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We present a phenomenological constraint on a long-range spin-dependent interaction�00ðs1 � s2Þe��r=r,

which can be induced by a pseudovector light boson beyond the standard model. In the range of masses

from 4 keV=c2 to those related to macroscopic distances (��1 � 1 cm) the spin-dependent coupling

constant �00 of the electron-muon interaction is constrained at the level below a part in 1015. The constraint

is weakened if extended to highermasses. The strongest constraint is related to the lepton-lepton interaction.

Constraints on spin-dependent interactions of an electron with some other particles are also discussed.

The results are obtained from data on the hyperfine splitting (HFS) interval of the ground state in muonium

and a few other light hydrogenlike atoms.
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I. INTRODUCTION

Muonium is a bound system, consisting of an electron
and an antimuon. Interaction between the constituents is
dominated by the Coulomb interaction. The major contri-
bution to the hyperfine splitting (HFS) also comes from
one-photon exchange, but from its magnetic part. The most
accurate experimental values of the related transitions are

�ð1s� 2sÞ ¼ 2455 528 941:0ð9:8Þ MHz; ½1�;
�ð1s; hfsÞ ¼ 4463 302:776ð51Þ kHz; ½2�: (1)

Comparison of theory and experiments provides one of the
most accurate tests of quantum electrodynamics (QED)
calculations for bound states (see [3,4] for details).

Since it is possible to control relativistic, recoil and QED
corrections, one can apply these data to check whether a
leading nonrelativistic term obtained from the one-photon
exchange is consistent with the gross experimental picture
and to constrain possible deviations from the standard
description.

The leading terms are

�ð1s� 2sÞ ’ 3

4
R1;

�ð1s; hfsÞ ’ EF ¼ 16�

3�
�B��R1m2

e; (2)

where we apply relativistic units in which ℏ ¼ c ¼ 1,
e2=ð4�Þ ¼ � is the fine-structure constant, me is the elec-
tron mass and R1 is the Rydberg constant, �B ¼ e=ð2meÞ
is the Bohr magneton and �� is the muon magnetic mo-

ment. Similar equations hold for related transitions in other
light hydrogenlike atoms.

To calculate the dominant contributions, one has at first
to determine the values of related fundamental constants,
such as the fine-structure constant �, the Rydberg constant

R1, the muon magnetic moment��. The latter come from

a bunch of experiments involved in the data analysis [5]
and if a certain ‘‘new-physics’’ effect would affect those
experiments in a different way, the outcome could be
inconsistent.
In this paper we study a possible inconsistency in the

interpretation of different experiments due to a long-range
spin-dependent interaction, which may be caused by an
exchange by a pseudovector boson with small mass and an
ultraweak coupling.
Such an interaction should affect the HFS interval,

which has been measured with high accuracy in a number
of light two-body atoms.
The strongest constraint we derive here is from muon-

ium physics, on which we focus our attention and consider
related data in details. Weaker constraints from experi-
ments on other atoms are also considered.
The constraint on the exchange by an intermediate bo-

son comes from its one-particle-exchange (OPE) contribu-
tion. Meantime, even in the OPE approximation there are
other intermediate particles which contribute to the effec-
tive muon-electron interaction and shift the energy levels.
Some of such small contributions have been already

included into consideration of the muonium HFS as cor-
rections due to weak and strong interactions. At the tree
level, a Z boson exchange should be included (see, e.g.,
[6]). While taking into account various perturbative effects
and corrections, one has to consider an exchange by �
meson, pion, a1 meson etc. Those hadronic OPE contribu-
tions are a result of certain reduction of more complicated
graphs to the tree level. In particular, the � exchange is
taken into account when considering the hadronic vacuum
polarization contribution [7], while �0 and a1 exchange is
a part of consideration of the hadronic light-by-light-
scattering contribution [8].
In contrast to the situation with the anomalous magnetic

moment of a muon (see, e.g., [9]), the mentioned correc-
tions (Z, �, �0, a1) to the one-photon exchange are very*savely.karshenboim@mpq.mpg.de
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small and are of marginal importance for the present level
of experimental and theoretical accuracy in spectroscopy
of muonium and other simple atoms. Their smallness
comes from the large masses of the intermediate particles
(all are much heavier than electron), while in the hadronic
case each induced vertex is additionally suppressed,
because it involves higher-order QED effects and thus
involves extra factors of �.

Various unification theories (see, e.g., [10–14]) may
involve a particle lighter than an electron and here we
constrain its coupling constant.

A constraint on a possible new spin-independent inter-
action from precision physics of simple atoms has been
already considered [15,16] and here we discuss a spin-
dependent interaction, which is somewhat similar to those
due to exchange by Z, �, �0, a1. The characteristic mo-
mentum at the ground state is about 4 keVand we consider
an intermediate particle lighter than that.

Two of the mentioned interactions, namely, due to the Z
and a1 exchange, are of our particular interest, because
they produce a spin-spin coupling directly. In particular, a
long-range spin-spin interaction should appear if introduc-
ing an exchange by a light pseudovector boson. Because
of such an interaction, the Coulomb exchange should be
corrected. In particular, it should include a Yukawa-kind
spin-spin interaction

� �00ðse � s ��Þe��r

r
:

Such a correction appears within a nonrelativistic ap-
proximation, which is specific for a pseudovector particle.
For instance, vector (e.g., a photon) or pseudoscalar (e.g., an
axion [10,13]) particles produce a spin-spin interaction only
as a relativistic effect. In particular, in the case of spin 1=2 as
long as the large components of the Dirac wave function are
considered, the spin-involving effects do not appear. The
vector-particle exchange is a kind of static electric interac-
tion, while the axion-induced interaction is vanishing. Once
we include the small components, the vector-particle
exchange involves the magnetic forces and the axion ex-
change becomes observable. Inclusion of small components
of both interacting particles usually produces a suppression
factor of 1=ðm1m2r

2Þ � 1, which weakens the spin-
dependent constraints on pseudoscalar particles while for
vector particles stronger constraints originate indeed from
a spin-independent interaction (see, e.g., [16]).

Some other spin-dependent couplings can also appear
from an exchange by a pseudovector particle.1 We are to
consider the relation between a complete pseudovector
propagator in momentum space and the substitution (3)
in coordinate space elsewhere [17], while the purpose of
this paper is to constrain the long-range correction in (3),
with no restriction on its origin.

Here we constrain effects, which could appear in hyper-
fine structure of few two-body atoms, once we apply a
substitution for the Coulomb potential

� �

r
! ��þ �00ðse � s ��Þe��r

r
: (3)

Studying the spin-spin interaction we can simplify (3)
under certain conditions. In particular, if the intermediate
particle is massless (or, which is the same, lighter than
4 keV), the resulting interaction at atomic scale should be

� �

r
! ��þ �00ðse � s ��Þ

r
: (4)

In principle, such a mechanism, involving a new
particle, can produce some ultraweak spin-dependent
long-range interaction.
Here we consider an interaction, which is similar to the

Z and a1 exchange, but with different strength and mass.
A possible range of �00 for the mass of the intermediate
particle (i.e., of the radius of the interaction) below 4 keV
is under our investigation [15].
Such an intermediate particle is coupled to charged

particles and is rather expected to be unstable and to decay
into photons. However, as long as its width is much smaller
than its mass, we can consider the particle as stable while
calculating the related corrections to the energy levels
(cf. with calculations of the Z [6] and a1 [8] exchange
for the muonium HFS).

II. METHOD

The HFS interval in light hydrogenlike atoms can be
expressed in terms of the so-called Fermi energy EF and a
correcting factor due to reduced-mass, relativistic, recoil
and QED effects. Taking the latter into account [3,4] one
can interpret any measurement of the actual HFS interval
as a measurement of EF. The Fermi energy (see, e.g., (2)
for the muonium Fermi energy) is in its turn proportional
to a product of the muon and electron magnetic moments.
The ground state HFS has been studied with a high

accuracy in six two-body atoms, which are muonium [2],
positronium [18], hydrogen [19], deuterium [20], tritium
[21] and helium-3 ion [22]. The strength of the constraint
on a light pseudovector meson depends not only on accu-
racy of the experimental determination of the HFS interval,
but also on accuracy of the theoretical calculation of this
quantity. We briefly overview the related theoretical prob-
lems in Sec. V. Below, we focus our attention on muonium,
study of which delivers us the strongest constraint on �00.
At present, a way of an EF calculation is the following:

one takes an experimental value of �� and uses it in the

calculation. The value is obtained in macroscopic mea-
surements, say at r > 1 cm. If the interaction we are to
constrain is related to the case

1 cm�1 � � � 4 keV; (5)
1I am grateful to P. Fayet for attracting my attention to this

problem.

S. G. KARSHENBOIM PHYSICAL REVIEW D 82, 113013 (2010)

113013-2



then a certain mismatch, proportional to �00 should appear
because the spin-spin term in (4) also contributes to the
HFS interval. The HFS interval is shifted by

�Ehfs ¼ �Z2ð�þ �00Þ2mr

2
þ Z2�2mr

2
: (6)

This correction is universal for atoms with the nuclear
spin 1=2. (For the nuclear spin 1, e.g., in deuterium, a
factor of 3=2 should be introduced.) Here, mr is the
reduced mass, which for all atoms under study but posi-
tronium, is equal to the electron mass me with a sufficient
accuracy. In positronium, mr ¼ me=2.

The correction can be rewritten in terms of an effective
correction to magnetic moment in such a way that the
Fermi energy with a ‘‘corrected’’ magnetic moment in-
cludes a correction (6).

In the case of muonium it is of the form

�Ehfs ¼ 16�

3�
�B�

0
�R1m2

e; (7)

where �0
� is defined as

�0
� ¼ ��� � 2�00

�

R1
EF

¼ �2:0� 108���
00: (8)

That is the value of�0
� that should appear as a mismatch

in a determination of the muon magnetic moment, found
from a comparison of Eqs. (2) and (1) and taking into
account all necessary reduced-mass, relativistic, recoil
and QED corrections [3–5], and a value, obtained by a
‘‘direct’’ macroscopic measurement. Determination of
magnetic moments of various particles (muon, proton)
and light nuclei (deuteron, triton, helion (the nucleus
of the helium-3)) is reviewed in detail in [5] (see Sec. VI
there).

III. DETERMINATION OF THE
MUON MAGNETIC MOMENT

Let us consider a determination of the muon magnetic
moment. The most accurate value (in units of the proton
magnetic moment) is [5]

��

�p
¼ 3:183 345 137ð85Þ: (9)

The result is obtained after taking into account all the
world data. The dominant contribution comes from a com-
parison of (2) and (1) with all appropriate corrections
taken, while the other measurements are statistically neg-
ligible. That is not a value obtained by any ‘‘direct’’ means.

If the correction (8) is present, we should interpret this
result as

�� þ�0
�

�p

¼ 3:183 345 137ð85Þ: (10)

This value should be compared with a ‘‘direct’’ mea-
surement [2]

��

�p
¼ 3:183 345 24ð37Þ: (11)

The latter is derived from a study of Breit-Rabi magnetic
sublevels of the ground state in the magnetic field. So, it is
determined from a macroscopic experiment.
The discussion on �� above involves also �p (see

Eqs. (10) and (11)) as a unit. It appears in EF, where the
actual dimensionless factor reads ��me=e ¼ ð��=�pÞ�
ð�p=�BÞð�Bme=eÞ. Note that �Bme=e ¼ 1=2, while the

factor �p=�B is determined from macroscopic experi-

ments. Different scales are related only to two determina-
tions of�� and do not touch any other involved quantities.

The value of �p is customarily involved in a presentation

of the results but does not play any real role in the issue
under consideration.
For the references on measurements of these and similar

quantities useful to examine HFS intervals in other light
atoms, let us mention that the magnetic moments of proton
[23] and deuteron [24] in units of the electron magnetic
moment are determined from a study of similar level
structure as in muonium [2], while the magnetic moments
of triton [25,26] and helion [27] are obtained from NMR
spectroscopy (see also [25] for an NMR determination of
�p=�d). To convert a result obtained in terms of �e into

results in terms of �B, one has to apply a value of ge
measured in a macroscopic experiment [28] as well.

IV. CONSTRAINING A LONG-RANGE SPIN-SPIN
INTERACTION FROM MUONIUM HFS

The constraint on the electron-antimuon spin-dependent
coupling constant, resulting from comparison of Eqs. (10)
and (11), reads

�00 ¼ ð1:6� 6:0Þ � 10�16; (12)

which is the major result of the paper.
As already mentioned, the ‘‘direct’’ measurement deals

with behavior of hyperfine energy levels in a macroscopic
magnetic field [2]. A value of�e=�p has also been used as

an input datum that was obtained from measurements
of splitting of Breit-Rabi HFS sublevels in the magnetic
field [23] (for an adequate theory see [4,5,33]) at the
macroscopic distance scale.
To be conservative, we estimate the distances from the

field source in the mentioned macroscopic experiments as
larger than 1 cm. In principle, one could consider a com-
parison of the atomic scale with a somewhat larger dis-
tance. However, in this case it is necessary to completely
reanalyze both quoted experiments for their magnetic
effects, including the source of the field and the shielding
applied. In any case, from the point of view of particle
physics that is rather a higher-energy end for the scale
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which is of interest. That range is related to the mass of an
intermediate boson of roughly 4 keV.

V. CONSTRAINTS FROM THE GROUND STATE
HFS INTERVAL IN OTHER LIGHTH-LIKE ATOMS

The constraint (12) is related to a four-fermion e �e�� ��
interaction. Some other interactions can be also constrained
from atomic physics. A similar constraint can be also set
for an e �e� e �e interaction, but it is weaker by a few orders
of magnitude. That is because positronium HFS is much
larger (i.e., the HFS is a bigger portion of the Rydberg
energy) and because of lower experimental accuracy in the
determination of the HFS interval [18]. The constraint is at
the level of a few parts in 1012. Since theory and experiment
disagree at the level of about 2:5� (see, e.g., [4]), perhaps,
we have to estimate the experimental and theoretical un-
certainty somewhat more conservatively than in the origi-
nal publications. In any case, in such a specific area as a
constraint on ‘‘new physics’’, the aim is rather a conserva-
tive limitation than a ‘‘detection’’, and some two- or three-
sigma effects are observed from time to time.

In the case of an e �e� p �p interaction, accuracy should be
also somewhat lower than (12) because of relatively low
theoretical accuracy, the uncertainty of which is due to the
proton structure effects (see, e.g., [3,4]). That is compen-
sated in part by a smaller value of the HFS interval because
of a smaller value of the nuclear magnetic moment (cf. (8)).

A constraint for a compound particle can be derived,
e.g., from the deuteron HFS. The theoretical accuracy here
is even worse than for hydrogen (see, e.g., [4]), but the
enhancement because of a small HFS interval is larger.

The exact value of constraints for�00 for an e �e� p �p and
e �e� d �d interaction should come from an estimation of the
uncertainty of nuclear structure. It seems, however, that a
situation with that for the HFS intervals in hydrogen and
deuterium is somewhat uncertain and we prefer to give a
rough estimation. We expect a constraint on the related �00
values at the level of a few parts in 1015. Utilization of data
from other light atoms is also possible.

A study of the HFS structure of other light atoms, such
as tritium and helium-3 ion, can provide similar constraints
after the contribution and uncertainty of their nuclear
structure effects are properly estimated.

The results are summarized in Table I. We emphasize
that the constraints for nonleptonic atoms are rough esti-
mations and the accuracy of understanding of the nuclear
structure effects requires clarification.

All constraints, but the one from positronium, are based
on a comparison of a certain HFS interval and the related
nuclear magnetic moment, determined at macroscopic dis-
tances [2,5,23–27]. For a specific case of positronium, the
leading term for the HFS interval

EFðPsÞ ¼ 7

6
�2R1: (13)

is calculated only from the knowledge of electron charge
and mass, which enter in combinations, determination of
which is insensitive to any spin-dependent interaction.
(One has to remember that a determination of the fine-
structure constant can be done by many methods and some
of them do not involve any magnetic effects. In particular,
one can find � from R1 and a certain h=M value [29,30] as
discussed in [5,16].) That allows to extend the constraint to
larger distances.
More detail on the data used for constraining the spin-

dependent long-range interaction from the 1s HFS can be
found in the Appendix.

VI. EXTENDING THE CONSTRAINTS
TO A LARGER-MASS RANGE

A constraint from the value of the 1sHFS interval can be
easily extended to higher values of the mass of the inter-
mediate boson, �. A direct calculation of the contribution
of the Yukawa spin-dependent term in (3) leads to

�Ehfs ¼ �2
�00

�2
Z2 mr

me

R1 �F 1ð�=Z�mrÞ; (14)

and so

�00ð�Þ ¼ �00
0

F 1ð�=Z�mrÞ : (15)

Here �00
0 is a related constraint for � � Z�me ¼

3:5Z keV, listed in Table I, and the profile function is of
the form

F 1ðxÞ ¼
�

2

2þ x

�
2
:

The constraint for the extended � range is presented in
Fig. 1 [15]. Here, the nuclear charge Z is unity for all
atoms, but helium-3 ion (Zh ¼ 2) and the reduced-massmr

is equal to the electron mass me for all atoms, but positro-
nium (mrðPsÞ ¼ me=2). Because of that, the mass depen-
dence of positronium and helium constraints is somewhat
different from results derived from muonium, hydrogen,
deuterium and tritium.

TABLE I. The constraint from the 1s HFS intervals on a
coupling constant �00 for a pseudovector boson with mass � �
�me ’ 3:5 keV (which is related to the Yukawa radius substan-
tially above a0).

Atom �00

Mu ð1:6� 6:0Þ � 10�16

Ps ð5:8� 2:1Þ � 10�12

H �1:6� 10�15

D �8� 10�15

T �7� 10�14

3Heþ �5� 10�13
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VII. SUMMARY

The final constraints from the 1s HFS in six different
two-body atoms are summarized in Fig. 1 [15]. For the
atomic systems, where nuclear effects are not well esti-
mated, we apply rather a rough estimation which, in
principle, can be substantially improved. The strength of
constraint for �00

0 from muonium and positronium is deter-

mined by experimental accuracy. For muonium that is the
experimental accuracy of determination of the muon
magnetic moment in appropriate units. For positronium
the dominant uncertainty is the one for measurements of
the 1s HFS interval, while the theoretical uncertainty is
smaller, but still comparable with the experimental one.

For hydrogen [19], deuterium [20], tritium [21] and
helium-3 ion [22] the experimental data are substantially
more accurate, and the strength is determined by an uncer-
tainty in understanding the nuclear effects, which limits the
theoretical accuracy (see, e.g., [4]).

One can note that the spin-dependent constraint obtained
here is stronger comparing with our spin-independent con-
straints [16], which, in fact, deal with substantially more
accurate data. A reason for that is that the interaction (4)
modifies the Coulomb interaction and thus an enhancement
factor (i.e., a factor of 2� 108 in (8)) comparing with the
magnetic interaction appeared.

It is also notable that the constrained boson is respon-
sible for a kind of interaction, which is somewhat similar to

the weak interaction by Z boson exchange. While the weak
contribution to the 1s HFS in light hydrogenlike atoms is
below the accuracy of comparison of theory and experi-
ment (see, e.g., [3–5]), our constraint is quite strong.
Concerning the weak interaction in atomic physics, we

have to remind that the weak interaction is weaker than the
electromagnetic one not because of a weak coupling con-
stant, but because of the heaviness of its intermediate
particle. Introducing a new particle, the correction would
increase with a lighter mass and decrease with a weaker
coupling constant. From the point of view of the final
result, a correction with near-zero mass and an ultraweak
interaction can be compatible with a conventional weak
interaction. Indeed, that is possible only at the low mo-
mentum transfer. In similar matter various atomic weak-
interaction experiments can in principle also constrain
certain long-range interaction (cf., e.g., [32]). However,
the derived constraints are rather weakened at keV masses.
Concluding, here we constrain a spin-dependent inter-

action, caused not just by a pseudovector particle, but a
particle with spin one and axial coupling. That covers not
only pseudovectors, but also a light particle, which simi-
larly to the Z boson, does not have a fixed parity.
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APPENDIX: SUMMARY ON EXPERIMENTAL
AND THEORETICAL DATA ON THE 1s HFS
INTERVAL IN LIGHT TWO-BODYATOMS

Here, we collect reference data applied in the evaluation.
The experimental results on the 1s HFS interval are col-
lected in Table II. They represent physics at atomic scale.
To constrain a long-range interaction, one has to

compare it with physics on macroscopic distances, which

Mu

Ps

H

D

T

He

MeV

10 5 10 4 0.001 0.01 0.1 1
10 16

10 14

10 12

10 10

10 8

10 6

FIG. 1. Constraint on a long-term spin-dependent interaction
from the HFS intervals of the ground state in light two-body
atoms. The lines present the upper bound on j�00j from data on
the 1s HFS interval in muonium, hydrogen, deuterium, tritium,
helium-3 ion, and positronium. A mass of an intermediate
particle � is the inverse Yukawa radius. The confidence level
is related to one standard deviation.

TABLE II. The most accurate results for the 1s HFS interval in
light hydrogenlike atoms. A negative sign for the 3Heþ ion
reflects the fact that the nuclear magnetic moment is negative,
i.e., in contrast to other nuclei in the Table, its direction is
antiparallel to the nuclear spin.

Atom EHFSðexpÞ Refs.

[kHz]

Muonium 4 463 302.78(5) [2]

Hydrogen 1 420 405.751 768(1) [19]

Deuterium 327 384.352 522(2) [20]

Tritium 1 516 701.470 773(8) [21]
3Heþ ion �8 665 649:867ð10Þ [22]

Positronium 203 389 100(740) [18]
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provides a value of the magnetic moment of the involved
nuclei. We summarize in Table III results on �nucl=�B,
values of magnetic moments of the nuclei of interest in
units of the Bohr magneton.

Determination of the nuclear magnetic moment for light
atoms is mostly done for bound nuclei. A number of
measurements are done on the Breit-Rabi levels in two-
body atoms and the shielding correction is discussed in
[5,33]. The most complicated is theory of the neutral
helium-3 atom, a three-body system, where theory with
sufficient accuracy is presented in [34]. Other experiments
are performed with the nuclear magnetic resonance tech-
nique on diatomic molecules HD and HT. They are more

complicated for calculations, however, it is the ratio of
nuclear magnetic moments (deuterium-to-proton and
tritium-to-proton) that is measured and this kind of isotopic
calculations has relatively high accuracy (see [25] for
detail).
All the references and description of the method are

given in the table for the most crucial measurements for
each involved nucleus. Other involved measurements were
on the anomalous magnetic moments of electron and muon
and on the proton-to-electron mass ratio. All three values
are known with accuracy much better than required (see [5]
for detail). All results, but a result for the helion, the
nucleus of H3e, are taken from the CODATA tables
of recommended values [5]. To obtain the free helion value
we used the related shielded value of 1:158 671; 471ð14Þ �
10�3 from [5] and the shielding factor (� ¼
59:96743ð10Þ � 10�6) recently calculated in [34].
To conclude a short overview of involved values and

accuracies, we summarize in Table IV the uncertainty of
comparison of the experiment and theory of the 1s HFS
interval in light two-body atoms. While the accuracy for
muonium and positronium is well understood and was
numerously discussed in literature (see, e.g., [4]), the un-
certainty for conventional atoms in the table is rather a
rough estimation accepted in this paper.
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TABLE IV. Uncertainty of comparison of theory and experi-
ment for the 1s HFS interval in light hydrogenlike atoms.

Atom Fractional uncertainty

Dominant source

of uncertainty

Muonium 0.12 ppm determination of ��=�p

Hydrogen 1 ppm nuclear effects

Deuterium 35 ppm nuclear effects

Tritium 40 ppm nuclear effects
3Heþ ion 200 ppm nuclear effects

Positronium 4.4 ppm experiment & theory

TABLE III. Determination of the nuclear magnetic moment in light atoms. ‘BR @ B’ is for
study of the Breit-Rabi levels at presence of magnetic field (in muonium, hydrogen and
deuterium); ‘‘NMR’’ stands for nuclear magnetic resonance of free protons (p), atoms of 3He
and molecules of HD, HT and H2O. The references and description of the method are given for
the most crucial measurements only. ‘‘h’’ stands for helion, the nucleus of the helium-3 atom. All
results, but result for the helion, the nucleus of 3He, are taken directly from [5]. The helion result
is obtained as explained in the text.
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