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We compute the conversion factors needed to obtain the MS and renormalization-group-invariant (RGI)
up, down, and strange quark masses at next-to-next-to-leading order from the corresponding parameters
renormalized in the recently proposed RI/SMOM and RI/ SMOM,, ' renormalization schemes. This is
important for obtaining the MS masses with the best possible precision from numerical lattice QCD
simulations, because the customary RI”’/MOM scheme is afflicted with large irreducible uncertainties
both on the lattice and in perturbation theory. We find that the smallness of the known one-loop matching
coefficients is accompanied by even smaller two-loop contributions. From a study of residual scale
dependences, we estimate the resulting perturbative uncertainty on the light-quark masses to be about 2%
in the RI/SMOM scheme and about 3% in the RI/ SMOM,, ' scheme. Our conversion factors are given in
fully analytic form, for general covariant gauge and renormalization point. We provide expressions for the

associated anomalous dimensions.
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Lattice QCD has, in recent years, seen important
progress on several fronts: there exist lattice regulariza-
tions preserving exact chiral symmetry in the limit of
vanishing quark masses, while algorithmic and technologi-
cal advances have put lattices fine enough to simulate
physical light-quark masses within reach. As a result, non-
perturbative results in the physics of light quarks with a
precision of a few percent or better become achievable with
current or upcoming simulations [1]. These include the
masses of the light quarks, as well as hadronic matrix
elements such as By, figuring prominently in the unitarity
triangle analysis. At such high precision, choices of
renormalization scheme and associated perturbative
higher-order effects become an important source of uncer-
tainty. Two standard methods have emerged: the use of
momentum-space subtraction schemes that can be non-
perturbatively implemented on a lattice [2] and the
Schrédinger functional method [3], where so-called
renormalization-group-invariant (RGI) masses and matrix
elements are obtained via a direct implementation of the
renormalization group on the lattice. Within the former
approach, parameters need a further conversion to purely
perturbative schemes such as MS [4], where short-distance
QCD and new-physics effects are best tractable.

It has recently been realized that the standard
RI”/MOM prescription suffers from a strong sensitivity
to IR effects [5], which has become the dominant source of
uncertainty on the lattice. This is paralleled by unusually
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large higher-order terms in the perturbative conversion
factors [6]. A modified scheme with much better IR be-
havior has recently been proposed and called RI/SMOM
[7]. In this work, we study the renormalization of the
pseudoscalar (nonsinglet) density, which by virtue of chiral
symmetries is related to the renormalization of the quark
mass, and obtain the next-to-next-to-leading-order
(NNLO, two-loop) conversion factor, allowing to obtain
MS light-quark masses from their counterparts renormal-
ized in the RI/SMOM scheme, or its variant RI/ SMOM“,
as “‘measured” on the lattice. We find much smaller per-
turbative corrections than in the RI”)/MOM case, extend-
ing one-loop findings in [7] and implying percent-level
uncertainties on the MS masses.

I. RI'’/MOM, RI/SMOM, AND RI/SMOMYF

In the RI'’/MOM renormalization scheme for the quark
field and mass, two conditions, [2]

. 1 _
rgiffoﬁ tr[SRl(p)p]|p2=7,u2 = -1 (1
Jim e ISR Py =1 @)

are imposed on the inverse quark propagator Sip! =
Z,'S'. The bare quark propagator Sy is defined through
(our notation closely follows [7])

— iSy(p) = j dxeP TP F50), ()
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and the traces are over color and Dirac indices. (1) and (2)
determine the renormalization constants Z, and Z,, relat-

ing bare and renormalized field and mass, ¢ = Z[l,/ 21// B
and mp = Z,,mp. Both renormalization constants depend
implicitly on the regulator (lattice, dimensional regulari-
zation, etc.) and on the gauge coupling and the gauge
parameter. A virtue of the RI'’/MOM scheme is that it
can be implemented nonperturbatively on the lattice as
well as in dimensionally regularized continuum perturba-
tion theory. The RI'’/MOM field and mass can then be

converted perturbatively to the MS scheme via ¥5 =
(ZI‘}AS/Z?I /MOM)1/2 lpl;I /MOM and m%[s _ ZI,\,,/IS/ZEI /MOM><

RI'/MOM _—
my /MOM "\ here all renormalization constants have to be

computed with the same (but otherwise arbitrary) regula-
tor. Both conversion factors are known to three-loop accu-
racy [6,8]. However, the perturbation series does not
converge well, and this constitutes a drawback of using
the RI'’/MOM scheme for extracting light-quark masses
from lattice simulations. Another issue is the influence of
nonperturbative long-distance physics. This is most clearly
seen by considering (nonsinglet) axial-current Ward iden-
tities such as

g, M5 5(p. ") = S5' (p")ys + vsS5' (p)
+ i(m,p + myp)App(p, p), (4

where ¢ = p — p’, and the bare vertex functions A ; for
the axial current and Ap p for the pseudoscalar density are
defined through

Sg(p)A) (P, p)SE(p)

= [ dxdye? e (T ([iigy  y5s)Oup()50)), (5)

SB(p/)AP,B(p’ P")Sg(p)
- ] dxdye? e (T (iigysss)Oup(X)550)).  (6)

(4) holds for a regulator which respects chiral symmetry (in
the limit mp — 0). This is the case for certain lattice
regularizations and for dimensional regularization with
anticommuting ys. (The use of anticommuting 75 is un-
problematic here, as (4) and the formulae below do not
involve closed traces containing odd powers of ys.) To
preserve (4) under renormalization, the axial current must
not be renormalized, and the renormalization constant Zp
of the pseudoscalar density must satisfy Zp = Z,,!, where
Zp can be fixed by imposing the condition

Ar(P% P %) = Z,' ZpAg(p* P q7)

= 7,1 Zpt{Aps(p, p)ys1=12  (7)

at a suitable subtraction point. The choice p? = p”? =

—pn?, ¢*=0 corresponds to (2). But at ¢*> =0,
App(p, p') receives contributions from the kaon
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(pseudo-Goldstone) pole, which diverge in the chiral limit
mgr — 0 [2], and is sensitive to condensate effects sup-
pressed only by (Aqcp/wm)* [5]. In [7], a modified renor-
malization scheme, termed RI/SMOM, was proposed,
which is less sensitive to these effects. In that scheme,
(7) is imposed at the symmetric point p> = p? = ¢> =
— u?. Following [7], we will consider a more general
kinematic configuration p?> = p”? = —u?, ¢> = —wu’
below, and define conversion factors

CRI/SMOM _ ~RI'/MOM _ Zy® _ 1222 (8)
! ! ZNMOM (=)’
CRI/SMOM () Zs IS g p(—u?)

ZRI/SMOM ) Wrg(—p? —p2 —ou?y

9)

where o(p?) = u[S;'(p)p]. The rightmost expression
in (9) has a straightforward perturbation expansion.
Moreover, in [7] a variant scheme RI/ SMOMVM was in-

troduced where the field renormalization condition (1) is
replaced by the requirement

Kr(p% P2 ) = Z, As(p2 P ¢)
|
= 72, ul A% (p, P)ysy,]=48, (10)

which implies conversion factors

RI/SMOM,, 482m
Cy “(w) = o (1])
Ap(— % —u?, —wu?)
ZM_S)Nl —u? —u? —w'u?
CRY/SMOMy, (- oty — Zn A po B “’f). (12)
4rg(—p?, —p* —op?)
The schemes for field and mass are converted as
wMS (CX)I/ZI//X MS Cil(l X) (13)

where X = RI/SMOM or RI/ SMOM,,,

We note that C§ and Cj, depend on Inu?/v* = Inr,
where v is the dimensional renormalization scale, and
implicitly on » through the scale dependence of «; and
the gauge parameter &. Setting u = v allows relating the
anomalous dimensions in the RI/SMOM schemes to those
in the MS scheme [9-12] according to

X _ m_[ﬁ(ax) d
PRI

0
6(as,§>a—§]ln0§,|r=1, (14)

Ym = Vm

Y _ m_[ﬁ(as) d

J X
_ : a(%)-i-ﬁ(as,f)a—f]lncqb_l. (15)

Yq=7q

Here, we use the definitions (which conform to [7])
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d d
Y Y — 2 Y Y. .Y — 2 Y
YmM' = p-——m’, Yo' =207 —— ", (16)
dMZ q d,u2
d o d
B(a’x) - 1“2 dﬂz > 5(asx 'f) = /"L2 d,LLz é‘:, (17)

with ¥ = MS or RUSMOM or RI/SMOM,, .

II. NNLO COMPUTATION

We now compute the conversion factors to O(a?) in
dimensional regularization (d = 4 — 2¢). Let us denote

o= —4N.p* + oV + @ + 0(a3), (18)
A=4N,+ AD + 1@ + O(a?d), (19)
A=4dN, + AV + 3? + 0(a?), (20)

where the superscripts denote the loop order. ", AV, and
A1) have been evaluated in [7]. For the present computa-
tion, we also need their O(e) parts, which will affect the
O(a3) results for C, and C,,. Taking the traces and em-
ploying partial fractions, we obtain

o (p2) = 4N Cp(— )~ T2 (e
X {Wg(l, 1+ %g(z, 1)}, 21

Ay d_(l_f)
b2

X {q2j(1, L1 p2 p2 gd) + g(l, 1evee
V2 \e 2 \e
[ e e i
_pZ _p/2
T2 2y ) 2 2
R0 2 ) = 2N Cr it - 277 (@ = 2)
X (1= &)(p>+ p™]iQ, 1,15 p?, p?, ¢%)

v? \e
= 2(d=2)(1 - §)g(1, 1)e”f(_—qz)

+[2(1 - &)g(1,2) + ((d — 2)?
+(d =41 = £)g(1, D]er=

2 2
1% € v €
A G @
—p? —pP
where yp is the Euler-Mascheroni constant, v is the di-

mensional renormalization scale, and [13]

Iy, +v,+e—2)I'Q—e—v)I'2—€e—1,)
F(v ) (w)I(4 — v — v, — 2e) '

A5 (P, ™ ¢7) = 4N Cr

g(vy,vy) =
(24)
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The function j results from a massless triangle, via
Vi, V), V3, ’ > = —€
J\V1, V2, V35 P, P2y P3 1672 Ao
d'k 1
X . (25)
|

with p; = —(p; + p,). Several cases have been evaluated
in [14] (our j is essentially their J), in particular

2 €
v eVE) I'l+e)

j(lyl,l;p%p%yp@:( g —(®W(x,y)
- D3 D3

+ e (x,y) + O(e?)), (26)

where x = p?/p3 and y = p3/p3. The functions ®(x, y)
and W (x, y) have been given in [14] in terms of poly-
logarithms up to second and third order, respectively.

At the two-loop level, the relevant diagrams are shown in
Fig. 1. They can be represented in terms of three master
“topologies™ (Fig. 2), which may be called “propagator,”
“ladder,” and ‘“‘nonplanar,” with their propagators raised to
general integer powers. For the latter two topologies, irre-
ducible numerators occur. The set can be reduced by stan-
dard reduction techniques and a systematic application
integration-by-parts (IBP) identities. For this we employ
the program FIRE [15], a public implementation of
Laporta’s algorithm [16] and the method of S-bases [17].
A subtle aspect of the IBP reduction is the occurrence of
quadratic and simple poles in € in the coefficients of the

iﬁif‘%ﬁf%

ANJL WA
AAA A L

FIG. 1. Two-loop propagator and vertex diagrams. The grey
blobs indicate a sum over all one-loop corrections to a propa-
gator; the black boxes indicate an insertion of a fermion bilinear.

AR Q

FIG. 2. Basic three- and two-point topologies: ladder, non-
planar, propagator (from left to right).
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resulting integrals. In a two-loop computation, this leads to
poles of up to fourth order. On the other hand, the Feynman
diagrams have poles of at most second order, entirely of
ultraviolet origin. The spurious third- and fourth-order poles

cancel, which constitutes a check of the computation, but
|

JL L2+ ep? ol p )—( . ev) T(1+e)(—p2)2e

3

2(1 + €)xy
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they also imply a possible dependence on terms up to O(e?)
in the € expansion of the master integrals remaining after
the reduction. We find that only known master integrals
[14,18,19] are needed. In practice, we employ the O(e?)
part of j(1, 1,2 + €) instead of the results in [19]. Denoting

1 1 a? 5 5
——+2In(xy) + € Y 2(In“x + Iny) — InxIny
€

31— x— y)dU(x, y)] + 25 (x, y) + (9(&)),

we find that

1 1 11
=0 2) = 5 00 x) - Q@)(L —) ~ (- 6W () +
X

1

X

5(1)(1’ ) _

—Q(z)(x x) + 3P (x, x) — —ln x +14£(3) + lnx<? + ~ W (y, x))

In’x + 14£(3) + lnx<(3 — 6x)PW(x, x) — 772), (27)

(28)

The function Q® arises in evaluating ladder master integrals [14,18] and is given there in terms of polylogarithms.
Combining all terms and MS-renormalizing the gauge coupling and gauge parameter, we obtain

2
Cn (w)=1 477_C 5 —d b 4— ¢+ 3Inr e CriN, 28 2 4 12£(3)
2 2 2 2
+307—1—65 I 1312 +|:301 3§_§__l3+§1nr_7+3§ ](D(1)<1 1) 9+6&£+ €
12 4 24 4 8 4 4 0 8
11 + 11 11 1
X CID(”( —) + w®?(1, w) — 3 f(b(z)(_ —)) + nf<g + [lnr - —:ICI)“)( —) B Inr + In r)
0w w 0w w 12 0w w 3
2 2 9+ +
i(—B —26— f [ +&+ g I 5 :|<1><1>< ) 21 6§ r—nlr
N.\ 16 4 4
2
L f<1><2>(1 1) Q<2>(— —) Q2(1, w) — [5 +§+§_+ ]q)(l)( ) )}+ O(ad), (29)
2 0 w 2 w 8
RI/SMOM 3¢ 1—-¢& —1+¢& 1 a;\2 71 35¢ 5&2
ot S b D) (e
C ( ) CF(l 2 flnr lnw a) q) w a) 477. CF NC 144 4 8
3 9§ 11 19¢ & ( ) ] 3¢ [223a) —-259 w+20. &2
=+ =2+ + (- -= + -2
—22/03) [ 2 1 g &)nw |Inr 1 In%r 0 S 3 S
_ _ _ 2 _ 2
+22(1 )+ Bw 12)§1nr+ 1+ (w 2)§+§ ]q)(l)(l 1) 259 —180& +9¢ o
Rw 4w 0 w 72

1

(U(U

+(] _E)zlnzw-i-( —w— §) (D(l)(
8 8w

¥

+¥Q(2)(1’ 0) - §Q<2>< 1>+2¢<2>(1,w)
a)

3—2a)—§ 1 1 5 _l+he 5 (1—a))(5—3lnr) 1 1
2 2 _ 2 _ 2 _
(16 g 75 +3(1 - 5)5(3)—iln2r+ﬂlnw+[3 zi”f +§(14 f)1nw]1nr
(1—¢)? 13 1 6+w f(l—w .f) l-l-a)+§(a)—2)+§2
T3 1“2“’+[§+E_ S0 1 2w 4w 4o mw]
11 1+ w?2—w)—260—w)+ & 11 1-¢& 11
) (1) 2
X (w w) 8w? q)l(a) a)) 2w 20 2 (a) a))

gy, w))} +0ad),

(30)
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- + 20+ (0 —
oMM (w0, 0) = 1+ CF( 5-Ei3inr+ L S+ LF20 Y @ l)fqﬂ)(l 1))
47 2 2 2w w
a,\? 8539 3¢ 52 33— 35 51 —54& —9¢? 111+ &2
+ (= + | —
(47T> CF{N ( 44 4 8" £G)+ 72 Inw [ 4

382 -13 13, 151+ 7340w 2w —3 2 134 8&+ &2
+= = -—= + + -—= = > >
o lnw]lnr 1 In“r [ T 1o & S 2 Inw
+3(1—w)§2_13(1+2w) ]q)(l)( 1) 3+6w+(5w—2)§+(w—1)§2q)(1)(1 1)
12w o o 8w o W
+w+ — —
L 90 ) — STl DE <2>( 1)_¥Q<2>(1, ) +ﬁg(2)(l,l))
2 2w o w 4 8 0w w
_ + _ 2
+ nf(@ Fintr— D ine + 0@ 15, (¥ 20)@Inr ) <I><'>(i,i)) + i(—6—5 —¢-E
7\ 36 9 3 9w 0w w N, 16 4
9 , 54L& 27 3¢ 3(1—¢) 1+ ¢
—3(1— —ZIn¥r+—=° heo+|=>=+=- -—=200
3(1 - £6€)2(3) 4ln r 1 Inw [4 1 , lnw]lnr 091, w)
9(2)(1 1) 1—§+w(1+§)®<2)(1 1) [—7+2§+§2_4+5§+§2]®(1)<1 1)
o W 2w w w 8w 8 w W
2 _ _ &2 _ I SN
N [9 T106+38 5-46—¢ (1 -wé-3-6w
8 dow dw
11+ 8¢+ &2 11
+#mw]¢m(_,_)>} + 0, (31)
8 0w w

where r = u?/v?, n; is the number of quark flavors, and
O is glven in terms of polylogarithms in [14]. The
function W) has dropped out of the final results. We do
not know the origin of this cancellation, involving many
different terms, including the @(e) one-loop terms. As an
elk test, setting w = v in (29) and taking w — 0, we
recover CRl/MOM 16 81 The O(a;) terms in (29)—(31)
agree with [7] (for @ = 1 and r = 1). The most general

form C RI/SI\/IOM’“( '), defined in (12), can be obtained
from (30) and (31) as

RI/SMOM
Cy
RI/SMOM

() CRI/SMOM

()

RI/SMOM

Cu "o, ') = "o, w).

(32)

The mass and field anomalous dimensions in the two
schemes are easily obtained by substituting the expressions

(29)-(31), as well as CSMOM — CRI/MOM (6 8] and the
well-known two-loop B function into (14) and (15).
More explicitly, denoting

pla) = —p0(%) - (%) + 0@ 63

cX=1+ CX‘“( ) + CX(2>( ) +0(ad), (34
4qr 4

[

where p = m or p = g, X =RI/SMOM or RI/SMOMYF,
BO = (11N, —2n;)/12, BY = (34N? — 10N.n; —
6Crny) /48, and the remaining coefficients can be read off
(29)-(31), we have to NNLO:

__ a,\2
vE = S +4p0CU (3] + HpOnes® — ()]

3
n 4[3<1)C§<1>}(%ST) + A%+ O(a)). (35)
Here,
X
= 5(ay, HICY] lacf (36)

which vanishes in the Landau gauge, is again straightfor-
ward to evaluate to O(a?) from (29)—(31) and the perturba-
tion expansion of & defined in (16). Gauge invariance
implies 6 = y,&, where vy, is the anomalous dimension
of the gluon field (defined analogously to (16)) [20-22],

giving

Y

3-3 2

()P e T )
+ 0(ad). L (37)
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III. PHENOMENOLOGY

To explore the phenomenological consequences of our
result for QCD with three dynamical light quarks (as in
nature, and in modern unquenched simulations), we set
ny = 3. Figure 3 shows the conversion factor C,,(w) in the
Landau gauge. We observe that the NNLO correction, like
the NLO term, is very small at the SMOM point w = 1.
This is in contrast to the RI’/MOM scheme w = 0, where
even the next-to-next-to-next-to-leading-order (NNNLO)
correction [6,8] is large (dot in the figure). To estimate
the effects from uncomputed O(a?) terms, we vary the
renormalization scale (matching scale) v used in the con-

version and evolve CEI/ SMOM(w = 1; v) to the fixed scale
m =2 GeV, which gives a formally v-independent num-
ber [23,24]. The result is shown in Fig. 4. The width of each
band, due to the uncertainty on a,(M,) = 0.1184 =
0.0007 [25], is almost negligible. This is a consequence
of the smallness of the NLO and NNLO corrections.
We observe that the NNLO result is almost scale-
independent. Alternatively, we can convert the MS mass
to the RGI quark mass employing the relevant expressions
in [24], which is also scale-independent. The result is
similarly stable under scale variation, but the «, depen-
dence is a bit more pronounced. A slightly larger residual
scale dependence is found for the RI/ SMOMM scheme.

Numerically, we obtain

mMS(2 GeV)
= (0.97983%]  *9%4| , )mR/SMOM(2 GeV),

+0.003
ho.—0.003 o,

)mRI/SMOM (2 GeV)

0.932+2030

-
mRO = (253093
(

>mRI/SMOMm (2 GeV),

| +0.02
ho.—0.02] o,

_ +0.07 +0.03 RI/SMOM
= (2412004 10 003 ax)m (2 GeV),
0 0.2 0.4 0.6 0.8 1
1 1
0.95 0.95
3 09 0.9
s
2 085 0.85
@
T 08 0.8
0.75}* 0.75
0.7 0.7
0 0.2 0.4 0.6 0.8 1

w

FIG. 3 (color online). Conversion factors CFHI/ SMOM 4 function

of w = ¢*/p? at LO (top/red), NLO (middle/blue), and NNLO
(bottom/black), and CRI/MOM — CRI/SMOM 5y ¢ NNNLO (dot).
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1 1.5 2 2.5 3 3.5 4

1.1 1.1
1.05 1.05
g 1 / 1
=
@
T 095 0.95
0.9 0.9

1 1.5 2 2.5 3 3.5 4
v

Residual matching-scale dependence of

FIG. 4 (color online).
the conversion factor C}},I/ SMOM ot @ =1 at LO (red), NLO

(blue), and NNLO (black).

corresponding to a perturbative uncertainty of less than
2%, or about 2 MeV, for the strange quark mass, when
converting from the RI/SMOM scheme, and about 3% for
the RI/ SMOM” scheme. As the absolute size of the NLO

and NNLO corrections is also larger for the RI/ SMOMW

scheme, we advocate the use of the RI/SMOM scheme
together with an appropriate error estimate in extracting
results for the light-quark masses.

IV. CONCLUSION

We have computed the RI/SMOM — MS and
RI/SMOM, — MS conversion factors for the quark

mass to NNLO and shown that the RI/SMOM and
RI/SMOMW schemes, designed to reduce sensitivity to

low-energy nonperturbative physics, are perturbatively
very well behaved, too. These schemes thus may be used
to extract quark masses with percent-level accuracy from
numerical lattice QCD. An important question is whether
the same holds true for other quantities of interest, such as
By and other hadronic matrix elements.
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firm our result. They also give the corresponding field
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and mass conversion factors Cy and C,,
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for the R1/ SMOMh scheme, as well as expressions for the
NNLO anomalous dimensions in both schemes. In this
revised version, we have given expressions for those quan-
tities, as well. Specializing to @ = w’ = r = 1, our results

(5]
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(71

(8]
[91
[10]
(11]
(12]

[13]

[14]
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for the Cil‘ agree with the results in [26]. Setting further
& = 0, we agree with the results for yf; given there, up to a
global sign difference [27].
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