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We have studied the one-meson radiative tau decays �� ! ���
�ðK�Þ�, computing the structure-

dependent contributions within a Lagrangian approach based on the large-NC limit of QCD that ensures

the proper low-energy limit dictated by chiral symmetry. Upon imposing the short-distance QCD

constraints to the form factors, we are able to predict the structure-dependent radiation without any

free parameter and, therefore, the relevant observables for the decay �� ! ���
��: the photon energy

spectrum, the invariant mass spectrum of the meson-photon system, and the integrated decay rate. We also

discuss the remaining uncertainties in these observables for the �� ! ��K
�� decay. According to our

results, the present facilities could detect these rare decays for the first time in the near future, allowing for

a stringent test of our predictions.
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I. INTRODUCTION

The decays of the � lepton are an ideal benchmark to
analyze the hadronization of the spin-one QCD currents
and to learn about the treatment of the strong interaction
involving the intermediate meson dynamics in rather clean
conditions, since the electroweak part of the decay is under
good theoretical control and the light-flavored hadron
resonances rule these processes [1–12].

Among the various exclusive tau decays, we are in this
article particularly interested in the one-meson radiative
tau decays, i.e., � ! �ðKÞ��. Unlike in many of the multi-
pseudoscalar tau decay channels, where the excited vector
resonances (such as �0, K�0) could play a significant role
due to the kinematics effects, the channels we are going to
study here should be less influenced by the excited reso-
nances, since the lowest vector resonances, such as �ð770Þ,
K�ð892Þ, could already decay into �ðKÞ� at their on-shell
energy regions. So these radiative decay processes can
provide us with an excellent environment to investigate
the lowest resonance states. On the experimental side,
these channels have not been detected yet, which makes
our analysis more meaningful since the current work could
serve as a helpful tool for the measurements of these
channels in the B- and tau-charm factories in the near
future.

The decay amplitude for the one-meson radiative decay
of the � includes an internal bremsstrahlung (IB) compo-
nent, that is given by QED, and thus can be calculated
unambiguously to any desired order in perturbation
theory. In addition, one has the structure-dependent (SD)
part, dominated by the effects of the strong interaction.
Lorentz symmetry determines that there are two indepen-
dent structures, the so-called vector and axial-vector form
factors that encode our lack of knowledge of the precise
mechanism responsible for hadronization.

One then has to rely on parametrizations of these form
factors. Some of the earliest attempts can be found in
Ref. [1]. The so-called Kühn-Santamarı́a model [6] be-
came a very popular approach. For a given meson mode
it proceeds as follows: It normalizes the form factor using
the lowest order contribution stemming from the low-
energy effective field theory of QCD in the light-flavored
sector: chiral perturbation theory, �PT [13–16]. Then the
form factor is constructed in terms of Breit-Wigner func-
tions weighted by some unknown parameters (to be fitted
to data) in such a way that it vanishes at infinite transfer
of momentum in order to obey a Brodsky-Lepage
behavior [17,18]. This procedure was used successfully
to describe the ARGUS data on the � ! ����� decays
[19]. However, as the data became more precise [20], it
was shown that there was room for improvement [8,12].
Among the theoretical reasons for this, one finds that in the
low-energy limit this model is not consistent with �PT at
Oðp4Þ [8,21]. Assorted versions of the Kühn-Santamarı́a
model have been used for several two- and three-meson tau
decays [3,22] and also for the radiative one-meson decays
we consider in this article [4]. In general, these works made
following Ref. [6] suffer from additional problems, as
discussed in Ref. [23]. In fact, arbitrary parametrizations
are of little help in order to comprehend the characteristics
of the hadronization procedure independently of their
eventual success in describing experimental data. The
best procedure in order to investigate this problem should
be to build the relevant form factors upon as many QCD
features as possible.
The TAUOLA library [24] is currently the most relevant

tool to analyze tau decay data. Although it only incorpo-
rated the Kühn-Santamarı́a models at first, it was enriched
with parametrizations by the experimental collaborations
ALEPH and CLEO (collected in Ref. [25]) in order to
explain their data. In the B-factories era, however, it has
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become evident that this strategy is not adequate, and

TAUOLA has been opened to the introduction of matrix

elements obtained within other approaches that include

more properties stemming from QCD. This makes it an

excellent tool to exploit the synergies of Monte Carlo

methods and theoretical approaches to better understand

the large data samples of high quality obtained at the

B-factories (BABAR, Belle) and the �-charm factories,

such as BES-III. This is thus an appropriate benchmark

where the results of our research can be applied.
Although one knows the underlying theory, QCD, this

kind of study is rather involved since there is no fully

analytic way of relating the final state mesons that are

detected to the quark and gluon degrees of freedom of

the QCD Lagrangian. Moreover we are in the nonpertur-

bative regime of the strong interaction (E & M� �
1:7 GeV), so any perturbative treatment within QCD will

not be a good approach to the problem.
At very low energies (E & M�, beingM� the mass of the

�ð770Þ resonance), the chiral symmetry of massless QCD

rules the construction of an effective field theory that

allows a perturbative expansion in momenta (p) and light

quark masses (m), as ðp2; m2
�Þ=�2

�, with �� � 4�F�M�

being the chiral-symmetry breaking scale. m� is the pion

mass and F is its decay constant, with the normalization of

F ¼ 92:4 MeV. This theory is �PT, that drives the hadro-
nization of QCD currents into the lightest multiplet of

pseudoscalar mesons, including �, K, and � particles.

This framework was applied to the two- and three-pion

tau decays in Ref. [26], and it was checked that it provides

a right description of the low-energy data although it was

incapable of providing a good parametrization for the rest

of the spectrum. This study put forward that whatever

structure due to resonance exchange the form factors

may have should match the chiral behavior in the limit

where �PT applies. As we brought forward before, the

Kühn-Santamarı́a models already fail to fulfill that condi-

tion at Oðp4Þ in the chiral expansion [8,21].
We shall extend �PT to energies E * M�, where the

expansion parameter of �PT is no longer valid. In fact, it is

not known how to develop a dual effective theory of QCD

in this region. However, there is a construct that has proven

to be useful in this regime, shedding light on the appro-

priate structure of the Lagrangian theory, that we could use.

This is yielded by the large-NC limit of SUðNCÞ QCD [27],

which introduces the inverse of the number of colors (three

in the real world) as the parameter to build the expansion

upon. In our context, it amounts to considering a spectrum

of an infinite number of zero-width resonances that interact

at tree level through local effective vertices. This frame, as

we will see, can be used to establish a starting point in the

study of the resonance region and consequently in the

hadronic decays of the tau lepton we are dealing with.

The setting recalls the rôle of the resonance chiral theory

(R�T) [28,29] that can be better understood in the light of
the large-NC limit of QCD as a theory of hadrons [30,31].
The theory, although built upon symmetries guided by

the large-NC expansion and reproducing the chiral behav-
ior in the low-energy region, is still missing an ingredient
of QCD. At higher energies (E � M�), where the light-

flavored continuum is reached, perturbative QCD is the
appropriate tool to deal with the description of interactions,
which is given in terms of partons. Awell-known feature of
form factors of QCD currents is their smooth behavior at
high energies [17,18]. Then it is plausible that the form
factors match this behavior above the energy region where
the resonances lie. A complementary approach is given by
the study of the operator product expansion (OPE) of
Green functions of QCD currents that are order parameters
of the chiral symmetry breakdown. Refs. [32–37] have
evaluated these Green functions within a resonance theory
and proceeded to match the outcome to the leading term of
the OPE at high transfers of momenta. As we commented
earlier, it is crucial to take into account this high-energy
information to settle a resonance Lagrangian that imple-
ments as many QCD features as possible, whence the
described procedure will help to establish relations among
some of the Lagrangian couplings, and eventually fix
others [37].
We will consider the SD description of the processes

�� ! P���� (P ¼ �,K) within the framework of R�T as
introduced in this section and discussed in detail in the
following section. These channels have not been observed
yet, which is strange according to the most naı̈ve expecta-
tions of their decay rates. Clarifying this question is one of
the main motivations of our study.
The relative sign between the IB- and SD-dependent

parts motivated an addendum to Ref. [4]. This confusion
was caused by the fact that they did not use a Lagrangian
approach. In any such approach this should not be an issue.
In order to facilitate any independent check, we define
the convention we follow as the one used by PDG [38] in
order to relate the external fields r�, l� with the physical

photon field

r� ¼ l� ¼ �eQA�; (1)

where e is the electric charge of the positron and the
charge matrix of the three light-flavor quarks is Q ¼
diagð23 ;� 1

3 ;� 1
3Þ. Determining the relative sign between

the structure-independent (SI) and dependent contributions
is an added interest of our computation.
The SI part of the process has been discussed in [4]. We

will compute the SD part using the Lagrangians in Sec. II.
The kinematics and differential decay rates are discussed
in Sec. III, as well as the general form of the matrix
elements and the spectra. The structure-dependent form
factors for each mode are computed in Secs. IVand V. The
QCD short-distance constraints are presented in Sec. VI,
and the phenomenological implications are detailed in
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Sec. VII. Finally, we summarize and discuss our results in
Sec. VIII.

II. THEORETICAL FRAMEWORK

The hadronization of the currents that rule semileptonic
tau decays is driven by nonperturbative QCD. As men-
tioned in the Introduction, our methodology stands on the
construction of an action, with the relevant degrees of
freedom, led by the chiral symmetry and the known asymp-
totic behavior of the form factors and Green functions
driven by large NC QCD. We will present here those pieces
of the action that are relevant for the study of one-meson
radiative decays of the tau lepton. Hence we will need to
include both even- and odd-intrinsic-parity sectors.

The largeNC expansion of SUðNCÞQCD implies that, in
the NC ! 1 limit, the study of Green functions of QCD
currents and associated form factors can be carried out
through the tree-level diagrams of a Lagrangian theory
that includes an infinite spectrum of strictly stable states
[27].1 Therefore the study of the resonance energy region
can be performed by constructing such a Lagrangian the-
ory. However, it is not known how to implement an infinite
spectrum in a model-independent way. Moreover, it is well
known from the phenomenology that the main role is
always played by the lightest resonances. Accordingly, it
was suggested in Refs. [28,29] that one can construct a
suitable effective Lagrangian involving the lightest multip-
lets of resonances and the pseudo-Goldstone bosons (�, K,
and �). This is indeed an appropriate tool to handle the
hadronic decays of the tau lepton and the pion form factors
[8–12,40–42]. The guiding principle in the construction of
such a Lagrangian is chiral symmetry. When resonances
are integrated out from the theory, i.e., when one tries to
describe the energy region below such states (E � M�),

the remaining setting is �PT, reviewed in Refs. [43,44].
The very low-energy strong interaction in the light quark

sector is known to be ruled by the SUð3ÞL � SUð3ÞR chiral
symmetry of massless QCD implemented in �PT. The
leading even-intrinsic-parityOðp2Þ Lagrangian, which car-
ries the information of the spontaneous symmetry breaking
of the theory, is:

L ð2Þ
�PT ¼ F2

4
hu�u� þ �þi; (2)

where

u� ¼ i½uyð@� � ir�Þu� uð@� � i‘�Þuy�;
�� ¼ uy�uy � u�yu; � ¼ 2B0ðsþ ipÞ; (3)

and h. . .i is short for the trace in the flavor space. The
Goldstone octet of pseudoscalar fields,

�ðxÞ ¼
1ffiffi
2

p �0 þ 1ffiffi
6

p �8 �þ Kþ

�� � 1ffiffi
2

p �0 þ 1ffiffi
6

p �8 K0

K� �K0 � 2ffiffi
6

p �8

0
BB@

1
CCA;
(4)

is realized nonlinearly into the unitary matrix in the flavor
space

uð’Þ ¼ exp

�
iffiffiffi
2

p
F
�ðxÞ

�
; (5)

which under chiral rotations transforms as

uð’Þ ! gRuð’Þhðg; ’Þy ¼ hðg; ’Þuð’ÞgyL; (6)

with g 	 ðgL; gRÞ 2 SUð3ÞL � SUð3ÞR and hðg; ’Þ 2
SUð3ÞV . External hermitian matrix fields r�, l�, s, and p

promote the global SUð3ÞL � SUð3ÞR symmetry to a local
one. Thus, interactions with electroweak bosons can be
accommodated through the vector v� ¼ ðr� þ l�Þ=2 and

axial-vector a� ¼ ðr� � l�Þ=2 fields. The scalar field s

incorporates the explicit chiral symmetry breaking through
the quark masses taking s ¼ Mþ . . . , with M ¼
diagðmu;md;msÞ, where wewill always work in the isospin
limit in the present discussion, i.e., mu ¼ md. Finally, at
lowest order in the chiral expansion, F is the pion decay
constant and B0F

2 ¼ �h �c c i, with the quark condensate
h �c c i ¼ h �uui ¼ h �ddi ¼ h�ssi.
The leading action in the odd-intrinsic-parity sector

arises at Oðp4Þ. This is given by the chiral anomaly [45]
and explicitly stated by the Wess-Zumino-Witten (WZW)
functional ZWZW½v; a� that can be read in Ref. [43]. This
contains all anomalous contributions to electromagnetic
and semileptonic meson decays. For completeness, we
give the relevant terms to � ! P��� below:

LWZW ¼ � iNC

48�2
"��	
h��

LU
y@�r	Ul
 þ�

�
L l

�@	l


þ ��
L@

�l	l
 � ðL $ RÞi; (7)

with U ¼ u2, ��
L ¼ Uy@�U and ��

R ¼ U@�Uy.
It is well known [28,46] that higher orders in the chiral

expansion, i.e., even-intrinsic-parity LðnÞ
�PT with n > 2,

bring in the information of heavier degrees of freedom
that have been integrated out, for instance, resonance
states. As our next step intends to include the latter explic-
itly, we will not consider higher orders in �PT in order to
avoid double-counting issues. In order to fulfill this proce-
dure—at least, up to Oðp4Þ in the even-intrinsic-parity
sector—it is convenient to use the antisymmetric tensor
representation for the J ¼ 1 fields, as we mention below.
Analogously, additional odd-intrinsic-parity amplitudes

1Since light resonances reach their on-shell peaks in the
energy region spanned by the considered decays, the correspond-
ing off-shell widths, which are energy-dependent, need to be
implemented as we do, following Refs. [12,39].
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arise atOðp6Þ in �PT, either from one-loop diagrams using
one vertex from the WZW action or from tree-level opera-
tors [47]. However, we will assume that the latter are fully
generated by resonance contributions [34] and, therefore,
will not be included in the following discussion.

The formulation of a Lagrangian theory that includes
both the octet of Goldstone mesons and Uð3Þ nonets of
resonances is carried out through the construction of a
phenomenological Lagrangian [48] where chiral and dis-
crete symmetries determine the structure of the operators.
Given the vector character of the standard model (SM)
couplings of the hadron matrix elements in � decays,
form factors for these processes are ruled by vector and
axial-vector resonances. Notwithstanding, those form fac-
tors are given, in the � ! P��� decays, by a three-point
Green function where other quantum numbers might play a
role, namely, scalar and pseudoscalar resonances [49].
However their contribution should be very small for
� ! P���. This statement is based on the following ob-
servations: The scalar resonances will be irrelevant at tree
level to the considered process due to the discrete symme-
try; about the pseudoscalar resonances, their contributions
are suppressed due first to their heavy masses and also to
the fact that the relevant couplings involving the pseudo-
scalar resonances should be very tiny, since the decay of
these states to P� has not been reported yet. Thus in our
description we include J ¼ 1 resonances only, and this is
done by considering a nonet of fields [28]:

R 	 1ffiffiffi
2

p X8
i¼0

�i�R;i; (8)

where R ¼ V, A, stand for the vector and axial-vector
resonance states. Under the SUð3ÞL � SUð3ÞR chiral group,
R transforms as:

R ! hðg; ’ÞRhðg;’Þy: (9)

The flavor structure of the resonances is analogous to that
of the Goldstone bosons in Eq. (4). One can also introduce
the covariant derivative

r�X 	 @�X þ ½��; X�;

�� ¼ 1

2
½uyð@� � ir�Þuþ uð@� � i‘�Þuy�;

(10)

acting on any object X that transforms as R in Eq. (9), like
u� and ��. The kinetic terms for the spin-one resonances

in the Lagrangian read [28]:

L R
kin ¼�1

2
hr�R��r�R

��iþM2
R

4
hR��R

��i; R¼V;A;

(11)

MV ,MA being the masses of the nonets of vector and axial-
vector resonances in the chiral and large-NC limits, respec-
tively. Notice that we describe the resonance fields through
the antisymmetric tensor representation. With this descrip-

tion one is able to collect, upon integration of the reso-
nances, the bulk of the low-energy couplings at Oðp4Þ in
�PT without the inclusion of additional local terms [37].
So it is necessary to use this representation if one does not

includeLð4Þ
�PT in the Lagrangian. Though analogous studies

at higher chiral orders have not been carried out, we

will assume that no LðnÞ
�PT with n ¼ 4; 6; . . . in the even-

intrinsic-parity and n ¼ 6; 8; . . . in the odd-intrinsic-parity
sectors need to be included in the theory.
The construction of the interaction terms involving reso-

nance and Goldstone fields is driven by chiral and discrete
symmetries with a generic structure given by

O i � hR1R2 . . .Rj�
ðnÞð’Þi; (12)

where �ðnÞð’Þ is a chiral tensor that includes only
Goldstone and auxiliary fields. It transforms like R in
Eq. (9) and has chiral counting n in the frame of �PT.
This counting is relevant in the setting of the theory
because, although the resonance theory itself has no per-
turbative expansion, higher values of n may originate
violations of the proper asymptotic behavior of form fac-
tors or Green functions. As a guide we will include at least
those operators that, contributing to our processes, are
leading when integrating out the resonances. In addition
we do not include operators with higher-order chiral ten-

sors, �ðnÞð’Þ, that would violate the QCD asymptotic be-
havior unless their couplings are severely fine tuned to
ensure the needed cancellations of large momenta. In the
odd-intrinsic-parity sector, which contributes to the vector

form factor, this amounts to include all hR�ð4Þi and

hRR�ð2Þi terms. In the even-intrinsic-parity sector, contrib-
uting to the axial-vector form factors, these are the terms

hR�ð2Þi. However previous analyses of the axial-vector
contributions [8,11,12,35] show the relevant role of the

hRR�ð2Þi terms that, accordingly, are also considered here.
We also assume exact SUð3Þ symmetry in the construc-

tion of the interacting terms, i.e., at the level of couplings.
Deviations from exact symmetry in hadronic tau decays
have been considered in Ref. [50]. However, we do not
include SUð3Þ-breaking couplings because we are not con-
sidering next-to-leading order corrections in the 1=NC

expansion, either.
The lowest-order interaction operators, linear in the

resonance fields, have the structure hR�ð2Þð’Þi. There are
no odd-intrinsic-parity terms of this form. The even-intrin-
sic-parity Lagrangian includes three coupling constants
[28]:

L V
2 ¼ FV

2
ffiffiffi
2

p hV��f
��
þ i þ i

GVffiffiffi
2

p hV��u
�u�i;

LA
2 ¼ FA

2
ffiffiffi
2

p hA��f
��� i;

(13)
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where f
��
� ¼ uF

��
L uy � uyF��

R u and F
��
R;L are the field

strength tensors associated with the external right- and
left-handed auxiliary fields. All couplings FV , GV and FA

are real.
The leading odd-intrinsic-parity operators, linear in the

resonance fields, have the form hR�ð4Þð’Þi. We will need
those pieces that generate the vertex with one vector reso-
nance, a vector current, and one pseudoscalar. The minimal
Lagrangian with these features is:

L V
4 ¼ X7

i¼1

ci
MV

Oi
VJP; (14)

where ci are real dimensionless couplings, and the VJP
operators (that is, the vector resonance, vector source, and
pseudo-Goldstone boson, respectively) read [34]:

O 1
VJP ¼ "���hfV��; f�	þ gr	u

i;
O2

VJP ¼ "���hfV�	; f�þ gr	u
�i;

O3
VJP ¼ i"���hfV��; f

�
þ g��i;

O4
VJP ¼ i"���hV��½f�� ; �þ�i;

O5
VJP ¼ "���hfr	V

��; f
�	
þ gui;

O6
VJP ¼ "���hfr	V

�	; f�þ gu�i;
O7

VJP ¼ "���hfrV��; f�	þ gu	i:

(15)

Notice that we do not include analogous pieces with
an axial-vector resonance, that would contribute to the
hadronization of the axial-vector current. This has been
thoroughly studied in Ref. [8] (see also Ref. [12]) in
the description of the � ! ����� process, and it is

shown that no hA�ð4Þð’Þi operators are needed to describe
its hadronization. Therefore those operators are not
included in our minimal description of the relevant
form factors.

In order to study tau decay processes with a pseudosca-
lar meson and a photon in the final state, one also has to
consider nonlinear terms in the resonance fields. Indeed the
hadron final state in � ! P��� decays can be driven by
vertices involving two resonances and a pseudoscalar
meson. The structure of the operators that give those

vertices is hR1R2�
ð2Þð’Þi and has been worked out before

[8,34]. They include both even- and odd-intrinsic-parity
terms:

L RR
2 ¼ X5

i¼1

�iOi
VAP þ

X4
i¼1

diOi
VVP; (16)

where �i and di are unknown real dimensionless couplings.
The operators Oi

RRP are given by:

(1) VAP terms

O 1
VAP ¼ h½V��; A�����i;

O2
VAP ¼ ih½V��; A�	�h�	i;

O3
VAP ¼ ih½r�V��; A

�	�u	i;
O4

VAP ¼ ih½r	V��; A	
��u�i;

O5
VAP ¼ ih½r	V��; A

���u	i;

(17)

with h�� ¼ r�u� þr�u�, and

(2) VVP terms

O 1
VVP ¼ "���hfV��; V�	gr	u

i;
O2

VVP ¼ i"���hfV��; V�g��i;
O3

VVP ¼ "���hfr	V
��; V�	gui;

O4
VVP ¼ "���hfrV��; V�	gu	i:

(18)

We emphasize that LRR
2 is a complete basis for

constructing vertices with only one pseudoscalar
meson; for a larger number of pseudoscalars,
additional operators might be added. As we are
only interested in tree-level diagrams, the equation

of motion arising from Lð2Þ
�PT in Eq. (2) has been

used in LV
4 and LRR

2 to eliminate superfluous
operators.

Hence our theory is given by the Lagrangian:

L R�T ¼Lð2Þ
�PTþLWZW þLR

kinþLA
2 þLV

2 þLV
4 þLRR

2 :

(19)

It is important to point out that the resonance theory
constructed above is not a theory of QCD for arbitrary
values of the couplings in the interaction terms. As we will
see later on, these constants can be constrained by impos-
ing well-accepted dynamical properties of the underlying
theory.

III. MATRIX ELEMENT DECOMPOSITION,
KINEMATICS, AND DECAY RATE

The process we are going to compute is ��ðp�Þ !
��ðqÞP�ðpÞ�ðkÞ. The kinematics of this decay is equiva-
lent to that of the radiative pion decay [51]. We will use
t: ¼ ðp� � qÞ2 ¼ ðkþ pÞ2. In complete analogy to the
case of the radiative pion decay [52], the matrix element
for the decay of �� ! P���� can be written as the sum of
four contributions:

M½��ðp�Þ ! ��ðqÞP�ðpÞ�ðkÞ�
¼ MIB�

þMIBP
þMV þMA; (20)
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with2

iMIB�
¼ GFV

ij
CKMeFPp���ðkÞL��;

iMIBP
¼ GFV

ij
CKMeFP�

�ðkÞ
�
2p�ðkþ pÞ�

m2
P � t

þ g��

�
L�;

iMV ¼ iGFV
ij
CKMeFVðtÞ"����

�ðkÞk�pL�;

iMA ¼ GFV
ij
CKMeFAðtÞ��ðkÞ½ðt�m2

PÞg�� � 2p�k��L�;

(21)

where �� is the polarization vector of the photon. FVðtÞ and
FAðtÞ are the so-called structure-dependent form factors.
Finally L� and L�� are lepton currents defined by

L� ¼ �u��
ðqÞ��ð1��5Þu�ðp�Þ;

L�� ¼ �u��
ðqÞ��ð1��5Þ k�p� �M�

ðk�p�Þ2 �M2
�

��u�ðp�Þ:
(22)

The notation introduced for the amplitudes describes the
four kinds of contributions: MIB�

is the internal brems-

strahlung off the tau [Fig. 1(a)]; MIBP
is the sum of the

internal bremsstrahlung off the P-meson [Fig. 1(b)] and the
seagull diagram [Fig. 1(c)]; MV is the SD vector contri-
bution [Fig. 1(d)] and MA is the SD axial-vector contri-
bution [Fig. 1(e)]. Our ignorance of the exact mechanism
of hadronization is parametrized in terms of the two form
factors FAðtÞ and FVðtÞ. In fact, these form factors are the
same functions of the momentum transfer t as those in the
radiative pion decay, the only difference being that t now
varies from 0 up to M2

� rather than just up to m2
�.

The two matrix elements MIB�
and MIBP

are not

separately gauge invariant, but their sum, i.e., the (total)
matrix element for internal bremsstrahlung IB,

M IB ¼ MIB�
þMIBP

; (23)

is indeed gauge invariant, as are MV and MA. We also
define the (total) structure-dependent radiation SD by

M SD ¼ MV þMA: (24)

The spinor structure can be rearranged to give

iMIB ¼ GFV
CKM
ij eFPM� �u��

ðqÞð1þ �5Þ



�
p� � �
p� � k�

p � �
p � k�

k �

2p� � k
�
u�ðp�Þ;

iMSD ¼ GFV
CKM
ij efi"���L

���k�pFVðtÞ
þ �u��

ðqÞð1þ �5Þ

 ½ðt�m2

PÞ�� 2ð� � pÞk�uðp�ÞFAðtÞg: (25)

The square of the matrix element is then given by

jMj2 ¼ jMIBj2 þ 2<eðMIBM?
SDÞ þ jMSDj2; (26)

where the bar denotes summing over the photon polariza-
tion, the neutrino spin, and averaging over the tau spin.
We follow Ref. [4] and divide the decay rate as follows:

the internal bremsstrahlung part �IB arising from jMIBj2,
the structure-dependent part �SD coming from jMSDj2,
and the interference part �INT stemming from

2<eðMIBM?
SDÞ. Furthermore �SD is subdivided into

the vector-vector (�VV), the axial-vector-axial-vector
(�AA), and the vector-axial-vector interference term
(�VA). Similarly, �INT gets split into the internal
bremsstrahlung-vector interference (�IB�V) and the inter-
nal bremsstrahlung-axial-vector interference (�IB�A) parts.
Thus, one has

�ALL ¼ �IB þ �SD þ �INT;

�SD ¼ �VV þ �VA þ �AA;

�INT ¼ �IB�V þ �IB�A:

(27)

It is convenient to use the dimensionless variables x and y
to proceed, as used in Ref. [4] and references therein:

x :¼ 2p� � k
M2

�

; y :¼ 2p� � p
M2

�

: (28)

FIG. 1. Feynman diagrams for the different kinds of contributions to the radiative decays of the tau including one meson, as
explained in the main text. The dot indicates the hadronization of the QCD currents. The solid square represents the SD contribution
mediated by the vector current, and the solid triangle represents the SD contribution via the axial-vector current.

2Notice that i and minus factors differ with respect to Ref. [4]
(Decker and Finkemeier, or DF). Moreover, our form factors
have dimension of inverse mass while theirs are dimensionless.
In their work, the factor of ð ffiffiffi

2
p

m�Þ�1 in the form factors is
compensated for by defining the sum over polarizations of the
matrix element squared with an extra 2m2

� factor. This should
be taken into account to compare formulae in both works
(using Our and DF): FVðtÞDF ¼ ffiffiffi

2
p

m�FVðtÞOur, FAðtÞDF ¼
2

ffiffiffi
2

p
m�FAðtÞOur.
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In the tau rest frame, x and y are the energies E� and E�

of the photon and the pion, respectively, expressed in units
of M�=2:

E� ¼ M�

2
x; E� ¼ M�

2
y: (29)

Equation (29) sets the scale for the photons to be consid-
ered as ’’hard’’ or ’’soft.’’ This means that the formulae for
internal bremsstrahlung should be similar for radiative tau
and pion decay, once they are expressed in terms of x and y,
as is the case, albeit photons of comparable softness will
have very different energies in both cases.

The kinematical boundaries for x and y are given by

0� x� 1� r2P; 1� xþ r2P
1� x

� y� 1þ r2P; (30)

where

r2P :¼
�
mP

M�

�
2�0:006

0:077 � 1; (31)

where the upper figure corresponds to P ¼ � and the lower
one to P ¼ K. It is also useful to note that

p � k ¼ M2
�

2
ðxþ y� 1� r2PÞ;

t :¼ ðp� � qÞ2 ¼ ðkþ pÞ2 ¼ M2
�ðxþ y� 1Þ:

(32)

The differential decay rate is given by Ref. [53]:

d�ð�� !��P
��Þ

¼ 1

512�5E�

�ð4Þðkþpþq�p�ÞjMj2d
3 ~kd3 ~pd3 ~q

E�E�E�

; (33)

where the bar over the matrix element denotes summing
over the photon polarization, the neutrino spin and averag-
ing over the tau spin. Choice of the tau rest frame, inte-
gration over the neutrino momentum, ~p, and the remaining
angles and introduction of x and y yield

d2�

dxdy
¼ m�

256�3
jMj2: (34)

The integration over y yields the photon spectrum

d�

dx
¼

Z 1þr2P

1�xþðr2P=ð1�xÞÞ
dy

d2�

dxdy
: (35)

A low-energy cut must be introduced for the photon energy
because of the infrared divergence of the internal brems-
strahlung. By requiring x  x0, one obtains the integrated
decay rate

�ðx0Þ ¼ �ðE0Þ ¼
Z 1�r2P

x0

dx
d�

dx
; (36)

that does depend on the photon energy cutoff (E0 ¼ M�

2 x0).

Instead of x and y, one can also use x and z, where z is the
scaled momentum transfer squared:

z ¼ t

M2
�

¼ xþ y� 1; (37)

whose kinematical boundaries are

z� r2P � x � 1� r2P
z
; r2P � z � 1: (38)

Integration of d2�
dxdy over x yields the spectrum in z, i.e.

the spectrum in the invariant mass of the meson-photon
system:

d�

dz
ðzÞ ¼ d�

dz
ð ffiffi

t
p Þ ¼

Z 1�r2P=z

z�r2P

dx
d2�

dxdy
ðx; y ¼ z� xþ 1Þ:

(39)

The integrated rate for events with t  t0 is then given by

�ðz0Þ ¼ �ð ffiffiffiffi
t0

p Þ ¼
Z 1

z0

dz
d�

dz
ðzÞ: (40)

We note that z0 is both an infrared and a collinear cutoff.
In terms of the quantities defined in Eq. (27), the differ-

ential decay rate is

d2�IB

dxdy
¼ 	

2�
fIBðx; y; r2PÞ

���!��P
�

ð1� r2PÞ2
;

d2�SD

dxdy
¼ 	

8�

M4
�

F2
P

½jFVðtÞj2fVVðx; y; r2PÞ þ 4<eðFVðtÞF?
AðtÞÞfVAðx; y; r2PÞ þ 4jFAðtÞj2fAAðx; y; r2PÞ�

���!��P
�

ð1� r2PÞ2
;

d2�INT

dxdy
¼ 	

2�

M2
�

FP

½fIB�Vðx; y; r2PÞ<eðFVðtÞÞ þ 2fIB�Aðx; y; r2PÞ<eðFAðtÞÞ�
���!��P

�

ð1� r2PÞ2
;

(41)

with 	 ¼ e2=ð4�Þ standing for the fine structure constant and
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fIBðx; y; r2PÞ ¼
½r4Pðxþ 2Þ � 2r2Pðxþ yÞ þ ðxþ y� 1Þð2� 3xþ x2 þ xyÞ�ðr2P � yþ 1Þ

ðr2P � x� yþ 1Þ2x2 ;

fVVðx; y; r2PÞ ¼ �½r4Pðxþ yÞ þ 2r2Pð1� yÞðxþ yÞ þ ðxþ y� 1Þð�xþ x2 � yþ y2Þ�;
fAAðx; y; r2PÞ ¼ fVVðx; y; r2PÞ;
fVAðx; y; r2PÞ ¼ �½r2Pðxþ yÞ þ ð1� x� yÞðy� xÞ�ðr2P � x� yþ 1Þ;

fIB�Vðx; y; r2PÞ ¼ � ðr2P � x� yþ 1Þðr2P � yþ 1Þ
x

;

fIB�Aðx; y; r2PÞ ¼ � ½r4P � 2r2Pðxþ yÞ þ ð1� xþ yÞðxþ y� 1Þ�ðr2P � yþ 1Þ
ðr2P � x� yþ 1Þx : (42)

The radiative decay rate has been expressed in terms of the width of the nonradiative decay (�� ! ��P
�):

���!��P
� ¼ G2

FjVij
CKMj2F2

P

8�
M3

�ð1� r2PÞ2: (43)

We finish this section by presenting the analytical expressions for the invariant mass spectrum:

d�IB

dz
¼ 	

2�
½r4Pð1� zÞ þ 2r2Pðz� z2Þ � 4zþ 5z2 � z3 þ ðr4Pzþ 2r2Pz� 2z� 2z2 þ z3Þ lnz� 1

z2 � r2Pz

���!��P
�

ð1� r2PÞ2
;

d�VV

dz
¼ 	

24�

M4
�

F2
P

ðz� 1Þ2ðz� r2PÞ3ð1þ 2zÞ
z2

jFVðtÞj2
���!��P

�

ð1� r2PÞ2
;

d�VA

dz
¼ 0;

d�AA

dz
¼ 	

6�

M4
�

F2
P

ðz� 1Þ2ðz� r2PÞ3ð1þ 2zÞ
z2

jFAðtÞj2
���!��P

�

ð1� r2PÞ2
;

d�IB�V

dz
¼ 	

2�

M2
�

FP

ðz� r2PÞ2ð1� zþ z lnzÞ
z

<eðFVðtÞÞ
���!��P

�

ð1� r2PÞ2
;

d�IB�A

dz
¼ �	

�

M2
�

FP

½r2Pð1� zÞ � 1� zþ 2z2 þ ðr2Pz� 2z� z2Þ lnz� z� r2P
z

<eðFAðtÞÞ
���!��P

�

ð1� r2PÞ2
: (44)

The interference terms IB� V and IB� A are now finite in the limit z ! r2P, which proves that their infrared divergences
are integrable.

Although the above formulae have been noted in Ref. [4], we independently calculate them3 and explicitly give them
here for completeness. Moreover we would like to point out that because our definitions of the form factors FVðtÞ and FAðtÞ
differ from the ones given in Ref. [4], as we have mentioned before, there are some subtle differences in the above formulae
between ours and theirs.

IV. STRUCTURE-DEPENDENT FORM FACTORS IN �� ! �����

The Feynman diagrams, which are relevant to the vector current contributions to the SD part of the �� ! �����

process, are given in Fig. 2. The analytical result is found to be

iMSDV
¼ iGFVude �u��

ðqÞ��ð1� �5Þu�ðsÞ"��	
�
�ðkÞk	p
F�

V ðtÞ; (45)

where the vector form factor F�
V ðtÞ is

3We disagree with Ref. [4] on the signs of fVA and fIB�V in Eq. (42) and d�IB�V

dz in Eq. (44), even after taking into account the minus
sign difference in the definition of the IB part.
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F�
V ðtÞ ¼ � NC

24�2F�

þ 2
ffiffiffi
2

p
FV

3F�MV

½ðc2 � c1 � c5Þtþ ðc5 � c1 � c2 � 8c3Þm2
��
�
cos2�

M2
�

ð1� ffiffiffi
2

p
tg�Þ þ sin2�

M2
!

ð1þ ffiffiffi
2

p
cotg�Þ

�

þ 2
ffiffiffi
2

p
FV

3F�MV

D�ðtÞ½ðc1 � c2 � c5 þ 2c6Þtþ ðc5 � c1 � c2 � 8c3Þm2
��

þ 4F2
V

3F�

D�ðtÞ½d3tþ ðd1 þ 8d2 � d3Þm2
��
�
cos2�

M2
�

ð1� ffiffiffi
2

p
tg�Þ þ sin2�

M2
!

ð1þ ffiffiffi
2

p
cotg�Þ

�
: (46)

Here we have defined DRðtÞ as

DRðtÞ ¼ 1

M2
R � t� iMR�RðtÞ

: (47)

�RðtÞ stands for the decay width of the resonance R, which
will be included following Refs. [12,39]. For complete-
ness, we write the explicit expressions of the off-shell
widths in Appendix A.

We will assume the ideal mixing case for the vector
resonances ! and � in any numerical application:

!1 ¼ cos�!� sin���
ffiffiffi
2

3

s
!�

ffiffiffi
1

3

s
�;

!8 ¼ sin�!þ cos���
ffiffiffi
2

3

s
�þ

ffiffiffi
1

3

s
!:

(48)

The Feynman diagrams related to the axial-vector cur-
rent contribution to the SD part are shown in Fig. 3. The
corresponding result is

iMSDA
¼ GFVude �u��

ðqÞ��ð1� �5Þu�ðsÞ��ðkÞ

 ½ðt�m2

�Þg�� � 2k�p��F�
A ðtÞ; (49)

where the axial-vector form-factor F�
A ðtÞ is

F�
A ðtÞ ¼

F2
V

2F�M
2
�

�
1� 2GV

FV

�
� F2

A

2F�

Da1ðtÞ

þ
ffiffiffi
2

p
FAFV

F�M
2
�

Da1ðtÞð��00tþ �0m
2
�Þ; (50)

where we have used the notation

ffiffiffi
2

p
�0 ¼ �4�1 � �2 � �4

2
� �5;

ffiffiffi
2

p
�00 ¼ �2 � �4

2
� �5

(51)

for the relevant combinations of the couplings in LVAP
2 ,

Eq. (17).

V. STRUCTURE-DEPENDENT FORM FACTORS
IN �� ! K����

Although one can read the following observation from
Eq. (21), let us emphasize that the model-independent part
MIB�þK

is the same as in the pion case by replacing the

pion decay constant F� with the kaon decay constant FK.
A brief explanation about this replacement is in order. The
difference of F� and FK is generated by the low-energy
constants and the chiral loops in �PT [15], while in the
large NC limit of R�T this difference is due to the scalar
resonances in an implicit way. Because of the scalar tad-
pole, one can always attach a scalar resonance to any of the
pseudo-Goldstone boson fields, which will cause its wave
function renormalization. A convenient way to count this
effect is to make the scalar field redefinition before the
explicit computation to eliminate the scalar tadpole effects.
In the latter method, one can easily get the difference of F�

and FK. For details, see Ref. [54] and references therein.
For the model-dependent parts, the simple replacements
are not applicable, and one needs to work out the corre-
sponding form factors explicitly.
The vector current contributions to the SD part of the

�� ! K���� process are given in Fig. 4. The analytical
result is found to be

FIG. 3. Axial-vector current contributions to �� ! �����.

FIG. 2. Vector current contributions to �� ! �����.
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iMSDV
¼ iGFVuse �u��

ðqÞ��ð1� �5Þu�ðsÞ"��	
�
�ðkÞk	p
FK

V ðtÞ; (52)

where the vector form factor FK
V ðtÞ is

FK
V ðtÞ ¼ � NC

24�2FK

þ
ffiffiffi
2

p
FV

FKMV

½ðc2 � c1 � c5Þtþ ðc5 � c1 � c2 � 8c3Þm2
K�



�
1

M2
�

� sin2�

3M2
!

ð1� 2
ffiffiffi
2

p
cotg�Þ � cos2�

3M2
�

ð1þ 2
ffiffiffi
2

p
tg�Þ

�

þ 2
ffiffiffi
2

p
FV

3FKMV

DK� ðtÞ½ðc1 � c2 � c5 þ 2c6Þtþ ðc5 � c1 � c2 � 8c3Þm2
K þ 24c4ðm2

K �m2
�Þ�

þ 2F2
V

FK

DK� ðtÞ½d3tþ ðd1 þ 8d2 � d3Þm2
K�
�
1

M2
�

� sin2�

3M2
!

ð1� 2
ffiffiffi
2

p
cotg�Þ � cos2�

3M2
�

ð1þ 2
ffiffiffi
2

p
tg�Þ

�
: (53)

The axial-vector current contributions to the SD part are
given in Fig. 5. The corresponding analytical result is

iMSDA
¼ GFVuse �u��

ðqÞ��ð1� �5Þu�ðsÞ��ðkÞ

 ½ðt�m2

KÞg�� � 2k�p��FK
A ðtÞ; (54)

where the axial-vector form factor FK
A ðtÞ is

FK
A ðtÞ ¼

F2
V

4FK

�
1� 2GV

FV

��
1

M2
�

þ cos2�

M2
�

þ sin2�

M2
!

�

� F2
A

2FK

½cos2�ADK1H
ðtÞ þ sin2�ADK1L

ðtÞ�

þ FAFVffiffiffi
2

p
FK

½cos2�ADK1H
ðtÞ þ sin2�ADK1L

ðtÞ�



�
1

M2
�

þ cos2�

M2
�

þ sin2�

M2
!

�
ð��00tþ �0m

2
KÞ: (55)

We have used the notations ofK1H andK1L for the physical
statesK1ð1400Þ andK1ð1270Þ, respectively, and the mixing
angle �A is defined in Eq. (56) as we explain in the
following.

The K1A state is related to the physical states K1ð1270Þ,
K1ð1400Þ through

K1A ¼ cos�AK1ð1400Þ þ sin�AK1ð1270Þ: (56)

The nature of K1ð1270Þ and K1ð1400Þ is not clear yet. It
has been proposed in Ref. [55] that they result from the
mixing of the states K1A and K1B, where K1A denotes the
strange partner of the axial-vector resonance a1 with
JPC ¼ 1þþ, and K1B is the corresponding strange partner
of the axial-vector resonance b1 with JPC ¼ 1þ�.
However, in this work, we will not include the nonet of
axial-vector resonances with JPC ¼ 1þ� [56]. As argued
in Ref. [55], the contributions from these resonances to
tau decays are proportional to SUð3Þ-symmetry-breaking
effects. Moreover, as one can see later, we will always
assume SUð3Þ symmetry for both vector and axial-vector
resonances in deriving the T-matrix. For the pseudo-
Goldstone bosons, physical masses will arise through the
chiral symmetry-breaking mechanism in the sameway as it
happens in QCD. For the vector resonances, the experi-
mental values will be taken into account in the kinematics,
while in the case of the axial-vector mesons, we will take
the determination of the a1 mass from Ref. [12] and the
masses of the K1 resonances from PDG [38].

VI. CONSTRAINTS FROM QCD
ASYMPTOTIC BEHAVIOR

In this part, we will exploit the asymptotic results of the
form factors from perturbative QCD to constrain the reso-
nance couplings. When discussing the high-energy con-
straints, we will work both in chiral and SUð3Þ limits,

FIG. 5. Axial-vector current contributions to �� ! K����.

FIG. 4. Vector current contributions to �� ! K����.
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which indicates we will not distinguish the form factors
with pion and kaon, which are identical in this case.4

For the vector form factor, the asymptotic result of
perturbative QCD has been derived in Refs. [18,57]:

FP
Vðt ! �1Þ ¼ F

t
; (57)

where F is the pion decay constant in the chiral limit. From
the above asymptotic behavior, we find three constraints on
the resonance couplings:

c1 � c2 þ c5 ¼ 0; (58)

c2 � c1 þ c5 � 2c6 ¼
ffiffiffi
2

p
NCMV

32�2FV

þ
ffiffiffi
2

p
FV

MV

d3; (59)

c2 � c1 þ c5 � 2c6 ¼ 3
ffiffiffi
2

p
F2

4FVMV

þ
ffiffiffi
2

p
FV

MV

d3; (60)

where the constraints in Eqs. (58)–(60) are derived from
Oðt1Þ, Oðt0Þ, and Oðt�1Þ, respectively. Combining the
above three constraints, we have

c5 � c6 ¼ NCMV

32
ffiffiffi
2

p
�2FV

þ FVffiffiffi
2

p
MV

d3; (61)

F ¼ MV

ffiffiffiffiffiffiffi
NC

p
2

ffiffiffi
6

p
�

; (62)

where the constraint of Eq. (62) has already been noticed in
Refs. [4,18,57].

It is worth pointing out that different results for the
asymptotic behavior of the vector form factor F��ðtÞ
have also been noted in different frameworks, such as the
ones given in Refs. [58,59]. In Refs. [18,57], the result was
obtained in the parton picture, and unavoidably the parton
distribution function for the pion has to be imposed to
give the final predictions. The OPE technique was ex-
ploited to obtain its prediction in [58], which led to the
conclusion that potentially large QCD corrections could
exist. In [59], the form factor was discussed by using the
Bjorken-Johnson-Low theorem [60]. Variant methods
have also been used to analyze this form factor: The
corrections from the transverse momentum of the parton
were addressed in Ref. [61]; a QCD sum rule method
was applied to derive the asymptotic behavior in
Ref. [62]. In the present discussion, we focus our attention
on Refs. [58,59], while the study for the other results can be
done analogously. Although different results agree with the
same leading power of the square momentum for large t,
behaving as 1=t, they predict different coefficients.
Reference [58] predicts:

FP
Vðt ! �1Þ ¼ 2F

3t
; (63)

and Ref. [59] predicts:

FP
Vðt ! �1Þ ¼ F

3t
: (64)

By doing the same analyses as we have done by using
the Lepage-Brodsky result in Eq. (57) to constrain the
resonance couplings, we can straightforwardly get the
constraints from the short-distance behaviors given in
Eqs. (63) and (64). Apparently the matching results given
in Eqs. (58) and (59) will stay the same, since they are
derived fromOðt1Þ andOðt0Þ. Comparing with the result of
Eq. (60) from the matching of Oðt�1Þ by using the coeffi-
cient in Eq. (57), the corresponding results by using
Eqs. (63) and (64) are, for Ref. [58],

c2 � c1 þ c5 � 2c6 ¼ F2

2
ffiffiffi
2

p
FVMV

þ
ffiffiffi
2

p
FV

MV

d3; (65)

and for Ref. [59],

c2 � c1 þ c5 � 2c6 ¼ F2

4
ffiffiffi
2

p
FVMV

þ
ffiffiffi
2

p
FV

MV

d3; (66)

which lead to the following results by combining
Eqs. (58) and (59), namely, for Ref. [58],

F ¼ MV

ffiffiffiffiffiffiffi
NC

p
4�

; (67)

and for Ref. [59],

F ¼ MV

ffiffiffiffiffiffiffi
NC

p
2

ffiffiffi
2

p
�

: (68)

The formulae displayed in Eqs. (62), (67), and (68)
provide a simple way to discriminate between different
asymptotic behaviors. The chiral limit values for the pion
decay constant F and the mass of the lowest vector mul-
tiplet MV have been thoughtfully studied at the leading
order of 1=NC in Ref. [63], which predicts F ¼ 90:8 MeV
and MV ¼ 764:3 MeV. The different results shown in
Eqs. (62), (67), and (68) from matching different short-
distance behaviors of Refs. [18,58,59] deviate from the
phenomenology study at the level of 5%, 16%, and 64%,
respectively,5 which implies that the short-distance behav-
ior in Eq. (57) is more reasonable than the ones in Eqs. (63)
and (64). Hence for the matching result at the order of 1=t,
we will use the one in Eq. (62) throughout the following
discussion. However we stress that the inclusion of extra
multiplets of vector resonances or the subleading correc-
tions in 1=NC may alter the current conclusion.
The high-energy constraints on the resonance couplings

ci and di have been studied in different processes. The OPE
analysis of the VVP Green function gives [34]

4The results of this procedure are independent of taking the
chiral limit [34].

5The results are mildly changed when estimating the values of
F and MV by F� and M� respectively, as expected.
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c5 � c6 ¼ NCMV

64
ffiffiffi
2

p
�2FV

; (69)

d3 ¼ � NCM
2
V

64�2F2
V

þ F2

8F2
V

: (70)

The constraint from �� ! ðVPÞ��� study leads to

c5 � c6 ¼ � FVffiffiffi
2

p
MV

d3; (71)

if one neglects the heavier vector resonance multiplet [10].
The results from the analysis of �� ! ðKK�Þ���

are [64]

c5 � c6 ¼ NCMVFV

192
ffiffiffi
2

p
�2F2

; d3 ¼ � NCM
2
V

192�2F2
: (72)

It is easy to check that the results of Eqs. (71) and (72) are
consistent. Combining Eqs. (61) and (71) leads to

c5 � c6 ¼ NCMV

64
ffiffiffi
2

p
�2FV

; d3 ¼ � NCM
2
V

64�2F2
V

; (73)

where the constraint of c5 � c6 is consistent with the result
from the OPE analysis of the VVP Green function [34],
while the result of d3 is not.

By demanding the consistency of the constraints derived
from the processes of �� ! P���� and �� ! ðVPÞ���

given in Eq. (73) and the results from �� ! ðKK�Þ���

given in Eq. (72), we get the following constraint:

FV ¼ ffiffiffi
3

p
F: (74)

If one combines the high-energy constraint from the two
pion vector form factor [37],

FVGV ¼ F2; (75)

and the result of Eq. (74) we get here, the modified
Kawarabayashi-Suzuki-Riazuddin-Fayyazuddin relation
[65,66] is derived:

F ¼ ffiffiffi
3

p
GV; (76)

which is also obtained in the partial wave dispersion rela-
tion analysis of �� scattering by properly including the
contributions from the crossed channels [67].

Although the branching ratios for the modes of
� ! P��� which we are discussing could be higher than
for some modes that have already been detected, they have
not been observed yet. Lacking experimental data, we will
make some theoretically and phenomenologically based
assumptions in order to present our predictions for the
spectra and branching ratios.

Taking into account the previous relations, one would
have F�

V ðtÞ in terms of c1 þ c2 þ 8c3 � c5 and d1 þ 8d2 �
d3. For the first combination, c1 þ c2 þ 8c3 � c5 ¼ c1 þ
4c3 (c1 � c2 þ c5 ¼ 0 has been used), the prediction for
c1 þ 4c3 in [34] yields c1 þ c2 þ 8c3 � c5 ¼ 0. In
Ref. [34], the other relevant combination of couplings is

also restricted: d1 þ 8d2 � d3 ¼ F2

8F2
V

. In FK
V ðtÞ, c4 appears,

in addition. There is a phenomenological determination

of this coupling in the study of the KK� decay modes of
the � [11]: c4 ¼ �0:07� 0:01.
Turning now to the axial-vector form factor, it still

depends on four couplings in both channels: FA, MA, �
00,

and �0. If one invokes the once-subtracted dispersion
relation for the axial-vector form factor, as done in
Ref. [4], one cannot get any constraints on the resonance
couplings from the axial-vector form factors given in
Eqs. (50) and (55). In fact, by demanding the form factor
to satisfy the unsubtracted dispersion relation, which guar-
antees a better high-energy limit, we can get the following
constraint:

�00 ¼ 2GV � FV

2
ffiffiffi
2

p
FA

; (77)

which has been already noted in Ref. [35].
In order to constrain the free parameters as much as

possible, we decide to exploit the constraints from the
Weinberg sum rules [68]: F2

V � F2
A ¼ F2 and M2

VF
2
V �

M2
AF

2
A ¼ 0, yielding

FA ¼ 2F2; MA ¼ 6�Fffiffiffiffiffiffiffi
NC

p : (78)

For the axial-vector resonance coupling �0, we use the
result from Refs. [12,35]:

�0 ¼ GV

4
ffiffiffi
2

p
FA

: (79)

To conclude this section, we summarize the previous dis-
cussion on the high-energy constraints:

FV ¼ ffiffiffi
3

p
F; GV ¼ Fffiffiffi

3
p ; FA ¼

ffiffiffi
2

p
F;

MV ¼ 2
ffiffiffi
6

p
�Fffiffiffiffiffiffiffi
NC

p ; MA ¼ 6�Fffiffiffiffiffiffiffi
NC

p ; �0 ¼ 1

8
ffiffiffi
3

p ;

�00 ¼ � 1

4
ffiffiffi
3

p ; c5 � c6 ¼
ffiffiffiffiffiffiffi
NC

p
32�

; d3 ¼�1

8
:

(80)

In the above results, we have discarded the constraint in
Eq. (70), which is the only result inconsistent with the
others.

VII. PHENOMENOLOGICAL DISCUSSION

Apart from the parameters we mentioned in the last
section, there is still one free coupling �A, which describes
the mixing of the strange axial-vector resonances in
Eq. (56). The value of �A has already been determined in
the literature [10,55,69]. We recapitulate the main results
in the following.
Reference [55] has given �A � 33�. In Ref. [10],

j�Aj � 58:1� is determined through the considered decays
�� ! ðVPÞ���. In Ref. [69], the study of � ! K1��

gives j�Aj ¼ 37�
58� as the two possible solutions. The decay

D ! K1� allows us to conclude that �A must be negative,
and it is pointed out that the observation of D0 ! K�

1 �
þ
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with a branching ratio �5
 10�4 would imply �A �
�58�. However, a later analysis in Ref. [70] finds that
the current measurement of �B0 ! K�

1 ð1400Þ�þ [38] fa-
vors a mixing angle of�37� over�58�. In this respect, the
relation

j�ðJ=� ! K0
1ð1400Þ �K0Þj2

¼ tg�2Aj�ðJ=� ! K0
1ð1270Þ �K0Þj2 (81)

would be very useful to get �A, once these modes are
detected. In the following discussion, we will show the
results using both j�Aj ¼ 37� and 58�. The other inputs
are given in Appendix B.

A. Results with only WZW contribution

As stated before, it is strange that the decay modes
� ! P��� have not been detected so far. The most naı̈ve
and completely model-independent estimate would be to
just include the IB part and the WZW contribution to
the VV part, as the latter is completely fixed by QCD.
We know that, doing it this way, we are losing the con-
tribution of vector and axial-vector resonances, which
should be important in the high-x region. However, even
doing so, one is able to find that the radiative decay �� !
����� has a decay probability larger than the mode
�� ! KþK�K���.

6 For a reasonably low cutoff on the
photon energy, this conclusion holds for the �� ! K����

as well.
Before seeing this, we will discuss briefly the meaning

of cutting on the photon energy.7 As is well known [71,72],
the IR divergences due to the vanishing photon mass cancel
when considering at the same time the nonradiative and the
radiative decays with one photon.8 In practice, this trans-

lates into mathematical language the physical notion that
the detectors have a limited angular resolution that defines
a threshold detection angle for photons. If one considers a
photon emitted with a smaller angle, it should be counted
together with the nonradiative decay, as it is effectively
measured in this way. The sum is of course an IR-safe
observable. The splitting depends on the particular charac-
teristics of the experimental setting. Obviously, the branch-
ing fraction for the radiative decay depends on this cutoff
energy. We will consider here the case E�thr ¼ 50 MeV,

which corresponds to x ¼ 0:0565. In order to illustrate the
dependence on this variable, we will also show the ex-
tremely conservative case of E�thr ¼ 400 MeV (x ¼ 0:45).

In the first case, we obtain �ð�� ! �����Þ ¼ 3:182

10�15 GeV, and, in the second case, we are still above the
3K decay width, �ð�� ! �����Þ ¼ 3:615
 10�16 GeV.
In Fig. 6 we plot the photon spectrum of �� ! �����.
Proceeding analogously for the decay with a K�, we find:
�ð�� ! K����Þ ¼ 6:002
 10�17 GeV for E� thr ¼
50 MeV, and �ð�� ! K����Þ ¼ 4:589
 10�18 GeV
for E� thr ¼ 400 MeV. The photon spectrum of �� !
K���� can be seen in Fig. 7. For any reasonable cut on
E�, these modes should have already been detected by the

B-factories.
Already at this level of the phenomenological analysis,

the question of the accuracy of the detection of soft pho-
tons at the B-factories [73] arises.9 An error larger than
expected (here and in some undetected particle interpreted
as missing energy, in addition to a Gaussian treatment of
systematic errors) could enlarge the uncertainty claimed on
the measurement of B� ! ���� [38] when combining the
Belle [75] and BABAR measurements [76,77], taking it
closer to the standard model expectations.
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FIG. 6 (color online). Differential decay width (in units of ��!���
) of the process �� ! �����, including only the model-

independent contributions as a function of x. For the form factors, only the WZW term is considered for this estimate, where the axial
vector contribution is absent. The right plot is the close-up of the left one in the region of x > 0:5.

6�ð�� ! KþK�K���Þ ¼ 3:579ð66Þ 
 10�17 GeV.
7A cut on the photon energy was introduced in Sec. III.
8In general, the IR divergences of the n-photon decay are

canceled by those in the nþ 1-photon process. 9See however, Ref. [74].
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B. Results with the resonance contributions
for the pion channel

Next we also include the model-dependent contribu-
tions. Since in the kaon channel there are uncertainties
associated with the off-shell width of the strange axial-
vector resonance and the mixing of the corresponding light

and heavy states, we will present first the pion channel
where there are no uncertainties of these types and every-
thing is fixed.
In Fig. 8, the resulting photon spectrum of the process

�� ! ����� is displayed. In order to display clearly how
the different parts contribute to the spectrum, we have
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FIG. 7 (color online). Differential decay width (in units of ��!K��
) of the process �� ! K����, including only the model-

independent contributions as a function of x. For the form factors, only the WZW term is considered for this estimate, where the axial
vector contribution is absent. The right plot is the close-up of the left plot in the region of x > 0:5.
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FIG. 8 (color online). Differential decay width (in units of ��!���
) of the process �� ! �����, including all contributions as a

function of x. The top right plot is the close-up of the top left plot in the region of x > 0:5. The bottom left and right plots display the
compositions of the interference and structure-dependent parts, respectively.
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given the close-up of the spectrum for the high x region and
also shown the separate contributions. For ’’soft’’ photons
(x0 & 0:3) the internal bremsstrahlung dominates com-
pletely. One should note that, for very soft photons, the
multiphoton production rate becomes important, so that
our Oð	Þ results are not reliable too close to the IR
divergence x ¼ 0. We qualitatively agree with the results
in the Decker and Finkemeier (DF) papers, for the same
order of 	 to the three significant figures shown in Ref. [4].

The spectrum is significantly enhanced by SD contribu-
tions for hard photons (x0 * 0:4), as we can see in Fig. 8.
From Fig. 8 one can also see that the vector current con-
tribution mediated by the vector resonances dominates the
SD part. The interference terms between the bremsstrah-
lung and the SD parts are also shown in Fig. 8. If we
compare the predicted curves with those in Ref. [4],
we see that the qualitative behavior is similar: the IB
contribution dominates up to x� 0:75. For larger photon
energies, the SD part is predominant due to the VV con-
tribution and overcomes the SI part. We confirm the peak
and shoulder structure shown at x� 1 in the interference
contribution, which is essentially due to the IB� V term,
and also the V � A term, which is in any case tiny.

While the integration over the IB part needs an IR cutoff,
the SD part does not. We have performed the integration
over the complete phase space,10 yielding:

�VV ¼ 0:99
 10�3; �VA � 0;

�AA ¼ 0:15
 10�3 ) �SD ¼ 1:14
 10�3:
(82)

Our number for �SD lies between the results for the mono-
pole and the tripole parametrizations in Ref. [4]. However,
they get a smaller (larger) VVðAAÞ contribution than we do
by�20%ð�200%Þ. This last discrepancy is due to the off-
shell a1 width they use. In fact, if we use the constant width
approximation, we get a number very close to theirs for
the AA contribution. With the understanding of the a1
width in the � ! 3��� observables [12], we can say that
their (relatively) high AA contribution is an artifact of the
ad-hoc off-shell width used. Since the numerical difference
in varied vector off-shell widths is not that high, the
numbers for VV are closer.

The numbers in Eq. (82) are translated into the following
branching ratios (BR):

BR VVð� ! ����Þ ¼ 1:05
 10�4;

BRAAð� ! ����Þ ¼ 0:15
 10�4:
(83)

We can also compare the VV value with the narrow-width
estimate. Taking into account the lowest-lying resonance
�ð770Þ, we get

BRVVð�!����Þ�BRð�! ���Þ
BRð�!��Þ
�BRð�!���0��ÞBRð�!��Þ
� 25:52%
 4:5
 10�4 ¼ 1:15
 10�4;

(84)

which is quite a good approximation.
In Table I we display (for two different values of the

photon energy cutoff) how the different parts contribute
to the total rate. For a low-energy cutoff, most of the
rate comes from IB, while for a higher-energy cutoff, the
SD parts (particularly the VV contribution) gain impor-
tance. While the VA contribution is always negligible, the
IB� V, IB� A, and the remaining SD parts (VV and AA)
have some relevance for a higher-energy cutoff.
In Fig. 9, we show the pion-photon invariant spectrum.

We find a much better signal of the SD contributions as
compared with the photon spectrum in Fig. 8, which has
already been noticed in Ref. [4]. Then, the pion-photon
spectrum is better suited to study the SD effects. In this
case, the VA part is identically zero, since this interference
vanishes in the invariant mass spectrum after integration
over the other kinematic variable. Of course, in the VV
spectrum, we see the shape of the � contribution neatly, as
shown in Fig. 9, where on the contrary the a1 exchange in
AA has a softer and broader effect. The IB� SD radiation
near the a1 is dominated by IB� A, which gives the
positive contribution to the decay rate. While near the
energy region of the � resonance, we find the IB� SD
contribution to be negative as driven by IB� V there.
In the whole spectrum, only the � resonance manifests as
a peak, and one can barely see the signal of a1, mainly due
to its broad width.

C. Results with the resonance contributions
for the kaon channel

Next we turn to the �� ! K���� channel. In this case,
several sources of uncertainty make our prediction less
controlled than in the �� ! ����� case. We comment
on them in turn.

TABLE I. Contributions of the different parts to the total rate
in the decay �� ! ����� (in units of ��!��), using two
different cutoffs for the photon energy: E� ¼ 50 MeV (x0 ¼
0:0565) and E� ¼ 400 MeV (x0 ¼ 0:45).

x0 ¼ 0:0565 x0 ¼ 0:45

IB 13:09
 10�3 1:48
 10�3

IB� V 0:02
 10�3 0:04
 10�3

IB� A 0:34
 10�3 0:29
 10�3

VV 0:99
 10�3 0:73
 10�3

VA �0 0:02
 10�3

AA 0:15
 10�3 0:14
 10�3

ALL 14:59
 10�3 2:70
 10�3
10Here and in what follows, all contributions to the partial
decay width are given in units of the nonradiative decay.

ONE-MESON RADIATIVE TAU DECAYS PHYSICAL REVIEW D 82, 113016 (2010)

113016-15



Concerning the vector form-factor contribution, no
uncertainty is associated with the off-shell widths of the
vector resonances, which are implemented as we explained
before. However, we have observed that the VV contribu-
tion to the decay rate is much larger (up to 1 order of
magnitude, even for a low-energy cutoff) than the IB one
for c4 ��0:07, a feature that is unexpected. In this case,
one would also see a prominent bump in the spectrum,
contrary to the typical monotonous fall driven by the IB

term. For smaller values of jc4j, this bump reduces its
magnitude and finally disappears. Also, one should not
forget that the inclusion of a second multiplet of reso-
nances may vary this conclusion.
The uncertainty in the axial-vector form factors is two-

fold: On one side, there is a broad band of allowed values
for �A, as discussed at the beginning of this section. On the
other hand, since we have not performed the analyses of the
decay � ! K���� modes yet, we do not have an off-shell
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FIG. 9 (color online). Differential decay width (in units of ��!���
) of the process �� ! �����, including all contributions as a
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width derived from a Lagrangian for theK1A resonances. In
the � ! 3��� decays, �a1 has the starring role [12]. Since

the K1A meson widths are much smaller (90� 20 MeV
and 174� 13 MeV, for the K1ð1270Þ and K1ð1400Þ,
respectively) and they are hardly close to the on-shell
condition, a rigorous description of the width is not an
unavoidable ingredient for a reasonable estimate. We de-
cided to use the expression inspired by the � width from

Ref. [39]. The explicit forms of the K1A off-shell widths
which we follow are given in Appendix A.
Considering all the sources of uncertainty mentioned,

we will content ourselves with giving our predictions for
the case of c4 ¼ 0, �0:07, and j�Aj ¼ 58�, 37�. We first
show the results of the decay rates in Table II. The lesson
we can learn from the numbers in Table II is that the decay
rate is sensitive to the value of c4, while different choices of

TABLE II. Contributions of the different parts to the total rate in the decay �� ! K���� (in units of ��!K�), using two different
cutoffs for the photon energy: E� ¼ 50 MeV (x0 ¼ 0:0565) and E� ¼ 400 MeV (x0 ¼ 0:45) and also different values of the resonance

couplings. The numbers in parentheses denote the corresponding results with j�Aj ¼ 37�, while the other numbers are obtained with
j�Aj ¼ 58�.

x0 ¼ 0:0565, c4 ¼ �0:07 x0 ¼ 0:0565, c4 ¼ 0 x0 ¼ 0:45, c4 ¼ �0:07 x0 ¼ 0:45, c4 ¼ 0
j�Aj ¼ 58�ð37�Þ j�Aj ¼ 58�ð37�Þ j�Aj ¼ 58�ð37�Þ j�Aj ¼ 58�ð37�Þ

IB 3:64
 10�3 3:64
 10�3 0:31
 10�3 0:31
 10�3

IB� V 0:69
 10�3 0:10
 10�3 0:83
 10�3 0:12
 10�3

IB� A 0:22ð0:25Þ 
 10�3 0:22ð0:25Þ 
 10�3 0:15ð0:18Þ 
 10�3 0:15ð0:18Þ 
 10�3

VV 58:55
 10�3 1:30
 10�3 29:04
 10�3 0:66
 10�3

VA �0ð�0Þ �0ð�0Þ 0:09ð0:09Þ 
 10�3 0:01ð0:01Þ 
 10�3

AA 0:13ð0:16Þ 
 10�3 0:13ð0:16Þ 
 10�3 0:12ð0:15Þ 
 10�3 0:12ð0:15Þ 
 10�3

ALL 63:23ð63:29Þ 
 10�3 5:39ð5:45Þ 
 10�3 30:54ð30:60Þ 
 10�3 1:37ð1:43Þ 
 10�3
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FIG. 10 (color online). Differential decay width (in units of ��!K��
) of the process �� ! K����, including all contributions as a
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display the compositions of the interference and structure-dependent parts, respectively.
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�A barely influence the final results. In order to illustrate
our predictions, we present in Figs. 10 and 11 the
plots analogous to those we discussed in the �� !
����� channel for the case c4 ¼ 0 and j�Aj ¼ 37�, 58�.
For c4 ¼ �0:07, we give the plots in Figs. 12 and 13,
where one can see that the VV contribution from the
SD parts overwhelmingly dominates almost the whole
spectrum.

VIII. CONCLUSIONS

In this article we have studied the radiative one-meson
decays of the �: �� ! ð�=KÞ����. We have computed
the relevant form factors for both channels and obtained
the asymptotic conditions on the couplings imposed by the
high-energy behavior of these form factors, dictated by
QCD. The relations that we have found here are compatible

0.6 0.8 1.0 1.2 1.4 1.6

0.00

0.01

0.02

0.03

0.04

0.05

t GeV

d
dz

K

SD A 37o
SD A 58o
INT A 37o
INT A 58o
IB
ALL A 37o
ALL A 58o

1.1 1.2 1.3 1.4 1.5 1.6 1.7

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

t GeV

d
dz

K

SD A 37o
SD A 58o
INT A 37o
INT A 58o
IB
ALL A 37o
ALL A 58o

0.6 0.8 1.0 1.2 1.4 1.6

0.002

0.001

0.000

0.001

0.002

t GeV

d
dz

K

IB A A 37o
IB A A 58o
IB V
INT A 37o
INT A 58o

0.6 0.8 1.0 1.2 1.4 1.6

0.000

0.005

0.010

0.015

0.020

0.025

t GeV

d
dz

K AA A 37o
AA A 58o
VA A 37o
VA A 58o
VV
SD A 37o
SD A 58o

1.1 1.2 1.3 1.4 1.5 1.6 1.7

0.0000

0.0005

0.0010

0.0015

t GeV

d
dz

K AA A 37o
AA A 58o
VA A 37o
VA A 58o
VV
SD A 37o
SD A 58o

FIG. 11 (color online). Differential decay width (in units of ��!K��
) of the process �� ! K����, including all contributions as a

function of
ffiffi
t

p
with c4 ¼ 0. The top right plot is the close-up of the top left plot in the region of

ffiffi
t

p
> 1:1 GeV. The middle left and

right plots display the compositions of the interference and structure-dependent parts, respectively. The bottom plot is the close-up of
the middle right plot in the region of

ffiffi
t

p
> 1:1 GeV.
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with those found in other phenomenological applications
of the theory.

One of our motivations to examine these processes is
that they have not been detected yet, according to naı̈ve
estimates or to Breit-Wigner parametrizations. We have
checked the existing computations for the IB part. Adding
to it the WZW contribution, that is, the LO contribution in
�PT coming from the QCD anomaly, we have estimated
the model-independent contribution to both decays that
could be taken as a lower bound. The values that we obtain
for the � channel are at least 1 order of magnitude above
the already-observed 3K decay channel even for a high-
energy cutoff on the photon energy. In the K channel, the
model-independent contribution gives a branching ratio
larger than that of the 3K decay channel, as well. Only
by imposing a large cutoff on E� could one understand that

the latter mode has not been detected so far. We expect,
then, that upcoming measurements at B- and tau-charm
factories will bring the discovery of these tau decay modes
in the near future.

We do not have any free parameter in the �� ! �����

decay, and that allows us to make a complete study. Since
the IB contribution dominates, it will require some statis-
tics to study the SD effects. In this sense, the analysis of the

�-photon spectrum (t-spectrum) is more promising than
that of the pure photon spectrum (x-spectrum), as we have
shown. We are eager to see whether the discovery of this
mode confirms our findings, since we believe that the
uncertainties of our study are small for this channel.
As expected, the higher mass of the kaon makes easier

the observation of SD effects. However, there are several
sources of uncertainty in the �� ! K���� decay that
prevent us from having a definitive prediction for this
channel. The most important one raises some doubts
either about the value of c4, a parameter describing the
SUð3Þ-breaking effect, obtained in Ref. [11] or on the
sufficiency of one multiplet of vector resonances to de-
scribe this decay. We point out that the inclusion of the
heavier multiplets of resonances will not only directly give
contributions to the spectra and the decay rates, but also
influence the final results in an indirect way by entering the
resonance parameters given in Eq. (80). As we have shown,
the value of this coupling drastically affects the strength of
the VV (and thus the whole SD) contribution. Besides,
there is an uncertainty associated with the broad band of
allowed values for �A. However, the AA contribution is not
important anyway with respect to that on c4. Even smaller
is the error associated with the off-shell width behavior of
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FIG. 12 (color online). Differential decay width (in units of ��!K��
) of the process �� ! K����, including all contributions as a

function of x with c4 ¼ �0:07. The top right plot shows the compositions of the interference parts. The bottom left one shows the VA
and AA contributions.
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the axial-vector neutral resonance with strangeness, K1H;L.

Since we have not calculated the relevant three-meson
decay of the tau, we do not have this expression within
R�T yet. We took a simple parametrization including the
on-shell cuts corresponding to the decay chains K1H;L !
ð�K=K��Þ. Since the effect of c4 is so large, we expect
that, once this decay mode is discovered, we will be able to
bound this coupling.

As an application of this paper, we are working out [78]
the consequences of our study in lepton universality tests
through the ratios �ð�� ! �����Þ=�ð�� ! �����Þ
and �ð�� ! K����Þ=�ðK� ! �����Þ that were consid-
ered in Refs. [79–81] in different frameworks. The ratio
between the decays in the denominators within �PT was
studied in [82,83] and the radiative pion decay has recently
been investigated within R�T in [36].
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APPENDIX A: OFF-SHELLWIDTHS OF THE
INTERMEDIATE RESONANCES

The off-shell widths of the resonances used in our
numerical discussion are taken from Refs. [10,12,39].
The off-shell width of the �ð770Þ is

��ðsÞ ¼
sM�

96�F2

�
3

��ðsÞ þ 1

2
3

KKðsÞ
�
; (A1)

where

PQðsÞ ¼ 1

s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½s� ðmP þmQÞ2�½s� ðmP �mQÞ2�

q

 �½s� ðmP þmQÞ2�: (A2)

�ðxÞ is the standard unit step function.
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FIG. 13 (color online). Differential decay width (in units of ��!K��
) of the process �� ! K����, including all contributions as a

function of
ffiffi
t

p
with c4 ¼ �0:07. The top right plot is the close-up of the left plot in the region of

ffiffi
t

p
> 1:1 GeV. The bottom left plot

shows the composition of the interference parts.
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The off-shell width of the K�ð892Þ is

�K� ðsÞ ¼ sMK�

128�F2
½3

�KðsÞ þ 3
�KðsÞ�; (A3)

while that of the K1A is

�K1A
ðsÞ ¼ �K1A

ðM2
K1A

Þ s

M2
K1A

� 3
K��ðsÞ þ 3

�KðsÞ
3

K��ðM2
K1A

Þ þ 3
�KðM2

K1A
Þ
�
:

(A4)

The a1ð1260Þ off-shell width is

�a1ðQ2Þ ¼ �3�
a1 ðQ2Þ�ðQ2 � 9m2

�Þ
þ �KK�

a1 ðQ2Þ�ðQ2 � ð2mK þm�Þ2Þ; (A5)

where

�3�;KK�
a1 ðQ2Þ ¼ �S

192ð2�Þ3F2
AMa1

�
M2

a1

Q2
� 1

�
2



Z

dsdtT
3�;KK��

1þ T3�;KK��
1þ� : (A6)

Here �3�
a1 ðQ2Þ recalls the three-pion contributions, and

�KK�
a1 ðQ2Þ collects the contributions of the KK� channels.

In Eq. (A6), the symmetry factor S ¼ 1=n! recalls the case
with n identical particles in the final state. The explicit

expressions for T
3�;KK��

1þ can be found in Ref. [12]. We

stress that the on-shell width, �a1ðM2
a1Þ, is a prediction and

not a free parameter.

APPENDIX B: NUMERICAL INPUTS

In the numerical discussion, unless a specific statement
is given, we use the values given in Ref. [38]. For the pion,
kaon, and K�ð892Þ, we use the masses of the charged
particles throughout, i.e.,

m� ¼ 139:6 MeV;

mK ¼ 493:7 MeV;

MK� ¼ 891:7 MeV:

(B1)

For the mass of a1ð1260Þ, we use the result of Ma1 ¼
1120 MeV from Ref. [12], which has taken the off-shell
width effect into account.
For the resonance couplings, once we have the value of

the pion decay constant F in the chiral limit, we can
determine all of the others except c4 through Eq. (80).
For the value of F, we use F ¼ 90 MeV. The physical
pion and kaon decay constants we use are

F� ¼ 92:4 MeV; FK ¼ 113:0 MeV: (B2)
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