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A mechanism has been suggested recently to generate the neutrino mass out of a dimension-seven

operator. This is expected to relieve the tension between the occurrence of a tiny neutrino mass and the

observability of other physics effects beyond it. Such a mechanism would inevitably entail lepton flavor

violating effects. We study in this work the radiative and purely leptonic transitions of the light charged

leptons. In so doing we make a systematic analysis of the flavor structure by providing a convenient

parametrization of the mass matrices in terms of independent physical parameters and diagonalizing them

explicitly. We illustrate our numerical results by sampling over two CP phases and one Yukawa coupling

which are the essential parameters in addition to the heavy lepton mass. We find that with the stringent

constraints coming from the muon decays and the muon-electron conversion in nuclei taken into account

the decays of the tau lepton are severely suppressed in the majority of parameter space. There exist,

however, small regions in which some tau decays can reach a level that is about 2 orders of magnitude

below their current bounds.
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I. INTRODUCTION

The tiny neutrino mass and significant lepton mixing can
be incorporated in the three canonical seesaw mechanisms
[1–3]. From the point of view of effective field theories
they correspond to the three possible realizations at the tree
level [4] of the unique dimension-five operator that induces
a neutrino mass [5]. The tininess of the neutrino mass is
generally attributed to the existence of very heavy new
particles or very small couplings between the new particles
and those that we already know of. In such a circumstance
it is usually hard to detect other effects beyond the neutrino
mass.

The above tension between the occurrence of a tiny
neutrino mass and the testability of other physical phe-
nomena can be alleviated by postponing the appearance
of higher-dimensional operators relevant to the neutrino
mass. There are two basic approaches to accomplish this.
One can compose new fields so that the operators first
occur at one [6], two [7,8], or even three loop order [9].
Since the loop effects provide additional suppressing fac-
tors besides a product of multiple couplings, one may gain
in the couplings between the new and known particles.
In the second approach, one introduces several new fields
that belong to certain high dimensional representations of
the gauge group. To induce an effective mass operator one
has to go through several steps to connect those fields

to the light lepton fields which are in low dimensional
representations. In this multistep seesaw, a tiny neutrino
mass can be induced without requiring all new particles
to be very heavy or their couplings to light particles to be
all small.
A realistic model in the second approach has been

recently proposed in Ref. [10]. It introduces a vectorlike
fermion triplet and a scalar four-plet so that the effective
operator responsible for a neutrino mass first appears at
dimension seven. The potential signatures of the new
particles at the Tevatron and LHC have been studied with
a special focus on the leptonic decays of the triply charged
scalars. The idea of employing higher-dimensional repre-
sentations has been further pursued in Ref. [11], where the
neutrino mass is induced from a dimension nine operator.
For a systematic effective field theory approach to neutrino
mass operators of a dimension higher than five, we refer to
Ref. [12].
Any mechanism for the generation of a neutrino mass

and mixing is necessarily correlated with the physics of
charged leptons. Before one can be sure that the physical
processes involving new heavy particles at high energy
colliders are relevant to neutrino physics, it is necessary
to examine that the parameter regions assumed in the
analysis of high energy processes are respected by preci-
sion low energy tests in the charged leptons. Particularly
relevant in this respect are lepton flavor violating (LFV)
decays of charged leptons and muon-electron (�e) conver-
sion in nuclei that are severely suppressed in the standard
model (SM). The experimental bounds on LFV decays of
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the muon are already very stringent [13,14], and the sensi-
tivity to its radiative decay is expected to be upgraded by
orders of magnitude in the MEG experiment within the
next few years [15]. Significant progress has also been
made in LFV decays of the tau lepton, thanks to the large
data sample collected in recent years at the B factories
[16–19]. Associated with the radiative decays of charged
leptons are the precise measurements of or stringent
bounds on their electromagnetic dipole moments
[20–22]. For �e conversion in nuclei, the current most
stringent constraints arise for titanium and gold [23,24].
PRISM/PRIME is expected to enhance their experimental
sensitivity by several orders of magnitude in the future
[25]. These bounds will provide strong constraints on the
parameter space that will be useful in assessing the feasi-
bility of detecting collider processes relevant to the neu-
trino mass generation. This motivates us to do a systematic
investigation of the LFV transitions of the charged leptons
in the model of high dimensional representations [10].
LFV decays have been previously studied in a similar
fashion in various models of neutrino mass generation,
like supersymmetric models [26], seesaw models
[27–29], mirror fermions [30], little Higgs [31], and
color-octet particles [32], to mention a few amongst
many. Reader should consult Refs. [33,34] for a more
complete list of literature on the subject. Similarly, the
�e conversion in nuclei has also been widely considered
in many scenarios of new physics beyond SM, such as
supersymmetric models [35], seesaw models [36], littlest
Higgs with T parity [37], Z0 models [38], and so on. The
formulas and elaborate discussion of �e conversion in
nuclei have been given in Refs. [33,39,40].

In the next section we shall make a complete analysis
on the flavor structure in the model of high dimensional
representation. The mass matrices are parametrized in
terms of physical parameters and then diagonalized ap-
proximately. The LFV decays, the contribution to dipole
moments of charged leptons, and �e conversion in nuclei
are then calculated in Sec. III. In Sec. IV we illustrate our
numerical results by sampling over a few parameters that
are potentially interesting. We discuss and conclude in the
last section.

II. MODEL

To avoid the occurrence of the dimension-five neutrino
mass operator at tree level, one should exclude the fields
that carry the same quantum numbers as those in the three
canonical seesaw models. Since the neutrinos are in the
doublet representation, the easiest approach would be to
arrange a Yukawa coupling that connects the neutrinos to a
new scalar field and a new fermion field which differ in
weak isospin by 1=2. One way to accomplish this is to
introduce a scalar multiplet with weak isospin 3=2 and a
fermion multiplet with weak isospin 1. This avoids the type
1 and type 2 seesaws automatically, while the type 3 is

avoided by assigning a different hypercharge to the fer-
mion multiplet. The is indeed the basic idea behind the
model building in Ref. [10]. The new fields are denoted as

� ¼
�3

�2

�1

�0

0
BBB@

1
CCCAð3=2; 3=2Þ; � ¼

�2

�1

�0

0
@

1
Að1; 1Þ; (1)

where the numbers in the parentheses stand for the weak
isospin I and hypercharge Y=2, respectively, and the sub-
scripts to the fields indicate the electric charges in units of
jej. The fermion fields � are assumed to be vectorlike to
avoid chiral anomaly. The relevant SM fields are the Higgs
doublet and the lepton fields (with the subscripts L, R
denoting chirality),

H ¼ Hþ

H0

 !
ð1=2; 1=2Þ;

FL ¼ nL

fL

 !
ð1=2;�1=2Þ; fRð0;�1Þ:

(2)

A. Yukawa couplings and mass matrices

The neutrality in the hypercharge allows the following
terms and their Hermitian conjugates: F�

LfRH, FLfR�,
FL�H

�, FL�
��, ���. It is possible to assign the lepton

number, LðfRÞ ¼ LðFLÞ ¼ 1, Lð�Þ ¼ �1, Lð�Þ ¼ �2.
Then L is violated when� develops a vacuum expectation
value (VEV). Now we write the terms in a form that
respects SUð2ÞL and Lorentz symmetries. The first and

last terms are trivial, �FLfRH, ���, while the second one
is forbidden. For the third term, H� should be replaced by
~H ¼ i�2H

� to preserve its identity as a doublet. To form a
Lorentz scalar without complex conjugation out of two
spinor fields, we can use the charge-conjugated fields.
The required invariant form for the third term is, in terms
of Clebsch-Gordan coefficients,

ð �FC
L
~H�Þ0 ¼ 1ffiffiffi

3
p ð� �fCLH

��2 þ �nCLH
0��0Þ

� 1ffiffiffi
6

p ð �fCLH0� � �nCLH
�Þ�1; (3)

where the subscript 0 on the left indicates its weak isospin
of the product. We have used the notation for charge
conjugation that c C

L ¼ ðc LÞC and c C ¼ C�0c � with
C ¼ i�0�2.
For the fourth term in the list we note that, since the

vector representation of SUð2Þ is strictly real, ð��
0;�

�
1;�

�
2Þ

is a vector when ð�2;�1;�0Þ is. The invariant form is thus,

ð ��FL�Þ0 ¼ 1

2
ð ��0nL�0 � ��2fL�3Þ þ 1

2
ffiffiffi
3

p ð ��2nL�2

� ��0fL�1Þ þ 1ffiffiffi
6

p ð ��1fL�2 � ��1nL�1Þ: (4)
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Including the generation index in SM, the mass terms and
Yukawa couplings are summarized as follows:

�LYukþmass ¼ m�
���þ ½yij �FLifRjH þ xjð �FC

Lj
~H�Þ0

þ zjð ��FLj�Þ0 þ H:c:�; (5)

where y is a 3� 3 complex matrix, x, z are each a three-
component complex column vector, andm� is real positive
by definition.

When the electric neutral components of H and �
develop a VEV,

hH0i ¼ v2ffiffiffi
2

p ; h�0i ¼ v4ffiffiffi
2

p ; (6)

the Yukawa terms will contribute to the masses of the
neutral and singly charged fermions. For simplicity we
shall assume in this work that both VEV’s are real positive.
The mass terms are written as

L mass ¼ Lmass;2 þLmass;1 þLmass;0; (7)

with the number in the subscript denoting the electric
charge. The field �2 has only a bare mass:

�Lmass;2 ¼ m�
��2�2; (8)

while the fields of other charges also derive masses from
Yukawa couplings so that mixing between the light and
heavy particles can appear. For the singly charged fields,
we have

�Lmass;1 ¼ ��1LM1�1R þ ��1RM
y
1�1L; (9)

where the four-component column fields and the 4� 4
mass matrix are

�1R ¼ fR

�C
1L

 !
;

�1L ¼ fL

�C
1R

 !
;

M1 ¼
v2ffiffi
2

p y � v2
2
ffiffi
3

p x�

0 m�

 !
:

(10)

Since the neutral fermions are generically Majorana, their
mass terms are apparently more complicated. With the help
of charge-conjugated fields, they are

�Lmass;0 ¼ 1
2
��0RM0�0L þ 1

2
��0LM

y
0�0R; (11)

where the fields and mass matrix are

�0R ¼
nCL
�C

0L

�0R

0
B@

1
CA; �0L ¼

nL
�0L

�C
0R

0
@

1
A;

M0 ¼
03�3

v2ffiffi
6

p x v4
2
ffiffi
2

p z
v2ffiffi
6

p xT 0 m�
v4
2
ffiffi
2

p zT m� 0

0
BB@

1
CCA:

(12)

These mass matrices will be analyzed and diagonalized in
the later subsection.

B. Scalar potential

Before we diagonalize the mass matrices of leptons we
discuss the scalar potential for completeness. Remember
that the fields � and H have the quantum numbers I ¼
Y=2 ¼ 3=2, 1=2, respectively. The possible quadratic
terms are, HyH and �y�, while there can be no trilinear
terms. For the quartic terms there are two sets of them:
either� and�y, andH andHy come in pairs, or one�y is
accompanied by three H. For the first set, the following
ones are obvious:

ð1aÞ ðHyHÞ2; ð�y�Þ2; ðHyHÞð�y�Þ: (13)

The pure H term is unique. This can also be understood as
follows: with two identical H’s of I ¼ 1=2 one can only
construct an I ¼ 1 form that is symmetric in the two H’s.
(The I ¼ 0 form vanishes identically.) This is also the case
with two ~H’s. From the two I ¼ 1 forms one can construct
a unique I ¼ 0 term (that is symmetric, though not neces-
sarily, in the two forms). Indeed, it is easy to check that
Hy�aHHy�aH ¼ ðHyHÞ2 where �a are the Pauli matrices.
But this is not the case with the� field. With two identical
�’s of I ¼ 3=2 we can construct two forms that are sym-
metric in them, one of I ¼ 3 and the other of I ¼ 1. This
implies that there are two independent, invariant, pure �
terms. Similarly with the half-H and half-� terms. The
additional terms in the first set are thus

ð1bÞ ð�yTa
3=2�Þð�yTa

3=2�Þ; ðHy�aHÞð�yTa
3=2�Þ; (14)

where Ta
3=2 stand for the generator matrices for I ¼ 3=2.

For the second set of quartic terms involving three ~H’s
and one�, we first combine three ~H’s into a form of I ¼ 3

2

which must be symmetric due to Bose symmetry. Then, out
of this form and one � field, we form an I ¼ 0 term:

ð� ~H ~H ~HÞ0 ¼ 1

2
�0ðH0�Þ3 þ

ffiffiffi
3

p
2

�1H
�ðH0�Þ2

þ
ffiffiffi
3

p
2

�2ðH�Þ2H0� þ 1

2
�3ðH�Þ3: (15)

The normalization in the above term looks a bit unusual
due to the appearance of identical fields. The most general
scalar potential is thus

V ¼ ��2
HH

yH ��2
��

y�þ �HðHyHÞ2 þ ��ð�y�Þ2
þ �0

�ð�yTa
3=2�Þð�yTa

3=2�Þ þ �HyH�y�

þ 1
2�

0ðHy�aHÞð�yTa
3=2�Þ þ ½�ð� ~H ~H ~HÞ0 þ H:c:�;

(16)

where all couplings except � are real. We note in passing
that the �0

� term was missing in Ref. [10].
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The VEVs of the scalar fields are determined by requir-
ing the vanishing of the first derivatives and positive-
definiteness of the matrix of the second derivatives of the
potential. We can always choose, by a global Uð1ÞY trans-
formation, one of the VEVs, say, v2, to be real positive.
Then one can see that �v4 must be real, and the vanishing
conditions become

��2
H þ �Hv

2
2 þ 1

2�jv4j2 þ 3
8�

0jv4j2 þ 3
4v2�v4 ¼ 0;

� 1
2�

2
�jv4j2 þ 1

2��jv4j4 þ 9
8�

0
�jv4j4 þ 1

4�v
2
2jv4j2

þ 3
16�

0v22jv4j2 þ 1
8�v4v

3
2 ¼ 0: (17)

Since v4 � 0 breaks the custodial symmetry, it is natural
to assume jv4j � v2. Assuming further that the quartic
couplings are perturbative, we have to good precision that

v 2 �
ffiffiffiffiffiffiffi
�2

H

�H

s
;

v4
v2

� 2���2
H

8�H�
2
� � ð4�þ 3�0Þ�2

H

: (18)

Since the � term breaks lepton number, it would be easy to
attribute the tininess of v4 to that of �. With so many free
parameters at hand it is no problem to guarantee that the
above is the true vacuum. If � vanishes, it would be
necessary to fine-tune the parameters to get a tiny v4, which
we shall not pursue further.

C. Diagonalization of lepton mass matrices

We continue to assume for the sake of simplicity that
both VEVs are real positive. To diagonalize the mass
matrices, we first parameterize them without losing gen-
erality in terms of independent physical parameters by
following the procedure advocated in Ref. [41]. We sketch
below how this is done.

With three generations in SM there is always one mass-
less neutral mode, which can be �1 [in normal hierarchy
(NH)] or �3 [in inverted hierarchy (IH)] according to the
oscillation data. (With ng � 3 generations there are ng � 2

massless modes while there is none with less generations.)
We describe the case of NH in some detail and will record
the result for IH later. By applying a judicious unitary
transformation to nLj, we can convert the column vectors

x and z into the standard form:

X ¼ ð0; 0; xÞT; Z ¼ ð0; z; czÞT; (19)

where x, z are real positive and cz is generally complex.
This fixes the phases of the two fields (named again as nL2
and nL3) orthogonal to the massless mode (nL1) but leaves
the latter’s phase free. To keep the partnership under SUð2ÞL
between the neutral nL and charged fL fields generation by
generation, the same transformation should be applied to
fLj as well. This modifies the entries in y but does not alter

its generality. We assume that this has been done already.
To reduce the y matrix to its minimal form, we proceed

as follows. By a unitary transformation of fRj, we can cast

y into the form:

y ¼
r1e

i�1 r2e
i�2 r3e

i�3

0 y2 c2
0 0 y3

0
@

1
A; (20)

where y2 and y3 are real positive and c2 is complex. This
fixes the phases of fR3;R2 but leaves free that of fR1. By
rephasing further f1L ! ei	f1L, which is augmented with
n1L ! ei	n1L to preserve the SUð2ÞL partnership, the first
row of y becomes effectively, e�i	ðr1ei�1 ; r2e

i�2 ; r3e
i�3Þ.

Now we choose 	 ¼ �2 (or equally well, 	 ¼ �3), which
fixes the phase of f1L and thus that of the massless n1L as
well, and then choose �1 ¼ 	, which fixes the phase of
fR1. This leaves with us the final version of the y matrix:

Y ¼
y1 y4 c1
0 y2 c2
0 0 y3

0
@

1
A; (21)

where y1;2;3;4 are real positive and c1;2 are generally

complex.
We have used up the degrees of freedom in defining

fermion fields to reduce the number of parameters in the
Yukawa sector to its minimum, i.e., in terms of independent
physical parameters, without sacrificing generality. There
are seven real positive parameters (m� and x, y1;2;3;4, z) and
three complex ones (c1;2;z). They will be traded for nine

masses (of one doubly charged, four singly charged, and
four neutral fermions), three CP phases, and a single inde-
pendent mixing angle. It looks challenging at first sight
for the model to accommodate the two large mixing angles
measured in oscillation. But as we shall see later, all heavy
fermions are nearly degenerate, which effectively saves
parameters at our disposal. Themass matrices for the singly
charged and neutral fermions are summarized as

M1 ¼ m�


2ffiffi
2

p Y � 
2
2
ffiffi
3

p X
01�3 1

� �
;

M0 ¼ m�

03�3

2ffiffi
6

p X 
4
2
ffiffi
2

p Z

2ffiffi
6

p XT 0 1

4
2
ffiffi
2

p ZT 1 0

0
BB@

1
CCA;

(22)

where 
2 ¼ v2=m�, 
4 ¼ v4=m� with 
4 being necessarily
tiny. The submatrices X, Y, Z for NH have been given in
Eqs. (19) and (21), while for IH they are

X¼
x
0
0

0
@

1
A; Z¼

cz
z
0

0
@

1
A; Y ¼

y1 0 0
c1 y2 0
c2 y4 y3

0
@

1
A: (23)

Now we diagonalize the mass matrices M0 and M1

perturbatively exploiting the hierarchies in parameters.
We describe how this is done for the NH case and will
indicate how to obtain the analogous results for the IH
case. To save writing, we put a prime to all parameters in
the standardized Yukawa matrices shown in Eqs. (19), (21),
and (23), and reserve the unprimed parameters to those that
have been multiplied by a factor of 
2;4; namely
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x ¼ 
2ffiffiffi
6

p x0; ðz; czÞ ¼ 
4

2
ffiffiffi
2

p ðz0; c0zÞ;

ðyj; ciÞ ¼ 
2ffiffiffi
2

p ðy0j; c0iÞ:
(24)

The symmetric complex matrix M0 is diagonalized to real
nonnegative eigenvalues by a unitary matrix U:

UTM0U ¼ diagðm1; m2; m3; m4; m5Þ; (25)

wherem1 ¼ 0 for NH whilem3 ¼ 0 for IH.U is composed
of the five column vectors uðjÞ corresponding to the eigen-
values mj, U ¼ ðuð1Þ; . . . ; uð5ÞÞ. Since 
4 is tiny, we can

solve the problem perturbatively in the z, cz parameters
(collectively denoted as 
) while keeping exact depen-
dence on x. After some work, we obtain the eigenvalues
for NH:

m1 ¼ 0;

m2

m�

¼ s0½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ c20jczj2

q
� c0jczj� þOð
3Þ;

m3

m�

¼ s0½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ c20jczj2

q
þ c0jczj� þOð
3Þ;

m4

m�

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
� jczjc0s0 þ 1

2
c0½c20z2

þ ð1� 3c20s
2
0Þjczj2� þOð
3Þ;

m5

m�

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
þ jczjc0s0 þ 1

2
c0½c20z2

þ ð1� 3c20s
2
0Þjczj2� þOð
3Þ;

(26)

corresponding to the light eigenvectors

uð1Þ ¼ ð1; 0; 0; 0; 0ÞT;

uð2Þ ¼ e�i	þ

0

cm

smð�c0e
�i�zÞ

smc0

�
�c0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ c20jczj2

q
� s20jczj

�

sms0e
�i�z

0
BBBBBBBBBB@

1
CCCCCCCCCCA

þOð
2Þ;

uð3Þ ¼ e�i	�

0

sm

cmc0e
�i�z

cmc0

�
�c0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ c20jczj2

q
þ s20jczj

�

cmð�s0e
�i�zÞ

0
BBBBBBBBBB@

1
CCCCCCCCCCA

þOð
2Þ; (27)

and the heavy ones

uð4Þ ¼ e�i	�ffiffiffi
2

p

0

c20z

�e�i�z½s0 � 1
2 c

2
0ð2c20 � s20Þjczj�

½1þ 1
2 c

2
0s0jczj�

�e�i�z½c0 � 1
2 c0s0ð2s20 � c20Þjczj�

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

þOð
2Þ;

uð5Þ ¼ e�i	þffiffiffi
2

p

0

c20z

e�i�z½s0 þ 1
2 c

2
0ð2c20 � s20Þjczj�

½1� 1
2 c

2
0s0jczj�

e�i�z½c0 þ 1
2 c0s0ð2s20 � c20Þjczj�

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

þOð
2Þ: (28)

Here we have parametrized cz ¼ jczjei�z and eið�zþ2	�Þ ¼
�1. And the triangular functions are defined as follows:

s0 ¼ xffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p ; c0 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p ;

sm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2

m2 þm3

s
; cm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m3

m2 þm3

s
:

(29)

One can tidy up theOð
Þ terms in uð2Þ and uð3Þ in terms of
mass ratios using

c0½c0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ c20jczj2

q
þ ð�Þs20jczj�

¼ 1

2s0

1

m�

½m3ð2Þ þ ðc20 � s20Þm2ð3Þ�; (30)

but no similar simplification occurs for the terms in uð4Þ
and uð5Þ.
We make a few comments on the above result. The light

neutrinos gain a mass of order m	 x0ðz0 or jc0zjÞv2v4=m�.
For a scalar potential with �2

� 
 �2
H, corresponding to �

particles much heavier than the SM Higgs, we have from
the previous subsection that v4 	 j�jv32=�2

�. This yields a

neutrino mass that is triply suppressed by heavy scales as
designed in Ref. [10]. Second, the two heavy neutrinos are
almost degenerate with a splitting as small as the one in
light neutrinos:

m5 �m4 � m3 �m2 � 2c0s0jczjm�: (31)

The significance of this at high energy colliders will be
explored in the future work. Third, the result for the IH case
whose Yukawa coupling matrices are parametrized
as in Eq. (23) is obtained by first reshuffling the labels
of the light solutions, ðm1; m2; m3Þ ! ðm3; m1; m2Þ and
ðuð1Þ; uð2Þ; uð3ÞÞ ! ðuð3Þ; uð1Þ; uð2ÞÞ, in Eqs. (26) and
(27), and then interchanging the first and third rows in
all uðjÞ.
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Now we diagonalize the mass matrix M1 for the
singly charged leptons by bi-unitary transformations,

Uy
LM1UR ¼ diagðme;m�;m�;m�Þ, where � is the heavy

lepton of charge �jej. Since the matrix y is not related to
new physics, its entries should be naturally small. At this
stage we have no idea on how large the parameter x could
be, and thus leave it free. We therefore diagonalize M1 in
two scenarios according to whether the x parameter (sce-
nario A) or the y parameters (B) are treated perturbatively.
As will be clear later, the x parameter is severely con-
strained by LFV transitions of the muon so that both
scenarios serve as almost equally good approximations.
We shall describe the diagonalization for the NH case
and indicate at the end how to obtain the results for the
IH case.

In scenario Awe do perturbation in x. We first solve the
zeroth order eigenvalue problems

ðuLðeÞuLð�ÞuLð�ÞÞyM2
LðuLðeÞuLð�ÞuLð�ÞÞ

¼ diagð�e; ��; ��Þ;
ðuRðeÞuRð�ÞuRð�ÞÞyM2

RðuRðeÞuRð�ÞuRð�ÞÞ
¼ diagð�e; ��; ��Þ;

(32)

for the two 3� 3Hermitian matrices which share the same
set of real positive eigenvalues:

M2
L ¼

y21 þ y24 þ jc1j2 y2y4 þ c1c
�
2 y3c1

c:c: y22 þ jc2j2 y3c2

c:c: c:c: y23

0
BB@

1
CCA;

M2
R ¼

y21 y1y4 y1c1

c:c: y22 þ y24 y2c2 þ y4c1

c:c: c:c: jc1j2 þ jc2j2 þ y23

0
BB@

1
CCA:

(33)

We denote the light charged leptons by the beginning
Greek letters � and 	, and introduce the auxiliary variable
and vectors:

�� ¼ ð1� ��Þ�1;


L ¼ �X
	

�	u
L�
� ð	ÞuLð	Þ;


R ¼ �X
	

�	u
R�
� ð	ÞuRð	Þ;

(34)

where the subscript in uL;R� ð	Þ denotes their �-th entry.
The eigenvalues are found to be

m2
�

m2
�

¼ �� � x2

2
juL� ð�Þj2���� þOðx3Þ

¼ �� � x2

2
y23juR� ð�Þj2�� þOðx3Þ;

� ¼ e;�; �

(35)

m2
�

m2
�

¼ 1þ x2

2

X
�

juL� ð�Þj2�� þOðx3Þ

¼ 1þ x2

2
þ x2

2

X
�

y23juR� ð�Þj2�� þOðx3Þ; (36)

where the two expressions from diagonalization are
equivalent using y23juR� ð�Þj2 ¼ ��juL� ð�Þj2, and the unitary
matrices exact to OðxÞ are

UL ¼
uLðeÞ uLð�Þ uLð�Þ xffiffi

2
p 
L

xffiffi
2

p �eu
L
� ðeÞ xffiffi

2
p ��u

L
� ð�Þ xffiffi

2
p ��u

L
� ð�Þ 1

0
@

1
A

� diagð1; 1; 1; pLÞ; (37)

UR ¼
uRðeÞ uRð�Þ uRð�Þ xy3ffiffi

2
p 
R

xy3ffiffi
2

p �eu
R
� ðeÞ xy3ffiffi

2
p ��u

R
� ð�Þ xy3ffiffi

2
p ��u

R
� ð�Þ 1

0
@

1
A

� diagð1; 1; 1; pRÞ: (38)

In the above, theOðxÞ phases pL;R are not fixed completely,

but pRp
�
L is fixed by requiring that the eigenvalue, m�, in

Uy
LM1UR be indeed real positive. The same arbitrariness

also occurs in uL;R, but the number of physical phases
in UL;R is restricted to two by the phases appearing in

M1. Considering �� � 1 in practice, we have to good

precision, �� ¼ 1þOð��Þ, so that 
L;R
� ¼ ���� þ

Oð��Þ from unitarity of uL and uR, which simplifies things
a bit.
In scenario B we instead treat the parameters ðyj; ciÞ

(denoted collectively as �) perturbatively. By solving first
the eigenvalue problems,

ðuLðeÞuLð�ÞuLð�ÞÞy �M2
LðuLðeÞuLð�ÞuLð�ÞÞ

¼ diagð�e; ��; ��Þ;
ðuRðeÞuRð�ÞuRð�ÞÞy �M2

RðuRðeÞuRð�ÞuRð�ÞÞ
¼ diagð�e; ��; ��Þ;

(39)

where

�M 2
L ¼ M2

Ljy3!cþy3 ;
�M2

R ¼ M2
Rjy3!cþy3 ; (40)

we find the eigenvalues

m2
�

m2
�

¼ �� þOð�4Þ; � ¼ e;�; �; (41)

m2
�

m2
�

¼ 1þ 1

2
x2 þOð�2Þ; (42)
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and the diagonalization unitary matrices (� ¼ y3sþcþ):

UL ¼
uLe ðeÞ uLe ð�Þ uLe ð�Þ 0
uL�ðeÞ uL�ð�Þ uL�ð�Þ 0

cþuL� ðeÞ cþuL� ð�Þ cþuL� ð�Þ �sþ
sþuL� ðeÞ sþuL� ð�Þ sþuL� ð�Þ cþ

0
BBB@

1
CCCA

þOð�2Þ; (43)

UR ¼
uRe ðeÞ uRe ð�Þ uRe ð�Þ 0
uR�ðeÞ uR�ð�Þ uR�ð�Þ 0
uR� ðeÞ uR� ð�Þ uR� ð�Þ ��
�uR� ðeÞ �uR� ð�Þ �uR� ð�Þ 1

0
BBB@

1
CCCAþOð�2Þ: (44)

The triangular functions in this scenario are

sþ ¼ x=
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2=2

p ; cþ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2=2

p : (45)

When all parameters x and ðyi; ciÞ are small in magni-
tude and treated on the same footing, both scenarios yield
an identical result to the leading order. In both scenarios,
the following mass relations among the heavy � particles
hold:

m�2
¼ m�;

m� ¼ m�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2=2

q
;

m�4
� m�5 ¼ m�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
:

(46)

In our later numerical analysis we shall work with scenario
B. The explicit results displayed above are for the NH case.
For the IH case whose matrices are parametrized as in
Eq. (23) and without changing the increasing order of the
mass eigenvalues, UL;R are obtained from those for NH by

interchanging the ð1; 3Þ rows which are computed with the
parameter interchanges y1 $ y3 and c1 $ c2 made.

D. Couplings of leptons

The gauge interactions of the leptons are

L g ¼ g2ðjþ�
W Wþ

� þ j
��
W W�

� þ J
�
Z Z�Þ þ eJ

�
emA�: (47)

The currents are written first in terms of weak eigenstates
and then grouped into �1R;1L and �0R;0L:

jþ�
W ¼ ��0Lw

0
L�

��1L þ ��0Rw
0
R�

��1R þ ��1Rw
2
R�

��C
2L

þ ��1Lw
2
L�

��C
2R;

cWJ
�
Z ¼ ��0Lz

0
L�

��0L þ ��1Lz
1
L�

��1L þ ��1Rz
1
R�

��1R

� ð1� 2s2WÞ ��C
2�

��C
2 ;

J
�
em ¼ � �‘��‘� 2 ��C

2�
��C

2 ; (48)

where ‘ stands for all four leptons of charge �1. The
coupling matrices are

w0
L ¼

1ffiffi
2

p 13 0

0 0

0 �1

0
BB@

1
CCA; w0

R ¼
03 0

0 �1

0 0

0
BB@

1
CCA;

w2
L ¼ w2

R ¼ 03

�1

 !
; z0L ¼

1
2 13

�1

1

0
BB@

1
CCA;

z1L ¼
�
� 1

2 þ s2W

�
13

s2W

0
@

1
A; z1R ¼ s2W14;

(49)

with the usual notation sW ¼ sin�W and cW ¼ cos�W . In
terms of mass eigenstates, �0L ¼ U�L, �0R ¼ U��R ¼
U��C

L, �1L ¼ UL‘L, and �1R ¼ UR‘R, the weak currents
finally become

j
þ�
W ¼ ��LW 0

L�
�‘L þ ��RW 0

R�
�‘R þ �‘RW 2

R�
��C

2L

þ �‘LW 2
L�

��C
2R;

cWJ
�
Z ¼ ��LZ0

L�
��L þ �‘LZ1

L�
�‘L þ �‘RZ1

R�
�‘R

� ð1� 2s2WÞ ��C
2�

��C
2 ; (50)

where

W 0
L ¼ Uyw0

LUL; W 0
R ¼ UTw0

RUR;

W 2
L ¼ Uy

Lw
2
L; W 2

R ¼ Uy
Rw

2
R; Z0

L ¼ Uyz0LU;

Z1
L ¼ Uy

Lz
1
LUL; Z1

R ¼ Uy
Rz

1
RUR ¼ s2W14: (51)

The upper-left 3� 3 submatrix in
ffiffiffi
2

p
W 0y

L (
ffiffiffi
2

p
from our

normalization convention for currents) corresponds to the
Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix in the
seesaw limit, and will be called the effective PMNS matrix
or �VPMNS. To help understand the procedure to be adopted
in our later numerical analysis, we take a closer look at it.
As both scenarios A and B are similar for a not large x
parameter, we illustrate our discussion in the latter. The
submatrix is

�V PMNS ¼ Uy
fLdiagð1; 1; cþ=c0ÞUn: (52)

Here UfL ¼ ðuLðeÞuLð�ÞuLð�ÞÞ is the unitary matrix that

diagonalizes �M2
L, while Un is the unitary matrix that

diagonalizes the light neutrino mass in the seesaw limit

upon choosing e�i	þ ¼ ei�z=2 and e�i	� ¼ iei�z=2. In

other words, we have VPMNS ¼ Uy
fLUn in the seesaw limit,

and cþ=c0 � 1þ x2=4 measures the small departure of
�VPMNS from unitarity when the mixing with the heavy
particles is taken into account. As the unitarity has been
checked at a precision not better than a percentage, it is
safe if x assumes a value not larger than, say, 0.1. This will
be fully respected in our numerical analysis. This result
applies to scenario A as well where x is small by definition.
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We briefly highlight some other features in gauge cou-
plings relevant to LFV transitions of charged leptons. The
light charged leptons haveOðz; czÞ suppressed couplings to
heavy neutrinos in W 0

L. The massless neutrino decouples
fromW 0

R, while all light charged leptons are suppressed in
it by a factor of xy3. A similar situation occurs in the
charged current involving singly and doubly charged lep-
tons: the left-handed part of the light charged leptons is
suppressed by x and the right-handed by xy3. Finally, the
neutral current of the singly charged leptons is dominantly
flavor diagonal, with anOðxÞmixing between the light and
heavy particles and an Oðx2Þ mixing amongst the light
leptons.

As most new gauge couplings between light and heavy
particles are controlled by the x parameter, we shall con-
sider its largest allowed value in numerical analysis. The
spectrum of the light neutrinos then implies that the z
parameters must be extremely small. We can therefore
focus in the Yukawa sector on the x terms. Ignoring the
tiny mixture between the doublet and four-plet scalars that
is proportional to v4=v2, the terms relevant to our study are

�LYuk � � x0h
2
ffiffiffi
3

p �fL3�
C
1 þ H:c:

¼ � x0h
2
ffiffiffi
3

p ðU�
LÞ3�ðURÞ4	 �‘L�‘R	hþ H:c:; (53)

where the summation is over all singly charged leptons and

h is the physical scalar in H0 ¼ ðhþ iG0Þ= ffiffiffi
2

p
.

III. LEPTON FLAVOR VIOLATING TRANSITIONS

A. Radiative decays and electromagnetic
dipole moments

A direct consequence of the neutrino mass and mixing
mechanism in the last section is the lepton flavor violating
transitions of the light charged leptons. We start with the
radiative decay ‘� ! ‘	�, whose amplitude has the dipole

form

A ¼
ffiffiffi
2

p
eGF

ð4�Þ2 �u	ðp� qÞðhLPL þ hRPRÞ

� i���u�ðpÞ
�ðqÞq�; (54)

where p, p� q are the momenta of the initial and final
leptons, q, 
ðqÞ are the photon’s momentum and polariza-
tion vector, and PL;R ¼ ð1� �5Þ=2. All information on

dynamics is stored in the form factors hL;R. The decay

width is

�ð‘� ! ‘	�Þ ¼ m3
��G

2
F

29�4
ðjhLj2 þ jhRj2Þ; (55)

where we have ignored the mass of ‘	 in phase space.

For the model considered here, the form factors hL;R are

contributed by the Feynman diagrams shown in Fig. 1.
Figures 1(a)–1(c) involve the charged currents between

the singly and doubly charged leptons, and between the
neutral and singly charged leptons, respectively, while
Figs. 1(d) and 1(e) originate from the flavor-changing
neutral currents (FCNC) and physical Higgs exchange.
For the gauge-boson mediated graphs we compute in the
unitary gauge. This is simplest but caution must be exer-
cised to cope with a technical point concerning constant
terms, see the last paper in Ref. [30]. We have carefully
done the Dirac algebra in d dimensions before the limit
d ! 4 is taken, to avoid missing certain finite terms, and
find consistent results with that work.
Ignoring again the terms suppressed by m	 and keeping

terms up to the linear order in m�, the form factors from
each graph in Fig. 1 are

hLðaÞ ¼ �2W 2
R	½W 2�

R�m�F ðr�Þ þW 2�
L�m�Gðr�Þ�;

hLðbÞ ¼ 2W 0�
R;j	½W 0

R;j�m�F ðrjÞ þW 0
L;j�mjGðrjÞ�;

hLðcÞ ¼ 2W 2
R	½W 2�

R�m�H ðr�Þ þW 2�
L�m�J ðr�Þ�;

hLðdÞ ¼ Z1
R;	�½Z1

R;��m�H ðs�Þ þZ1
L;��m�J ðs�Þ�;

hLðeÞ ¼ 1ffiffiffi
2

p
GFm

2
h

x02

12
U�

R;4	UL;3�½U�
L;3�UR;4�m�Kðt�Þ

þU�
R;4�UL;3�m�Lðt�Þ�; (56)

where summation over the virtual lepton flavors is implied,
and

hRða; b; c; dÞ ¼ hLða; b; c; dÞjL$R;

hRðeÞ ¼ hLðeÞjL$R;3$4: (57)

We have denoted the ratios of the masses appearing in the
loops as r� ¼ m2

�=m
2
W , rj ¼ m2

j=m
2
W , s� ¼ m2

�=m
2
Z, t� ¼

m2
�=m

2
h, where j and � enumerate all virtual neutral and

singly charged leptons, respectively. Some products of the
coupling matrices in the above can be simplified using their
explicit forms. For instance, the first term in hLðdÞ drops
out since Z1

R is diagonal; the matrices in the charged
current involving the doubly charged lepton areW 2

RðLÞ� ¼
�U�

RðLÞ;4�. And the loop functions are

FIG. 1. Feynman diagrams for ‘� ! ‘	�.
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F ðrÞ¼ 1

6ð1�rÞ4 ½10�43rþ78r2�49r3þ4r4þ18r3 lnr�;

GðrÞ¼ 1

ð1�rÞ3 ½�4þ15r�12r2þr3þ6r2 lnr�;

H ðrÞ¼ 1

3ð1�rÞ4 ½�8þ38r�39r2þ14r3�5r4þ18r2 lnr�;

J ðrÞ¼ 2

ð1�rÞ3 ½4�3r�r3þ6rlnr�;

KðrÞ¼ 1

12ð1�rÞ4 ½2þ3r�6r2þr3þ6rlnr�;

LðrÞ¼ 1

2ð1�rÞ3 ½�3þ4r�r2�2lnr�: (58)

Related to the above radiative transition amplitudes are
the anomalous magnetic moments and electric dipole
moments of the singly charged light leptons. They are
worked out to the linear order in the mass m� of the
considered lepton. The anomalous magnetic moment,
defined as a ¼ ðg� 2Þ=2, is

að‘�Þ ¼ 2
ffiffiffi
2

p
GFm�

ð4�Þ2 ½hðaÞ þ hðbÞ þ hðcÞ þ hðdÞ þ hðeÞ�;
(59)

where

hðaÞ ¼�2½ðjW 2
R�j2 þ jW 2

L�j2Þm�F ðr�Þ
þReðW 2

R�W
2�
L�Þm�Gðr�Þ�;

hðbÞ ¼ 2½ðjW 0
R;j�j2 þjW 0

L;j�j2Þm�F ðrjÞ
þReðW 0�

R;j�W
0
L;j�ÞmjGðrjÞ�;

hðcÞ ¼ 2½ðjW 2
R�j2 þjW 2

L�j2Þm�H ðr�Þ
þReðW 2

R�W
2�
L�Þm�J ðr�Þ�;

hðdÞ ¼ ðjZ1
R;��j2 þjZ1

L;��j2Þm�H ðs�Þ
þReðZ1

R;��Z
1
L;��Þm�J ðs�Þ;

hðeÞ ¼ x02

12
ffiffiffi
2

p
GFm

2
h

½ðjUL;3�UR;4�j2 þjUR;4�UL;3�j2Þ

�m�Kðt�ÞþReðU�
R;4�UL;3�U

�
R;4�UL;3�Þm�Lðt�Þ�:

(60)

Again some of the above can be simplified using explicit
forms of the coupling matrices given in the last section.

The electric dipole moment of the fermion c is defined
asLedm ¼ �id=2 �c����5cF��, with F�� being the elec-

tromagnetic field tensor. It is evaluated to be

dð‘�Þ ¼ � 2
ffiffiffi
2

p
eGF

ð4�Þ2 ½ �hðaÞ þ �hðbÞ þ �hðcÞ þ �hðdÞ þ �hðeÞ�;
(61)

where

�hðaÞ¼�2ImðW 2
R�W

2�
L�Þm�Gðr�Þ;

�hðbÞ¼2ImðW 0�
R;j�W

0
L;j�ÞmjGðrjÞ;

�hðcÞ¼2ImðW 2
R�W

2�
L�Þm�J ðr�Þ;

�hðdÞ¼ ImðZ1
R;��Z

1
L;��Þm�J ðs�Þ;

�hðeÞ¼ 1ffiffiffi
2

p
GFm

2
h

x02

12
ImðU�

R;4�UL;3�U
�
R;4�UL;3�Þ�m�Lðt�Þ:

(62)

SinceZ1
R is diagonal andZL is Hermitian, there is actually

no contribution from the FCNC graph, �hðdÞ ¼ 0.

B. Purely leptonic transitions

Now we consider the purely leptonic transitions of the
light charged leptons. These include the experimentally

well-bounded decays ‘� ! ‘�‘	 �‘� and the muon-electron

(�e) conversion in nuclei. The leading contributions in the
model considered here arise from FCNC couplings of the Z
boson. The Higgs exchange is suppressed by additional
factors of x and a heavier Higgs mass, while we have
verified that the photonic contribution is always subdomi-
nant. We do not consider LFV decays of the Z boson since
they are experimentally much less constrained.
There are three types of decays corresponding to � ¼

	 ¼ �, � ¼ � � 	, and � ¼ 	 � �. Since the flavor-
changing couplings carry a factor of x2, only the transitions
of the first two types are important while the third one is
severely suppressed. We thus concentrate on the decays,

‘� ! ‘	‘� �‘	 with � ¼ 	 or � � 	, whose leading terms

come from diagrams shown in Fig. 2. Note that there is a
relative minus sign between the two graphs and that for
� ¼ 	 one should attach a factor of 1=2 in the total decay
rate. Ignoring the final-state masses, the rate is given by

�ð‘� ! ‘	‘� �‘	Þ
4�0

¼ 1

1þ �	�

½jZ1
L;��Z

1
L;		j2 þ jZ1

L;	�Z
1
L;�	j2

þ 2ReðZ1
L;��Z

1
L;		Z

1�
L;	�Z

1�
L;�	Þ þ jZ1

L;��Z
1
R;		j2

þ jZ1
L;	�Z

1
R;�	j2 þ ðL $ RÞ�; (63)

with �0 ¼ G2
Fm

5
�=ð192�3Þ being the decay rate for the

dominant decay mode, ‘� ! ��‘	 ��	. Since Z1
R is diago-

nal and � � 	, � � �, the term (L $ R) actually drops
out.

FIG. 2. Feynman diagrams for ‘� ! ‘	‘� �‘	.
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A competitive process is the coherent �e conversion in
nuclei, ��N ! e�N. It involves various atomic and nu-
clear effects in addition to the short-distance physics of
lepton flavor violation. A comprehensive study has been
given in Ref. [39] based on the method developed in
Ref. [40], which improved over earlier efforts on various
corrections [42,43] to the original calculations [44,45].
These corrections turn out to be particularly important
for heavy nuclei.

The effective Lagrangian relevant to the coherent con-
version via the leptonic FCNC couplings of the Z boson
can be written as [39]

L�e ¼ �GFffiffiffi
2

p X
q¼u;d;s

½ðgLVðqÞ �e��PL�þ gRVðqÞ �e��PR�Þ

� �q��qþ H:c:�; (64)

where gLVðuÞ ¼ ð2� 16s2W=3ÞZ1
L;e�, gLVðd;sÞ ¼

ð�2þ 8s2W=3ÞZ1
L;e�, and gRVðqÞ ¼ 0 for the considered

model. Then, the �e conversion rate is

�ð��N ! e�NÞ ¼ 2G2
F½j~gðpÞLVV

ðpÞ
N þ ~gðnÞLVV

ðnÞ
N j2 þ j~gðpÞRVV

ðpÞ
N

þ ~gðnÞRVV
ðnÞ
N j2�; (65)

where ~gðpÞLV ¼ 2gLVðuÞ þ gLVðdÞ, ~gðnÞLV ¼ gLVðuÞ þ 2gLVðdÞ,
and similarly for ~gðpÞRV and ~gðpÞRV . V

ðpÞ
N and VðnÞ

N are overlap
integrals of the �, e with the protons and neutrons in the
nucleus N, which have been numerically evaluated and
cataloged in [39]. The above rate is usually normalized
to the corresponding ordinary muon capture rate, !capt, to

yield a branching ratio, Brð��N ! e�NÞ, for the �e
conversion on a particular nucleus N. Since the purely
leptonic decays and the �e conversion in nuclei originate
from the same FCNC couplings, the ratio of their branch-
ing ratios has the simple form,

Brð��N! e�NÞ
Brð�! ee �eÞ ¼G2

F½ð2� 8s2WÞVðpÞ
N � 2VðnÞ

N �2
!captð1� 4s2W þ 6s4WÞ

; (66)

upon ignoring minor corrections in the diagonal element
Z1

L;ee. Namely, the relative importance of the two transi-

tions rests on that of their experimental bounds.

IV. NUMERICAL ANALYSIS

As we shall see later, the Yukawa coupling x0, or x ¼
x0v2=ð

ffiffiffi
6

p
m�Þ, that couples the light and heavy fermions via

the Higgs doublet is a central parameter that controls the
overall scale of the LFV transition rates. We mentioned
earlier that the parameter measures the unitarity violation
in the effective PMNS matrix. Since the heavy fermions
have a squared mass splitting proportional to x2 [see
Eq. (46)], it could also be sensitive to the violation of
custodial symmetry measured by the parameter �� ¼
m2

W=ðc2Wm2
ZÞ � 1. We have calculated the one-loop contri-

bution due to the heavy fermions

��� ¼ 4
ffiffiffi
2

p
GFm

2
�

ð4�Þ2
19

48
x4 � 1:7� 10�5x04

1 TeV2

m2
�

: (67)

This is balanced by that of a nonvanishing VEV of the
nondoublet scalar field, v4 � 0, that occurs already at the
tree level, ��� � �6v24=v

2
2 (see also Ref. [10]). We noted

in the above that half of the power in x4 comes from the
mass splitting of the heavy fermions. The other half origi-
nates from the mixing effect in the two vertices, which is
essential for a contribution to �� since a vectorlike mul-
tiplet cannot contribute even if it is not degenerate. Since
the � parameter is measured at a precision not better than
10�4, we are on the safe side if x0 is not larger than 0.7 even
for a doubly charged fermion as light as 200 GeV. This is a
much weaker constraint than we shall get below from LFV
transitions.
Before we show our numerical results, we outline how

the free parameters are manipulated based upon the for-
mulas in Sec. III. Since the unitarity of the PMNS matrix
has been verified to certain level, we can use it as a guide in
browsing the parameter space. In this way we can cover the
majority of the parameter space that is consistent with an
almost unitary effective PMNS matrix, �VPMNS. The PMNS
matrix generally contains three mixing angles, one Dirac
phase, and two Majorana phases in the standard form:

VPMNS ¼
c12c13 s12c13 s13u

�
�

�c23s12 � s13s23c12u� c23c12 � s13s23s12u� s23c13
s23s12 � s13c23c12u� �s23c12 � s13c23s12u� c23c13

0
@

1
Adiagðu1; u2; u3Þ; (68)

where cij ¼ cos�ij, sij ¼ sin�ij, uj ¼ expði�j=2Þ, and
u� ¼ expði�Þ. We use the measured values for those angles
(while choosing some values for the phases which are not
yet measured) and for the light neutrino masses m1;2;3 in
either NH or IH. Then, the heavy neutrino masses m4;5 and
the parameters z, jczj are uniquely fixed once the parame-
ters ðx;m�Þ are assigned a value. The diagonalization

matrix U for the neutrinos is also fixed up to the phase of
cz ¼ jczjei�z . In particular, the matrix Un that is formed
from the first three rows of the vectors in Eq. (27) (for the
NH case and similarly for IH) is fixed up to a diagonal
phase matrix, Uz 
 diagð1; ei�z=2; e�i�z=2Þ, multiplied
from the left. Applying the definition VPMNS ¼ Uy

fLUn

and the first equation in Eq. (39) (for scenario B
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and similarly for scenario A), we have Uy
z
�M2

LUz ¼
ðUy

z UnÞVPMNSdiagð�e; ��; ��ÞVy
PMNSðUy

nUzÞ where the
right-hand side is completely known with the additional
input of the light charged lepton masses. We observe that
this procedure then determines uniquely all of the parame-
ters y1;2;3;4, c1;2 as well as �z on the left-hand side. The
diagonalization matrix UL is thus fixed. Once the Y matrix
is known, we can follow the formalism in Sec. III to find
the other diagonalization matrix UR. In a final step we go
back to check that the effective PMNS matrix �VPMNS

obtained from the matrices U and UL determined above
does not violate unitarity beyond the allowed level.

To get some feel about the branching ratios for the LFV
transitions, we start with the results for the simplified case
of tribimaximal neutrino mixing with all phases set to zero.
We assumem� ¼ 200 GeV in the following discussions so
that the heavy fermions are within the reach of LHC. In the
upper panel of Fig. 3 we show the branching ratios for the
muon decays and �e conversion in nuclei 197

79 Au and 48
22Ti

as a function of the x parameter for the NH case in scenario
B, together with the current experimental bounds on them
(horizontal lines). The lower panel depicts the branching
ratios for the two � decays, � ! �� ��, �e �e, for the same
range of x, while other decays are severely suppressed. We
see that the �e conversion on the heavy gold nucleus sets
the most stringent constraint on the x parameter though it

also inherits the largest uncertainty from nuclear physics.
The bound from the conversion on titanium is comparable
to that from the purely leptonic decay, � ! 3e. For such a
small x the deviation from the SM values of the anomalous
magnetic moments in Eq. (59) and the contribution to
the electric dipole moments in Eq. (61) are too small to
be relevant. In Fig. 4 we depict the corresponding results
for the IH case in scenario B. Note that in this case
the dominant LFV � decays change to ee �e and e� ��.
Generally speaking, when assuming tribimaximal neutrino
mixing, the stringent bounds on the muon imply that the
tau decays are not likely to be observable in the near future
for the majority of the parameter space.
We thus ask if there is a region in the parameter space

where the muon decays and �e conversion in nuclei are
significantly suppressed while the tau decays are not much
below the current bounds. To help identify the interested
region it is useful to work with the leading terms in the
limits of infinite virtual heavy masses and vanishing virtual
light masses. An inspection of Eqs. (56) and (63) aug-
mented with the coupling matrices displayed in Sec. II tells
us that in the NH case the radiative decay ‘� ! ‘	� is

dominated by the terms with the mixing matrices
uL�� ð‘	ÞuL� ð‘�Þ, uR�� ð‘	ÞuL� ð‘�Þ, and uL�� ð‘	ÞuR� ð‘�Þ, whose
coefficients are less suppressed by a small x parameter, and
that the rates for � ! ee �e and �e conversion in nuclei are

FIG. 3 (color online). Branching ratios as a function of x for NH in scenario B and tribimaximal mixing.
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FIG. 4 (color online). Branching ratios as a function of x for IH in scenario B and tribimaximal mixing.

FIG. 5 (color online). Branching ratios as a function of � for NH in scenario B and best-fit mixing angles.
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FIG. 6 (color online). Branching ratios as a function of �2 for IH in scenario B and best-fit mixing angles.

FIG. 7 (color online). Branching ratios sampled over ðx; �2Þ (upper panels) and ðx; �Þ (lower panels) for NH in scenario B and best-fit
mixing angles.
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proportional to juL�� ðeÞuL� ð�Þj2. Since for instance in sce-
nario A, juR� ð‘�Þj ¼ juL� ð‘�Þj

ffiffiffiffiffiffi
��

p
=y3 (attach a factor of cþ

to y3 for scenario B), we see that the dominant terms for the
LFV muon decays and �e conversion in nuclei are con-
trolled by the combination 
e� 
 uL�� ðeÞuL� ð�Þ [and simi-

larly in the IH case by 
e� 
 uL�e ðeÞuLe ð�Þ]. We therefore

seek for regions in which the combination 
e� would be

significantly diminished. For the mixing angles and the
neutrino squared mass differences we use the central val-
ues from the global fit in Ref. [46]: sin2�12 ¼ 0:32,
sin2�23 ¼ 0:50, �m2

21 ¼ 7:6� 10�5 eV2, j�m2
31j ¼

2:4� 10�3 eV2, and set �13 at its upper limit, sin2�13 ¼
0:05. We choose �1 ¼ �3 ¼ 0 while leaving the Dirac
phase � and Majorana phase �2 free. For the SM parame-
ters we use the numbers of the Particle Data Group. We
find that 
e� approaches its minimum at ð�;�2Þ 	
ð�=2; 2�Þ for the NH case and at ð�;�2Þ 	 ð0:64; 3:66Þ
for IH. This result is independent of the x parameter (for x
not too large in scenario B).

In Fig. 5 we show the branching ratios of the muon
decays and �e conversion in nuclei and the largest tau
decays in the NH case by scanning over the Dirac phase �.
We have assumed x ¼ 8� 10�3 and �2 ¼ 2�. The corre-
sponding result for the IH case is depicted in Fig. 6 as a
function of �2 at the same x parameter and � ¼ 0:64. One
sees from these two figures that without breaking the
stringent bounds on the muon lepton the branching ratios

for some of the leptonic tau decays can approach the level
of 10�11 for almost the whole range of the scanned phase.
This is much enhanced compared to the case of tribimax-
imal mixing shown in Figs. 3 and 4, but is still 3 orders of
magnitude below the current sensitivity.
The above tendency encourages us to scan over a larger

set of parameters. So we finally sample over the x parame-
ter from 8� 10�4 to 8� 10�3 and one of the phases in its
whole range while keeping the other phase fixed at the
value that minimizes 
e�. Our results are shown in Fig. 7

for the NH and in Fig. 8 for the IH case, respectively. In
both figures, the upper panel scans over x and the Majorana
phase �2 while the lower one is over x and the Dirac
phase �. We include only the most stringent�e conversion
on gold and the largest tau decay that is available in each
case. In the most optimistic situation, some � decays can
reach the level that is about 2 orders of magnitude below
the current sensitivity. We notice that the two figures
in the same panel have a similar pattern. This arises be-

cause the decay � ! ‘�‘	 �‘	 with � � 	 is dominated by

one Feynman graph which is almost the same as any of the

two graphs for the decay � ! ‘�‘� �‘�.

V. CONCLUSION

The origin of tiny neutrino mass has remained myste-
rious after years of endeavor. From the viewpoint of

FIG. 8 (color online). Branching ratios sampled over ðx; �2Þ (upper panels) and ðx; �Þ (lower panels) for IH in scenario B and best-fit
mixing angles.
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effective field theory the tiny mass can be accommodated
by the canonical seesaw mechanisms. But it is generally
hard to explore in current experiments the physics that
would be responsible for the mechanisms because the
relevant physics scale is very high and the new interactions
with light particles are generally too weak. It is thus highly
desirable if there is any new mechanism that would predict
accessible effects beyond the neutrino mass.

There are two basic approaches to relax the tension
between the accessibility of new physics and the effective-
ness in producing tiny neutrino mass. One can either
attribute the mass to a higher order quantum effect or
postpone its appearance to a higher-dimensional effective
interaction. An explicit model has been recently attempted
in the second approach [10]. The idea is to avoid the
conventional dimension-five interaction by composing
new fields in higher-dimensional representations so that
the first contribution to the neutrino mass occurs at dimen-
sion seven. The new particles enjoy the SM gauge inter-
actions, and thus if not very heavy would be produced at
high energy colliders like Tevatron and LHC. The point
that we want to emphasize here is that to establish the
kinship of those particles to the origin of neutrino mass it
would be necessary to detect their interactions with light
leptons. These interactions are as usual shaped by the
mixing effects between the light and heavy particles, and
thus should also leave their fingerprints in precisely mea-
sured flavor-changing processes at low energy. The pur-
pose of the current work has been to examine if there is any
chance to look for the mixing effects in LFV transitions of
the charged leptons.

We have made a systematic analysis of the model. In
particular, we provided a convenient parametrization of the
leptons’ mass matrices in terms of independent physical
parameters. By diagonalizing them explicitly the lepton
flavor structure becomes transparent in interactions. The
contributions of these interactions to the radiative, purely
leptonic decays of the charged leptons, and the �e con-
version in nuclei are then computed. We considered how
the stringent constraints from the muon lepton affect the
decay processes in the tau sector. Generally the current
experimental bounds on the decay � ! ee �e and the �e
conversion in nuclei, in particular, are so strong that it is
very difficult to observe the tau lepton decays. However,
our sampling over the unknown phases and Yukawa cou-
pling shows that there are small regions in the parameter
space in which some tau decays have a branching ratio that
is about 2 orders of magnitude below the current bounds. It
will be challenging, if not hopeless, to observe in those
decays the mixing effects related to the neutrino mass
generation.
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