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Constraints from analyticity are combined with experimental electron-proton scattering data to

determine the proton charge radius. In contrast to previous determinations, we provide a systematic

procedure for analyzing arbitrary data without model-dependent assumptions on the form-factor shape.

We also investigate the impact of including electron-neutron scattering data, and �� ! N �N data. Using

representative data sets we find rpE ¼ 0:870� 0:023� 0:012 fm using just proton scattering data; rpE ¼
0:880þ0:017

�0:020 � 0:007 fm adding neutron data; and rpE ¼ 0:871� 0:009� 0:002� 0:002 fm adding ��

data. The analysis can be readily extended to other nucleon form factors and derived observables.
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I. INTRODUCTION

The electromagnetic form factors of the nucleon provide
basic inputs to precision tests of the standard model. In
particular, the root mean square (rms) proton charge radius
as determined by the form-factor slope,1

Gp
Eðq2Þ ¼ 1þ q2

6
hr2ipE þ � � � ; (1)

is an essential input to hydrogenic bound state calculations
[1,2]. Recent experimental results suggest a discrepancy
between the charge radius inferred from the Lamb shift

in muonic hydrogen [3], rpE �
ffiffiffiffiffiffiffiffiffiffiffi
hr2ipE

q
¼ 0:841 84ð67Þ fm,

and the CODATA value, rpE ¼ 0:8768ð69Þ fm, extracted
mainly from (electronic) hydrogen spectroscopy [4]. The
charge radius can also be extracted from elastic electron-
proton scattering data. The 2010 edition of the Review of
Particle Physics lists 12 such determinations that span the
range of 0.8–0.9 fm [5], most with quoted uncertainties of
0.01–0.02 fm. These determinations correspond to analyses
of different data sets and different functional forms of
Gp

Eðq2Þ that were fit to the data over a period of 50 years.
Extraction of the proton charge radius from scattering

data is complicated by the unknown functional behavior of
the form factor. We are faced with the tradeoff between
introducing too many parameters (which limits predictive
power) and too few parameters (which biases the fits). Here
we describe a procedure that provides model-independent
constraints on the functional behavior of the form factor.
The constraints make use of the known analytic properties
of the form factor, viewed as a function of the complex
variable t ¼ q2 ¼ �Q2.

As illustrated in Fig. 1, the form factor is analytic out-
side of a cut at timelike values of t, [6] beginning at the
two-pion production threshold, t � 4m2

�.
2 In a restricted

region of physical kinematics accessed experimentally,

�Q2
max � t � 0, the distance to singularities implies the

existence of a small expansion parameter. We begin by
performing a conformal mapping of the domain of analy-
ticity onto the unit circle:

zðt; tcut; t0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut � t

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut � t0

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut � t

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut � t0

p ; (2)

where for this case tcut ¼ 4m2
�, and t0 is a free parameter

representing the point mapping onto z ¼ 0. By the choice

t
opt
0 ¼ tcutð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þQ2

max=tcut
p Þ, the maximum value of

jzj is minimized: jzj � jzjmax ¼ ½ð1þQ2
max=tcutÞ1=4 � 1�=

½ð1þQ2
max=tcutÞ1=4 þ 1�. For example, with Q2

max ¼
0:05 GeV2; 0:5 GeV2, we find jzjmax ¼ 0:062; 0:25.
Expanding the form factor as

Gp
Eðq2Þ ¼

X1
k¼0

akzðq2Þk; (3)

we find that the impact of higher-order terms are sup-
pressed by powers of this small parameter.3 As we will
see below, the coefficients multiplying zk are bounded in
size, guaranteeing that a finite number of parameters are
necessary to describe the form factor with a given preci-
sion. Figure 2 illustrates the manifestation of this fact in the
form-factor data. As expected, the curvature is smaller in
the z variable than in the Q2 variable.
Expansions of the form (2) are a standard tool in analyz-

ing meson transition form factors [7–17]. A complicating
feature in the present application to nucleon form factors is
the contribution of the subthreshold region 4m2

� � t �
4m2

N in the relevant dispersion integral.
The rest of the paper is structured as follows. In Sec. II

we demonstrate the application of the z expansion in some
illustrative fits and compare it to other expansions that
appear in the literature. One of the main advantages of
the z expansion is that the expansion coefficients can be

1Gp
E is defined in Sec. III A.

2Here and throughout, m� ¼ 140 MeV denotes the charged
pion mass, and mN ¼ 940 MeV is the nucleon mass.

3Physical observables are independent of the choice of t0,
which can be viewed as the choice of an expansion ‘‘scheme.’’
jzjmax defined in this way gives a convenient estimation of the
impact of higher-order terms.
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bounded using knowledge about ImGp
E in the timelike

region. In Sec. III we discuss these bounds. In Sec. IV
we discuss several possibilities of reducing the error on the
charge radius by including more experimental data,
namely, high Q2 data, neutron scattering data, and ��
data. Finally, we discuss our results in Sec. V.

II. ILLUSTRATIVE FITS

Let us consider the six data sets tabulated by
Rosenfelder [18] (denoted in [18] as S1, S2, R, B1, B2,
M) This will allow us to compare in detail the results of our
fit to previous analyses. For definiteness, we take all data
points in [18] with corrections from magnetic form-factor
contributions �mag � 0:15. The resulting data set has 85

points with Q2 & 0:04 GeV2.
Wewill fit to three types of parametrization. The first is a

simple Taylor series expansion,

Gp
Eðq2Þ ¼ 1þ a1

q2

tcut
þ a2

�
q2

tcut

�
2 þ � � � ; (4)

where we choose to work in units tcut ¼ 4m2
�. The second

is a continued fraction expansion put forward in [19],

Gp
Eðq2Þ ¼

1

1þ a1
q2=tcut

1þa2ððq2=tcutÞ=1þ���Þ

¼ 1� a1
q2

tcut
þ ða1a2 þ a21Þ

�
q2

tcut

�
2 þ � � � : (5)

We are not aware of a motivation for this ansatz from first
principles, but it has been used to obtain one of the widely
quoted values of the proton charge radius from electron
scattering. The third is the z expansion described in the
Introduction,

Gp
Eðq2Þ ¼ 1þ a1zðq2Þ þ a2z

2ðq2Þ þ � � �

¼ 1� a1
4

q2

tcut
þ

�
�a1

8
þ a2

16

��
q2

tcut

�
2 þ � � � ; (6)

where zðq2Þ ¼ zðq2; tcut; t0 ¼ 0Þ. As explained below, the
coefficients in this expansion are bounded; for definiteness
here we take jakj � 10.

We perform fits by minimizing a �2 function,

�2 ¼ X
i;j

ðdatai � theoryiÞE�1
ij ðdataj � theoryjÞ; (7)

where the error matrix is formed by adding in quadrature
the quoted statistical errors, assumed uncorrelated, and
normalization error, assumed fully correlated within each
data set. In the notation of Table 1 of Ref. [18] we use for
each experiment (note that �norm refers to the error in the
cross section)4

Eij ¼ ð�GEÞ2i �ij þ ð�norm=2Þ2ðGEÞiðGEÞj: (8)

Errors for the form-factor slope are computed by finding
the ��2 ¼ 1 range.5

As can be seen from Table I, the fits with one free
parameter differ by many standard deviations. Fits with
two free parameters agree well, while fits with three or
more parameters become increasingly unconstrained for
the polynomial and continued fraction expansions, as well
as for the z expansion when no constraints on the expan-
sion coefficients are in place. In particular, for kmax � 3 in
the continued fraction expansion, no meaningful fit can be
performed (e.g., the slope is not constrained to be positive).
These results illustrate the problem to be addressed:

without detailed knowledge of the functional behavior of
the form factor, we risk using either too few parameters and
biasing the fit; or too many parameters and losing predic-
tive power. Note that performing trial fits on model data as
in [19] is also problematic; some assumption must be made
on the functional behavior of the form factor in creating the
model data sets. To make model-independent statements

TABLE I. Proton charge radius extracted from data of Table 1 of [18] (Q2 & 0:04 GeV2) in units of 10�18 m, using different
functional behaviors of the form factor. Dots denote fits that do not constrain the slope to be positive.

kmax ¼ 1 2 3 4 5

Polynomial 836þ8
�9 867þ23

�24 866þ52
�56 959þ85

�93 1122þ122�137

�2 ¼ 34:49 32.51 32.51 31.10 28.99

Continued fraction 882þ10
�10 869þ26

�25 � � � � � � � � �
�2 ¼ 32:81 32.51

z expansion (no bound) 918þ9
�9 868þ28

�29 879þ64
�69 1022þ102

�114 1193þ152
�174

�2 ¼ 36:14 32.52 32.48 30.35 28.92

z expansion (jakj � 10) 918þ9
�9 868þ28

�29 879þ38
�59 880þ39

�61 880þ39
�62

�2 ¼ 36:14 32.52 32.48 32.46 32.45

4We obtain similar results by floating the normalization of
each experiment and constraining the scale factors by an addi-
tional contribution to �2 (as done in [18]) or by performing the
fits at fixed (unit) normalization and assigning an additional error
obtained by adding in quadrature the shift induced by redoing the
fits with shifted normalization (as done in [19]).

5We have performed these computations in both MAPLE and
MATHEMATICA, and have also checked our results using MINOS

errors in MINUIT.
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requires identifying a bounded class of functions that is
guaranteed to contain the true form factor, yet is suffi-
ciently restrictive to retain predictive power. The following
section describes such a class of functions.

III. DISPERSIVE BOUNDS

The above fit to the z expansion with a bound on the
coefficients illustrates our basic methodology. The present
section justifies the jakj � 10 bound, and demonstrates
how further constraints can be obtained by disentangling
the isoscalar and isovector components of the form factor.

A. Form-factor definitions

For completeness we list definitions of the various form
factors. The Dirac and Pauli form factors, FN

1 and FN
2 ,

respectively, are defined by [20,21]

hNðp0ÞjJem� jNðpÞi ¼ �uðp0Þ
�
��F

N
1 ðq2Þ

þ i���

2mN

FN
2 ðq2Þq�

�
uðpÞ; (9)

where q2 ¼ ðp0 � pÞ2 ¼ t and N stands for p or n. The
Sachs electric and magnetic form factors are related to
the Dirac-Pauli basis by [22]

GN
E ðtÞ ¼ FN

1 ðtÞ þ
t

4m2
N

FN
2 ðtÞ;

GN
MðtÞ ¼ FN

1 ðtÞ þ FN
2 ðtÞ: (10)

At t ¼ 0 they are [5] Gp
Eð0Þ ¼ 1, Gn

Eð0Þ ¼ 0, Gp
Mð0Þ ¼

�p � 2:793,Gn
Mð0Þ ¼ �n � �1:913. Wewrite the isosca-

lar and isovector form factors as

Gð0Þ
E ¼ Gp

E þGn
E; Gð1Þ

E ¼ Gp
E �Gn

E; (11)

such that at t ¼ 0 they are Gð0Þ
E ð0Þ ¼ 1, Gð1Þ

E ð0Þ ¼ 1,

Gð0Þ
M ð0Þ ¼ �p þ�n Gð1Þ

M ð0Þ ¼ �p ��n. Notice that

Gð0Þ
E;M ¼ 2Gs

E;M, G
ð1Þ
E;M ¼ 2Gv

E;M for Gs;v
E;M of [23].

B. Dispersive bounds

The analytic structure in the t plane illustrated in Fig. 1
implies the dispersion relation,

Gp
EðtÞ ¼

1

�

Z 1

tcut

dt0
ImGp

Eðt0 þ i0Þ
t0 � t

: (12)

Knowledge of ImGp
E over the cut translates into informa-

tion about the coefficients in the z expansion. We begin
with a general discussion of these relations.
Let us consider a general function with the analytic

structure as in Fig. 1, GðtÞ ¼ P1
k¼0 akzðtÞk. Equation (2)

maps points just above (below) the cut in the t plane onto
points in the lower (upper) half unit circle in the z plane.
Parametrizing the unit circle by zðtÞ ¼ ei� and solving (2)
for t, we find

t ¼ t0 þ 2ðtcut � t0Þ
1� cos�

� tð�Þ: (13)

We can now use the orthogonality of zk over the unit circle
to find

ak ¼ 1

�

Z �

0
d�ReG½tð�Þ þ i0� cosðk�Þ

� 1

�

Z �

0
d� ImG½tð�Þ þ i0� sinðk�Þ: (14)

Since G is analytic, ak ¼ 0 for k < 0, and therefore

a0 ¼ 1

�

Z �

0
d�ReG½tð�Þ þ i0� ¼ Gðt0Þ;

ak�1 ¼ � 2

�

Z �

0
d� ImG½tð�Þ þ i0� sinðk�Þ

¼ 2

�

Z 1

tcut

dt

t� t0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut � t0
t� tcut

s
ImGðtÞ sin½k�ðtÞ�:

(15)

The coefficients in the expansion (3) can also be used to
construct a norm of the form factor in the mathematical
sense. To keep the discussion general, let us introduce a
function 	 sharing the domain of analyticity of G, and
write

	G ¼ X1
k¼0

akz
k: (16)

Consider the class of norms specified by

k	Gkp ¼
�X

k

jakjp
�
1=p

: (17)

In particular, the ‘‘uniform norm’’ is equal to the maximum
coefficient size, k	Gk1 ¼ supkjakj ¼ limp!1k	Gkp.
The case p ¼ 2 is of special interest since the norm is
easily related to a dispersion integral,

k	Gk2 ¼
�X

k

a2k

�
1=2 ¼

� I dz

z
j	Gj2

�
1=2

¼
�
1

�

Z 1

tcut

dt

t� t0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut � t0
t� tcut

s
j	Gj2

�
1=2

: (18)FIG. 1 (color online). Conformal mapping of the cut plane to
the unit circle.
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The finiteness of k	Gk2 shows that the coefficients ak are
not only bounded, but must decrease in size for sufficiently
large k. The relation k	Gk1 � k	Gk2 indicates that
k	Gk2 may overestimate the actual size of the relevant
coefficients in certain cases. We proceed to consider a
vector dominance model to illustrate this feature and
then turn to a more detailed analysis of the spectral
functions.

C. Vector dominance ansatz

In many applications, the k � k2 norm is used in con-
junction with ‘‘unitarity bounds’’ obtained by identifying
the dispersive integral with a physical production rate. In
the present example, dominant contributions to the integral
arise from the region below the two-nucleon production
threshold, and we must turn to different methods of analy-
sis. For example, employing a vector dominance ansatz in
the appropriate channel, Table II displays estimates for the

quantity k	Gk2=	ðt0ÞGðt0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

ka
2
k=a

2
0

q
, for different

choices of the functional form of 	 and the value of t0.
6

The effects of the leading resonance in each channel are
represented by a Breit Wigner profile [24],

FðI¼0Þ
i 	 
im

2
!

m2
! � t� i�!m!

;

FðI¼1Þ
i 	 �im

2
�

m2
� � t� i��m�

; (19)

with 
1�1, 
2��0:12, m! ¼ 783 MeV, �!¼8:5MeV
for the isoscalar channel; and �1 � 1, �2 � 3:7,
m� ¼ 775 MeV, �� ¼ 149 MeV for the isovector chan-

nel. At � ¼ 0, the ansatz is normalized to the t ¼ 0 values
in Sec. III A.

We note that in the isoscalar case, the rather large size of
the estimated norm is due to the narrow width of the !

resonance; in fact, in the limit of an infinitely narrow
resonance, the quantity kGk2 diverges, as seen from (18).
Closer examination indicates that the large norm is due not
to the coefficients growing in size, but rather to a sequence
of coefficients whose slow falloff causes a slow conver-
gence for the sum

P
ka

2
k. A straightforward computation

shows that the expansion coefficients for an infinitely
narrow pole, GðtÞ ¼ Gð0Þ=ð1� t=m2

VÞ, are for k � 1,

ak
a0

¼ �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut � t0
m2

V � tcut

s
sin

�
2k arcsin

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut � t0
m2

V � t0

s ��
: (20)

In particular, jak=a0j � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðtcut � t0Þ=ðm2

V � tcutÞ
q

. This

approximation to the uniform norm is also displayed in
Table II.
Equations (15) and (18) are model independent, whereas

the approximations based on the vector dominance ansatz
employed in Table II are model dependent. This ansatz
aims simply to capture the order of magnitude of the
coefficients, which is sufficient in practice to constrain
the form-factor fits. The conclusion is that jakj � 10 is a
very conservative estimate for this ansatz.

TABLE II. Typical bounds on the coefficient ratios
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

ka
2
k=a

2
0

q
(upper part of table) and jak=a0j (lower part) in a vector
dominance ansatz. 	OPE is defined in Eq. (23).

t0 ¼ 0 t0 ¼ t
opt
0

ð0:5 GeV2Þ
	 ¼ 1 kGð0Þ

E k2=Gð0Þ
E ðt0Þ 7.6 12.1

kGð1Þ
E k2=Gð1Þ

E ðt0Þ 2.5 3.9

	 ¼ 	OPE k	ð0ÞGð0Þ
E k2=	ð0Þðt0ÞGð0Þ

E ðt0Þ 14.4 23.5

k	ð1ÞGð1Þ
E k2=	ð1Þðt0ÞGð1Þ

E ðt0Þ 4.6 6.7

	 ¼ 1 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut�t0
m2

V�tcut

q
jI¼0 1.3 1.8

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut�t0
m2

V�tcut

q
jI¼1 0.78 1.3

)2(GeV2Q

0 0.1 0.2 0.3 0.4 0.5

 p E
G

0.2

0.4

0.6

0.8

1

z

0 0.1 0.2 0.3 0.4

 p E
G

0.2

0.4

0.6

0.8

1

FIG. 2. Form factor as a function of Q2 and as a function of z. Here we choose t0 ¼ 0 in the definition of z, and plot data from [34]
for 0 � Q2 � 0:5 GeV2.

6For this purpose we estimate GEðt0Þ using a dipole ansatz for
the form factor, GEðtÞ 	 1=ð1� t=0:71 GeV2Þ2.
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D. Explicit �� continuum

We can be more explicit in the case of the isovector
form-factor expansion, where the leading singularities are
due to �� continuum contributions that are in principle
constrained by measured �� production and �� ! N �N
annihilation rates [6,23,25]:

ImGð1Þ
E ðtÞ ¼ 2

mN

ffiffi
t

p ðt=4�m2
�Þ3=2F�ðtÞ
f1þðtÞ; (21)

where F�ðtÞ is the pion form factor (normalized according
to F�ð0Þ ¼ 1) and f1þðtÞ is a partial amplitude for �� !
N �N. Using that these quantities share the same phase [25],
we may substitute absolute values. Strictly speaking, this
relation holds up to the four-pion threshold, t � 16m2

�.
For the purposes of estimating coefficient bounds, we
will take the extension of (21) assuming phase equality
through the � peak as a model for the total �� continuum
contribution.

For jF�ðtÞj we take an interpolation using the four t
values close to production threshold from [26] (0.101 to
0:178 GeV2), and 43 t values from [27] (0.185 to
0:94 GeV2). Values for f1þðtÞ are taken from Table 2.4.6.1
of [28]. Evaluating (15) using (21) and the experimental
data up to t ¼ 0:8 GeV2 � 40m2

� yields for the first few
coefficients, at 	 ¼ 1 and t0 ¼ 0: a0 � 2:1 a1 � �1:4,
a2 � �1:6, a3 � �0:9, a4 � 0:2. Using j sinðk�Þj � 1 in
the integral gives jakj & 2:0 for k � 1.

The leading singularities in the isoscalar channel could
in principle be analyzed using data for the 3� continuum.
Since we do not attempt to raise the isoscalar threshold in
our analysis, we content ourselves with a simple vector
dominance model to estimate the coefficient bounds.
The first few coefficients for the isoscalar form factor using
(20) for a narrow ! resonance are: a0 ¼ 1, a1 � �1:2,
a2 � �0:96, a3 � 0:4, a4 � 1:3. We will compare the
above values to those extracted from electron scattering
data later. For the moment we note that a bound jakj � 10
is conservative.

E. Choice of �

Let us return to the choice of 	. We will consider three
essentially different choices. First, 	ðtÞ ¼ 1 is our default
choice. We noted that for 	 ¼ 1 the dominant contribu-
tions to k	Gk2 are from narrow resonances. We could
negate the large contribution of the leading resonances
by using for 	 the inverse of a vector meson dominance
(VMD) form factor. As a second choice, consider

	VMDðtÞ ¼ ðm2
V � tÞ=m2

V; (22)

where mV is the mass of the leading resonance in
the appropriate channel, i.e., �ð770Þ for the isovector,
!ð780Þ for the isoscalar. Note that using GE 	 1=t2 at
large t, the dispersion integral remains convergent. There
is no loss of model independence here, since corrections to
vector dominance are accounted for in the coefficients ak.

As discussed in Sec. III F, a third choice of 	 is motivated
by unitarity and an operator product expansion (OPE):

	OPEðtÞ ¼ mNffiffiffiffiffiffiffi
6�

p ðtcut � tÞ1=4
ðtcut � t0Þ1=4

�
�
zðt; tcut; 0Þ

�t

�
1=4

�
zðt; tcut; t0Þ
t0 � t

��ð1=2Þ

�
�
zðt; tcut;�Q2

OPEÞ
�Q2

OPE � t

�
3=2ð4m2

N � tÞ1=4; (23)

where tcut is appropriate to the chosen isospin channel. For
definiteness, we choose Q2

OPE ¼ 1 GeV2 in the unitarity-

inspired 	. In our final fits, we focus on 	 ¼ 1 and t0 ¼ 0
but demonstrate that the results are essentially unchanged
for different choices.

F. Bounds on the region t � 4m2
N

The contribution of the physical region t � 4m2
N to

k	GEk2 is

�k	GEk22 ¼
1

�

Z 1

4m2
N

dt

t� t0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut � t0
t� tcut

s
j	GEj2: (24)

The cross section for eþe� ! N �N is [29]

�ðtÞ¼4�
2

3t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�4m2

N

t

s �
jGMðtÞj2þ2m2

N

t
jGEðtÞj2

�
; (25)

and thus for the proton electric form factor we have

�k	Gp
Ek22 ¼

1

�

Z 1

4m2
N

dt

t� t0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut � t0
t� tcut

s
j	j2

�
�

�ðtÞ
�0ðtÞvðtÞ

1

jGM=GEj2 þ 2m2
N=t

�
; (26)

where �0 ¼ 4�
2=3t and vðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

N=t
q

is the nu-

cleon velocity in the center-of-mass frame. Using the data
from [30] (see also [31,32]), we can perform the integral
from t ¼ 4:0 GeV2 to 9:4 GeV2 assuming jGp

M=G
p
Ej & 1.7

At t0 ¼ 0 and	 ¼ 1, we find the result �kGp
Ek22 & ð0:03Þ2,

to be added to the contribution from t � 4m2
N . This result is

obtained by using for �ðtÞ the measured central value plus
1� error. The remaining integral above t ¼ 9:4 GeV2 can
be conservatively estimated by assuming a constant form
factor beyond this point, yielding an additional �kGp

Ek22 �ð0:008Þ2. The neutron form factor can be treated similarly
using the data from [33] for t ¼ 3:61 to 5:95 GeV2.
This leads to �kGn

Ek22 � ð0:05Þ2. The remainder at high t
assuming a constant form factor yields an additional
�kGn

Ek22 � ð0:05Þ2. Similarly, using jImGE sink�j � jGEj
the contribution of the timelike region to (15) is small:

7For jGM=GEj � 1, the quantity in square brackets in (26) is
bounded by the quantity denoted by jGj2 in [30]. This inequality
is satisfied experimentally in the t range of interest.
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j�akj & 0:011þ 0:004 for the proton, and j�akj &
0:013þ 0:025 for the neutron. We conclude that when
estimating the bounds on coefficients, the physical timelike
region can be safely neglected.

Let us mention that we can bound the contribution of the
physical timelike region by a perturbative quark-level
computation. Decompose the electromagnetic current cor-
relation function as

���ðqÞ ¼ i
Z

d4xeiq�xh0jTfJ�emðxÞ; J�emð0Þgj0i
¼ ðq�q� � q2g��Þ�ðq2Þ; (27)

and define

�ðQ2
OPEÞ ¼

1

2

@2

@ðq2Þ2 ðq
2�ðq2ÞÞjq2¼�Q2

OPE

¼ 1

�

Z 1

t0

dt
tIm�ðtÞ

ðtþQ2
OPEÞ3

: (28)

The two-nucleon contribution to the correlator satisfies

Im�ðtÞ � m2
N

6�t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

N

t

s
j	GEj2; (29)

and hence with	GE ¼ P
kakz

k and the choice of	 in (23),

�ðQ2
OPEÞ �

1

�

Z 1

4m2
N

dt

t� t0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut � t0
t� tcut

s

� j	GEj2 � �k	GEk22: (30)

If we choose Q2
OPE large enough, the function �ðQ2

OPEÞ is
perturbatively calculable as an operator product expansion:
� � P

fe
2
f=8�

2Q2
OPE at leading order, where ef denotes the

electric charge of a given quark flavor. Choosing for
illustration Q2

OPE ¼ 1 GeV2, nf ¼ 3 light quark flavors,

and tcut ¼ 4m2
�, we find the bounds �ðPka

2
kÞ 	 ð1:0Þ2 for

t0 ¼ 0 and �ðPka
2
k=a

2
0Þ 	 ð1:4Þ2 for t0 ¼ t

opt
0 ð0:5 GeV2Þ.

We note that these ‘‘unitarity bounds’’ overestimate the
contribution from the physical region t � 4m2

N , due both
to subthreshold resonance production, and to other chan-
nels, e.g., N �N plus pions, above threshold. For this reason,
we do not dwell on a more precise analysis of this bound, or
on a separation into definite isospin channels.

IV. PROTON CHARGE RADIUS EXTRACTION

We consider several possibilities to reduce the error bars
for the proton charge radius extracted in Sec. II. We first
consider the inclusion of higher-Q2 data. We then optimize
the charge radius extraction by separating isoscalar and
isovector components, recognizing that the isoscalar thresh-
old is at 9m2

�. At the same time, we illustrate the (small)
effect of different expansion schemes. Finally, we consider
the possibility to effectively raise the isovector threshold by
constraining the spectral function between 4m2

� and 16m2
�.

A. Including higher Q2 data

We have argued that, taking the data tabulated in
[18] at face value, the final entry in Table I is a model-
independent determination of the proton charge radius:
rpE ¼ 0:878þ0:039

�0:062 fm. In the absence of further model-

independent constraints on the form factors, obtaining a
proton charge radius with smaller error requires further
experimental input. Here we investigate the impact of
higher-Q2 proton scattering data.
Figure 3 shows the central value and 1� (��2 ¼ 1) error

band obtained by fitting the electron-proton scattering
data compiled by Arrington et al. [34]. We take 	 ¼ 1
and t0 ¼ 0, and include as many coefficients ak as neces-
sary for the fits to stabilize. As the figure illustrates, for
Q2 * few� 0:1 GeV2 the impact of additional data is
minimal. While an ever greater number of coefficients ak
at higher k must be included to obtain convergence, the
total error on the slope at Q2 ¼ 0 is not reduced. For later
use, we note that the coefficients ak¼1;2;3 extracted from the

fit at Q2
max ¼ 1 GeV2 are �1:01ð6Þ, �1:4þ1:1�0:7, 2

þ2
�6.

B. Raising the isoscalar threshold:
inclusion of neutron data

We can separate the isoscalar from the isovector form
factor, making use of the fact that the isoscalar cut is
further away from t ¼ 0 than the isovector cut, translating
to a smaller value of jzjmax as discussed in the Introduction.
A combined fit of proton and neutron data can then be
performed. For the proton form factor we again use the
data from [34]. For the neutron electric form factor, we use
20 data points from [35–46]. We take as additional input
the neutron charge radius from neutron-electron scattering
length measurements [5]:

hr2inE ¼ �0:1161ð22Þ fm2: (31)

Table III shows the effect of different expansion schemes
(choices of 	 and t0) and coefficient bounds on the

)2(GeV
max
2Q

0.5 1

(f
m

)
 p Er

0.8

0.85

0.9

FIG. 3. Variation of the fitted proton charge radius as a func-
tion of maximum Q2. Fits of the proton data were performed
with kmax ¼ 10, 	 ¼ 1, t0 ¼ 0, jakj � 10. Data are from [34].
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form-factor slope determination. For later use, the coeffi-
cients ak¼1;2;3 extracted from the fit for Q2

max ¼ 1 GeV2,

	 ¼ 1, t0 ¼ 0, and kmax ¼ 8 are �1:99þ0:13
�0:12, 0:3þ1:5

�1:9,

�2þ9
�6 for the isoscalar channel; and �1:20þ0:06

�0:05,

�0:6þ1:3
�1:2, �2þ6

�7 for the isovector channel. The sign and

approximate magnitude of the first coefficients agree with
the �� continuum model, and the narrow-width ! reso-
nance model mentioned in Sec. III D.

C. Raising the isovector threshold: inclusion of�� data

We can effectively raise the isovector threshold by in-
cluding the�� continuum explicitly, as constrained by��
production and �� ! N �N data:

Gð1Þ
E ðtÞ ¼ GcutðtÞ þ

X
k

akz
kðt; tcut ¼ 16m2

�; t0Þ; (32)

where GcutðtÞ is generated by (21) for 4m2
� < t < 16m2

�.
For jF�ðtÞj we take the four t values close to production
threshold from [26] (0:101 to 0:178 GeV2), and 12 t values
from [27] (0.185 to 0:314 GeV2). The product of the
remaining kinematic factor and f1þ from [28] is interpo-
lated to the appropriate t value, and the integral computed
as a discrete sum. Using coarser bin size (e.g. 8 instead of
16 bins) has no significant effect, indicating that discreti-
zation error is small. Estimating the remaining coefficients
by modeling the �� continuum contribution for 16m2

� �
t � 40m2

� using (15) and (21) at 	 ¼ 1 and t0 ¼ 0 gives
coefficients a1 � �4:5, a2 � 2:2, a3 � 2:1. Setting
j sinðk�Þj in (15) yields jakj & 5:0 for the remaining con-
tribution of the �� continuum in this model.

We fit using the same proton and neutron data as in
Sec. IVB. The resulting fit coefficients ak¼1;2;3 for Q

2
max ¼

1 GeV2, 	 ¼ 1, t0 ¼ 0, and kmax ¼ 8 are �1:93ð6Þ,
�0:5þ1:1�1:3, 2� 7 for the isoscalar form factor; and

�3:40þ0:09
�0:10, 3:7

þ1:7�1:3, 3
þ5
�10 for the isovector form factor.

The sign and approximate magnitude of the first coeffi-
cients agree with the remaining �� continuum model
discussed above in the isovector case; and with the !
pole model discussed at the end of Sec. III D for the
isoscalar case. The sizable contribution of the isovector
ak¼1 in this scheme can be traced to the residual effects of
the �� continuum, including the � peak, near the higher
threshold. With no loss of model independence, we can
replace GcutðtÞ above with a new GcutðtÞ generated by (21)
for 4m2

� < t < 40m2
�, i.e., with the �� continuum mod-

eled to larger t. The value tcut ¼ 16m2
� remains the same.

We emphasize that this does not introduce a model depen-
dence, as any discrepancy between GcutðtÞ and the true
�� continuum is accounted for by parameters in the z

TABLE III. The rms charge radius extracted using electron-proton and electron-neutron scattering data, and different schemes
presented in the text. The neutron form-factor slope is constrained using (31). A cut Q2

max ¼ 0:5 GeV2 is enforced. In the lower part of
the table, the bounds on

P
ka

2
k from Table II are multiplied by 4. 	VMD and 	OPE are defined in Eqs. (22) and (23).

kmax ¼ 2 3 4 5 6

	 ¼ 1, t0 ¼ 0, jakj � 10 888þ5
�5 865þ11

�11 888þ17
�22 882þ21

�22 878þ20
�19

�2 ¼ 33:67 23.65 21.80 21.13 20.47

	 ¼ 1, t0 ¼ 0, jakj � 5 888þ5
�5 865þ11

�11 881þ10
�16 885þ16

�21 882þ18
�20

�2 ¼ 33:67 23.65 21.95 21.46 21.06

	 ¼ 	VMD, t0 ¼ 0, jakj � 10 865þ6
�6 874þ12

�13 884þ23
�24 879þ24

þ22 877þ22
�20

�2 ¼ 23:26 22.50 22.15 21.59 21.09

	 ¼ 1, t0 ¼ 0 888þ5
�5 865þ11�11 880þ13

�16 882þ14�18 882þ15
�18

�2 ¼ 33:67 23.65 22.07 21.45 21.18

	 ¼ 	OPE, t0 ¼ 0 904þ5
�5 861þ10

�11 888þ14�21 883þ20
�20 881þ20

�19

�2 ¼ 61:34 24.38 21.62 20.86 20.51

	 ¼ 	OPE, t0 ¼ t
opt
0 ð0:5 GeV2Þ 912þ5

�5 869þ9
�9 887þ18

�19 881þ20
�19 880þ20

�19

�2 ¼ 93:69 22.54 21.05 20.32 20.32

)2(GeV
max
2Q

0.2 0.4 0.6 0.8

(f
m

)
 p Er

0.82

0.84

0.86

0.88

0.9

FIG. 4. Variation of the fitted proton charge radius as a func-
tion of maximumQ2. Fits were performed including proton data,
neutron data, and the �� continuum contribution to the isovector
spectral function, as detailed in the text. Fits were performed
with kmax ¼ 8, 	 ¼ 1, t0 ¼ 0, jakj � 10.
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expansion. The resulting central value and errors on the
charge radius are changed minimally by this modification.
The isoscalar coefficients are also not significantly
changed, while the isovector coefficients become
1:07ð10Þ, 1:6þ1:6

�1:5, 1
þ7�8. Figure 4 shows the resulting extrac-

tion of the proton charge radius using for GcutðtÞ the
full model of the �� continuum, and our default 	 ¼ 1,
t0 ¼ 0. As in Fig. 3, the inclusion of data beyond Q2 	
few� 0:1 GeV2 has minimal impact on the fits.

V. DISCUSSION

We have discussed determinations of the proton charge
radius from the slope of the proton form factor Gp

EðtÞ, in
four cases: (1) low-Q2 electron-proton scattering data;
(2) proton data including high Q2; (3) proton plus neutron
data; and (4) proton, neutron, and �� data. We have
investigated various expansion schemes, corresponding to
choices of the parameter t0 and the function 	, and shown
that the impact on rpE is minimal; in the following discus-
sion we take 	 ¼ 1 and t0 ¼ 0.

Including just the low Q2 proton data [18], we find the
result as in Table I [case (1)] rpE ¼ 0:877þ0:031

�0:049 � 0:011 fm,

where the first error is obtained using the more
stringent bound jakj � 5, and the additional error is con-
servatively estimated by finding the maximum variation of
the ��2 ¼ 1 interval when the fits are redone assuming
jakj � 10. Using a larger Q2 range of proton data [34]
decreases the uncertainty. Taking for definiteness
Q2

max ¼ 0:5 GeV2 and kmax ¼ 8, we obtain via the same
procedure, as in Fig. 3 [case (2)] rpE ¼ 0:870� 0:023�
0:012 fm. Including the neutron data, as in Table III, we
find [case (3)] rpE ¼ 0:880þ0:017

�0:020 � 0:007 fm, where the

same bounds, jakj � 5, jakj � 10 are enforced on both
isoscalar and isovector coefficients and again kmax ¼ 8.8

The uncertainty induced by the neutron charge radius (31)
is negligible in comparison, & 0:0005 fm. Finally, includ-
ing GcutðtÞ as in (32), we find [case (4)] rpE ¼ 0:871�
0:009� 0:002� 0:002 fm. For definiteness, we here in-
clude in GcutðtÞ the extension of the �� continuum model
up to t ¼ 40m2

�. The first and the second error are as above,
and the final error is obtained by assigning a 30% normal-
ization error to the continuum contribution, as discussed
below.

Let us compare our results to several previous determi-
nations of rpE. Many of these suffer from model assump-
tions on the functional behavior of the form factor.
The small uncertainties obtained by Simon et al. [47]
(rpE ¼ 0:862� 0:012) and by Rosenfelder [18] (rpE ¼
0:880� 0:015) require inputs from higher Q2 data, which
however we do not believe were robustly estimated. We
find that the coefficient of t2 in the expansion of Gp

EðtÞ

[Eq. (4)] is constrained by the Arrington et al. data compi-

lation [34] to be a
Taylor
2 =t2cut ¼ 0:014þ0:016

�0:013 � 0:005 fm4

(using Q2
max ¼ 1 GeV2, kmax ¼ 10). A much smaller un-

certainty, aTaylor2 =t2cut ¼ 0:011ð4Þ fm4 or 0:014ð4Þ fm4, was

adopted in [18]. Even neglecting the additional uncertainty
due to cubic and higher-order terms, this would lead to a
result 0:878� 0:008þ0:047

�0:039 obtained using (4) and data as in

Table I. The errors are from the data and from the first
uncertainty on the quadratic coefficient, respectively.
The analyses of Sick [19] (rpE ¼ 0:895� 0:010� 0:013)

and Blunden and Sick [48] (rpE ¼ 0:897� 0:018) employ

the continued fraction expansion (5). This functional form
is unstable to the inclusion of additional parameters (see
Table I), and error estimation relies on the investigation of
model data sets. In this paperwe have not fit directly to cross
section data, and we have not applied our analysis to this
data set. For a variation of this analysis see [49].
The dispersion analysis of Belushkin et al. [23]

(rpE ¼ 0:844þ0:008
�0:004 fm, rpE ¼ 0:830þ0:005

�0:008) does not attempt

to estimate uncertainties due to the constrained shape of
the assumed form factors. Our analysis makes clear which
inputs have the most effect on the charge radius extrac-
tions. In particular, data at large jtj, for either timelike or
spacelike t, has minimal impact on fits to obtain Q2 � 0
quantities. Inclusion of high-Q2 data does introduce sensi-
tivity to additional parameters, whose omission would
introduce model dependence. Our analysis provides a sys-
tematic procedure to analyze a wide range of data sets in a
model-independent way. We emphasize that our goal is not
simply reduction in the quoted error, but also the robust
estimation of uncertainties.
Regarding the bounds on coefficients, in all approxima-

tions that we have considered the bound jakj � 10 appears
very conservative. The sign and magnitudes of the first
coefficients are consistent with expectations based on sim-
ple models, and it is rigorously true that the coefficients ak
must eventually decrease in magnitude for large k. At a
practical level, the experimental determinations of these
coefficients in each of the cases (1)–(4) above are consis-
tent with magnitudes not larger than jakj 	 2. Our imple-
mentation of the bounds on ak could be formalized in terms
of standard methods of constrained curve fitting [50]. As
discussed in [14], our assumption of a flat ‘‘prior’’ should
be conservative.
Our analysis cannot discern inaccuracies in the data sets.

For example, we have assumed that radiative corrections
are properly accounted for in the compilations [18,34], and
that data correlations are sufficiently described by our
treatment.9 Within these assumptions, the values for cases
(1)–(3) represent model-independent determinations of the

8The slight difference between this value and that inferred
from the final column for the first two rows of Table III is due to
the slight difference between kmax ¼ 6 and kmax ¼ 8.

9Two-photon exchange corrections were incorporated in [18]
using a simplified calculation of the Coulomb distortion. See
also [19,48]. Reference [34] accounted for two-photon exchange
using the calculation of [51,52].
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form-factor slope. Case (4) is more subtle. While (21) is a
model-independent relation for the stated range 4m2

� �
t � 16m2

�, the determination of f1þðtÞ in this range involves
a dispersion relation with contributions from values of t
where the function is not rigorously constrained by con-
tinuation of �N scattering data. Errors are not given in the
tabulation [28], and we are not aware of a critical assess-
ment of the uncertainties associated with this analysis. It
may be interesting to revisit this question. Reference [24]
suggests a 15% error in the normalization of f1þðtÞ at the �
peak; we take twice this value, 30%, as a representative
uncertainty, which encompasses also the errors in jF�ðtÞj.
The resulting error for case (4) is thus not as rigorous,
although the resulting f1þðtÞ would need to be very differ-
ent to become a dominant source of error.

Within the stated uncertainties we find consistent results
in each of our determinations, using both low and high Q2

proton data, neutron data, and pion continuum data. These
methods can be applied to other data sets, and to fits using
partial cross sections versus extracted form factors. For
example, in a recent set of results [53] the variation of rpE
under different model shapes for the form factor is larger
than the other stated statistical and systematic errors. The
same methods can be applied to other nucleon form factors
and derived observables, including the axial-vector form
factor probed in neutrino scattering [54].
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