3
Rð�Þ
S

8>>><
>>>:

3
2

3
2

� 3
8 � 3

4F

9>>>=
>>>;

�

: (22)

We observe that, regardless of the spin-flavor structure
of the scalar operator, the coefficient ~c1 ¼ c1 � 1

2 c3 van-

ishes in the limit of a contact interaction.
We discuss next the extraction of ~c1;2 from data, in order

to see if the suppression of ~c1 relative to ~c2 is actually
observed.
One first estimate can be made using the mixing angles

�N1;N3 determined from a fit to N� strong decays and

photoproduction data ð�N1; �N3Þ ¼ ð0:39� 0:11; 2:82�
0:11Þ ¼ ð22� � 6�; 162� � 6�Þ [23,24]. Substituting these
values into Eqs. (16) and (17), and using the hadron masses
from the PDG [25] given in Table II, we obtain

~c 1 ¼ 3:9� 11:0 MeV; ~c2 ¼ 129� 18 MeV: (23)

This shows that indeed ~c1 is suppressed relative to ~c2.
An alternative determination of these coefficients can be

made using only the excited baryon masses, as discussed in
Ref. [13]. In that paper it was shown that, in any quark
model containing only two-body quark interactions, the
mixing angles are correlated (up to a discrete ambiguity)
by Eq. (18) and by a second relation (Eq. (6) in Ref. [13]):

�� ¼ 1

6
ðNð1535Þ þ Nð1650ÞÞ þ 17

15
ðNð1520Þ þ Nð1700ÞÞ

� 3

5
N5=2ð1675Þ ��1=2ð1620Þ � 1

6
ðNð1535Þ

� Nð1650ÞÞðcos2�N1 þ sin2�N1Þ þ ðNð1520Þ

� Nð1700ÞÞ
�
13

15
cos2�N3 � 1

3

ffiffiffi
5

2

s
sin2�N3

�
; (24)

TABLE II. The experimental masses (in MeV) of the L ¼ 1 nonstrange excited baryons from Ref. [25].

N1=2ð1535Þ N1=2ð1650Þ N3=2ð1520Þ N3=2ð1700Þ N5=2ð1675Þ �1=2ð1620Þ �3=2ð1700Þ
1535� 10 1658� 13 1520� 5 1700� 50 1675� 5 1630� 30 1710� 40
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expressing the spin-average of the SUð3Þ singlet states
�� ¼ 1

3�1=2 þ 2
3�3=2 in terms of the nonstrange states.

Allowing for a conservative SUð3Þ-breaking correction of

100� 30 MeV in the relation for ��, we show in Fig. 1 the
scatter plots for ~c1;2 which impose the correlation Eq. (18)

(all points), and also the relation for ��, satisfied on the dark
shaded area (green points). The preferred solution is given
by the solid line, which overlaps with the dark shaded area
(green points).

We note that there is good agreement between the al-
lowed values of the coefficients ~c1;2 in the scatter plots and
the results in Eq. (23), which are shown as the black point
with error bars on the plot. Both these computations con-
firm the suppression of the coefficient ~c1 relative to its
natural size. The nonvanishing of ~c1 can be related to a
smearing out of the contact interaction. This is examined in
the next section, where it is also found that the sign of the

ratio ~c1=~c2 can provide information on the spin-flavor
structure of the interaction.

III. FINITE RANGE SCALAR
QUARK INTERACTIONS

In the general case of a finite range interaction, the
orbital reduced matrix elements RS and RMS are indepen-
dent. According to Eq. (19) the coefficient ~c1 will be in
general nonvanishing, and proportional to the combination
of the reduced matrix elements RS þ RMS. The ratio of
~c1=~c2 for the different spin-flavor structures can be ex-
pressed in terms of the ratio of reduced matrix elements:

r� 	 Rð�Þ
S þ Rð�Þ

MS

Rð�Þ
S � Rð�Þ

MS

: (25)

We start by considering the case when the quark

Hamiltonian contains a single spin-flavor structure Oð�Þ
ij .

For the pure OGE interaction Oð2Þ
ij ¼ ~si � ~sj, the ratio of

coefficients ~c1=~c2 is predicted to be

~c1
~c2

��������s�s
¼ � 2

3

r2
1þ r2

: (26)

For the GBE interaction Oð3Þ
ij ¼ ~si � ~sjtai taj with two light

quark flavors F ¼ 2, the coefficient ~c1 is predicted to be
exactly zero, independently of the spatial form of the quark
interaction. With three light quark flavors F ¼ 3, we have

~c1
~c2

��������st�stðF¼3Þ
¼ 2

3

r3
5� r3

: (27)

Finally, for the isospin interaction Oð1Þ
ij ¼ tai t

a
j , the ratio

~c1=~c2 is

~c1
~c2

��������t�t
¼ 2

3

r1
1� r1

: (28)

We will illustrate the effect of a finite range quark
interaction by taking the spatial dependence of the inter-
action to be

fð ~rijÞ ¼ A

�
�ð3Þð~rijÞ ��2 e

��rij

4�rij

�
; (29)

with A a coupling constant. Such an orbital dependence is
generated by the exchange of a meson of mass � [11]; see
Ref. [26] for a detailed derivation.
Adopting the functional form Eq. (29), we will assume

that the contribution of the second term of Oð�2Þ to RS �
RMS is always smaller than that of the first term. This is
always satisfied if j�ð~rÞj2 
 j�ð0Þj2, where�ð~rÞ is defined
by the squared wave function integrated over one of its
arguments j�ð~r12Þj2 	

R
dr13j�ð~r12; ~r13Þj2. Under this as-

sumption, the contribution of the second term to any
reduced matrix element is given by

FIG. 1 (color online). The coefficients ~c1;2 (in MeV) as a
function of the mixing angle �N1 as given by Eqs. (16)–(18).
The black points with error bars show the values in Eq. (23). The
dark points (green) of the scatter plots give the values allowed by
imposing the �� constraint as explained in the text. The solid and
dashed lines correspond to the central values of the masses.
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�2
Z

d3rj�ð~rÞj2 e
��r

4�r

 �2j�ð0Þj2

Z
d3r

e��r

4�r
¼ j�ð0Þj2

(30)

and is thus smaller than the contribution of the first term. (In
this example the quark interaction was taken between the
quarks 1, 2.) This proves that RS � RMS is always positive.
Taking into account that the contribution to RS þ RMS of
the first term in Eq. (29) vanishes, it is easy to see that RS þ
RMS is negative and therefore the ratio of reduced matrix
elements r ¼ ðRS þ RMSÞ=ðRS � RMSÞ is negative.

The information about the sign of the ratio of reduced
matrix elements r� < 0 is sufficiently predictive to distin-
guish between the models considered above, through the
sign of the ratio of the coefficients ~c1=~c2, as shown in
Table III. We denoted here with OGE� the vector meson

exchange model corresponding to a vector meson or a
constituent gluon with mass �; the limit � ¼ 0 corre-
sponds to the usual one-gluon exchange model.

The natural size of the ratio ~c1=~c2 is of order OðN0
cÞ. Its

very small value (see the solid line in Fig. 2) cannot be
explained by power counting in 1=Nc and must have a
dynamical origin. We find that it is suppressed for pion
exchange interactions in general (chiral limit or physical
pion mass), as ~c1 ¼ 0 from the spin-flavor structure alone.
In the case of gluon exchange interactions, its smallness is
related to the spatial extent of the interaction (and not
related to its spin-flavor structure as in the previous case).
In the case of a contact spin-spin interaction, ~c1 ¼ 0 and the
ratio vanishes, but otherwise this ratio is different from zero.

We comment on the argument presented in Ref. [6] for
the dominance of the operator S2c in the mass operator, and
compare it with our conclusions. As mentioned in the
Introduction, in that paper it was argued that the domi-
nance of the S2c operator follows by assuming one pion
exchange. This follows from the observation that one
particular linear combination of operators is equivalent to
the unit operator (taking its matrix element on the non-
strange states), up to corrections of Oð1=NcÞ

T2 � S2c þ 2~s1 � ~Sc ¼ � 1

4
1þOð1=NcÞ: (31)

This identity allows one to eliminate one of the three scalar

operators. Choosing to eliminate O3 ¼ ~s1 � ~Sc, the scalar
part of the mass operator reads

M ¼ c01þ c1O1 þ c2O2 þ c3O3

¼ c001þ
�
c1 � 1

2
c3

�
T2 þ

�
c2 þ 1

2
c3

�
S2c þOð1=N2

cÞ:
(32)

For the pion exchange interaction (both contact and finite
range) we find c1 � 1

2 c3 ¼ 0, which confirms the result of

Ref. [6] of dominance of S2c in the large Nc limit. In our
approach, at Nc ¼ 3, the dominance of S2c is exact for pion
exchange or any contact interaction.
Using the numerical values of the coefficients ~ci from

Eq. (23), the value of the ratio is

~c 1=~c2 ¼ 0:03� 0:09: (33)

An alternative determination using only hadron masses is
shown in Fig. 2. The solid line is the preferred solution [13]
and gives a range of values compatible with the first
determination (shown in Fig. 2 as the black point with
error bars). The central value is positive and clearly sup-
pressed with respect to its natural sizeOðN0

cÞ for any value
of the mixing angle �N1. Its sign favors a pure vector boson
exchange model OGE� with a nonvanishing vector meson

mass �. However, within the errors, negative values or a
vanishing ratio are also allowed, such that it is difficult to
draw a clear conclusion. A more precise determination of
the mixing angles and hadron masses may sharpen this
determination and allow one to fix the sign of the ratio.
We comment briefly on the massive vector boson ex-

change model OGE�, which produces a positive ratio

~c1=~c2. This corresponds to a massive gluon model, previ-
ously considered in the literature in Refs. [27–31]. In these
works it has been suggested that, in the low energy limit, an

TABLE III. The sign of the ratio of coefficients ~c1=~c2 as a test
for the spin-flavor structure of the scalar quark interaction.

Model sgnð~c1=~c2Þ
OGE� þ
OGE 0

GBE (F ¼ 2) 0

GBE (F ¼ 3) �
Oij ¼ tai t

a
j �

FIG. 2 (color online). Scatter plot for the ratio of coefficients
~c1=~c2 as a function of the mixing angle �N1. The dark (green)
points are favored by all data on the hadronic masses and overlap
with the solid line that corresponds to the preferred solution of
the correlation Eq. (18). The black point with error bars shows
the values of the coefficients quoted in Eq. (33).
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effective gluon mass can be generated by nonperturbative
QCD effects. In principle an effective gluon mass can be
observed through its effect on the low energy limit of quark
forces in the constituent quark model. In the next section
we perform a crude model calculation to give an estimate
of the range of allowed values for the effective gluon
mass �.

The analysis presented above was limited to the spin-
flavor structure of the scalar quark interaction. In the spin-
orbit sector, it has been pointed out in Ref. [13] that the
flavor-dependent interactions ðsi � sjÞtai taj are needed in

order to reproduce the observed mass spectrum. Also in the
tensor sector, flavor-dependent operators are needed [7,8]
in order to produce a nonzero coefficient of the operator

� 1
Nc
Lij
2 g

iaGja
c .

The arguments of this section assumed that the scalar
quark interaction is dominated by one of the interactions
with � ¼ 1, 2, 3. Next we consider also the case of a
mixture of these interactions. Allowing for a mixture of
all possible interactions � ¼ 1, 2, 3 with strengths A�

H ¼ X3
�¼1

A�

X
i<j

�
�ð3Þð~rijÞ ��2

�

e���rij

4�rij

�
Oð�Þ

ij ; (34)

we get the following general results for the operator
coefficients:

~c 1 ¼ A1r1 � A2r2 þ
�
� 1

4
þ 1

2F

�
A3r3; (35)

~c2 ¼ 3

2
A1ð1� r1Þ þ 3

2
A2ð1þ r2Þ

þ A3

�
� 3

8
� 3

4F
þ
�
3

8
� 3

4F

�
r3

�
: (36)

No simple conclusions about the relative contributions of
the different spin-flavor interactions can be drawn in the
most general case. For example, assuming a mixture of the
OGE and GBE (F ¼ 2) interactions (A1 ¼ 0), it is possible
to arrange positive values for ~c1;2 by taking A2;3 > 0 and A2

sufficiently large relative to A3 that the second term in ~c1;2
dominates over the third one. It is interesting to notice that,
in the case of the simultaneous presence of a massless one-
gluon exchange interaction (r2 ¼ 0) and a finite-range one
pion exchange interaction, the coefficient ~c1 vanishes in-
dependently of their relative strengths.

IV. ISGUR-KARL MODEL CALCULATION

The finite range effects can be taken into account in a
quantitative way by adopting a specific choice for the
hadronic model. For illustration we consider the Isgur-
Karl (IK) model [12], which has been widely used for
describing the properties of the excited baryons. The
matching of this model to the effective operator expansion
has also been discussed in detail recently in Ref. [18].

The IK model describes three constituent quarks inter-
acting by harmonic oscillator potentials:

H0 ¼ 1

2m

X
i

p2
i þ

K

2

X
i<j

r2ij: (37)

This Hamiltonian can be solved by introducing the reduced
coordinates

~� ¼ 1ffiffiffi
2

p ð~r1 � ~r2Þ; ~	 ¼ 1ffiffiffi
6

p ð~r1 þ ~r2 � 2 ~r3Þ: (38)

Expressed in terms of 	, �, the Hamiltonian Eq. (37) has
the form of two independent three-dimensional oscillators:

H0 ¼
p2
�

2m
þ p2

	

2m
þ 3

2
K�2 þ 3

2
K	2: (39)

The eigenstates with orbital angular momentum L ¼ 1,
m ¼ þ1 are

�
�
m¼þ1¼�ð�1þ i�2Þ 
4

�3=2
exp

�
�1

2

2ð�2þ	2Þ

�
; (40)

�	
m¼þ1¼�ð	1þ i	2Þ 
4

�3=2
exp

�
�1

2

2ð�2þ	2Þ

�
; (41)

where 
 ¼ ð3KmÞ1=4.
The parameters of the model are [32]

m ¼ mu ¼ md ¼ 420 MeV; 
 ¼ 467 MeV;


s ¼ 0:95: (42)

The reduced matrix elements RS, RMS are given by the
matrix elements

h�	jfð~r12Þj�	i ¼ 1

3
ðRS � RMSÞ; (43)

h��jfð~r12Þj��i ¼ 1

3
ðRS þ RMSÞ: (44)

The combination of reduced matrix elements RS � RMS

was computed in Ref. [18] [see Eq. (52)] in the limit of a
contact interaction� ¼ 0. Using the spatial dependence of
fð ~r12Þ given in Eq. (29) one finds the complete result for
� � 0:

RS � RMS ¼ A
3
3

ð2�Þ3=2 ��
�
�




�
; (45)

where the function ��ðxÞ is given by

��ðxÞ ¼ 1� x2 þ ffiffiffiffiffiffiffi
2�

p
x3Nð�xÞeð1=2Þx2 (46)

and is positive for x > 0, which confirms that the contri-
bution of the finite range term in h�	jfð ~r12Þj�	i is never
larger than that of the contact term.
The function NðxÞ is the cumulative normal distribution

function, which is related to the erfðxÞ function, and is
defined as
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NðxÞ ¼ 1

2

�
1þ erf

�
xffiffiffi
2

p
��

¼
Z x

�1
dyffiffiffiffiffiffiffi
2�

p e�y2=2: (47)

In a similar way one can also compute the combination
of reduced matrix elements RS þ RMS which vanishes in
the limit of a contact interaction. We obtain

RS þ RMS ¼ �A
2
�2

ð2�Þ3=2 �þ
�
�




�
; (48)

where the function �þðxÞ is given by

�þðxÞ ¼ 1þ 1

2
x2 �

ffiffiffiffi
�

2

r
xNð�xÞeð1=2Þx2ð3þ x2Þ (49)

and is positive for x > 0.
The asymptotic behavior of the functions��ðxÞ at small

and large values of the argument x is

�þðxÞ ¼ 1� 3

2

ffiffiffiffi
�

2

r
xþ 2x2 þOðx3Þ; x � 1 (50)

��ðxÞ ¼ 1� x2 þ
ffiffiffiffi
�

2

r
x3 þOðx4Þ; x � 1 (51)

�þðxÞ ¼ 3

x4
� 30

x6
þOðx�8Þ; x � 1 (52)

��ðxÞ ¼ 3

x2
� 15

x4
þOðx�6Þ; x � 1: (53)

The unknown constant A cancels out in the ratio of
reduced matrix elements r, which depends only on the
ratio �=


r ¼ RS þ RMS

RS � RMS

¼ � 2

3

�
�




�
2 �þð�=
Þ
��ð�=
Þ : (54)

In Fig. 3 we show a plot of the ratio r as a function of�=
.

The ratio r vanishes in the limit x ¼ 0 of a massless
exchanged particle, while for an infinitely heavy mass it
approaches a finite limit r1 ¼ � 2

3 .

Using these results we can obtain constraints on the
mass � of the exchanged boson. We quote results sepa-
rately for the negative and positive ranges of the ratio
~c1=~c2, corresponding to the tai t

a
j and OGE� models [33],

respectively. From Eq. (23) one finds

~c1
~c2

¼
� ½�0:06; 0:00�; r1 ¼ ½�0:10; 0:00�;
½0:00; 0:12�; r2 ¼ ½�0:15; 0:00�: (55)

Using Eq. (54) this can be translated into ranges of allowed
values for the boson mass �, namely,

tai t
a
j : 0:0


�




0:58; OGE�: 0:0
�




0:82: (56)

Using for the mass scale 
 the typical value of the Isgur-
Karl model given in Eq. (42), we obtain for the mass of the
vector boson which can reproduce the observed data the
allowed range � ¼ ½0; 383� MeV. This is much smaller
than the lowest bound for a constituent gluon mass mg ’
800 MeV suggested by lattice calculations of hybrid me-
son masses [34] and the glueball spectrum [35]. The use of
the Isgur-Karl model and its parameters is a very crude first
attempt to give an estimate of � in the OGE� case. It

would be worthwhile to improve on this to see if it is
possible to obtain a better estimate of � that is compatible
with the bounds obtained from lattice calculations, as well
as an interpretation of the other possible spin-flavor inter-
actions as the result of quark exchange or meson exchange
interactions.

V. SUMMARYAND CONCLUSIONS

The hierarchy of the observed coefficients in the 1=Nc

expansion for the L ¼ 1 excited baryons has a very specific
pattern, with one of the subleading Oð1=NcÞ operators S2c
dominating, and the coefficients of the other operators
suppressed. In this paper we present a possible explanation
for the dominance of the S2c operator in the framework of
the constituent quark model.
Considering the most general two-body quark interac-

tion, we show that a contact quark interaction leads to the
suppression of certain coefficients in the 1=Nc operator
expansion. Furthermore, any spin-flavor zero-range two-
body quark interaction is matched onto the same operator
S2c. Intuitively, this can be understood from the fact that the
excited and core quarks are in a relative p-wave, and thus

the coefficients of taTa
c and ~s � ~Sc vanish if the spatial part

of the interaction is a �ð3Þð ~rÞ function [7]. This result
implies that it is impossible to distinguish between differ-
ent models of quark interactions as long as they are of zero
range.

FIG. 3. The ratio of reduced matrix elements r ¼
ðRS þ RMSÞ=ðRS � RMSÞ as a function of the ratio �=
 in the
IK model, as given by Eq. (54).
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Allowing for a quark interaction of finite range, modeled
by the exchange of a particle of mass �, we study the
question of obtaining information about the spin-flavor
structure of the scalar part of the quark interaction from
the mass spectrum of the negative parity L ¼ 1 excited
baryons. Under the assumption that only one spin-flavor
structure dominates, we find that the sign of the ratio ~c1=~c2,
that can be obtained from the experimental masses and
mixing angles, can be used as a test of the spin-flavor
structure of the interaction.

The central value we obtain for this ratio corresponds to
a spin-spin interaction with the exchange of a massive
vector boson. Using the wave functions of the Isgur-Karl
model, the mass of the exchanged vector meson is in the
range �� ½0; 400� MeV, which is much smaller than the
lowest bound for the mass of a constituent gluon, as
suggested by lattice calculations of hybrid meson masses
[34] and glueballs [35]. This seems to disfavor this type of
interaction. The present study shows that within error bars
and allowing for two scalar spin-flavor structures, the one

(massless) gluon exchange and the one pion exchange
interactions lead to ~c1 ¼ 0 independently of their relative
strengths, and are consistent with data. Previous studies
[7,8,13] that did not focus on the range of the microscopic
interaction also include the spin-orbit and tensor terms and
suggest that both gluon exchange and flavor dependent
interactions are needed to reproduce the data. Allowing
for a more general combination of spin-flavor structures
and finite range forces, no useful information on their
contribution is obtained from the present analysis in the
absence of additional dynamical information about their
relative strength.
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