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Reconciling the analytic QCD with the ITEP operator product expansion philosophy
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Analytic QCD models are those versions of QCD in which the running coupling parameter a(Q?) has
the same analytic properties as the spacelike physical quantities, i.e., no singularities in the complex
Q? plane except on the timelike semiaxis. In such models, a(Q?) usually differs from its perturbative
analog by power terms ~(A%/Q%)F for large momenta, introducing thus nonperturbative terms
~(A?/@%* in spacelike physical quantities whose origin is the UV regime. Consequently, it contradicts
the ITEP operator product expansion philosophy which states that such terms can come only from the IR
regimes. We investigate whether it is possible to construct analytic QCD models which respect the
aforementioned ITEP philosophy and, at the same time, reproduce not just the high-energy QCD
observables, but also the low-energy ones, among them the well-measured semihadronic 7 decay ratio.
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I. INTRODUCTION

Today one of the main goals in strong interaction theory
is to technically enlarge the applicability of QCD to pro-
cesses involving lower momentum transfer g>. Thereby
several obstacles have to be overcome. One of them is
that the running QCD coupling a(Q?) = a,(Q?)/m,
when calculated within the perturbative (“‘pt”’) renormal-
ization group formalism (we call it ap), in the usual
(““perturbative”) renormalization schemes, yields singular-
ities of a,(Q?) at Q* > 0, usually called Landau singular-
ities. Consequently, spacelike observables expressed in
terms of powers of apt(Qz) obtain singularities on the
spacelike semiaxis 0 = Q%> = A? (Q?> = —¢?, with ¢ de-
noting the typical momentum transfer within a given physi-
cal process or quantity). This is not acceptable due to
general principles of local quantum field theory [1].
Furthermore, studies of ghost-gluon vertex and gluon
self-energy using Schwinger-Dyson equations [2] and
large-volume lattice calculations [3] result in QCD cou-
pling a(Q?) without Landau singularities at Q> > 0 and
even with a finite value at Q = 0. Consequently, the be-
havior of the coupling a(Q?) at low values of Q? should be
corrected relative to that given by perturbative reasoning.

Several attempts at achieving such corrections have been
recorded during the last 14 years starting from (what we
call) the minimal analytic (MA) QCD of Shirkov and
Solovtsov [4]. Here, the trick lay in simply omitting the
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wrong (spacelike) part of the branch cut within the dis-
persion relation formula for a(Q?). Consequently, the re-
sulting analytized coupling AMY(0?) = a™A)(Q?) is
analytic in the whole Euclidean part of the Q2 plane except
the nonpositive semiaxis: Q> € C\(—oo, 0]. Furthermore,
for evaluation of physical observables which are repre-
sented, in ordinary perturbation theory, as a (truncated)
series of powers of apt(Qz), one also has to extend the
analytization procedure to ag (n = 2). In MA this was
performed in Ref. [5] (see also Ref. [6]) and resulted in the
replacement of ag by nonpower expressions ﬂlﬁ,MA)(Qz).
This specific procedure was dubbed by the authors of [5,6]
analytic perturbation theory (APT); whereas we will refer
to it generally as MA QCD.

Other analytic models for a(Q?) satisfy certain different
or additional constraints at low and/or at high 0? [7-15].
Analytic QCD models have been used also in the physics
of mesons [16,17] within the Bethe-Salpeter approach, and
in calculation of analytic analogs of noninteger powers ap;
[18] within the MA model (for reviews of various analytic
QCD models, and further references, see Refs. [19-21]).
We note that the MA couplings JZlE,MA) (n = 1) defined
here are the MA couplings of Refs. [4,6,20] divided by 7.

All of these versions of analytic QCD have one common
feature: their (analytized) coupling a(Q?) differs from the
perturbative coupling even at higher energies by a power
term:

18a(0*)] =1a(Q?) — ap (0|~ (A?/Q*)"  (Q*>A?),
(1
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where k is a positive integer (usually k = 1; for the models
of Refs. [12,15]: k = 3). How can these power corrections
be interpreted? In a given (usual) renormalization scheme,
where apt(Qz) has (Landau) singularities on the positive
axis 0% ~ A?(~0.1 GeV?) > 0, analytization of a(Q?)
can be understood to be achieved by a modification of the
discontinuity (“‘spectral”) function p' (o) = Ima, (Q* =
—o — i€) at energies || = A2, thereby subtracting the
Landau singularities from apt(Qz). It is this subtraction, in
the given renormalization scheme, which leads to the power
deviations Eq. (1) and, as a consequence, to terms
~(A?/Q%k in all spacelike physical quantities. But such
contributions are definitely of nonperturbative origin, since
they are proportional to exp(—K/a,(Q?%) which is non-
analytic at ap, = 0 [cf. Eq. (10) in Sec. I1].

Whether such terms, produced in spacelike observables
D(Q?), can be interpreted as being of ultraviolet (UV)
origin or not, is not entirely clear. Interpretations of such
terms in the literature differ from each other. For example,
Ref. [22] suggests that the Landau pole is not of (entirely)
UV origin because the Landau pole persists in the renor-
malization group resummed expression for apt(QZ) even if
one uses, instead of UV logs, the mass-dependent polar-
ization expression (with a sufficiently small gluon mass).
On the other hand, the authors of Ref. [23] argue that the
aforementioned terms ~(A?/Q?%)k are of UV origin due to
the following consideration: If one considers the
leading-B, summation of an inclusive spacelike obser-
vable D(Q?) (cf. Appendix D)

D) = ["Troaced), @

where Fp(?) is a characteristic function of the observable
and C = —5/3; then the quantity rQ%¢C indicates the mag-
nitude of the (squares of ) internal loop momenta appearing in
the resummation. In the UV regime of these momenta, e.g.,
for r > 1 (see also Ref. [24]), the deviation (1) then leads to
power terms of apparently UV origin in the observable

5D(LB)(Q2) - (AZ/Q2)k flootlfl—le@(t) - (AZ/Q2)k_ 3)

Considering all these arguments, we come to the con-
clusion that the aforementioned (A2/Q?)* contributions in
physical quantities are at least partially due to UV effects.
The existence of nonperturbative contributions stemming
from the UV regime is not in accordance with the operator
product expansion (OPE) philosophy as advocated by the
ITEP group [23,25]. This philosophy rests on the assump-
tion that the OPE, which has originally been derived in
perturbation theory (PT), is valid in general (i.e., even
when including the nonperturbative contributions) and
consequently allows for a separation of short-range from
long-range contributions to (inclusive) QCD observables.
While the short-range contributions can be calculated per-
turbatively and lead to expressions for the OPE coefficient
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functions, the long-range contributions show up as matrix
elements of local operators and can be parametrized in
terms of condensates (not accessible by PT). And it is this
long-range part which leads to power corrections reflecting
the contributions of nonperturbative origin to the observ-
able. Therefore, according to the ITEP interpretation, the
power term corrections stem from the IR region. This
ITEP-OPE approach rests on intuitive physical arguments
and has led to the success of QCD sum rules.

In this work we will adopt the aforementioned ITEP
philosophy when analytizing perturbative QCD and,
consequently, we will request that the analytic coupling
parameter A (Q?) = a(Q?) differ from the usual pertur-
bative one at high Q? by less than any power of A?/Q?.

We wish to stress, however, that there is nothing in
quantum field theory (QFT) that would impose on us the
ITEP interpretation of the OPE. In this context, we mention
that the essential singularity at a = 0 [such as exp(—K/a)]
has quite a general and mysterious genesis—first men-
tioned in QFT by Dyson [26] on specific physical grounds,
and later by many authors on more formal grounds (for an
overview, see [27] and references therein).

An additional feature of most versions of analytized
QCD is that they fail to reproduce the correct value for
the most important (since most reliably measured) QCD
observable at low energies, namely r., the strangeless
semihadronic 7 decay ratio, whose present-day experimen-
tal value is (cf. Appendix B) r,(exp) = 0.203 = 0.004.
Most of the analytic QCD models are either unable to
predict unambiguously r, value, or they predict signifi-
cantly smaller values (e.g., in MA, Refs. [5,28]), unless
unusual additional assumptions are made, e.g., in MA that
the light quark masses are much higher than the values of
their current masses [29].

This finding (loss in the size of r,) in MA appears to be
connected with the elimination of the unphysical
(Euclidean) part of the branch cut contribution of perturba-
tive QCD. Since r, is the most precisely measured inclusive
low momentum QCD observable, its reproduction in ana-
lytic QCD models is of high importance. The apparent
failure of the MA model with light quark current masses
to reproduce the correct value of r. had even led to the
suggestion that the analytic QCD should be abandoned [30].

Here, we are investigating whether a modified version of
QCD can be defined which simultaneously fulfills the
following requirements:

(1) It is compatible with all analyticity requirements of
quantum field theory. In particular, it must not lead to
Landau singularities of a(Q?), and furthermore we
expect (see Sec. II) that a(Q?) is analytic at Q> = 0,
and thus IR finite, with a(Q? = 0) = a, < .

(i1) It is in accordance with the ITEP-OPE philosophy
which means that the UV behavior of a(Q?) is such
that |a(Q?) — ay(Q?)| < (A?/Q*) for any integer k

at large Q2.
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(iii)) The theory reproduces the experimental values for
r, (and other low energetic observables, e.g. the
Bjorken polarized sum rule at low Q?).

We will show that such a theory is attainable, but only at a
certain (acceptable, we think) price. Some of the main
results of the present work have been presented, in a
summarized form, in Ref. [31].

We are approaching our aim in an indirect way, namely,
by properly modifying the 8 function B(x) [x = a(Q?)] of
QCD. This approach, which has been used first by Raczka
[32] in a somewhat different context, means that the starting
point in the construction is the beta function B(a), rather
than the coupling parameter a(Q?) itself or its discontinuity
function p,(o) = Ima(Q* = —o — i€). The ITEP-OPE
condition can be implemented in such an approach in a
particularly simple way (see below). Consequently, we are
trying to augment B(a) which, in general, is only specified
by its perturbation series around the point a = 0

B(a) = —Boa*(1 + cia + c,a® + c3a + 0(a*)), 4)
where Byand ¢; = B,/ B, are two universal constants. This
should be done in such a way that the augmented beta
function leads (via the renormalization group equation
RGE) to an effective analytic coupling a(Q?) which also
enables the correct evaluation of low-energy QCD observ-
ables in a perturbative way.

The above-mentioned requirements for a(Q?) imply the
following constraints on the modified beta-function B(a):

(1) The B function must be such that the RGE gives a
running coupling a(Q?) analytic in the entire com-
plex plane of Q?, with the possible exception of the
nonpositive semiaxis: Q% € C\(—oo, 0].

(2) For small |a|, B(a) has Taylor expansion (4) in
powers of a, i.e., the perturbative QCD (pQCD)
behavior of B(a), with universal B, and ¢, at high
0? is attained.

(3) B(a) is an analytic (holomorphic) function of a at
a=0 in order to ensure |a(Q?) — a,(Q?)| <
(A2/Q%F for any k> 0 at large Q? (see Sec. II),
thus respecting the ITEP-OPE postulate that power-
like corrections can only be IR induced. At high Q?,
those pQCD values apt(Qz) which reproduce the
known high-energy QCD phenomenology are
attained by a(Q?).

(4) It turns out to be difficult or impossible to achieve
analyticity (holomorphy) of a(Q?) in the Euclidean
complex plane Q? € C\(—oo, 0] unless the point
Q? = 0 is also included as a point of analyticity of
a(Q?). This then implies that a(Q?) — a, when
Q% — 0, where q is finite positive, and that B(a)
has Taylor expansion around a = a, with Taylor
coefficient at the first term being unity: B(a) = (a —
ag) + O((a — ay)?). Then, B(a) is a nonsingular
unambiguous function of a in the positive interval
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a € [0, ay]. Note that analyticity of a(Q?) at 9> = 0
is in full accordance with the general requirement
that hadronic transition amplitudes have only the
singularities which are enforced by unitarity.

We proceed in this work in the following way. In Sec. 11
we construct various classes of beta functions which give
analytic a(Q?) at all 9> € C\(—oo, 0) and fulfill the ITEP-
OPE condition. We relegate to Appendix A details of the
analytic expressions for the implicit solution of RGE and
their implications for the (non)analyticity of a(Q?). In
Sec. III we point out the persistent problem of such models
giving too low values of .. In Sec. IV we present further
modification of the aforementioned beta functions, such
that, in addition, the correct value of r, is reproduced. In
Appendix B we present the extraction of the massless and
strangeless 7, value from experimental data. We relegate to
Appendixes C, D, and E the presentation of formalisms for
the evaluation, in any analytic QCD (anQCD) model, of
massless observables, such as the Bjorken polarized sum
rule (BjPSR), the Adler function, and the related r,.
Appendix C presents construction of the higher order
anQCD couplings; Appendix D presents a formalism of
resummation of the leading-B, (LB) contributions in
anQCD; Appendix E presents a calculation of the
beyond-the-leading-3, (bLB) contributions in anQCD.
Section V contains conclusions and outlines prospects for
further use of the obtained anQCD models.

II. BETA FUNCTIONS FOR ANALYTIC QCD

Our starting point will be the construction of certain
classes of beta functions B(a) for the coupling a(Q?)
such that ITEP-OPE conditions

2 2 A2\
(@)~ a@I< (). k=12.0 ©
are fulfilled and that, at the same time, they lead to anQCD,
i.e., the resulting a(Q?) is an analytic function for all 9> €
C\(—00, 0]. This procedure is in contrast to other anQCD
models which are usually constructed either via a direct
construction of a(Q?), or via specification of the disconti-
nuity function p (o) = Ima(Q> = —o — ie) and the sub-
sequent application of the dispersion relation to construct

a(Q?)

N do pi1(0)
a@) =1 [T o LT
In such approaches, it appears to be difficult to fulfill
the ITEP-OPE conditions (5),' and difficult or impossible

(6)

"Instanton effects can modify the conditions (5) in the sense
that these conditions remain valid only for k = 1,2, ..., kpa,
where 2k, is the largest dimension of condensates not affected
by the small-size instantons. Scenarios of instanton-antiinstanton
gas give kpy, < 4B (= 9 forny = 3), cf. Ref. [23]. In this work
we do not consider such possible instanton effects.
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to extract the beta function B(a) as a function
of a.

On the other hand, starting with the construction of a
beta function B(a), which appears in the RGE

da(Q?)

dQ?
it turns out to be simple to fulfill conditions (5)
(cf. Ref. [32]). Namely, if one requires that B(a) be an
analytic function of a at a = 0, then the corresponding
a(Q?) respects the ITEP-OPE conditions (5).

This statement can be demonstrated in the following
indirect way: assuming that the conditions (5) do not
hold, we will show that 8(a) must then be nonanalytic at
a = 0. In fact, if the conditions (5) do not hold, then a
positive n exists such that

a(Q%) = an(Q?) + k(A*/ Q%)™ ®)

for Q% > A%. Asymptotic freedom of QCD implies that at
such large Q7 the perturbative apt(Qz) has the expansion (if

the conventional, MS, scale A = A [33,34] is used)
1 ¢, Inln(Q?/A?)

0 = Bla(0?), (7

2) = -
(@) B @AY B QYA
In*(In(Q*/A?))
(i) v
and consequently the power term can be written as
(Az/Qz)no = CXP(_K/apt(QZ))(Boapt)_Kl
X (1 + O(aln?a)), (10)

where K = ny/B, and K' = nyc,/Bo. Applying d/dInQ?
to the relation (8) and using expression (10), we obtain
B(a(Q?) = Bplan(Q?) — nox exp(—K/ay(Q?)

X (Boay) K (1 + O(aln’a)). (11)
Replacing a(Q?) in the first beta function in Eq. (11) by the
right-hand side (rhs) of Eq. (8), using Eq. (10), and Taylor
expanding the B(a(Q?)) function around a,(Q%) ( # 0),
gives
B(apt) + Kexp(_K/apt)(,BOapt)iKl(l + O(aln’a))
dp(a)

da a=a

X

+0(exp(—2K/ay)ay> )
= Bpt(apt) - nOKeXp(_K/apt)(Boapt)_K/
X (1 + O(aln?a)). (12)

In this relation, valid for small values of |a,|, the term with
derivative d3(a)/da ~ a, on the left-hand side (lhs) can
be neglected in comparison with the corresponding term on
the rhs. Therefore, Eq. (12) obtains the form (with notation
ap = a)
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Bla) = By(a) — nok exp(—K/a)(Boa) ~
X (1 + O(aln?a)). (13)

We note that B, (a), being a polynomial, is analytic at
a = 0. The term proportional to exp(— K/a) is nonanalytic
at a = 0, because exp(—K/a) has an essential singularity
there. This shows that nonfulfillment of the ITEP-OPE
conditions (5) implies nonanalyticity of B(a) at a = 0,
and the demonstration is concluded.

This proof shows that nonfulfillment of ITEP-OPE
conditions implies nonfulfillment of a = 0 analyticity of
B(a). Or equivalently, fulfillment of a = 0 analyticity of
B(a) implies fulfillment of the ITEP-OPE conditions (5).
This does not mean the equivalence of a = 0 analyticity
of B(a) with the ITEP-OPE conditions. But that will
suffice for our purpose, since in the following we will
simply restrict the Ansdtze for the B function which are
analytic at a = 0, thus having the ITEP-OPE conditions
secured.

Integration of RGE (7) must be performed for all
complex Q?. To achieve this, we first need an initial
condition [equivalent to the fixing of A? scale (~
0.1 GeV?)]. This is a subtle point within our approach,
due to two reasons. First, when we choose a specific form
of the beta function B(a), we automatically choose a
specific renormalization scheme (RSch) as well, as rep-
resented by the coefficients ¢; = Bj/ Bo (j =2) of the
power expansion of B(a), Eq. (4). The running of the
corresponding a(Q?) can be in general significantly dif-
ferent from the running a(Q*;MS) in MS RSch.
Secondly, this running is also influenced by the number
of active quark flavors and by flavor threshold effects. In
our analyses of RGE with our specific 8 functions, we
will consider the number of active quark flavors to be
ng =3, ie., the flavors of the three (almost) massless
quarks u, d, and s. We do not know how to include in a
consistent way the massive quark degrees (ny =4) in
anQCD. On the other hand, the ITEP-OPE conditions
(5) tell us that the considered anQCD theories become
practically indistinguishable from pQCD at reasonably
high energies Q> > A?. Therefore, we wish to keep
n; =3 in the RGE running to as high values of |Q?| as
possible, and to replace the theory at higher |Q?| by
pQCD, in the RSch dictated by the specific beta function.
Furthermore, in pQCD the threshold for ny =3 +—n, =
4 can be chosen at Q% ~ (km,)* with k = 1-3 [35-38],
where m, denotes the mass of the charmed quark. We will
use k=3, ie., at |Q%| = (Bm,.)? (= 14.5 GeV?) the
anQCD theory will be replaced by pQCD theory.

In order to find the value of a((3m,)?) = a;, which will
define our initial condition, we start from the experimen-
tally best known value of the coupling parameter, namely
a(M3%, MS). It is deduced, within pQCD, from all relevant
experiments at high |Q?] = 10' GeV? and found to be
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FIG. 1. (a) Complex Q2 plane; (b) complex z plane where z = In(Q>/ ,u,izn); the physical stripe is —7 = Imz < + 7.

a(M%,MS) = 0.119/, Ref. [39]. We RGE run this value,
in MS RSch, down to the scale (3m,)?, and incorporate the
quark threshold matching conditions at the three-loop level
according to Ref. [38] at 0? = 3m (¢ = b, ¢). We obtain®
a = a((3m.)* MS, n; = 3) = 0.07245. The value a;, =
a((3m,)?), at the same renormalization scale (RScl) but
in the RSch as defined by our B(a) function, is then
obtained from the aformentioned MS value a=
a((3m.)%, MS, n; = 3) by solving numerically the inte-
grated RGE in its subtracted form (Ref. [40],
Appendix A there)

l + ¢ ln( ad ) + [a dxl:'g(x) h B0x2(1 h Clx):l
a

1+ca 0 x2(1 + ¢yx)B(x)
cia a  TBx)+ Bex’(l + cx)
1+ cla> - ﬁ) dx[ x2(1 + ¢1x)B(x) ]
(14)

1
:j+C11n<
a

where a = a((3m,)?) = a;,, and a= a((3m.)* MS) =

0.07245, both with n; = 3; further, B is the beta function

of the MS scheme. We note that in Eq. (14) our beta
functions have expansions around a = 0 [cf. Eq. (4)],
with the RSch coefficients (c,, ¢3, ...) which may be con-
siderably different from the MS coefficients (&,, 3, .. .).
Therefore, in Eq. (14) expansions of B in powers of x are in
general not justified.

Having the initial value aj, = a(Q3, = u? = (3m.)?)
fixed, RGE (7) can be solved numerically in the
Q?-complex plane. It turns out that the numerical integra-
tion can be performed more efficiently and elegantly if,
instead of Qz, a new complex variable is introduced: z =
In(Q?/p?). Then the entire Q*-complex plane (the first
sheet) corresponds to the semiopen stripe —7 = Imz <
+7 in the complex z plane. The Euclidean part Q? €
C\(—o0, 0] where a(Q?) has to be analytic corresponds
to the open stripe —7 < Im(z) < +7r; the Minkowskian
semiaxis Q% =< 0 is the z line Imz = —r; the point Q> = 0

*For B(a) = B(a, MS) we used Padé [2/3](a) based on the
known MS ¢; coefficients: ¢, and ¢3. Using a truncated (poly-
nomial) series up to —B,¢za> instead changes the results almost
insignificantly, by less than 1 per mil. For the quark mass values
we use m, = 1.27 GeV and m;, = 4.20 GeV (cf. Ref. [39]).

corresponds  to Q> =pul (=Q@m)=
14.5 GeV?) corresponds to z = 0; see Fig. 1. If we denote
a(0?) = F(2), RGE (7) can be rewritten

dF(z)

7= —oo;

= B(F(2)), (15)

in the semiopen stripe —7 = Imz < + 7. The analyticity
requirement for a(Q?) now means analyticity of F(z) ( =
dF/0zZ = 0) in the open stripe —7 < Im(z) < +, and we
expect (physical) singularities solely on the line Im(z) =
—qar. Writing z = x + iy and F = u + iv, and assuming
analyticity (0F/dz = 0), we can rewrite RGE (15) as a
coupled system of partial differential equations for u(x, y)
and v(x, y)

du(x,y) =RefB(u+iv), av(x,y):ImB(u_H,v)’ (16)
ax ax
au((;c, Y _ —ImpB(u + iv),
) y 17
dvley) _ RefB(u + iv).
dy

Thus, beta functions B(F) are analytic at F = 0 [ITEP-
OPE condition (5)], and the expansion of B(F) around
F =0 [cf. Eq. (4)] must reproduce the two universal
parameters By and ¢, = 8;/B¢ (“pQCD condition,”
where 8y = 9/4 and ¢; = 16/9 for n; = 3), and solution
F(z) = u(x, y) + iv(x, y) of RGEs (16) and (17) satisfies
the initial condition F(0) = a;,, where a = q;, is deter-
mined by Eq. (14).

We implement high precision numerical integration of
RGEs (16) and (17) with MATHEMATICA [41], for various
Anscitze of B(F(z)) satisfying the aforementioned ITEP-
OPE and pQCD conditions. Numerical analyses indicate
that it is in general very difficult to obtain analyticity of
F(z) in the entire open stripe —7 < Im(z) < +, equiva-
lent to the analyticity of a(Q?) for all complex Q2 except
0? € (—00,0]. On the other hand, if we, in addition,
require also analyticity of a(Q?) at Q> =0 (& z=
—o00), certain classes of B(a) functions do give us F(z)
with the correct analytic behavior. This Q> = 0 analyticity
condition in general implies

a(Q?) = ag + a;(Q*/A?) + O[(Q*/A*)?],  (18)
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where 0 < ay = a(Q> = 0) = F(z = —) < o and a, #
0. Application of d/dInQ? = d/dz to Eq. (18) then im-
plies that in the Taylor expansion of B(F) around F = a
the first coefficient is unity

B(F) = 1 X (F —ag) + O[(F —ap)’l, (19
or equivalently”
B(F)lpeg, = +1. (20)
We write our B(F) Ansditze in the form
BF) = = BoF*(1 = V)f(V)ly=r/a @1

with function f(Y) fulfilling the three aforementioned con-
ditions

f(Y) analyticatY =0  (ITEP-OPE), 22)

f) =1+ 1+ cia)¥Y + 0¥  (pQCD), (23)

agBof(1) =1 (Q? = 0 analyticity). (24)

We always consider a, [ = a(Q* = 0)] to be positive
[note: a = (g,/2/m)* > 0].

We will argue in more detail why and how this addi-
tional constraint [analyticity of a(Q?) at Q*> = 0] improves
the analytic behavior of a(Q?) = F(z) in the entire
Q? plane (z stripe), in the sense of avoiding Landau singu-
larities. For this, it is helpful to consider some simple
classes of beta functions which, on the one hand, allow
for an implicit analytic solution z = G(F) of RGE (15)
and, on the other hand, are representative because larger
classes of beta functions can be successively approximated
by them. Specifically, we consider f(Y) in Eq. (21) to be
either a polynomial or a rational function®

R
FO) =1+ nY*=PR/0JY), (25)
k=1
M N
) =(1+ mY* 1+ vt
s = (e Zmr) /(1 3 mer)
= P[M/N];(Y). (26)

Here, the degrees (R; M, N) are in principle arbitrary, and
the coefficients (ry; my, ny) as well. Such Ansdtze appar-
ently can fulfill all constraints (22)—(24). It is also intui-
tively clear that they can approximate large classes of other
B functions that fulfill the same constraints.

3If we assumed analyticity of a(Q?) in a special way, with
a; =0 in Eq. (18), then we would have a(Q?) = a,+
O[(Q*/A*)"] with n = 2 and B'(F)|f—,, = n. This would imply
apBof(1) =n (=2). From considerations in Appendix A
[cf. Egs. (A8)—-(A11)] it follows then that in such a case the
RGE solution F(z) has poles at Imz = */n, i.e., Landau poles.

“In the following we characterize such functions by the
corresponding Padé notations.

PHYSICAL REVIEW D 82, 114004 (2010)

Now we undertake the following procedure. Formal
integration of RGE (15) leads to the solution

F) dF
Qin ﬁ(ﬁ)’
where a;, is the aforementioned initial value a;, = a(Q? =
u2) = F(0). Equation (27) represents an implicit (in-
verted) equation for F = F(z) = G~ !(z). In both cases,
Egs. (25) and (26), the integration in Eq. (27) can be
performed explicitly. This is performed in Appendix A.

Here we quote, for orientation, the results for two simple
examples of f(Y), a quadratic’ polynomial P[2/0] and a
rational function P[1/1];.

In the case of quadratic polynomial we have

fY)=1+nrY +nrY? (28)

2= G(F), G(F(z) = (27)

where r; = (1 + ¢,ay) due to the pQCD condition (23).
The (positive) quantity a, = a(Q* = 0) is then obtained as
a function of the only free parameter r, by the Q% =0
analyticity condition (24)

ag(r,) = 2%1[—(2 +12) + 42+ r) +4e1 /Bl (29)

For the integration (27), we need to rewrite the polynomial
(28) in a factorized form

FO =1/ = 6= 1) = 1), (30)

(1) o =7

(ry = 14 crap(ry)).

€19

Integration (27) then gives the following implicit equation
for F(z) = a(Q?):

n 1 iBj ln(aO/F(Z) B tj)}, (32)

Boao = ao/ai, — t;

where
I B,— B '
(ti =Dty — 1) (=Dt —1,)

In this solution we took into account that the coefficient

By/(Boap)) = 1/((1 — 1;)(1 — 1,)(Boay)) in front of the
first logarithm in Eq. (32) is simply unity by the Q%> =0
analyticity condition (24). The poles z,, at which F(z,) =
oo, are obtained from Eq. (32) by simply replacing 1/F(z)
by zero

B, = (33)

SA linear polynomial has at first only one free parameter r; =
(I + cyagp) by the condition (23); however, this a, gets fixed by
the Q% = 0 analyticity condition (24): a, =~ 0.1904.
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P[2/0]:i= =0

(a)

NI

| B(F(x,¥))]
1

FIG. 2 (color online).
(b) r, = —2.

= {m(ao/(a_ml)— 1) - ﬁolain ! Bolao

x jigj m(%)}. (34)

ao/ ain I

It turns out that ay, > a;, (typically, a; = 0.1-0.2 and g;, <
0.1). If, in addition, 0 < r, < r3/4, then Eqgs. (31) imply 7,
t, < 0. Therefore, when 0 < r, < r% /4, all the arguments
in logarithms in Eq. (34) are positive, except in the first
logarithm where In(—1) = *i7 and thus the only poles of
F(z) in the physical stripe ( — 77 =< Imz < 77) have

Imz, = —m. 35)

This implies that for 0 < r, < r?/4 the considered singu-
larity must lie on the timelike axis (Q” < 0) and hence does
not represent a Landau pole. We stress that for such a
conclusion, the Q? = 0 analyticity condition (24) is of
central importance, since it fixes the coefficient in front
of In(—1) in Eq. (34) to be unity.6 We can derive from
Eq. (34) the location of the pole in the Q2 plane at

Q% = u exp(z,) = — ui, exp(Rez,)

1 a -1
_ 2 0
— _ 1
" exp( Boain><ain )

2 in — 1\~ Bi/(Boay)
x (e =y (36)
=1 '

j

On the other hand, if the aforementioned conditions are not
fulfilled, we obtain —7 <Imgz, < 7, representing a pole
inside the physical z stripe and thus a Landau singularity.
Specifically, when r, <0, we have t; >0 and #, <0 by

This also explains why it is nearly impossible to obtain an
analytic a(Q?) if we abandon the Q> = 0 analyticity condition
(24).

PHYSICAL REVIEW D 82, 114004 (2010)
P[2/0]:rm = -2

(b)

20¢

| B(F(z))| as a function of z = x + iy for the beta function (21) with f(Y) having the form (28) with (a) r, = 0;

Egs. (31); numerically, we can check that in this case
always ay/a;, — t; > 0 and, consequently the j = 1 loga-
rithm in Eq. (34) becomes nonreal and —7 <Imz, <,
i.e., Landau pole.

To observe in more detail the occurrence and the shape
of these singularities, we pursued the numerical solution of
RGE (15), i.e., RGEs (16) and (17), accounting for the
initial condition at u? = (3m.)* in the aforementioned
way. In order to see the appearance of singularities of
F(z) = F(x + iy) in the physical z stripe, it is convenient
to inspect the behavior of |B(F(z))| which should show
similar singularities. The numerical results for | 3(F(z))|, in
the case of r, = 0 and r, = —2, are given in Figs. 2(a) and
2(b), respectively. In these figures, we see clearly that the
singularities are on the timelike edge Imz = = in the
case of r, = 0, where we have a, = 1.901, #; = —1.338
[#, is not present as f(Y) is a linear polynomial]. The pole
moves inside the z stripe (i.e., become Landau singular-
ities) in the case of r, = —2, where we have ay, = 0.5,
t; = 0.756, and t, = —2.645. In Fig. 3(a) we present the
numerical results for the discontinuity function p,(o) =
Ima(Q? = —0 —ie) =ImF(z =x — im) = v(x,y =
—ar) as a function of x = Re(z) = In(o/u2,), for the case
r, = 0. In Fig. 3(b) the analogous curve for Rea(Q? =

—o —ie) =ReF(z=x—im)=ulx,y = —m) is pre-
sented, for the same r, = 0 case. In Figs. 4(a) and 4(b),
the corresponding curves for the r, = —2 case are
depicted.

We can try many other f(Y) functions, for example, the
following set of functions involving (rescaled and trans-
lated) functions (¢! — 1)/Y and Y/(e¥ — 1):

. _ (exp[—k (Y —Y)]— 1)

BE: /1) (Y = ¥)]
[k, (Y — Y,)]

(exp[—ky (Y = Y)] — 1)

X K(kb Yl) k2: YZ)’ (37)
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FIG. 3 (color online).

|

(a) The discontinuity function p,(o) = Ima(Q* =

PHYSICAL REVIEW D 82, 114004 (2010)

P[2/0):r, =0
y=u(x, -m)
0.7

0.6

(b)

0.5
0.4
0.3
0.2
0.1

e

-8 - E 2 4
~0.1

P R |

xlg
3

—og—ie)=ImF(z=x—im)=v(x,y=—m) as a

function of x = Re(z) = In(o/u?), for the case when f(Y) has the form (28) with r, = 0, i.e., linear polynomial; (b) same as in

(a), but for Rea(Q* =

P[2/0]: r, = =2
y=pi(0) =v(x, —n)
0.7

0.6
=0 -1i€
[GeV?]

(@)

0.5
0.4
0.3
0.2

0.1

o
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FIG. 4 (color online).

leog[
3.812

where the constant JC ensures the required normalization
f(Y = 0) = 1. Inthis “EE” case we have, at first, five real
parameters a, = a(Q* = 0) and four parameters for trans-
lation and rescaling (Y, k;, Y,, and k,). Two of the
parameters, e.g., ¥, and a, are eliminated by conditions
(23) and (24). We need 0 < k; <k, to get physically
acceptable behavior and fulfill the aforementioned two
conditions. It turns out that, in general, increasing the value
of Y, tends to create Landau poles. We consider two typical
cases: (1) y; =0.1; ky = 10; k, = 11; 2) y; = 1.1; k;
6; k, = 11. The numerical results for B(F(z)) for two cases
are presented in Figs. 5(a) and 5(b), respectively. We see
that the first case shows no sign of Landau poles, while the
second case strongly indicates Landau poles. In Figs. 6 and
7 we present the behavior of the imaginary (v) and real (u)
parts of the coupling F(z = x — im) = a(Q* = —o — i€)
along the timelike axis of the Q? plane for the aforemen-
tioned two EE cases.

There is one interesting feature which can be seen most
clearly in Figs. 3(a) and 6(a): the discontinuity function
pi(0) =Ima(Q> = —o —ie) is zero at negative
Q? values above a “threshold” value ( — M2 =) —og, <
0? < 0. For the two cases cited there (“P[1/0]” which is

|

Same as in

—o—ie)=ReF(z=x—im) =ulx,y = —m).

P[2/0]: r, = =2
y=u(x, -m)
0.7

0.6
() B
0.4
0.3
0.2

0.1

(on
P TR PR PR | x:]()g[ )
-2 E 2 4 3.812
-0.1

Figs. 3, but this time r, = —2.

“P[2/0]” with r, = 0, and EE with ¥; = 0.1), we obtain
Xy = —5.948 and —5.403, respectively, leading to the
threshold masses My,, = 195 MeV and 256 MeV, respec-
tively. These threshold masses are nonzero and comparable
to the low QCD scale Agcp or pion mass, a behavior that
appears physically reasonable.” This nonzero threshold
behavior (see also Fig. 1) for the discontinuity function
pi (o) appears because of the Q% = 0 analyticity require-
ment for a(Q?), Eq. (24). On the other hand, earlier, we
saw that the condition Eq. (24) is practically a necessary
condition to avoid the appearance of Landau poles of
a(Q?).

While Figs. 2 and 5 provide only a visual indication of
whether the coupling a(Q?) is analytic, there is a more
quantitative, numerical test for the analyticity. Namely,
application of the Cauchy theorem implies for an analytic

a(Q?), with cut along the negative axis 0> = —Mg,, the

"Furthermore, analytic couplings with nonzero My, have the
mathematical property of being Stieltjes functions, and therefore
their (para)diagonal Padé approximants are guaranteed, by con-
vergence theorems, to converge to them as the Padé index
increases [42].
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EE ¥, =01k =10. k = 11.

(a)

&)
|AE(x¥)] 41

FIG. 5 (color online).

PHYSICAL REVIEW D 82, 114004 (2010)
EE Y, =11k =6.k =11.

(b)

1.0

(a) | B(F(z))| as a function of z = x + iy, where 8 has the form (21) with f(¥) having the EE form (37) with

the values of free parameters y,, k;, and k, as indicated; (b) same as in (a), but with different values of parameters y; and k;.

EE: Y1 = 0.1 ky =10. k, = 11.

EE: Yy = 0.1 k; =10. k, = 11.

y=p1(0) =v(x, —1) y=u(x, —m)
20r 20
vi _ o
(a) st QO =0-ie (b) st Omo-ic
[Gev?] [Gev?]
1.0 1.0
0.5 0.5
o o
_3 6 4 -2 2 4 3.812) -8 -6 -4 -2 2 4 3.81°
FIG. 6 (color online). (a) The discontinuity function p(¢) = Ima(Q* = —o — i) = ImF(z = x — im) = v(x,y = —7) as a

function of x = Re(z) = In(o/u?), for the case when f(Y) is the exponential-related EE function (37) with y; = 0.1; k; = 10 k, =
11; (b) same as in (a), but for Rea(Q? = —o — i€) = ReF(z = x — im) = u(x,y = — ).

well-known dispersion relation (6) where the integration
starts effectively at o = oy, = M3

thr
) 1 +o0
a(Q?) = e do
thr

where p;(0) = Ima(Q> = —o — ie). The high precision
numerical solution of RGE (15) gives us a(Q?) = F(z) in
the entire complex Q2 plane, including the negative semi-
axis. This allows us to compare numerical values of the lhs
and rhs of dispersion relation (38), for various values of Q2.

It turns out that, for low positive Q2 = 1 GeV?, the
numerical uncertainties of the obtained results for the rhs
of Eq. (38) are of the order of a per cent (using 64-bit
MATHEMATICA [41] for Linux), and they slowly increase
with increasing Q. If the deviation of the rhs from the lhs
is more than a few percent, then this represents a strong
indication that the resulting a(Q?) is not analytic. In Table I
we present the relative deviations for the aforementioned

pi(o)

wren

two P[2/0] and the two EE cases. Inspecting these devia-
tions, we can clearly see that a(Q?) in the P[2/0] case with
r, = —2 and the EE case with Y; = 1.1 is nonanalytic; in
the other two cases, the table gives strong indication that
a(Q?) is analytic.

III. EVALUATION OF LOW-ENERGY
OBSERVABLES

The semihadronic 7 decay ratio R, is the most precisely
measured low-energy QCD quantity to date. The measured
value of the “QCD-canonical” part r, = a + O(a?), with
the strangeness and quark mass effects subtracted,
is 7P = 0.203 = 0.004 (cf. Appendix B). Experimental
values of other low-energy observables, such as (spacelike)
sum rules, among them the BjPSR dp;(Q?), are known with
far less precision. The MA model [4-6,20], with the value
of A such that high-energy QCD observables are repro-
duced, turns out to give for this quantity too low values
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FIG. 7 (color online).

r, = 0.14 [5,28] unless the (current) masses of the light
quarks are taken to be unrealistically large (m, =~
0.25-0.45 GeV) or strong threshold effects are introduced
[29]. Further, MA does not fulfill the ITEP-OPE condition
(5) since [a™MA(Q?) — a, (0] ~ (A2/ Q).

The approach described in the previous Sec. Il automati-
cally fulfills the ITEP-OPE condition (5); however, the
analyticity of a(Q?), i.e., the absence of Landau poles, is
achieved only for limited regions of the otherwise free
parameters of the B function. For general anQCD models,
the evaluation of massless spacelike observables D(Q?)
such as BjPSR and Adler function, and for the timelike
observable r,, is presented in the sequence of
Appendixes C, D, and E, particularly Eqgs. (E9)-(E12) for
spacelike and (E22)—(E25) for r,. In the cases considered
in this work, the beta function B(a) is analytic at a = 0
(due to the ITEP-OPE condition), and therefore the higher
order analogs A,,; in those Appendixes are simply
A, = a*t!, cf. Eq. (C29). Furthermore, here we use
all the time the notation A | = « for the analytic coupling,
and lenﬂ = d,+, for the logarithmic derivatives of a
[cf. Eq. (C5)].

In Table IT we present the resulting values of RSch
parameters c,, c¢3, and ¢, [cf. Eq. (4)], for some typical
choices of input parameters in four forms of f(Y): P[1/0],
P[3/0], P[1/1], and EE. Here, P[M/N] is the general
notation for Padé form Eq. (A1) in Appendix A; P[M /0]
is thus a polynomial of degree M; EE is the Ansatz (37)
involving exponential functions. The otherwise free pa-
rameters (“‘input”) of the models are chosen such that

TABLE 1.

|

Same as in Figs.

PHYSICAL REVIEW D 82, 114004 (2010)
EE: Y] =1.1 k] =6 kz =11.

Y =u(x, —m)
20
(b) 15+ QP =0-ie
[GeVZ]
1.0F
0.5F
(o

(- s S S S S S e s S s s — x=log( ]
-8 -6 —4 -2 2 4 3.81%

6, but this time y;, = 1.1 and k; = 6.

the analyticity is maintained, i.e., no Landau poles. The
case P[1/0] is in fact the aforementioned case of P[2/0]
with r, = 0, cf. Eq. (28), and it has no free parameters. The
cases P[3/0] and P[1/1] have each one free input parame-
ter; for P[3/0] the first root ¢; is the specified input, and for
P[1/1] the first pole u,, where the notation (Al) of
Appendix A is used. The case EE is given in Eq. (37),
and has three free parameters. We recall that an apparently
additional parameter in the Anscitze for f(Y) is fixed by the
pQCD condition (23). In addition, we present the values of
a(Q?) at the initial condition scale u2 = (3m.)?* (m. =
1.27 GeV) and at Q? = 0; and the threshold value xg, of
the discontinuity function p,(o) = Ima(—o — i€), where
Zthr = Xehr — I75 Oy = (3m,)? exp(xy,). Further, the cor-
responding threshold mass My, is given [My, =
3m, exp(xy/2)].

For two of these models (P[1/0], and EE), we depict in
Figs. 8 and 9 the form of f(¥) and B(x) functions for real
values of Y = a/a, and positive values of x = a >0,
respectively. In Figs. 10 and 11 we present the running
coupling a(Q?) as a function of Q7 for positive Q? in the
two models; there we include, in addition, the higher order
analytic couplings d@,, (n = 1, 2).

The model with f = P[1/0] s, at first sight, very similar
to the model of Ref. [43] which was obtained on the basis
of the principle of minimal (renormalization scheme) sen-
sitivity (PMS) [44] applied to the QCD part of R,+,-(s)
ratio. There, the beta function is also a polynomial of the
fourth degree, i.e., f(Y) is linear, and it has a finite positive
value of a(Q? = 0) = q,. It turns out that for the beta

The relative deviation R[Q?] = (rhs/lhs — 1) for the lhs and the rhs of dispersion

relation (38) as obtained numerically, for various low positive Q2 (9% = 0.0, 0.1, and 1.0 GeV?),
for the aforementioned cases of the beta function.

(1) Parameters R[Q>=10.0] R[Q*=0.1] R[Q*=10]
P[2/0] r, =0.0 3.3x1073 4.6 x 1073 7.0 X 1073
P[2/0] r, = —2.0 ~0.62 ~0.38 ~0.09
EE Y, =0.1, k; = 10.0, k, = 11.0 47 %x 1073 4.8 x 1073 6.5 % 1073
EE Y, =11,k = 6.0, ky = 11.0 ~0.82 ~0.68 ~0.19
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TABLE II.

PHYSICAL REVIEW D 82, 114004 (2010)

Four cases of B function (f(Y)), with chosen input parameters. Given are the resulting RSch parameters ¢, (n = 2, 3, and

4), and the values of a(Q?) at Q> = (3m,)? and Q%> = 0. Further, the resulting threshold parameter x, and the threshold mass M, (in

GeV) are given. Recall that a((3m,.)?, MS) = 0.07245.

S Input &) 3 Cy a((3m.)?)  ay = a(0) Xihy M, (GeV)
P[1/0] cee —-37.02 0 0 0.06047 0.1901 —5.948 0.195
P[3/0] t, =1+4i045 —39.55 11588  —105.80 0.060 66 0.4562 —11.092 0.015
P[1/1] u; = —0.1 —37.54 18.84 —9.46 0.06048 0.1992 —6.060 0.184
EE Y, =0.1, k; = 10.0, k, = 11.0 —10.80 —157.62 —644.32 0.065 44 0.2360 —5.403 0.256

function of Ref. [43] the conditions (22) and (23) are
fulfilled, but not the condition of Q% = 0 analyticity
Eq. (24). As argued in the present paper, such beta function
will give unphysical (Landau) poles, although in this case
not on the positive Q2 axis. Specifically, for ny =2 and
ny = 3 the Q? = 0 analyticity condition (24) yields in the
P[1/0] case the values a, = 0.1761 and 0.1901, respec-
tively, while the values of a( in Ref. [43] are aq = 0.263
and 0.244, respectively. We checked numerically that this
PMS solution leads to (Landau) poles of a(Q?) at Q> =
(—0.027 = i0.065) GeV* for n; =2, and at Q=
(—0.031 = i0.032) GeV? for n ¢ = 3 (massless quarks).

S

(a)
P[1/0]

FIG. 8 (color online).

Let us now apply these results to calculating low-energy
QCD observables.

We start with .

In Table III we present the predicted values of r, for the
choices of B functions and input parameters given in
Table II. Therein we separately give (in each line) the
four terms of the truncated analytic series for r, and then
quote their sum. Furthermore, for each model of f(Y) we
present the results for basically two different ways of
treating the higher orders. In the first row of each model,
the results of the series (E22) are presented, which per-
forms LB resummation and adds the (three) bLB terms

y=Bx)
002 PL1/0] (b)
0.01F
1 1 1 1 x=a
0.05 0.10 0.15 0.20
~0.01f
~0.02f

(a) f(Y) function as defined by Eq. (21), for real values of ¥ = a/a(0), for the case of f being P[1/0] linear

function ( < P[2/0] with r, = 0); (b) B(x) function for the same case, for positive x = a.

(0
2.0
(a)
1.5 I
EE:
Y, =0.1
ky =10. ky =11.

FIG. 9 (color online).

y=pBx)
0.03
(b)
0.02
0.01 EE: Y, =01k =10. kp =11.

-0.01

-0.02

-0.03

Same as in Fig. 8, but this time f(Y) being the exponential-related function EE, Eq. (37).
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FIG. 10. (a) Analytic coupling a(Q?) and its higher order analogs d,; (n = 1, 2) as defined in Eq. (C5), for positive Q?, for the

model P[1/0]. For better visibility, the higher order analogs are scaled by factors of 5 and 52, respectively. (b) Same as in (a), but at
lower Q2. We recall that, formally &,,, = a" ™! + O(a"*?).
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EE: Y, =0.1 &y =10. kp, = 11.

(b)
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FIG. 11. Same as in Fig. 10, but for the model EE, Eq. (37).

organized in contour integrals of logarithmic derivatives
a,+1 (n =1,2,3). In the second line, the analogous results
are presented, where now the (three) bLB terms are contour

integrals of powers A, ., = a"*!, Eq. (E24). At each of
the entries, the corresponding terms are given when no LB
resummation is performed, cf. Eqs. (E23) and (E25). The

TABLE III.  The four terms in truncated analytic expansions (E22) and (E24) for r,, i.e., with LB contributions resummed and the
three bLB terms organized in contour integrals of A ,,, = d,,, (first line) and of A, ,, = a"*' (second line of each model). In
parentheses are the corresponding results when no LB resummation is performed, i.e., the truncated analytic expansions Eqs. (E23) and
(E25), respectively. The RScl parameter is C = 0. The last column contains variations of these truncated sums when the RScl

parameter C increases from O to In2.

f r.: LB (LO) NLB (NLO) N2LB (N2LO) N3LB (N3LO) Sum (sum) 8 (C dependence)
0.1135(0.0940)  0.0006(0.0123)  0.0139(0.0214)  0.0007(0.0012)  0.1287(0.1289) —0.2%(—0.4%)
PLI/OT 0113500.0940)  0.0007(0.0137)  0.0209(0.0340)  0.0091(0.0113)  0.1442(0.1529) —2.8%(—2.7%)
0.120000.0954)  0.0007(0.0131)  0.0184(0.0275)  —0.0009(0.0000)  0.1381(0.1360) —0.3%(—0.8%)
PB/OT 0120000.0954)  0.0007(0.0141)  0.0233(0.0369)  0.0067(0.0087)  0.1507(0.1550) —2.4%(—2.9%)
0.1142(0.0941)  0.0006(0.0124)  0.0146(0.0224)  0.0005(0.0011)  0.1300(0.1300) —0.2%(—0.5%)
PL/LIT 0114200.0041)  0.0007(0.0138)  0.0213(0.0344)  0.0088(0.0109)  0.1450(0.1532) —2.8%(—2.7%)
BB 0.1348(0.1088)  0.0009(0.0173)  0.0025(0.0156)  0.0048(0.0061)  0.1466(0.1478) —0.8%(—1.2%)
0.1348(0.1088)  0.0009(0.0180)  0.0033(0.0224)  0.0102(0.0173)  0.1528(0.1666) —2.8%(—3.7%)
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TABLE IV. Bjorken polarized sum rule (BjPSR) results dBj(Qz) for the four considered B Ansditze, evaluated with the truncated
analytic expansions (E9) and (E11), i.e., with LB contributions resummed and the three bLB terms « A, ., = d,. (first line) and
o« A, = a""! (second line). In parentheses are the corresponding results when no LB resummation is performed, i.e., truncated
analytic expansions Egs. (E10) and (E12), respectively. The RScl parameter is C = 0. In brackets, the corresponding variations of the
results under the RScl variation are given (see the text for details). For explanation of the experimental values in the last (four) lines,

see the text for details.

f dg;(0%): 0% = 1.01 GeV? 0% = 2.05 GeV? 0% =2.92 GeV?
0.1343[+0.3%] (0.1420[—1.9%]) 0.1208[—0.1%] (0.1255[—0.5%]) 0.1140[—0.2%] (0.1173[—0.7%])
P[1/0] 0.1535[—4.1%] (0.1974[=5.1%]) 0.1313[+2.8%] (0.1552[—4.1%]) 0.1218[—2.4%] (0.1393[—3.6%])
0.1609[—0.4%] (0.1630[—1.9%]) 0.1366[—0.4%] (0.1361[—2.0%]) 0.1261[—0.4%] (0.1249[ —1.9%])
P[3/0] 0.1773[—3.7%] (0.2053[—6.3%]) 0.1456[—2.6%] (0.1587[—4.6%]) 0.1329[—2.2%] (0.1417[—4.0%])
0.1373[+0.2%] (0.1450[—1.5%]) 0.1226[—0.1%] (0.1270[—0.6%]) 0.1154[—0.2%] (0.1184[—0.9%])
Pl 0.1561[—4.0%] (0.1985[—5.3%]) 0.1329[—2.8%] (0.1557[—4.2%]) 0.1231[—2.4%] (0.1396[ —3.7%])
0.1507[+0.3%] (0.1659[—3.7%]) 0.1338[+0.1%] (0.1434[—1.0%]) 0.1256[+0.1%] (0.1324[—1.0%])
EE 0.1436[+0.7%] (0.2300[—6.8%]) 0.1304[+0.5%] (0.1725[=5.1%]) 0.1232[+0.4%] (0.1521[—4.4%])
Exp. (a): 0.23 = 0.18 0.11 = 0.11 0.09 = 0.07
wh "= —0.040 = 0.028 0.23 £0.12+0.13 0.11 = 0.09 + 0.06 0.09 = 0.05 + 0.05
Exp. (b): 0.30 = 0.18 0.15+0.11 0.11 = 0.07

uh "= —0.024 £ 0.028 0.30 £ 0.12 + 0.13

0.15 £ 0.09 £ 0.06 0.11 = 0.05 = 0.05

RScl parameter used is C = 0, i.e., the radius of the contour
in the Q2 plane is m% In the last column, the relative
variation of the sum is given when the RScl parameter is
increased from C = 0 to In2, i.e., the radius of the contour
integration is increased to 2m2. The results using the
powers a"*! for the bLB (or higher order) contributions
show significantly less stability under the RScl variation;
the reason for this lies in two numerical facts:

(i) The expansion coefficient (¢5q;)5 of the latter series is
usually larger than the corresponding coefficient
(Taq)); of the series containing @, ;: |(faq)3| >
|(Taq)3l; this seems to be true in all the RSch’s
dictated by the presented [ functions.

(ii) Apparently in all cases we have |d,| <la
although formally a,, = a"™! + O(a""?).

n+1|
2

Furthermore, the variations of the result under variations of
RScl are generally smaller when LB resummation is per-
formed. Therefore, we will consider as our preferred choice
the evaluated values of the first lines (not in parentheses) of
each model in Table III, i.e., the evaluations using a,, . for
the higher order contributions, i.e., Eq. (E22).

We note that the obtained values of 7, (see the “sum
in Table III) are all much too low when compared

with the experimental value rP = 0.203 = 0.004
(cf. Appendix B). In fact, the free parameters in the
Ansditze for f(Y) of the beta function were chosen in
Tables II and III in such a way as to (approximately) max-
imize the result for . while still maintaining analyticity of
a(Q?) (i.e., no Landau singularities).® We can see that the

29

8When f(Y) is P[2/0], it turns out that the largest evaluated
value of r, is obtained when r, = 0 in Eq. (28), i.e., when f(Y)
reduces to a linear function P[1/0].

preferred evaluation method, i.e., the first line of each case,
gives us always a value r, < 0.15. We tried many choices
for the function f(Y) of Eq. (21), fulfilling all conditions
(22)—(24), and scanning over the remaining free parameters
in f(Y). It turned out that r, <0.16 always as long as
Landau poles were absent.” Only when free parameters
were chosen such that Landau poles appeared, was it
possible to increase r, beyond 0.16.

As the second example we consider the BjPSR dBj(QZ).

In Table IV we present results for dBj(QZ) in the afore-
mentioned cases, at three of those low values of Q> where
experimental results are available: 0% = 1.01, 2.05, and
2.92 GeV?. As in the previous Table III, the first line of
each model contains the results with our preferred method,
i.e., LB resummation and usage of d,,; for the bLB
contributions, Eq. (E9); the second line represents the
results of LB resummation and the usage of a"*! powers
for the bLB contributions, Eq. (E11). In the parentheses,
the corresponding results are given when no LB resumma-
tion is performed, Egs. (E10) and (E12), respectively. In
the corresponding brackets, the variations of the results are
given when the RScl parameter varies either from C = 0
(2> =0»toC =12 u?>=20%,orfromC=0toC =
In(1/2) (u? = Q%/2)—the larger of the variations is given.
As in the case of r,, we see that the most stable evaluation
under variations of RScl is the LB resummation and the
usage of d, . for the bLB contributions, Eq. (E9).

In some cases, e.g., when increasing the value of Y, in the
case EE, the preferred evaluation method, Eq. (E22), gives us
values of r, between 0.15 and 0.16. However, in such cases, it is
not any more clear that the analyticity is maintained; increasing
Y, even further leads to a clear appearance of Landau poles.
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For comparison, we include in Table IV (last lines) three
sets of experimental data based on the JLab CLAS EG1b
(2006) measurements [45] of the T'}""(Q?) sum rule for
spin-dependent proton and neutron structure functions g7
[46]. T ™" is connected to dp; in the following way:

P (02) = fo ' g (¢ (v 02) — ¢ 07) (39)

:Uvzj (Q2)

=221~ dg( Q2>>+z T

(40)

where g4, = 1.267 = 0.004 [39] is the triplet axial charge,
1 — dgi(Q*) =1 —a(Q?) + O(a*) is the nonsinglet
leading-twist Wilson coefficient, and ,ugj_“ /O%72(j=2)
are the higher-twist contributions. If we take into account
the data with the elastic contribution excluded, we can
restrict ourselves to the first higher-twist term uf "/Q2.
The elastic contribution affects largely only the other
higher-twist terms ~1/(Q?)/~! with j = 3, as has been
noted in Refs. [47,48]. Moreover, the exclusion of the
elastic contribution leads to strongly suppressed higher-
twist terms ~1/(Q%)~! with j =3 [47] in pQCD and
MA (APT) approaches. The first experimental set (a) for
dp; (0Q?) in Table IV is obtained from the measured values of
FP_H(QZ) (with the elastic part excluded) by subtracting the
uh "/ 0? contrlbutlon as obtained by a 3-parameter pQCD
fit [45]: uh " =~ wh (@ =1 GeV) = —0.040 = 0.028'%;
the second set (b) is obtained in the same way, but now by
subtracting the w§ "/Q? contribution obtained by a 4-
parameter pQCD fit [45]: uh " = uf (0 =1 GeV) =
—0.024 = 0.028. In the second line of each experimental
set, the uncertainties were split into the contribution coming
from the uncertainty of the measured value of I'} "(Q?) and
the one from the uncertainty of the fitted value uf " [45].

We see from Table IV that the evaluated values for
BjPSR lie in general relatively close to the central experi-
mental values dg;(Q%)exp: dpij(Q%)exp = 0.23 (or 0.30) for
Q? = 1.01 GeV?;0.11 (or 0.15) for Q* = 2.05 GeV?;0.09
(or 0.11) for Q% = 2.92 GeV?2. However, in contrast to 7.,
the experimental uncertainties are now much larger and the
theoretical predictions lie well within the large intervals of
experimental uncertainties.

"9Almost the same value was obtained by the authors of
Refs. [47,48]: uh "/M3 = —0.048 corresponding to uh " =
—O 042 (Ref. [47]) and ,u, /M2 ~ —(.042 corresponding to
'U“f% ~ —0.037 (Ref. [48], accountmg for the Q? dependence of

" due to RG evolution). The interesting aspect is that they
apphed the MA (i.e., APT) model of Refs. [4,5] to the fit of the
aforementioned JLab data, then obtaining the 1/Q? term as
the sum of the contribution from the MA (APT) series and the
contribution of the explicit 1/Q? term (obtained through fit).
Such a sum of 1/Q? terms, in their model, is not interpreted as
originating entirely from the IR regime since MA does not
satisfy the conditions of Eq. (5).

PHYSICAL REVIEW D 82, 114004 (2010)

IV. TACKLING THE PROBLEM OF TOO LOW r,

The problem of too low r,, encountered in the previous
section, appears to be common to all or most of the anQCD
models. For example, in the MA of Shirkov, Solovtsov, and
Milton [4-6,20,28], when adjusting A to such a value as
to reproduce higher energy QCD observables (Q* =
10! GeV?), ie., A =~ 0.4 GeV, the resulting11 value of
(massless and strangeless) r, is about 0.140-0.141
[5,14,28], much too low. The results of the previous section
indicate that this problem persists even in anQCD models
which, unlike MA, fulfill the ITEP-OPE condition (5). The
aspect of anQCD models which appears to cause the
tendency toward too low values of r, is the absence of
(unphysical) Landau cut along the positive Q2 axis
0O=0°< Q%P).12 Therefore, we are apparently facing a
strange situation:

(1) In pQCD the Landau cut of the coupling gives a

numerically positive contribution to r,., and pQCD
is able to reproduce the experimental value of r,
(cf. Refs. [30,50-61], because of this (unphysical)
feature of the theory.

(i1) In anQCD the physically unacceptable low-energy
(Landau) singularities of the coupling are elimi-
nated, but then the values of r, tend to decrease
too much.

Here we indicate one possible solution to this problem
(cf. also our shorter version [31]). Table III indicates that
the LB-resummed contribution to r, cannot surpass the
values 0.14-0.15. We performed many trials with various
forms of f(Y) functions and were not able to obtain larger

values of %), But the N2LB term, which is the only non-
negligible bLB term in Table III, can be increased by
increasing the coefficient (T'sq), of expansion (E22) while
maintaining, at least approximately, the values of a(Q?)
and @, ,(Q?) for most of the complex Q2. It can be
deduced from the presentation in Appendix E that the
RSch dependence of coefficient (T nq); is in the contribu-
tion (—c, + ¢,). Therefore, if we multiply the f(Y) func-
tion by a factor f,.(Y), which is close to unity for most of
the values of Y ( = a/a,) but which significantly decreases
the RSch parameter c,, the value of (Tyg ), will increase
while the values of a(Q?) and d,,(Q%) will not change
strongly for most of the complex Q2 values.'® This can be
achieved by the following replacement:

"'The value A = 0.4 GeV corresponds to the A value in the
Lambert function [49] for the (MA) coupling A ,(Q?) in the
't Hooft RSch Aj mperr = 0.551 GeV. In general, it can be
checked that the following relation holds: Ajmpen =
A exp(0.3205), and this holds irrespective of whether we con-
sider pQCD or MA couplings.

12 A somewhat similar reasoning can be found in Ref. [30].

3The next-to- -leading- B, (NLB) term cannot be increased in
this way, because the coefficient (Txq); = 1/12 turns out to be
RSch independent (and small).
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TABLE V. Four models of B function (f(Y)) of the previous section, with modification Egs. (41) and (42), with inputs as given in
Table II, and the values of the additional input parameters K and B (1 << K < B) adjusted so that the evaluation method Eq. (E22)
gives r, = 0.203. Given are the resulting RSch parameters c, (n = 2, 3, and 4), and the values of a(Q?) at 9> = (3m,)? and Q%> = 0,
as well as the resulting threshold parameter x;,, and the threshold mass My, (in GeV).

fold Input fe,e C2 3 Cq a((3m.)?)  ag = a(0) Xihr My, (GeV)
P[1/0] B =4000, K =6.71 —222.06  —329.13  2.047 X 107 0.05763 0.1904 —6.331 0.161
P[3/0] B =5000, K = 44.5 —249.65  —260.93  5.036 X 10° 0.05430 0.4597 —12.023 0.009
P[1/1] B =4000, K =7.11 —216.04  —298.77  1.799 X 107 0.05761 0.1995 —6.448 0.152
EE B =1000, K = 5.4 —106.80  —326.71 1.721 X 10° 0.061 25 0.2370 —5.887 0.201

Ford(¥) = frew(¥) = fora(¥) fract(Y), (41)  variations of RScl are now larger in Table VI than in III;

nonetheless, the evaluation method of Eq. (E22) is still the

) (1 + BY?) most stable under the RScl variations. However, now the

with fr(Y) = 1+ (B+K)Y?) (1 <K < B). series for 7, is strongly divergent when terms N*LB and

(42) higher are included, for the reasons mentioned earlier in

The function fp,.(Y) is really close to unity for most ¥’s
because K < B; and it decreases the ¢, RSch parameter to
low negative values [cf. Eq. (4)] because 1 K K (¢, ~
—K). More specifically, expansion in powers of Y =
a/ay then gives the RSch coefficients ¢, with large abso-
lute values ¢, = —K/aj(~ — K); ¢3 = —¢|K/a}(~ —
K); ¢y = BK/a$(~BK); etc. This implies that the coeffi-
cients (Taa)n> (taa)n> (daa)n> and (daar), appearing in
analytic expansions Egs. (E20)—(E25) behave as = —¢, ~
K forn=2; ~* ¢, —c3~*K forn=3; ~— ¢, ~
—BK for n = 4; etc. Therefore, these coefficients are large
for n = 2, 3, and even much larger for n = 4. In fact, it
turns out that the larger B is, the less the LB contribution
r(TLB) decreases. However, then the absolute values of co-
efficients of analytic expansions Eqs. (E20)—(E25) increase
explosively for n = 4. On the other hand, when B ( > 1)
decreases, the aforementioned divergence of the series
(E20) at n = 4 becomes less dramatic, but then r(TLB)
decreases and it becomes difficult to reproduce the experi-
mental value r, = 0.203. We chose the values of B in each

model such that, roughly, r'®' ~0.10 or above (if
possible).

Further, it turns out that these modifications (i.e., inclu-
sion of fpe) do not destroy the analyticity of a(Q?). The
(two- and three-dimensional) diagrams presented in the
figures of the previous section change only little when
the modification factor (42) is introduced in the corre-
sponding beta functions.

The numerical results in the models of Tables II, III, and
IV of the previous section, modified by replacements (41)
and (42) in the aforementioned way so that the preferred
evaluation method Eq. (E22) gives r, = 0.203, are given in
the corresponding Tables V, VI, and VII.

When comparing Table VI with Table III, we see that the
modification (41) and (42) really results in a significantly
larger N’LB contribution (and a somewhat larger N°LB
contribution) to r,, reaching in this way the middle experi-
mental value r, = 0.203. The variations 6 under the

this section. For example, the N*LB contribution to r,,
in the methods of Eqgs. (E22) and (E23) which use d,,;; in
higher order contributions, is estimated to be ~ — 100 =
—1. Specifically, when the RScl parameter is C = 0, these
terms are estimated to be —3.1 (P[1/0]); —2.0 (P[3/0]);
—3.7 (P[1/1]); —1.0 (EE)."*

It remains unclear how to deal with such an analytic
series, which has relatively reasonable convergence behav-
ior in its first four contributions and behaves uncontrollably
for n = 4. One might consider this behavior as an indica-
tion of the asymptotic series nature of the expansion (‘“‘pre-
cocious asymptoticity”). Certainly, this divergence
problem appears to be the price that is paid to achieve in
anQCD the correct value r, = 0.20 via S-function modi-
fication Eqs. (41) and (42). The modified beta functions
B(a) now acquire poles and zeros on the imaginary axis
close to the origin in the complex a plane: ap,e =
+ia(0)/vB + K, a,eo = *ia(0)/+/B. Consequently, the
convergence radius of the perturbation expansion of B(a)
in powers of a becomes short: R = a(0)/+/B + K.
Nonetheless, B(a) remains an analytic function of a at a =
0, fulfilling thus the ITEP-OPE condition (5). We note that
such a modification of the beta function brings us into an
RSch where the absolute values of the (perturbative) RSch
parameters ¢, rise fast when n increases. There is no
physical equivalence of such RSch’s with the usual
RSch’s such as MS or ’t Hooft RSch (where ¢, = 0 forn =
2). For example, in these two latter RSch’s, the coupling
a(Q?) is not even analytic. Physical nonequivalence can

“When using evaluation methods of Eqgs. (E24) and (E25)
which use powers a"'! instead, these estimated terms are
—22.9 (P[1/0]); —3.9 (P[3/0]); —20.1 (P[1/1]); —2.9 (EE).
These terms have significantly higher absolute values than those
for the methods of Eqs. (E22) and (E23), although the estimated
coefficients are the same in both cases. The reason for this
difference lies in the fact that |a’(Q?)| > |ds(Q?)| for most
values of (complex) Q2. It appears to be a general numerical
fact in all models presented in this work that |a"*!'(Q?)| >
ld, (@) (n = 1), although formally &,,, = a" ™! + O(a""?).
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TABLE VL

evaluation method Eq. (E22) gives r, = 0.203.

PHYSICAL REVIEW D 82, 114004 (2010)

The evaluated quantity r, as in Table III, but now with modifications Egs. (41) and (42), as given in Table V, so that the

Ford = [/ fract r.: LB (LO) NLB (NLO) N2LB (N2LO) N3LB (N’LO) Sum (sum) 8 (C dependence)
0.1060(0.0880) 0.0006(0.0110) 0.0907(0.0974) 0.0057(0.0063) 0.2030(0.2026) —1.4%(—1.5%)

P[1/0] 0.1060(0.0880) 0.0006(0.0121) 0.1264(0.1373) 0.0552(0.0438) 0.2882(0.2812) —8.4%(—10.1%)
0.0997(0.0815) 0.0005(0.0099) 0.0967(0.1029) 0.0061(0.0068) 0.2030(0.2011) —2.5%(—2.7%)
P3/0] 0.0997(0.0815) 0.0005(0.0104) 0.1143(0.1230) 0.0447(0.0347) 0.2592(0.2496) —7.6%(—9.6%)
0.1064(0.0880) 0.0006(0.0111) 0.0902(0.0971) 0.0058(0.0063) 0.2030(0.2025) —1.6%(—1.7%)

PL1/1] 0.1064(0.0880) 0.0006(0.0121) 0.1229(0.1338) 0.0532(0.0423) 0.2832(0.2762) —8.3%(—10.0%)
EE 0.1247(0.0987) 0.0007(0.0146) 0.0678(0.0786) 0.0097(0.0108) 0.2030(0.2027) —2.4%(—2.8%)

0.1247(0.0987) 0.0008(0.0149) 0.0787(0.0934) 0.0432(0.0385) 0.2474(0.2456) —8.8%(—10.3%)

TABLE VII. The evaluated quantity BjPSR dBj(Qz) as in Table IV, but now with modifications Eqgs. (41) and (42), as given in

Table V. The experimentally measured values are given in the last four lines of Table IV (see the text there for details).

fold = f/ffact dBj(Qz): Q2 = 1.01 GeV?

0? = 2.05 GeV? 0? = 2.92 GeV?

0.2138[—2.9%] (0.2199[—3.5%])

PLI/OT 3705[+15.0%] (0.3673[+15.2%])
0.2485[ —4.9%] (0.2476[ —5.7%])

P[3/0] 0.3485[ +14.8%] (0.3221[ +16.0%])
0.2185[—2.1%] (0.2244[ —2.5%])

P11 0.3742[ +15.2%] (0.3618[ +15.4%])
. 0.2166[—3.0%] (0.2281[ —4.1%])

0.3246[ +18.4%] (0.3416[ +18.3%))

0.1895[—1.7%] (0.1927[ —2.0%])
0.2803[+12.4%] (0.2697[ +12.9%)

0.2008[ —4.5%] (0.1991[ —5.3%])
0.2579[+11.5%] (0.2392[ +12.8%))
0.1909[ —2.1%] (0.1938[ —2.5%])
0.2761[+12.3%] (0.2654[ +13.0%))
0.1879[ —2.3%] (0.1938[ —3.0%])
0.2380[ +13.6%] (0.2421[+14.6%))

0.1761[—2.2%] (0.1782[ —2.6%])
0.2442[+11.1%] (0.2344[+11.8%])
0.1813[—4.3%] (0.1795[ —5.0%])
0.2252[+10.2%] (0.2093[+11.5%))
0.1767[—2.5%] (0.1785[—3.0%])
0.2406[ +11.0%] (0.2308[ +11.8%))
0.1728[—2.7%] (0.1765[—3.6%])
0.2074[ +11.6%] (0.2081[ +12.8%))

even be discerned between, on the one hand, the much
“tamer” RSch’s of the previous section which give ana-
lytic a(Q?) (see Table II) and, on the other hand, the
aforementioned nonanalytic RSch’s MS or ’t Hooft.

When comparing the evaluated BjPSR values for the
beta functions modified by Eqgs. (41) and (42), as presented
in Table VII, with those of unmodified beta functions as
presented in Table IV, we note that the modification in-
creases the values of BjPSR, generally to above the experi-
mental middle values. Nonetheless, the results generally
remain inside the large intervals of experimental uncer-
tainties. The variations of the results under the variation of
the RScl are now larger.

The evaluation methods of Egs. (E9) and (E10), for
spacelike observables such as BjPSR, and the analogous
methods of Eqgs. (E22) and (E23) for the timelike r,, which
use logarithmic derivatives @, ., are significantly more
stable under the variation of RScl than the methods of Egs.
(E11), (E12), (E24), and (E25), which use powers a"*!.
This can be seen clearly by comparing the variations
(percentages) of the first and the second line of each
anQCD model in Tables VI and VII. In this sense, the
method of Eqgs. (E9) for spacelike, and (E22) for timelike
observables, which performs LB resummation and uses
logarithmic derivatives d,,; for the bLB contributions,
remains the preferred method, as in the previous section.

We wish to add a minor numerical observation. Unlike
the results of the previous section where the LB

resummation improved significantly the stability under
the RScl variation, this improvement becomes less clear
in the results of the present section, as can be seen by
comparing the variations (percentages) outside the paren-
theses with the corresponding ones inside the parentheses.
This can be understood in the following way: the modi-
fication of S functions by Eqgs. (41) and (42) introduced,
via large values of |c,|’s, in the expansion coefficients
d,.; and d,,, of the (spacelike) observables (here the
Adler function and BjPSR) numerically large contribu-
tions = —c,;/n which are not a large-8, part of these
coefficients. The latter is true because the LB part of
dn+l and dn-H is NBS+I’ while Cn+1 = Bn+l/BO -~ ,38
(cf. Appendixes D and E). Therefore, the LB parts of the
coefficients are now not dominant, and the LB resumma-
tion cannot be expected to improve significantly the RScl
stability of the result.

V. CONCLUSIONS

In this work we tried to address two aspects which are
not addressed by most of the anQCD models presented up
to now in the literature:

(1) Several anQCD models, in particular, the most
widely used anQCD model ( MA) of Shirkov,
Solovtsov, and Milton [4-6,20], give significantly
too low values of the well-measured (QCD-
canonical) semihadronic 7-decay ratio r, once the
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free parameter(s) (such as A) are adjusted so that the
models reproduce the experimental values of high-
energy QCD observables (|Q?| = 10! GeV?),
cf. Refs. [5,28].

(i1) In most of the anQCD models presented up to now,
the ITEP-OPE condition (5) is not fulfilled.'®> Hence
such models give nonperturbative power contribu-
tions ~(A2/Q%* of ultraviolet origin in the
(leading-twist part of the) spacelike observables
D(Q?), contravening the ITEP-OPE philosophy
[23,25] which postulates that nonperturbative con-
tributions have exclusively infrared origin. If the
latter philosophy is not respected by a model, ap-
plication of the OPE evaluation method in such a
model becomes questionable.

In this work, the second aspect (ITEP-OPE) was addressed
via construction of the analytic coupling a(Q?) =

™ (0?) /7 by starting from beta functions B(a) analytic
at a = 0 and performing integration of the corresponding
RGE in the complex Q? plane. It then turned out that, in
order to avoid the occurrence of Landau singularities of
a(Q?), it was virtually necessary to impose on the coupling
a(Q?) analyticity at Q> = 0. We tried the construction with
many different B functions which fulfill such conditions
and which, at the same time, give relatively tame pertur-
bation RSch coefficients ¢, = 8,/By (n = 2,3,...), i.e,
where the sequence {|c,|,n = 2,3,...} is not increasing
very fast. It turned out that all such beta functions resulted
either in analytic coupling a(Q?) which gave r. < 0.16,
significantly below the well-measured experimental value
r.(exp) = 0.203 = 0.004 of the (strangeless and massless)
r,, or the coupling a(Q?) gave r, > 0.16 at the price of
developing Landau singularities.

This persistent problem was then addressed by a specific
modification of the aforementioned beta functions,
Egs. (41) and (42), introducing in B(a) complex poles
and zeros on the imaginary axis of the complex a plane
close to the origin. In this way, the correct value r, =
0.203 was reproduced, and the analyticity of a(Q?) and
the ITEP-OPE condition were maintained. However, the
sequence of perturbation RSch coefficients {|c,|, n =
2,3, ...} in such cases increases very fast starting at n =
4. As a consequence, in such cases the analytic evaluation
series of QCD observables (including r,) starts showing
strong divergent behavior when terms ~ds ~ a° are in-
cluded, because the coefficients at such terms become
large. It remains unclear how to deal properly with this
problem.

51n Ref. [24] an anQCD coupling A | was constructed directly
(not from a B-function Ansatz) which fulfills the ITEP-OPE
condition. The construction was performed in a specific RSch
and contains several adjustable parameters. Physical observables
were not evaluated.

PHYSICAL REVIEW D 82, 114004 (2010)

In this work we evaluated, in the aforementioned
anQCD models, the (timelike) observable r, and the space-
like observable BjPSR dg;(Q?) at low Q?, by evaluating
only the leading-twist contribution, and accounting for the
chirality-violating higher-twist OPE terms by estimating
and subtracting those “mass” terms in the case of r, (see
Appendix B). This means that the chirality-conserving
higher-twist contributions, such as the gluon condensate
contribution, were not taken into account. While the values
of the chirality-violating condensates are known with rela-
tively high degree of precision and are expected to be the
same in perturbative QCD (pQCD + OPE) and in anQCD
(anQCD + OPE), the values of the chirality-conserving
condensates have in pQCD + OPE very high levels of
uncertainty. For example, the dimension-four gluon con-
densate, which is the numerically relevant chirality-
conserving condensate with the lowest dimension in the
evaluation of r,, acquires (in pQCD + OPE) value almost
compatible with zero: (aG3,) = 0.005 * 0.004 GeV*
[57], obtained by fitting pQCD + OPE evaluations of the
current-current polarization operators with the correspond-
ing integrals of the experimentally measured spectral func-
tions of the 7 decay. In anQCD models, before fitting, the
value of (aG?%,) is a free parameter. In principle, the
inclusion of this parameter, i.e., inclusion of the corre-
sponding dimension-four term in the anQCD + OPE
evaluation of r, can give us the correct value of r, once
the value of the parameter is adjusted accordingly, without
the need to perform the modification (41) and (42) of the
beta function. It appears that the resulting value of this
parameter (aG?,,) in such anQCD models will be large,
especially since it enters the dimension-four term for r,
with an additional suppression factor a. Another, more
systematic, approach [62] would be to extract the value
of (aG?,), in anQCD models presented here, by perform-
ing analyses similar to those of Refs. [57,58], involving
7-decay spectral functions and suppressing the OPE con-
tributions with dimension larger than four by employing
specific (finite energy) sum rules. One of the attractive
features of the anQCD models presented in this work is
that most of them give results very similar to each other
[for a(0), My,, r,, BjPSR—see Tables. II, III, and IV for
nonmodified, and V, VI, and VII for modified B functions]
when the f(Y) function appearing in the B function has
various different forms, of the type P[1/0], P[1/1], or EE.
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APPENDIX A: IMPLICIT SOLUTIONS OF RGE
AND SINGULARITY STRUCTURE

It is evident that for an arbitrary choice of B(F), even
when constrained by conditions (21)—-(24), RGE Eq. (15)
cannot be solved analytically and one has to resort to
numerical methods. On the other hand, if one concentrates
on the question of which type of B function the resulting
coupling may have no Landau singularities, more general
statements can be derived by analytic methods as shown
below.

We suppose that the 8 function has the form Eq. (21) of
Sec. I1. We will show that, if f(Y) of Eq. (21) is any rational
function (Padé) of type P[M/N] (with real coefficients and
M = N — 1), with the Q> = 0 analyticity condition (24)
fulfilled, then there exists in the physical z stripe of F(z) of
Fig. 1 (— 7 =Imz <) at least one pole z, of F(z)
[F(z,) = 0] such that Im(z,) = —#. The latter means
that this is a physically acceptable pole of a(Q?) for
0% <0, i.e., not a Landau pole. The function f(Y) being
a Padé of the type P[M/N](Y) means

1 — /1) (1= ty/1)
—u/t) (1= uy/1)
where the normalization condition f(1) = 1, a consequence
of the pQCD condition Eq. (23), is evidently fulfilled. The
fact that this Padé has real coefficients must be reflected in
the fact that the zeros ¢; are either real, or (some of them)
appear in complex conj ugate pairs, the same being valid for
the poles u;. When using the form (A1) in the B function

(21)and the latter in the integral (27) of the implicit solution
of RGE, we end up with the following integral:

1 j‘a‘)/F(Z) JiM-N+1 (t—up)-(t— uy)
Boao J ay/a, (t = 1)t —1y) -~ - (t = ty)

fY)=fQ1/n = (A1)

(A2)

where t, = 1 is the value coming from the first factor
(1 — y) in the B function Eq. (21). When M = N — 1, the
integrand in Eq. (A2) can be split into a sum of simple
partial fractions 1/(r — t;)

1 jao/m { A 1 }
a1+ S B, =z  (A3)
ﬂ()a() ay/ai, jZO / (t - tj)
where
N;
B; =, (Ad)
with
Nj:t?/[_N_H(tj_ul)"'(tj_uN) (j=0,1,...M), (AS)
Dj=(t;—to) - (t; = t;-)(t; = tj1) -~ (t; = ty)
(j=1...M), (A6)
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Dy = (tg — 1))ty — 1) - - - (tg — ty). (A7)

These formulas can be obtained by direct algebraic manipu-
lations, or by using a symbolic software. Integration in
Eq. (A3) then gives the following implicit solution of the
RGE for F = F(z) in the form z = G(F):

() g S ()
(A8)

Within the sum on the rhs of Eq. (A8), the term with j = O is
(using 1 = 1)

1 ay/F(z) — 1 .
Boao Bo 1n< ao/ain — 1 ) with
(A9)
B =(1—u1)-"(1—uN)
0 A=) (=1

Comparing B, with f(Y) in Eq. (A1) we realize that B, =
1/£(1). Consequently, the Q?> = 0 analyticity condition
(24) yields By = Boay; [where ay= a(Q>=0)].
Therefore, the total coefficient at the j = 0 logarithm on
the rhs of Eq. (A8) is equal exactly to 1

1
Boao
On the other hand, this implies that the pole locations z;, at
which F(z;,) = oo are given by

o~ a2 )

+ ! %B ln( — )}
IBOQO j=1 ! aO/ain - tj '

Let us now investigate where these poles can be localized in
the z plane. In the cases considered here, we have 0 < g;, <
ag[ = a(Q? = 0)], because otherwise (i.e.,if 0 < a, < a;,)
the resulting coupling would give significantly too low
values of low-energy QCD observables such as semiha-
dronic 7 decay ratio'® (r,) or BjPSR at low positive Q*’s.
Therefore, ag/a;, > 1. In the following, we discuss several
scenarios for locations of poles z,:
(1) If, on the one hand, the roots ¢; are all real negative,
then in the sum over j’s (] = 1) on the rhs of
Eq. (Al1) all logarithms In[—¢;/(ag/a;, — t;)] are
unique and real, as are the coefﬁcients B;. Hence,
this sum is real. The only nonreal term on the rhs of
Eq. (All) is In(—1) = —iw + i2an. Therefore,"’

(Al1)

'°It can be deduced from Appendix D, Eq. (D13) and Fig. 13,
that F,(f) <1 and thus the leading-8, contribution to r, is
LB) 4, On the other hand, ay = a((3m,)?) < 0.075.
Hence when 0 < ag < g;,, we have rT (L < 0.075, significantly
too low to achieve r, = 0.20.
"Note: —7 = Imz < 7 is the physical considered stripe in the
complex z plane.
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Imz, = —ar. This means that in such a case there is
only one pole and this pole lies on the timelike
Q? axis (Q? < 0); hence, no Landau poles. One of
such cases is the one illustrated in Fig. 2(a), i.e., the
case of f(Y) being P[1/0] (r, =0; M =1, N = 0)
with #; = —1.338.

(2) If, on the other hand, some of the roots 7; appear as
complex conjugate pairs, the sum over j’s (j = 1)
on the rhs of Eq. (All) can be real and the same
conclusion would apply. However, that sum can turn
out to be nonreal and we end up with Landau poles.
How can this occur? If, for example, 7, = t;, then
Eqs. (A4)—(A7) imply Bj.; = B;. However, the
corresponding logarithms for j and j + | in the
sum of the rhs of Eq. (All) are not necessarily
complex conjugate to each other, but can have a
modified relation due to nonuniqueness of loga-
rithms of complex arguments

—t; —t; *
o )=l Y] e,
ag/ iy — I ao/ ai, — Tt
(A12)

Here, integers n j can be nonzero, but their values
must be such that the requirement is fulfilled so that
Zp is within the physical stripe: —7 = Imz, < 7.
Thus, in this case, we can get several poles, some of
them with — 7 < Imzp < m,1.e., Landau poles. This
case is illustrated in the case of f(Y) being cubic
polynomial (P[3/0]) in Figs. 12(a) and 12(b), for the
case of two different complex values of roots #;:
t; =1+ i0.5and #; = 1 + i0.4. Here, the root 7, is
then a complex conjugate of ¢;; and 5 is determined
by the pQCD condition (23) and turns out to be
negative. We can see that in the case t; = 1 + i0.5
there are no Landau poles, just a pole at

P[3/0]:4 =1.+ 05

(a)

1.0

(b)
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Zp = —11.6312 — i7r. The numerical test with the
use of dispersion relation (38) of Sec. II (cf. also
Table I) also confirms that a(Q?) = F(z) is analytic
in this case. However, in the case 7, = 1 + i0.4
there are, besides the pole at Zp = 10.5023 — i,
Landau poles at z = —6.323 36 = 72.6005. This can
be understood in the following way. The expression
for the location of poles z, is given by Eq. (Al1),
with the sum there over j = 1, 2, 3. Usually soft-
wares such as MATHEMATICA give for logarithms
InU of complex arguments U expressions with
imaginary part —7 < Im(InU) < 7. In this case, if
only the term In(—1) in Eq. (A11) gets replaced by
[In(—1) — i27] = —ir, the resulting z, has Imz, =
—im,inbothcasest; = 1 + i0.5and t; = 1 + i0.4.
Namely, Zp = —11.6312 — im and Zp =
—10.5023 — i, respectively. However, if we, in
addition, replace  In[—1,/(ay/ai, — ;)] by
In[—1,/(ay/a;, — t,)] + i27, we get in the case of
t; = 1 +i0.4 a pole location z, inside the physical
stripe —7 = Imz < 7 z, = —6.32336 — i2.6005,
which is the location of one of the Landau poles
seen in Fig. 12(b); the other Landau pole is at z, —
6.323 36 + i2.6005.

In general, by adding to each of the logarithms of
complex arguments in Eq. (A11) multiples of 27,
we end up with a set of possible pole locations z,.
Only those values which lie within the physical
stripe —7 = Imz < 7 are candidates for the loca-
tion of (Landau) poles. However, in practice, only
some of them represent poles F(z,) = oo, while
others may have finite values of F(z,). This is so
because the RGE integration, for the physical stripe
of z’s, with a specific initial condition at z = 0, will
not cover all the possibilities of these multiples.

P[3/0]: 4 = 1.+ 0.4

FIG. 12 (color online). (a) |B(F(z))| as a function of z = x + iy for the beta function (21) with £(Y) being cubic polynomial with
tp =1+i0.5 (1, =1—1i0.5, t3 = —3.67591); (b) the same as in (a), but with t; = 1 + i0.4 (1, = 1 — i0.4, 13 = —3.98969).
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(3) Yet another possibility is to have some roots 7; real
positive. Since we have a, = a(Q?> = 0) by our
notation, the value a = a; is a root of the beta
function B(a), and there are no other roots of B(a)
in the positive interval 0 < a < a, [note that 8(0) =
0 by asymptotic freedom]. Therefore, we are not
allowed to have ¢; > 1 since this would imply that
a; = ag/t; <ag is a root of B(a); hence if ; is
positive it must lie in the interval 0 <7; < 1. Such
t;’s then fulfill the relations (0 <¢; <1<ay/a;,)
and hence give a nonreal value of the logarithm
In(—1;/(ao/ai, — t;)) in Eq. (A11); the value of B;
is real. Therefore, in such a case we generally obtain
Imz, # —m, i.e., we generally obtain a Landau
pole.

(4) We may obtain Landau poles, or Landau singular-
ities, in several other cases, e.g., when some of the
poles u;, of the beta function are larger than unity.
However, a systematic (semi-)analytic analysis of
these problems appears to be too difficult here. We
just mention, as an aside, that the appearance of
Landau singularities [e.g., finite discontinuities of
F(z)] usually implies the appearance of Landau
poles [infinities of F(z)].

When M = N — 2, the implicit solution of the type (A8)
obtains additional terms on the rhs: In(F(z)), F(2), ...,
F(z)N"M=2 (if M = N — 3) [if M = N — 2: only InF(z)].
In this case the poles | F(z,)| = oo are reached at z, = — o0,
i.e., Q> = 0. This implies that in such cases the condition
a(Q? = 0) = ay < oo cannot be fulfilled.

APPENDIX B: MASSLESS PART OF THE
STRANGELESS TAU DECAY RATIO

At present, the most precisely measured low-energy
observable referring to an inclusive process is the ratio
R.(AS = 0), which is proportional to the branching ratio
of 7 decays into nonstrange hadrons. Consequently, it plays
a central role for testing the validity of our anQCD
approach. However, for a careful comparison of the avail-
able experimental result with our theoretical prediction it is
essential to extract from the quantity R.(AS = 0) the pure
massless QCD-canonic part r, = r.(AS = 0,m, = 0).
This analysis has already been presented in Appendix E
of Ref. [14]. Here we redo it, but with updated experimen-
tal values of R.(AS = 0), of the Cabibbo-Kobayashi-
Maskawa (CKM) matrix element |V,,;| and of higher-twist
contributions. The strangeless (V + A)-decay ratio ex-
tracted from measurements by the ALEPH Collaboration
[54,55] and updated in Ref. [56] is

I'(t— — v, hadrons(y))

R.(AS =0) = — R, (AS # 0)

L(r™ = vemv,(y))
(B1)
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=3.479 = 0.011. (B2)

The canonic massless quantity r,(AS = 0, m, = 0) is ob-
tained from the above quantity by removing the non-QCD
[CKM and electroweak (EW)] factors and contributions, as
well as chirality-violating (quark mass) contributions
r.(AS =0,m, = 0)
R.(AS=0
3|Vygl?(1 + Sgw)
= or (AS=0,m,, # 0).

(B3)

This quantity is massless QCD canonic, i.e., its pQCD
expansion is r(AS = 0, m, = 0),, = a + O(a?). The up-
dated value of the CKM matrix element |V,,| is [39]

|V, = 0.97418 = 0.00027. (B4)
The EW correction parameters are 1 + gy = 1.0198 =
0.0006 [54,55] and 6y = 0.0010 [63]. The (V + A)-
channel corrections 6r.(AS=0,m,, #0) due to the
nonzero quark masses are [50,55] the sum of corrections
(6L, + 6))/2 with dimensions D = 2, 4, 6, and 8. It
appears that, among the chirality-nonviolating D = 2
contributions, the only possibly non-negligible [57] is the
D =4 contribution 8g = (11/4)ai(m2){aGG)/m3
from gluon condensate. The authors of Ref. [56] obtained
from their fit the gluon condensate value (aGG) =
(—=1.5%+0.3) X 1072 GeV*, giving thus Sp) =
—5 X 107%; their entire value of higher dimension contri-
butions 2 =D = 8) to r (AS=0,m,, # 0)is (—6.3 =
1.4) X 1073. On the other hand, the value of the gluon
condensate may be compatible with zero; e.g., the 7-decay
analysis of Ref. [57] based on sum rules gives (aGG) =
(0.005 + 0.004) GeV* which is almost compatible with
zero. In our analysis we assume that this is the case, i.e.,
zero value of the gluon condensate. With this assumption,
the higher dimension contributions to r.(AS = 0, m, 4 #
0) are only the chirality-violating (i.e., due to nonzero
quark mass) terms, their value being thus

5r (AS =0,m,, #0)=(-58*1.4)x 1073 (BS)

Using the aforementioned results in Eq. (B3) leads to

r(AS = 0,m, = 0)ex, = 0.203 = 0.004, (B6)
where the experimental uncertainties were added in quad-
rature. The uncertainty here is dominated by the experi-
mental uncertainty 6R, = £0.011, Eq. (B2). The central
value (B6) would increase to 0.204 if the gluon condensate
value (aGG) = (—1.5 + 0.3) X 1072 GeV* of Ref. [56]
was taken. The central value 0.203 of Eq. (B6) is also
obtained by using the analysis and results of Ref. [57],
but with the updated values R.(AS = 0) of Eq. (B2) and
|V,ql of Eq. (B4).
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APPENDIX C: HIGHER ORDER
TERMS IN ANALYTIC QCD

Here we summarize the general approach to calculate
higher order corrections in anQCD models, as described
first in our earlier works [13,14]. In order not to confuse the
general analytic coupling a(Q?) with pQCD coupling
ay(Q?), we will use in this Appendix the notation
A ,(Q?) for the analytic coupling.

First we note that the analytic coupling A ;(Q?) does not
fulfill the ITEP-OPE conditions (5) in any of the anQCD
models that have appeared in the literature up to now.'®
Nonfulfillment of ITEP-OPE conditions implies that the
respective beta function B(A,) = 9.A,(Q%)/dInQ? is
not analytic in A, (cf. arguments in Sec. II).
Consequently, in these models the beta function, which is
usually not known explicitly, cannot be Taylor expanded
around A, = 0, and therefore the powers A} cannot be
expected to be the analytized analogs of ap. In fact, they
usually are not. The construction of A ,(Q?), the analytic
analogs of apt(Qz)” (n = 2), is yet another important in-
gredient in anQCD.

A spacelike massless observable D(Q?), in its canonical
form, has the following perturbation series:

D (0%

and the corresponding truncated perturbation series (TPS)
is

= ay + day + dyaz + - -+, (C1)

DO = ap + dyad + -+ - dy_aly (C2)

pt
Here, ay and d;’s have given RScl RSch dependences.
Analytization means, in the first instance, to replace in
the first term ay, by A (Q?). For treating the higher order
terms, there are, in principle, several options at hand. For
instance, one could replace all powers of a by the corre-
sponding powers of A, (ap — AY). Or, as is done in
MA, one could subject each ap; to an analogous analytiza-
tion procedure as A, (if such an analogous procedure
unambiguously exists), yielding additional analytic cou-
plings ap — A, where, in general, A, # Al. In MA
such a prescription unambiguously exists. The advantage
of such a prescription in MA lies in the fact that the RGEs
ELMA)’S, as well as the RSch
dependence of JZUZMA) ’s, are identical to the corresponding
pQCD RGEs and RSch dependence once the replacements
ap — AMA are performed there [64]. We consider this
property as physically important, especially because there
is a clear hierarchy ﬂl(lMA) > |,7lgMA)| > IﬂgMA)l -+ -atall

governing the running of A

ISExcept for Ref. [31], where some of the main results of the
present work have already been summarized, and Ref. [24],
where a direct construction of an analytic coupling A, with
several parameters was performed (cf. footnote 15 in this work).
The anQCD model of Ref. [12] fulfills this condition
approximately.
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positive Q2 values. Among other things, this hierarchy
implies that the MA-analytized version of the TPS
Eq. (C2)

D@l = AMY + 4, AN + - ay_ AYWY,
(C3)

becomes systematically more RScl and RSch independent
when the truncation index N increases

2. Rg)M
IDIC RSNy — oy AYY) + O(AYY).

(C4)
d(RS)

Here, “RS” stands for logarithm Inu? of RScl u, or for
any RSch parameter ¢; = 8;/B, (j = 2).

However, when constructing anQCD models beyond
MA, by changing the discontinuity function p,(o) =
Ima, (—o — i€) appearing in the dispersion relation (6)
for le(lMA) (Q?) [11,13,14], or by different constructions of
A ,(0Q?) (cf. [7-10,12] and references therein), the mean-
ing of “analogous analytization” of higher powers agy
becomes unclear or, at best, ambiguous. On the other
hand, it is almost imperative to maintain relations (C4) in
any anQCD model with hierarchy A, >|A,|>
| A;|-- -, because then the physical condition of RScl
and RSch independence of the evaluated observables is
guaranteed to be increasingly well fulfilled at any Q% when
the number of terms increases.

Furthermore, it is preferable to have the higher power
analogs ap — A, not simply constructed as A, =
(A )", but rather by application of linear (in A ) opera-
tions on A, such as, e.g., derivatives and linear combi-
nations thereof. The underlying reason is the compatibility
with linear integral transformations (such as Fourier and
Laplace) [65]. In linear transformations, the image of a
power of a function is not the power of the image of the
function."®

The construction of higher order analogs A, (appli-
cable to any anQCD model) which obey all these condi-
tions was first presented in Refs. [13,14]. The procedure
proposed there for obtaining A, from a given anQCD
coupling A, in a given RSch, is the following: First we
define the logarithmic derivatives of A ;(u?) (where u? =
xkQ? is any chosen RScl), i.e., we define

(=D a" A, (w)

A i (W= (0?) = Bin!  a(lnu?)"

(C5)
n=12...).
In order to understand the following construction of A, ’s

given below, it is convenient to consider first the corre-
sponding logarithmic derivatives in pQCD

“Such a construction of A, (Q?), as a linear operation applied
on A,(Q?), was presented in anQCD in Refs. [13,14,20].
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(=) 9"ap(pn?)
Bin! a(Inp?)"

n=12...).

(Co)

&pt,n+l(/~l“2) =

These?” are related to the powers ap viarelations involving
the ¢; coefficients of the pQCD RGE Eq. (4)

o = ap + crag + cpag + e, (C7)
s =ap + Jcrag + e, (C8)
Apa=ap+ ", etc. (C9)

The above relations are obtained by (repeatedly) applying
the pQCD RGE. The inverse relations are

ape = Ay — C1dps + G — )apg + -, (C10)
agt = dp3 — %Cldpm + e, (C11)
ag = dps + etc. (C12)

Now we adopt the following replacement on the rhs of
Egs. (C10)—(C12):

aPIH./’le, n=12..),

(C13)

apt,n+1 = ﬂn-#l

and use the generated expressions as definitions of A ,,, the

higher power analogs of pQCD powers ag

A=Ay —c A+ B3 — ) Ay +-+, (Cld)
Ay=A; =3 A+ -+, (C15)
A=A, + -, etc. (C16)

It is then straightforward to see that the analytic (“‘an”
series obtained from the perturbation series (C1) via re-
placements a, — A, ap,—> A,

D@ =A +di Ay +dy Az + -+, (CIT)
gives the corresponding truncated analytic series
DO = A, +d| Ay + -+ -dy_ 1 Ay, (CI8)

which really fulfills the condition (C4) of increasingly
good RS independence, now in any anQCD model

20 An expansion of the Adler function in terms of Apy 1 (?) is
used in Ref. [66] for an evaluation of 7, in the context of pQCD;
this ““modified”” contour improved perturbation theory (mCIPT)
was shown there to have advantages over the standard (CIPT)
approach, most notably a lower RScl dependence of the result.
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9D(Q*; RS
d(RS)

(RS = Inu?; cy;c3;. . .).

=kyAni T O(Ay.,)
NAN+I (Ay+a (C19)

This relation continues to hold even if we truncate relations
(C14)—(C16) at the order ~ A y (including the latter).

The above presentation suggests that, instead of the
perturbation series (C1) in powers of a, a modified per-
turbation series in logarithmic derivatives dp ,+; (C6) can
be used

D QN = ap + dyaiggs + dodigs + -+, (C20)
whose truncated form is
D(QON) = ap + dyég, + - dy—1dyy,  (C21)

where “m” in the subscript stands for “modified,” and the
modified coefficients d j (Gj=1,...,N — 1) are related to
the original coefficients d;

dy=d, (C22)
32=d2—cld1, (C23)

~ 5 5,
d3 = d3 - Ecldz + (EC] - Cz)dl, etc. (C24)

When applying analytization to the modified perturbation
series (C20), via replacements (C13), we obtain a modified
analytic series (‘““man”

D(QVyan = A1 +dy Ay +dy Ay + -+, (C25)
whose truncated version is
D(Qz)gl\il]n = A, +d Ay +---dy_ | Ay (C26)

Its RS dependence is

aD(O%: RSN N
(g(RS)) =ky Ay + O(Ayir) (~Angy)

(RS = Inu?;cyics;...). (C27)
It is interesting that in virtually all anQCD models [i.e.,
models that define A,(Q?%)] holds the hierarchy A, >
| A, >|A;|>--- at (almost) all complex Q7.
Therefore, Eq. (C27) signals an increasingly weak RS
dependence of D(QZ)I[]]]\Qn when N increases, at any value
of Q% and RScl u?.

We stress that the analytic (“an’) and modified analytic
(“man”) series [Egs. (C17) and (C25), respectively], if
they converge, are identical to each other due to relations
(C22)—(C24) and (C14)—(C16).

In the specific case of MA, i.e., when A | = ﬂl(lMA) of
Ref. [4], it can be shown (using the results of Ref. [64]) that
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the above procedure, Egs. (C14)-(C16), gives the same
higher power analogs AMA a5 the analytization proce-
dure of Ref. [5] (APT) that uses the MA-type dispersion
relation involving Imap, (Q* = —o — ie)

(pt)

1 00

— f d0' ((TZ,
7 Jo o+ Q
where pnp)((]') Imap (—o — ie) (n=2,...). We note
that ﬂﬂMA) # (ﬂ(lMA))”. Furthermore, construction of
A, according to relations (C14)—(C16) in other models
of anQCD (e.g., where A is constructed from a modified
P * p(p) e.g. Refs. [11,13,14]) also in general leads to
A, # A" However, if analytic A;(Q?) = a(Q?) is con-
structed from RGE with beta function B(a) analytic at a =

0, as is the case in the present work and Ref. [31], it is
straightforward to see that construction (C14)—(C16) gives

A,=a" (n=12...). (C29)

In those anQCD models of analytic A ;(Q?) where the
aforedescribed construction gives A, # A} for n =2
(such models do not appear in the present work), using
A" instead of A, is not a good idea for at least two

reasons: (1) such a construction is formally not linear in
A, [see the discussion before Eq. (C5)]; (2) the RS

A MY(Q?) = (C28)

dependence of the resulting truncated ““power” analytic
series
D (@M = A +dy AT + -+ - dy_ AY  (C30)

is not entirely analogous to Eq. (C19) or Eq. (C27), but is
rather

2. [V]
% = ky AT+ O(AY*?) + NPy,

(C31)

where NPy, is an increasingly complicated expression of
nonperturbative terms (such as 1/Q>") when N increases,
and INP(N)I in general does not decrease when N increases.

APPENDIX D: LEADING-, (SKELETON-
MOTIVATED) RESUMMATION IN ANQCD

First we summarize here the resummation formalism for
the LB part of inclusive spacelike QCD observables in
anQCD models, as presented in [13,14]. Subsequently,
we present application of this formalism to LB resumma-
tion for the BjPSR dBj(Qz) and, in a newly modified form,
to the 7 decay ratio r.

Massless spacelike QCD observables D(Q?), in canoni-
cal form, have the pQCD (““‘pt”’) expansion (C1) in powers
of ay, where ay = ay(u*; cy,...) is defined at a given
RScl w and in a given RSch (c,, ¢3,...). In the scaling
definition of u we use the convention A = /_\, which is the
MS reference scale for RScl’s w [the so-called V scheme
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Ay isrelated to A via A2 = A% exp(C), where C = —5/3].
The considered RSch classes will be such that the RSch
coefficients B, = Boc (k = 2) are polynomials in ny, and
consequently in B, = (11 — 2n,/3)/4

Bocr = Z byBh  (k=123...).

(DD
We recall that B, = (11—2ns/3)/4 and B, =
(102 — 38ny/3)/16 are both universal (RSch-independent)
parameters. RSch’s MS and ’t Hooft are clearly special
cases of such RSch’s. The RSch independence of D(Q?)
implies a specific dependence of coefficients d, on the
RSch parameters [44]; this and relations (D1) imply that
the coefficients d,, have specific expansions in powers

of By

=c\VBy + ¢l (D2)
We note that ¢{'”, = 0. In MS RSch, the negative power
term o« 1/, does not appear. Relations (C22)-(C24) and

(D2) imply that the modified perturbation (““‘mpt’”) expan-
sion (C20) of D(Q?) in logarithmic derivatives Gpyni1 Of

Eq. (C6) have coefficients d, of a form similar to (D2)
d ) Z ~(1)BO
k=—1

Specifically, the leading-8, terms in Egs. (D2) and (D3)
coincide”

(D3)

& = chi- (D4)
The LB resummation of the inclusive spacelike D(Q?) is
obtained in pQCD via integration of apt(,uz) over various
scales u? = tQ? exp(C) and weighted with a characteristic
function F %(t) according® to formalism of Ref. [67]
oo dt _
DM@ = [P 0au03).  ©s)
The integration cannot be performed unambiguously, due
to the Landau poles of a, at low values of 7. In anQCD a,
here is simply replaced by analytic A, ( = a)
DI = ["TR0A M, o)
where now the integration is unambiguous since there are
no Landau poles. Expansion of the analytic coupling
A, (tQ%e%) around the RScl scale u?, i.e., Taylor expan-
sion in powers of £ = In[u?/(tQ%e%)], gives

2INote that By = by + biBy  (with blo = —107/16
and by = 19/4); therefore, ¢; = B/ is ~BY in the LB limit.

*The superscrlpt & indicates here that the observable is
Euclidean, i.e., spacelike.
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D) = A+ Y B A, ..

n=1

(D7)

We thus see that integral (D6), in anQCD, represents exactly
the LB part of the modified analytic (““‘man’”) expansion
(C25) in Appendix C. The truncated series of the latter is
given in Eq. (C26). We stress that the above expansion is
performed at a given RScl p and in a given RSch
[cy, c3,...—cf. Eq. (D1)]. In anQCD it is convenient to
perform explicitly the LB resummation (D6) since the in-
tegral there is finite, unambiguous, and RScl independent.

The characteristic function F %(t) for BjPSR D(Q?) =
dBj(Qz) was calculated and used in Ref. [13] (on the basis

of the known [68] coefficients cﬁ,ln) for it), and was pre-
sented in Ref. [14]
t(l - %t) r=1

4 1

The (nonstrange massless) canonical®® semihadronic 7
decay ratio r,=r,(AS=0,m,=0) is a timelike
quantity, and can be expressed in terms of the massless
current-current correlation function (V-V or A-A, both
equal since massless) [69]

2 2 d 2
== [ —82(1 - iz) (1 + 2iz)lmr[(Q2 = —3).
T Jo m: ms ms

(D9)

\Oloo

Fi(1) = (D8)

Use of the Cauchy theorem in the Q? plane and then
integration by parts leads to the following contour integral
form [50,59]:

1 +ar . . .
re =5 [ dop(1 + e?)3(1 — /?)d g (0> = m2e'?),
m™J)-7
(D10)

with dag(Q?) = —dII(Q?)/dInQ? being the massless
Adler function. In pQCD, use of the Cauchy theorem to
the expression (D9) is formally not allowed. This is so
because I1,(Q?%), being a power series in a,(Q?) [or
ay(kQ%)], has Landau singularities along the positive
axis 0< Q> = A2 In pQCD, expressions (D9) and
(D10) are two different quantities; in anQCD models
they are always the same.

The massless Adler function d,g(Q?%) is a spacelike
(quasi)observable. On the basis of the known coefficients
cS,l,B for it [70,71], its characteristic function Fq(7) was
obtained in Ref. [67], and from it and using relation (D10)
the characteristic function for r, was obtained in Ref. [72],
in the timelike LB form

*}Canonical form, in the sense that its pQCD expansion is r, =
ay + O(al).
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r(AS=0,m,=0)LP) = [m%F,M(t)%(tecm%). (D11)
0

Here, the superscript M indicates that these are
Minkowskian (timelike) quantities; 9(, is the timelike cou-

pling

1 feodo

A (s) = 7P1(U); (D12)

and the characteristic function F(r) was obtained in
[72].2*

It turns out that, in the calculations in the present work, it
is inconvenient to calculate the LB contribution to r, by
using formula (D11) which involves function 2, (s). This
inconvenience consists in the following: in this work, RGE
(15) [ & Egs. (16) and (17)] is integrated in the entire
physical stripe in the complex z plane, and as a result of
this we numerically obtain, among other things, the quan-
tity py(0) =Ima(Q* = —o — ie) = ImF(z = |z| — im)
[with |z| = In(a/u?)]; to obtain the quantity 9f;(s), yet
another numerical integration (D12) is needed, and then we
go with this 2, (s) into the integration (D11). There are too
many successive numerical integrations involved, and the
precision of calculation is expected to be low.

Therefore, we perform in integral (D11) integration
by parts, using relation d;(s)/dIns = —p,(s)/7
[cf. Eq. (D12)], and we obtain the expression of LB
in terms of the discontinuity function p,(s):

1 feodrt ~ 7
e =— [ — F,(0)py(te“m?), (D13)
mJo t
where
- dr’
0

Integration in (D14) can be performed analytically, and
the result for F,(¢) is (Cp = 4/3):

F,(1)/(4Cp)
1
= —ﬁLiz(—I)(f‘ + 613 + 182 + 10t — 12¢1n(z) — 3)
1
— 2tLiz(—1) + ——={—72In(t)[t(—21> — 47t + 6)

1728
+2(t* + 683 + 1872 + 10t — 3) In(r + 1)] — 259¢*

— 6008 — 69481> — 5184t{(3) + 7344t

+72( + 6)PIN2(0)} (1= 1), (D15)

*n fact, the quantity W, of Ref. [72] is related to FM here via
FM(1) = (t/4)W_(¢). Full expression for FM(f) is given in
Egs. (C10) and (C11) of Ref. [14]; however, a typo appears in
the last line of Eq. (11) there: in a parenthesis there, the term +3
should be written as 3#2; the correct expression was used in
calculations in Refs. [13,14].
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FIG. 13.

Characteristic function F,(f) which appears in the LB integral (D13) of r,
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: (a) as a function of r; (b) as a function of Inz.
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432

—9[(£> + 8t + 36)> + 96]In(r + 1) — 1[9r(4t + 23) + 598] — 18[2¢(¢> + 61> +

18¢ + 22) — 3]In2(¢)

+3[(3r* + 1283 + 4212 — 1841 + 111) + 12(2 + 41 + 9)(r + 1)*In(z + 1)]In(7)

+ 9t(£3 + 8¢ + 36t — 96) ln( + 1) + 432(In(1) — 2)[¢In(f) — (z + 1) In(z + 1)]

+6487(3) — 1147 + 841} - 9

The function F,(f) is continuous and monotonously in-
creases when ¢ increases. Its value is zero at ¢t = 0, and
one at t = +oo. It is depicted in Figs. 13 as a function of ¢
and Int.

APPENDIX E: INCLUSION OF BEYOND-THE-
LEADING-S, TERMS IN ANQCD

In pQCD, perturbation expansion of any massless space-
like observable D(Q?) can be written in the form (C1) or
(C20). In the considered (large) RSch classes (D1), the
coefficients d,, and d,, can be written in the form (D2) and
(D3), respectively. Leading-8, resummation (D6) repro-
duces one part of these terms, Eq. (D7). In practice, for
inclusive spacelike observables only the leading- 3, parts

i) B of coefficients d,, and d,, are known for all n [cf. also
Eq. (D4)], while the coefficients known in their ent1rety are
only the first two or three: d;, d,, and d; [ & dl, dz, d;,
cf. Egs. (C22)—(C24)]. For this reason, the most that one
can include in the evaluation of any such observable in
anQCD are all the LB contributions, Eq. (D7), and the bLLB
terms of order a?, a®, and a* ( & of order a,, ds, dy4].

In practice, the coefficients d;, d,, d3, and c(l) Bi are
calculated and given in the literature in the MS RSch
[c,(MS), c3(MS), ...] and with® RScl u? = Q2; we will

25Sometlmeq cih)s are calculated and given in the literature at

RScl u? = Q2 exp(C) = Q% exp(—5/3).

30, 27

463

It =1).
178 =1

(D16)

|denote such quantities with the bar over them. In general,
the evaluations are performed in another RSch (c,, ¢3, ...)
(e.g., in the present work the RSch as dictated by the
chosen B function used), and another RScl

w? = Q%exp(C)  (C~1).

The LB contribution (D6) is RScl independent; however, it
depends on the RSch. The truncated bLLB contribution still
has some remnant RScl dependence due to truncation, and
is RSch dependent.

The dependence of the coefficients d ; on RScl and RSch
can be deduced systematically, by the requirement of RScl
and RSch independence of the observable D and using the
known RScl and RSch dependence of the pQCD coupling

(ED)

ay(C; ¢y, 3, ...) [44]. The resulting dependence of d; is
d,= 31 + BoC (=d,), (E2)
dy=dy +[2BoCd, + BIC?] — (c; = &), (E3)
dy=dy +[3B,Cd, +3 ,8(2)62511 + B3C?]
+[_3(d1 +BoC) +3¢i1(cy — &) —3(c3—¢3),  (E4)

etc. On the other hand, the RScl independence of LB
contribution (D6) and (D7) implies for the LB coefficients
(D4) the following RScl dependence (they are RSch
independent)
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) = Z(’Z)aj},ﬁc"—k, (E5)

k=0

where CE)O) = 1 by definition. When we subtract from the

“man” series (C25) the LB contribution (D7), we obtain
the bLB contribution separately

Dl P = D (0) + D (0%)
- [ 0A 6
+ Z(Tmﬁlnﬂ, (E6)
where C = —5/3 as mentioned earlier in Appendix D,

A, are in RSch (cy c3...) and at RScl u’? =
0% exp(C), and the coefficients (T'p), are

i Bl (E7)

where c?n and CE,I,,) are related with the corresponding (bar)
quantities in MS RSch and RScl u?> = Q? via relations
(E2)—(ES). This, and application of relations (C22)—(C24)
in MS RSch and RScl u? = Q2, allows us to obtain the
first three coefficients (T'p), by knowing the first three
coefficients d, (n = 1, 2, 3) (all c(l) are known).

Another variant of evaluation of fD in anQCD is not to
perform the LB resummation (D6) in (E6), but rather use
its expanded form (D7). This leads to

(TD)n = d~n

Dman(Qz) = *ﬂl + z gn‘ﬁ"ﬂ?Lll (E8)
n=1

wherea = A, = A,(Q%exp(C); ¢, ..
obtained in Appendix C in Eq. (C25).

In principle, both series (E6) and (E8) must lead to the
same result if the series are convergent. However, in prac-
tice, only the first three terms in the sums there (n = 1, 2,
3) are known. Hence the series (E6) and (E8) truncated at
n=3

.). Series (E8) was

D(LB+bLB)(Q2)[4] f —F‘f HA, (tQ%e C)

3 ~
+ 3 (Tp)yAuit, (E9)
n=1

3
Dman(Qz)[{| = le1 + Z dn*ﬂnﬂ: (ElO)

n=1
will give in general somewhat different results, the differ-
ence being ~As(~As). In theory, the LB-resummed
truncated version (E9) is better since it includes more
contributions than the simple truncated version (E10).
Which of the two is better in practice, in the case of a
specific considered inclusive observable D(Q?), can be
decided numerically, e.g., by establishing which of the
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two truncated series has weaker variation under the varia-
tion of the RScl ( < under the variation of C). If D(Q?) is
not an inclusive observable (e.g., jet observables, etc.), LB
resummation cannot be performed since F¢ (t) does not
exist, and only the expression (E10) is apphcable in such a
case.

The bLB part of expression (E6), and the sum over
lenﬂ in Eq. (E8), can be reorganized into sums over
A,+1’s as defined in Egs. (C14)~(C16) [ A, = a""!
in our paper since B(a) is analytic in a = 0, Eq. (C29)]. In
such a case, the truncated analytic expressions analogous
to (E9) and (E10) are

D(LB+bLB)(Q2 4] — f _F<9 (A, (tQ% %)

X E11)

n=1

3
D@ = A+ Y d, A,  (E12)

n=1

The truncated series (E12) was obtained in Appendix C in
Eq. (C18). Again, theoretically, the truncated expansion
(E11) is better than (E12). All the truncated expansions
(E9)—(E12) differ from each other by ~As ~ As. Our
numerically preferred version of evaluation will be the
truncated expansion (E9).

Expressions for bLB coefficients (T'p), (n =1, 2, 3),
appearing in Egs. (E7) and (E9), are obtained from the
(usually known) coefficients d @ j= 1, 2, 3) via successive

use of Egs. (C22)—(C24) [d — d] Egs. (E2)—(E4) [d —
d;1; Eq. (ES) [ — ¢)']; and Eq. (E7).

It turns out that these coefficients are equal to the
coefﬁcients f,+, as derived in Appendix A of Ref. [14],

7,.1 = (T'p),, as it should be.?° The bLB coefficients (1),

(n =1, 2, 3) appearing in Eq. (E11), on the other hand,

turn out to be equal to expressions £, | = ﬁlll + - ;”++11)

of Appendix A of Ref. [14] when the RScl parameters C;,
there are all set equal to C.

2In Eq. (A18) for 7, = (T'p); of Ref. [14] there is a typo: in the
first line the last term should be —6192,3(c(l '+ C) instead of
—6b213c (I The correct formula was used in the calculations
there; Eqs (89)—(92) in Ref. [14], which follow from Eq. (A18)
there, are correct. In terms of the quantities of Ref. [14],
Eq. (A18) there (without the typo) can be rewritten in the form:

iy =(Tp)s
= ?4 — (1/2)(c3 = &3) = (2 — &)
X [3&() + 3(&\) + C)Bo — (5/2)e)] + 3CBoT; + 3C2 BeNy.
(E13)
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In our evaluations of BjPSR and r,, we will use d,, (n =
1, 2, 3) coefficients (in MS RSch with RScl u? = Q?) for
massless BjPSR D(Q?) = dg;(Q?) and massless Adler
function D(Q?) = daq(0?).

Coefficients d, and d, for massless BjPSR were ob-
tained in Ref. [73],

11

—5 T 280

()1 = =35 (E14)

(c?Bj)z = —35.7644 + 10.5048 8, + 6.388 89,8%, (E15)
and 5_13 was estimated in Ref. [74]
(dg)s =130 (n; = 3).

The leading- B coefficients cS,‘,B for BjPSR were calculated
in Ref. [68] in the MS RSch and at RScl u? = Q% exp(C)
(where C = —5/3). When changing RScl to u? = Q?
using an “inverted” version of relations (E5) (with cf}n) —
E,(J,Z, 55{],{) — cgk), and C — —C = +5/3), we obtain E(lll) =
[cf. Eq. (B14)]; &) = 115/18(= 6.388 89) [cf. Eq. (E15)];
and &3y = 605/27(~ 22.4074).

Coefficients d, (n =1, 2, 3) for the massless Adler
function were obtained in Refs. [75-77], respectively

(daa)1 = 35 + 0.6917728,, (E17)

(E16)

(dpgq), = —27.849 + 8.226 128, + 3.1034582, (E18)
0

(daq)z = 32.727 — 115.1998, + 49.523733

+2.180043. (E19)

The light-by-light contributions are not included in these
coefficients; however, they are zero when ny = 3, and the
value ny =3 is used in the evaluation of daq(Q?) and
subsequently in the evaluation of r,. The latter observable
(with AS = 0 and the mass effects subtracted) is calculated
by wusing the massless Adler function dag(Q? =
m2exp(i¢)) in the contour integration (D10).
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Specifically, applying this contour integration to the ana-
lytic expansion (E6) of the Adler function, we obtain

(rf)%£1+nLB) = rg'LB) + Z(TAdl)nI(*/;zanrl’ C)’ (EZO)
n=1

where

I(jzln-u,c)
:%,[Jrﬂdﬁb(l +e?P(1—e?) A, (Cmie'?), (E21)

and r(TLB) is given in Eq. (D13). In practical evaluation, the

sum in (E20) is truncated at n = 3

1 feodt . 5
(sl = 2 [TEE 0y )
T Jo

3
+ Z (TAdl)nI(ﬂn+ 1 C)

n=1

(E22)

The other three analytic versions of evaluation are obtained
by contour integrating, via (D10), the analytic truncated
series (E10)—(E12) of massless Adler function D(Q?) =
dpa(Q?):

3 ~
(r e = 1A, C) + Y (daa)ad (A1, C),  (E23)

n=1
1 fedt - >
(r, EB+nLB)[4] = /0 TFr(t)pl(tecm.zr)

3
+ (tAdl)nI(ﬂn-%—lr C)’ (E24)
=1

n

3
(r) = I(ALO) + Y (daa)ud (A1, C).  (E25)
n=1
Again, all four versions of the anQCD evaluation of r,

differ from each other by ~ﬁl5 ~ As. The truncated
expansion (E22) is our numerically preferred version.
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