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We investigate some QCD corrections that contribute to the Gross–Llewellyn Smith sum rule but

have not been included in previous analyses of it. We first review the techniques by which the xF3

structure function is extracted from combinations of neutrino and antineutrino cross sections. Next

we investigate corrections to the Gross–Llewellyn Smith sum rule, with particular attention to

contributions arising from strange quark distributions and from charge symmetry violating parton

distributions. We find that additional corrections from strange quarks and parton charge symmetry

violation are likely to have a small but potentially significant role in decreasing the current

discrepancy between the experimental and theoretical estimates of the Gross–Llewellyn Smith

sum rule.
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I. INTRODUCTION

The Gross–Llewellyn Smith (GLS) sum rule (some-
times referred to as the baryon sum rule) is obtained
from an integral of the xF3 structure function obtained in
charged-current deep inelastic scattering (DIS) from neu-
trinos and antineutrinos on nucleon or nuclear targets
[1,2]. In recent years the most precise neutrino data have
been obtained by the CCFR and NuTeV collaborations,
from interactions of neutrinos and antineutrinos with an
iron target [3]. From measurements by the CCFR group
[4], values have been obtained for the GLS sum rule. At
the value Q2 ¼ 3 GeV2, the CCFR analysis claimed a
precision of roughly 3%. The CCFR data could also be
used to obtain the GLS sum rule as a function of Q2;
this allows one to test contributions from higher-order
QCD corrections [5] and from higher-twist terms [6].
The current status of various DIS sum rules has been
summarized in a review article by Hinchliffe and
Kwiatkowski [2].

In this paper, we point out that some additional QCD
effects, particularly contributions from strange quarks
and parton charge symmetry violation (CSV), have not
been included to date in estimates of the GLS sum rule.
One now has recent experimental data on strange quark
parton distributions, in particular, on the asymmetry
between strange and antistrange quarks, which is rele-
vant for the GLS sum rule. In addition, there is much
interest in the possibility of CSV in the parton distribu-
tions [7–10].

We examine the possible contributions of these terms
to the Gross-Llewellyn Smith sum rule, finding that
such corrections are likely to produce small but poten-
tially significant effects. At present, theoretical esti-
mates of the GLS sum rule lie 1 or 2 standard

deviations below the data [2]. We point out that con-
tributions from strange quarks and partonic CSV are
likely to improve the agreement between theory and
experiment.
Our paper is organized as follows. In Sec. II we

review the form of neutrino cross sections and the deri-
vation of the GLS sum rule. The experimental results of
the CCFR group [4] are summarized and compared
with the theoretical calculations of Hinchliffe and
Kwiatkowski [2]. In Sec. III we review how the structure
functions, particularly xF3, are extracted from experi-
mental data. We pay special attention to contributions
from strange quarks and partonic CSV. In Sec. IV, we
make estimates of these contributions to the GLS sum
rule.
In Sec. IVD, we review isoscalar corrections to the data,

which arise because iron is not an isoscalar target. Because
of the way in which isoscalar corrections have been im-
plemented in previous analyses, it is difficult for us to give
a definitive, quantitative estimate of the contribution of
strange quarks and partonic charge symmetry violation in
the GLS sum rule. Nevertheless, our analysis clearly es-
tablishes that these corrections can be as large as the
quoted errors on the GLS sum rule and that they tend to
improve the agreement between theory and experiment.
Our results show that these corrections should be included
in future analyses.

II. NEUTRINO CROSS SECTIONS AND THE
GROSS–LLEWELLYN SMITH SUM RULE

The cross section for charged-current (CC) interac-
tions initiated by neutrinos or antineutrinos on nucleons
on a proton is shown schematically in Fig. 1. It has the
form [3,7]
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d2��ð ��Þp
CC

dxdy
¼ G2

FME�

�

� ½f1ðyÞFW�p
2 ðx;Q2Þ � f2ðyÞxFW�p

3 ðx;Q2Þ�;

f1ðyÞ ¼ 1� y� xyM2

s
þ y2

2

1þ 4M2x2=Q2

1þ R�
Lðx;Q2Þ

� 1� yþ y2

2ð1þ R�
LÞ

;

f2ðyÞ ¼ y� y2

2
: (1)

The relativistic invariants in Eq. (1) are Q2 ¼ �q2, the
square of the four momentum transfer for the reaction,
x and y. For four momentum k (p) for the initial state
lepton (nucleon), we have the relations

x ¼ Q2

2p � q ; y ¼ p � q
p � k ; s ¼ ðkþ pÞ2: (2)

Equation (1) applies in the limit Q2 � M2
W . We have

introduced the Fermi coupling constant,GF, in terms of the
electromagnetic coupling constant �, the W boson mass
MW , and the weak mixing angle �W ,

GF ¼ ��ffiffiffi
2

p
sin2�WM

2
W

: (3)

For neutrino-induced interactions, FWþp
2 ðx;Q2Þ repre-

sents theF2 structure function corresponding to aW
þ being

absorbed on the proton. In Eq. (1) we have written the
structure function F1 in terms of the structure function F2

and the longitudinal to transverse cross section ratioR�
L, i.e.

2xFWþp
1 ðx;Q2Þ ¼ 1þ 4M2x2=Q2

1þ R�
Lðx;Q2Þ F

Wþp
2 ðx;Q2Þ: (4)

For the CC reactions initiated by neutrinos, the experi-
mental values for R�

L are summarized in the review article
by Conrad, Shaevitz, and Bolton [3].
The most accurate neutrino and antineutrino cross sec-

tions are on nuclear targets, particularly (in the case of the
CCFR and NuTeV measurements) on iron targets. The
structure functions are typically described in terms of
nuclear parton distributions. At sufficiently high values
of Q2, the structure functions per nucleon for a nucleus
with Z protons and N ¼ A� Z neutrons can be written in
terms of averages and differences of structure functions for
neutrinos and antineutrinos.
Therefore we define

�FWA
2 ðxÞ ¼ Z

2A
ðFWþp

2 ðxÞ þ FW�p
2 ðxÞÞ þ N

2A
ðFWþn

2 ðxÞ þ FW�n
2 ðxÞÞ;

x �FWA
3 ðxÞ ¼ Z

2A
ðxFWþp

3 ðxÞ þ xFW�p
3 ðxÞÞ þ N

2A
ðxFWþn

3 ðxÞ þ xFW�n
3 ðxÞÞ;

�FWA
2 ðxÞ ¼ Z

A
ðFWþp

2 ðxÞ � FW�p
2 ðxÞÞ þ N

A
ðFWþn

2 ðxÞ � FW�n
2 ðxÞÞ;

�xFWA
3 ðxÞ ¼ Z

A
ðxFWþp

3 ðxÞ � xFW�p
3 ðxÞÞ þ N

A
ðxFWþn

3 ðxÞ � xFW�n
3 ðxÞÞ: (5)

In terms of parton distribution functions it is straightforward to show that

�FWA
2 ðxÞ ¼ xðuþðxÞ þ dþðxÞ þ sþðxÞ þ cþðxÞÞ � x

N

A
ð�uþðxÞ þ �dþðxÞÞ;

x �FWA
3 ðxÞ ¼ xðu�ðxÞ þ d�ðxÞ þ s�ðxÞ þ c�ðxÞÞ � x

N

A
ð�u�ðxÞ þ �d�ðxÞÞ;

�FWA
2 ðxÞ ¼ 2x½s�ðxÞ � c�ðxÞ þ �fðu�ðxÞ � d�ðxÞÞ þ N

A
ð��u�ðxÞ þ �d�ðxÞÞ�;

�xFWA
3 ðxÞ ¼ 2x½sþðxÞ � cþðxÞ þ �fðuþðxÞ � dþðxÞÞ þ N

A
ð��uþðxÞ þ �dþðxÞÞ�: (6)

In Eq. (6) we have assumed the impulse approximation, i.e. that the nuclear structure functions are simply given as the
sum of free nucleon parton distributions. Nuclear modifications of the parton distributions have been considered by various
groups [11–16], and we note particularly the recent discovery of an isovector EMC effect [17]. In Eq. (6) we use the
notation

FIG. 1. Schematic picture of charged-current amplitudes in
DIS induced by neutrinos or antineutrinos.
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q�ðxÞ � qðxÞ � �qðxÞ: (7)

We have introduced the neutron asymmetry parameter
�f ¼ ðN � ZÞ=A. For the CCFR and NuTeV iron targets
the average value is �f ¼ 0:0567 [18,19]. We also
include possible parton CSV, with the notation

�uðxÞ¼upðxÞ�dnðxÞ; �dðxÞ¼dpðxÞ�unðxÞ; (8)

and an analogous equation for antiquarks.
The neutrino/antineutrino average structure functions

contain contributions from light quarks including the rela-
tively large light valence quark contributions. The structure
function differences on a nuclear target contain contribu-
tions from heavy quarks, partonic CSV contributions, and
light quark contributions proportional to the neutron asym-
metry �f. In previous work the term �xFWA

3 ðxÞ has been
treated as a small perturbation, while the term �FWA

2 ðxÞ
has been neglected. In this paper we will examine the
possible effects of the term �FWA

2 ðxÞ on the Gross–

Llewellyn Smith sum rule.

The Gross–Llewellyn Smith Sum Rule

The Gross–Llewellyn Smith sum rule [1] is derived
from the first moment of the F3 structure functions for
neutrinos and antineutrinos. The easiest derivation of the
Gross–Llewellyn Smith sum rule results from summing
the xF3 structure functions for neutrinos and antineutrinos
on a proton. Using Eq. (6) for the case of a proton (Z ¼ 1,
N ¼ 0) we obtain

SGLS�
Z 1

0

dx

x
x �FWp

3 ðxÞ

¼
Z 1

0
½u�ðxÞþd�ðxÞþs�ðxÞþc�ðxÞ�dx¼3: (9)

In Eq. (9) we have neglected various QCD corrections
and higher-twist contributions. Without these corrections,
the GLS sum rule is equal to three because the first
moment of the light quark parton distributions gives the
total number of valence quarks in the nucleon. From
valence quark normalization, the first moments of the
strange and charm quark asymmetries, s�ðxÞ and c�ðxÞ,
respectively, vanish when integrated over all x.

In order to compare the Gross–Llewellyn Smith sum
rule with experimental data, we must consider a number of
corrections. For pedagogical purposes we will discuss the
GLS sum rule for an isoscalar target. At the end of this
article we will review the corrections that are made for
nonisoscalar targets such as iron. After applying a series of
QCD corrections one obtains

SisoGLS �
Z 1

0

dx

x
x �FWA

3 ðxÞ

¼ 3

�
1� �SðQ2Þ

�
� aðnfÞ

�
�SðQ2Þ

�

�
2 � bðnfÞ

�
�
�SðQ2Þ

�

�
3
�
þ �HT: (10)

The naive Gross–Llewellyn Smith sum rule is correct only
in leading twist approximation, and only to lowest order in
the strong coupling constant �S. Our expression for the
GLS sum rule thus includes a QCD correction [the term
in square brackets in Eq. (10)], which was derived by
Larin and Vermaseren [5] using a QCD scale parameter
�QCD ¼ 213� 50 MeV, and the quantity �HT represents

a higher-twist contribution [6]. This is summarized in the
review article on QCD sum rules by Hinchliffe and
Kwiatkowski [2].
As is the case for the Adler [20] and Gottfried [21] sum

rules, the Gross–Llewellyn Smith sum rule requires that
the structure function be divided by x in performing the
integral. This gives a strong weighting to the small-x
region, such that as much as 90% of the sum rule comes
from the region x 	 0:1. The most precise value has been
obtained by the CCFR Collaboration [4], which measured
neutrino and antineutrino cross sections on an iron target,
using the quadrupole triplet beam (QTB) at Fermilab. A
summary of experimental details for precision measure-
ments using high-energy neutrino beams is given in the
review article by Conrad, Shaevitz, and Bolton [3], and a
detailed description of the experimental details and analy-
sis procedure used by the CCFR Collaboration is given in
the thesis of Seligman [19].
Because of the large contribution to the GLS sum rule

from small x, one measures xF3 at various values of x, and
evaluates the integral

SGLSðxÞ ¼
Z 1

x

dx0

x0
x0 �FWA

3 ðx0Þ: (11)

The Gross–Llewellyn Smith sum rule is then obtained by
taking the limit

SGLS ¼ lim
x!0

SGLSðxÞ: (12)

Figure 2 shows the CCFR measurements on iron and the
experimental values of x �FWA

3 ðxÞ (the sum of the nuclear

xF3 structure function for neutrinos plus that for antineu-
trinos) vs x. The CCFR group measured cross sections at
several values of x and Q2. The squares give the value of
x �F3ðxÞ interpolated to an average momentum transfer
Q2 ¼ 3 GeV2 (this is the mean Q2 for the lowest x bin in
the CCFR experiment, since the lowest x values contribute
the greatest amount to the GLS sum rule). The dashed
curve is the best fit to x �F3ðxÞ of the form Axbð1� xÞc.
This form was used to extrapolate the first moment to
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x ¼ 0. The CCFR reported value for the sum rule [4] at this
Q2 value is SGLS ¼ 2:50� 0:018ðstatÞ � 0:078ðsystÞ. The
GLS sum rule is therefore known to about 3%.

The solid curve in Fig. 2 is SGLSðxÞ. In the following
sections we will consider additional QCD contributions.
We will estimate each correction term as a function of x.
The lowest x value contributing to the Gross–Llewellyn
Smith sum rule as measured by the CCFR group is xmin ¼
0:015. We will calculate each contribution to the GLS sum
rule as a function of x, and estimate the contribution
�SGLSðxÞjx¼xmin

.

Figure 3 shows the evolution over time of the GLS sum
rule value. The measurements shown are from the CDHS
[22], CHARM [23], CCFRR [24], and WA25 [25] collab-
orations. There are also two points from the CCFR mea-
surements, the first using the narrow band beam (NBB)
neutrino data [26,27] and the second using the QTB data
[4] from the Fermilab Tevatron.

The points with error bars in Fig. 4 represent the experi-
mental results from the CCFR group for the Gross–
Llewellyn Smith sum rule as a function of Q2. The curves
are theoretical QCD predictions by Hinchliffe and
Kwiatkowski [2], using higher-order QCD corrections
from Larin and Vermaseren [5], and higher-twist correc-
tions of Braun and Kolesnichenko [6]. The dashed curves
are calculations without higher-twist effects, and the solid
curves include higher-twist. The theoretical calculations
appear to lie systematically below the experimental results
by 1 to 2 standard deviations.

In the remainder of this paper we will review the steps
that are taken to extract the F3 structure functions from
the experimental cross sections. We will then review the

corrections to Eq. (10). In particular, we will focus on the
contributions to the Gross–Llewellyn Smith sum rule from
strange quarks and from charge symmetry violating con-
tributions to parton distribution functions. Although these
constitute fairly small corrections, nevertheless they may
play an important role in determining the extent of the
agreement, or disagreement, between theory and experi-
ment for the GLS sum rule.

FIG. 3. Gross–Llewellyn Smith sum rule, and errors, for a
series of experiments, in chronological order from top to bottom.

FIG. 4. Results for the Gross–Llewellyn Smith sum rule, SGLS
for various values of Q2, from Ref. [2]. The inner error bars are
statistical and the outer errors combine statistical and systematic
errors. The data are from the CCFR experiment [4], and the solid
and dashed curves are theoreteical QCD predictions from
Hinchliffe and Kwiatkowski [2]; the solid curve includes
higher-twist effects while the dashed curve neglects them.

FIG. 2. Experimental results for Gross–Llewellyn Smith sum
rule, Eq. (10), from the CCFR group, Ref. [4]. All data have been
interpolated or extrapolated to Q2 ¼ 3 GeV2. Squares: x �F3ðxÞ,
sum of neutrinos plus antineutrinos, at Q2 ¼ 3 GeV2. Dashed
curve: analytic fit to x �F3. Diamonds: approximation to the
integral SGLSðxÞ of Eq. (11). Solid line: fit to the integral SGLSðxÞ.
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III. EXTRACTING STRUCTURE FUNCTIONS
FROM NEUTRINO AND ANTINEUTRINO

CROSS SECTIONS

The most precise neutrino and antineutrino DIS cross
sections are those of the CCFR and NuTeV groups, both
taken on iron targets. From Eq. (1) by taking sums and
differences of differential cross sections for charged-
current DIS from neutrino and antineutrino beams, we
can isolate different combinations of structure functions.
The CCFR and NuTeV experiments bin the data in x and
Q2. Defining the quantity c ¼ �=G2

FME�, it is straight-
forward to show that

c

�
d2��A

CC

dxdQ2
þ d2� ��A

CC

dxdQ2

�
¼ 2fðy;Q2Þ �FWA

2 ðxÞ
þ gðy;Q2Þ�xFWA

3 ðxÞ;

c

�
d2��A

CC

dxdQ2
� d2� ��A

CC

dxQ2

�
¼ fðy; Q2Þ�FWA

2 ðxÞ
þ 2gðy;Q2Þx �FWA

3 ðxÞ: (13)

In Eq. (13) the coefficients fðy;Q2Þ and gðy;Q2Þ are
defined as

fðy;Q2Þ ¼ yf1ðyÞ
Q2

¼
�
1� yþ y2

2ð1þ R�
LÞ
�

y

Q2
;

gðy;Q2Þ ¼ yf2ðyÞ
Q2

¼
�
y� y2

2

�
y

Q2
:

(14)

The cross sections entering Eq. (13) have been normalized
to give the correct total cross sections for neutrinos and
antineutrinos. The procedure for this is described in the
review by Conrad et al. [3]. For the time being, we will
consider the extraction of the structure function xFWA

3 for

an isoscalar target.
Previous analyses have neglected the term �FWA

2 ðxÞ in
Eq. (13). From Eq. (6) we see that all contributions to this
term should be small. We will neglect the c� term in
Eq. (9) because, even though a mechanism has been iden-
tified which could produce such an asymmetry [28], the
charm contribution is certainly suppressed substantially
with respect to that associated with strange quarks and
the charmed contribution is also kinematically suppressed
for the experimental conditions—cf. Eq. (37) in Sec. IVD.
Thus for an isoscalar target at sufficiently high Q2 we
expect

�FWA
2 ðxÞ ! 2xs�ðxÞ þ xð��u�ðxÞ þ �d�ðxÞÞ;

�xFWA
3 ðxÞ ! 2xðsþðxÞ þ cþðxÞÞ

þ xð��uþðxÞ þ �dþðxÞÞ: (15)

From Eq. (15) we see that for an isoscalar target the term
�FWA

2 ðxÞ will be nonzero only if one has a strange quark
momentum asymmetry s�ðxÞ � 0, and/or nonzero valence
quark CSV contributions. In Sec. IVD we will discuss

additional contributions to �FWA
2 ðxÞ for a nonisoscalar

target.
If one neglects the term �FWA

2 ðxÞ in Eq. (13) (as was the
case in the analysis of the CCFR data), then the structure
function x �FWA

3 ðxÞwill just be proportional to the difference
between the neutrino and antineutrino charged-current DIS
cross sections. For a given x bin, the structure function xF3

is then given by averaging the structure function differ-
ences over the Q2 bin appropriate to the given x bin. Thus
we obtain

x �FWA
3 ðxÞ ¼ c

2AðxÞ
Z
hQ2i

�
d2��A

CC

dxdQ2
� d2� ��A

CC

dxQ2

�
dQ2;

AðxÞ ¼
Z
hQ2i

gðy;Q2ÞdQ2: (16)

In Eq. (16), hQ2i denotes the average over the Q2 bin
appropriate to a given x bin. In Eq. (16), we have neglected
the slow variation of �FWA

3 with Q2.

However, if the quantity �FWA
2 ðxÞ is nonzero, then

Eq. (16) will not give the structure function x �FWA
3 ðxÞ,

but rather a linear combination of xF3 and �F2.
Comparing this with Eq. (13), we note that the y depen-
dence of the coefficients f and g of the two terms is quite
different, as shown in Eq. (14). In particular, the coeffi-
cient of x �FWA

3 vanishes at y ¼ 0, while the coefficient of

�FWA
2 is finite. Inserting Eq. (13) into Eq. (16) and

averaging over the Q2 range for each x bin gives

c

2AðxÞ
Z
hQ2i

�
d2��A

CC

dxdQ2
� d2� ��A

CC

dxQ2

�
dQ2

¼ x �FWA
3 ðxÞ þ BðxÞ�FWA

2 ðxÞ;

BðxÞ ¼
R
hQ2i fðy;Q2ÞdQ2

2AðxÞ :

(17)

The quantity BðxÞ in Eq. (17) is the relative weighting
between the�F2 and xF3 terms. BðxÞwill depend upon the
x bin and the Q2 values that are averaged over for each x
bin. In Fig. 5 we plot the ratio fðy;Q2Þ=gðy;Q2Þ in Eq. (13)
vs y [this quantity is identical to the ratio f1ðyÞ=f2ðyÞ from
Eq. (1)]. This ratio is always greater than one, and becomes
quite large at small y values. The quantity BðxÞ is normal-
ized to equal one if one integrates over all y; however, BðxÞ
could be greater than one particularly if the average over
Q2 is weighted toward small y values.
Equation (17) shows that for an isoscalar target, the

common process of taking the difference of neutrino and
antineutrino charged-current cross sections and averaging
over the Q2 bin for a given x bin produces a linear combi-
nation of x �FWA

3 and �FWA
2 with a relative weighting BðxÞ.

From Eq. (6) we see that the partonic content of the
quantity identified as x �F3 will be
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“ x �FWA
3 ðxÞ” ¼ x �FWA

3 ðxÞ þ BðxÞ�FWA
2 ðxÞ

¼ x½u�ðxÞ þ d�ðxÞ þ s�ðxÞð1þ 2BðxÞÞ
þ �d�ðxÞðBðxÞ � 1

2Þ � �u�ðxÞðBðxÞ þ 1
2Þ�:
(18)

We put quotes around the quantity x �FWA
3 , since it repre-

sents the linear combination of x �FWA
3 and �FWA

2 obtained

for that x bin. As we have mentioned, the y dependence of
the coefficients fðy;Q2Þ and gðy; Q2Þ in Eq. (13) is quite
different, particularly in the forward direction. When the
longitudinal to transverse ratio R�

L ¼ 0, the ratio
fðy;Q2Þ=gðy;Q2Þ is given in Fig. 5. If we assume that for
each x bin, the data are averaged over all y, then one
obtains BðxÞ ¼ 1, and Eq. (18) becomes

“ x �FWA
3 ðxÞ”jBðxÞ¼1 ¼ x

�
u�ðxÞ þ d�ðxÞ þ 3s�ðxÞ

þ �d�ðxÞ � 3�u�ðxÞ
2

�
: (19)

These additional terms should be included in the analy-
sis of the experimental data. In the absence of such an
analysis we will provide estimates of the sign and
magnitude of these corrections and their effect on the
Gross–Llewellyn Smith sum rule.

IV. ADDITIONAL CORRECTIONS
TO THE GLS SUM RULE

In addition to contributions from the light valence
quarks, higher-order QCD terms, and higher-twist contri-
butions, Eq. (10) contains additional QCD corrections.
These corrections are included in the experimental deter-
mination of the GLS sum rule, but these additional terms
have not been included in theoretical calculations. There
are two types of corrections. The first involves additional

contributions to the desired term x �FWA
3 in Eq. (6). The

second contribution appears by virtue of the term �FWA
2 ,

which has not been separated from the desired term. In
both cases we include contributions from strange quarks
and partonic CSV corrections. Although the first moment
of each of these contributions vanishes when integrated
over all x, there is a residual contribution still present at
xmin ¼ 0:015, the lowest data point in the CCFR experi-
ment. In order to reconcile theoretical and experimental
determination of the GLS sum rule, we choose to subtract
these additional contributions from the experimental data
when comparing with theory. We define the corrections to
the GLS sum rule as

�SGLS ¼ lim
x!0

�SGLSðxÞ: (20)

For an isoscalar target these corrections have the form

�SGLSðxÞ ¼ fð�SÞ½�SsGLSðxÞ þ �SCSVGLSðxÞ�;
�SsGLSðxÞ ¼

Z 1

x
s�ðx0Þð2Bðx0Þ þ 1Þdx0;

�SCSVGLSðxÞ ¼
Z 1

x

��
Bðx0Þ � 1

2

�
�d�ðx0Þ

�
�
Bðx0Þ þ 1

2

�
�u�ðx0Þ

�
dx0: (21)

The term fð�SÞ in Eq. (21) is the QCD correction that has
been calculated by Larin and Vermaseren [5]; it is the term
in square brackets in Eq. (10).
Equation (21) contains two terms. The first is the con-

tribution from the strange quark asymmetry. The second is
the contribution from charge symmetry violating valence
PDFs. An additional effect will result from the nuclear
modification of the parton distributions. Implicitly, all of
the parton distribution functions in Eq. (21) denote parton
distributions in iron. In Sec. IVD we will discuss nuclear
modifications of the PDFs. Note that the terms containing
the quantity BðxÞ result from the contamination of the x �F3

structure function from the �F2 term.
If the quantity BðxÞ in Eq. (21) was a constant, then both

the strange and CSV terms would give zero in the limit
x ! 0. This is because valence quark normalization re-
quires that the valence strange quark and valence CSV
PDFs have zero first moment. However, we have no reason
to believe that BðxÞ will be constant. Note also that the
C-odd strange quark and valence CSVeffects contribute to
�SGLSðxÞ at any finite value of x. So even if the quantity
BðxÞ were a constant, the CSV and strange quark effects
would be finite for any nonzero value of x, vanishing only
at x ¼ 0.
From our current understanding of the parton distribu-

tions, for sufficiently large x we expect every term in the
quantity �FWA

2 ðxÞ in Eq. (15) to have the same sign. As we

shall see, all of the latest analyses of strange quark distri-
butions [29–33] find that the quantity s�ðxÞ is positive for
sufficiently large x. Analyses of parton valence charge

0 0.2 0.4 0.6 0.8 1
y

0

5

10

15

20

f 
/ g

FIG. 5. The quantity fðy;Q2Þ=gðy;Q2Þ from Eq. (13) plotted
versus y, under the assumption that R�

L ¼ 0; it is identical to

f1ðyÞ=f2ðyÞ defined in Eq. (1).
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symmetry violating effects for parton distributions [7]
obtain a quantity �d�ðxÞ � �u�ðxÞ> 0 for x 
 0:1. It
will turn out that both of the terms in �SGLS in Eq. (21)
will contribute with the same sign. In the following sec-
tions we will estimate the magnitude of each of these
contributions.

A. Corrections to the GLS Sum Rule at Q2 ¼ 8 GeV2

For convenience we calculate the corrections associated
with a strange quark asymmetry and parton charge sym-
metry violation at a single value of Q2, and we choose
Q2 ¼ 8 GeV2. From Fig. 4 we see that this is a value ofQ2

for which the experimental GLS sum rule has been mea-
sured. It is also a relatively convenient value of Q2 for
which to estimate corrections from both strange quarks
and parton CSV. At Q2 ¼ 8 GeV2, the experimental value
of the Gross–Llewellyn Smith sum rule is S

exp
GLS ¼ 2:76�

0:14, and the theoretical value of Hinchliffe and
Kwiatkowski [2] including higher-twist corrections is
SthGLS ¼ 2:62. So the theoretical value is just over 1 stan-

dard deviation below the experimental result.
In the next sections we will provide estimates for the

strange quark and partonic CSV contributions to the GLS
sum rule. After evaluating them we will determine the
correction that they make to the experimental value and
error for the Gross–Llewellyn Smith sum rule for this value
of Q2.

The QCD correction that appears in Eq. (21) was eval-
uated by Larin and Vermaseren [5]; it has the form

fð�SÞ ¼ 1� �S

�
�

�
�S

�

�
2
r1 �

�
�S

�

�
3
r2: (22)

ForQ2 ¼ 8 GeV2 it is appropriate to choose nf ¼ 4 active

flavors in which case one has r1 ¼ 3:250 and r2 ¼ 12:196
[5]. For the strong coupling �S we use the value chosen by
Hinchliffe and Kwiatkowski [2] in their theoretical calcu-

lations. In the MS factorization scheme they chose a scale

parameter that corresponds to �ð4Þ
MS

¼ 320 MeV; here the

superscript denotes nf. This produces a strong coupling

�SðQ2 ¼ 8 GeV2Þ ¼ 0:269. Using this value we then
obtain fð�SÞðQ2 ¼ 8 GeV2Þ ¼ 0:883.

B. Contributions from strange quarks

The strange quark parton distributions are best obtained
from an analysis of opposite-sign dimuon production in
reactions induced by neutrinos and antineutrinos. In such
reactions, dimuon production from a � ( ��) beam is sensi-
tive to the s (�s) distribution, so that in principle a compari-
son of these cross sections could enable one to determine
differences between the s and �s PDFs. There are recent
measurements of these reactions by the CCFR and NuTeV
[29,34,35] collaborations. In the CCFR experiment the �
and �� beams were not separated and the type of reaction
was inferred from the charge of the faster muon, while the

NuTeV experiment used separated � and �� beams. The
correction to the GLS sum rule is obtained from

�SsGLSðxÞ ¼
Z 1

x
s�ðx0Þð2Bðx0Þ þ 1Þdx0: (23)

Now, the first moment of s� is zero, from valence
quark normalization (there are no net ‘‘strange valence’’
quarks in the nucleon). However, recent phenomenologi-
cal analyses of strange quark distributions all obtain
qualitatively similar results. All of them find the most
probable value is a positive strange quark momentum
asymmetry, hxs�ðxÞi> 0. Also, the best fit to the quantity
s�ðxÞ changes sign at an extremely small value of x and is
large and positive down to rather small x values.
For example, the analysis by Mason et al. [29] obtains a

best value for the integral of xs�ðxÞ
S� ¼ 0:001 96� 0:000 46ðstatÞ

� 0:000 45ðsystÞþ0:001 48
�0:001 07ðexternalÞ: (24)

The quantity Q refers to the second moment of a parton
distribution qðxÞ, i.e.

Q �
Z 1

0
xqðxÞdx: (25)

TheMason result is obtained for a valueQ2 ¼ 16 GeV2. In
Eq. (24), the term ‘‘external’’ refers to the contribution
arising from uncertainties on external measurements.
Figure 6 plots the quantity xs�ðxÞ vs x from the latest

NuTeVanalysis. The strange quark momentum asymmetry,
S�, is quite sensitive to two quantities. The first is the
semileptonic branching ratio Bc; the outer band in Fig. 6

FIG. 6 (color online). The quantity xs�ðxÞ ¼ x½sðxÞ � �sðxÞ� vs
x, as extracted by the NuTeV Collaboration, Ref. [29]. Values are
obtained for Q2 ¼ 16 GeV2. The outer error band is the com-
bined error, while the inner band is without the uncertainty in the
semileptonic branching ratio Bc.
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shows the result for S� with the Bc uncertainty, and the
inner band is the result without the Bc uncertainty. The
second is the point at which the distribution xs�ðxÞ crosses
zero (it must cross zero at least once to give zero first
moment for s�ðxÞ). The current best fit crosses zero at a
very small value x� 0:004. This means that the quantity
s�ðxÞ would have a large negative spike at extremely low x
(in fact, an x value smaller than the lowest x point
measured in the experiment).

There are several other recent phenomenological esti-
mates of the strange quark asymmetry. All are very sensi-
tive to the CCFR and NuTeV dimuon production data. The
CTEQ group [30] obtains S� ¼ 0:0018þ0:0016

�0:0004 at their

starting scale Q2
0 ¼ 1:69 GeV2. Their best fits to xs�ðxÞ

found crossovers in the vicinity x0 � 0:01–0:02. The
NNPDF Collaboration [31] used only the NuTeV data
and not the CCFR results. They report a value S� ¼
0:0005� 0:0086 at Q2 ¼ 20 GeV2; the exceptionally
large error in the NNPDF value (a factor of 5 to 6 larger
than the errors from the other analyses) results in part from
their use of a neural network procedure, which does not
build in widely accepted constraints on the shape of sea
quark distributions.

Two other groups supplemented the NuTeV and CCFR
dimuon data with charm production data from CHORUS
[36,37], which helps to constrain the semileptonic branch-
ing ratio. The MSTW group [32] obtains S� ¼
0:0016þ0:0011

�0:0009 atQ
2 ¼ 10 GeV2; their next to leading order

fit had a crossover x0 ¼ 0:016 at the starting scale Q2
0 ¼

1 GeV2. Alekhin, Kulagin, and Petti [33] obtained S� ¼
0:0013� 0:0009� 0:0002 atQ2 ¼ 8 GeV2, and their best
fit to xs�ðxÞ had a crossover x0 	 0:02. For these various
phenomenological fits we summarize the values of S�, the
crossover point x0, and the value of Q2 at which the
asymmetry is calculated in Table I.

From Eq. (23) the contribution to the GLS sum rule from
strange quarks, for a given value of x, will be given by the
integral of s�ðxÞ weighted by the quantity 2BðxÞ þ 1. If we
approximate BðxÞ as a constant, we just need the integral of
s�ðxÞ from x to 1. We choose the smallest value xmin ¼
0:015 measured by CCFR. To estimate the integral we
made an analytic fit to the strange asymmetry measured
by Mason et al., in the region x 
 0:004 [29]. Our fit had
the form s�ðxÞ ¼ axbe�cxðx� 0:004Þ. With this fit we
obtain the result

Z 1

x¼0:015
s�ðx0Þdx0 � 0:026: (26)

Within their error bars, all of the phenomenological fits
now obtain a positive value for the strange quark momen-
tum asymmetry. Because of their unusually large error on
the strange quark asymmetry and its unphysically large
value in the valence region, we do not use the NNPDF
result. All of the other fits to the strange quark PDFs
produce a quantity xs�ðxÞ which changes sign at an
extremely small value of x. Thus all of these strange quark
PDFs will give a reasonably large contribution to the GLS
sum rule at a value of x corresponding to the lowest x value
measured in the CCFR experiment. We assign an error of
75% which is roughly the average of the four determina-
tions (excluding NNPDF) summarized in Table I. Thus we
choose

Z 1

x¼0:015
s�ðx0Þdx0 ¼ 0:031� 0:023: (27)

In Eq. (27) we have increased the integral of this distri-
bution by 20%; this represents the approximate increase in
this moment in evolving from Q2 ¼ 16 GeV2 to the value
Q2 ¼ 8 GeV2 appropriate for our evaluation of the GLS
sum rule. This increase is comparable to results obtained
by the NNPDF group [31], who performed DGLAP evo-
lution on the second moment of strange quark distributions
to extrapolate in Q2.
From Eq. (23), the strange quark asymmetry contribu-

tion to the GLS sum rule will depend on estimates of BðxÞ.
We make two simple guesses for this quantity. First, we
take BðxÞ ¼ 1; this is the result if the integral of Eq. (17)
was taken over all y. Next, we estimate BðxÞ ¼ 2; this
represents an upper limit (and possibly an overestimate)
of this quantity. Under these approximations we obtain
strange corrections to the GLS sum rule

�SsGLS ¼ 0:093� 0:063; for BðxÞ ¼ 1;

�SsGLS ¼ 0:156� 0:115; for BðxÞ ¼ 2:
(28)

The large result for the strange quark contribution results
from the fact that the strange quark momentum asymmetry
changes sign at an extremely small value of x. Although we
have used the result of Mason et al., this property is shared
by all phenomenological strange quark analyses in Table I
except for NNPDF.

TABLE I. A summary of recent phenomenological estimates of the strangeness asymmetry
(S�), the crossover point x0, and the Q2 value at which the asymmetry is obtained.

S� ¼ hxs�i x0 Q2 (GeV2)

Mason et al. [29] 0:001 96� 0:001 43 0.004 16

CTEQ [30] 0:0018þ0:0016
�0:0004 0.01–0.02 1.69

NNPDF [31] 0:0005� 0:0086 0.13 20

MSTW [32] 0:0016þ0:0011
�0:0009 0.016 1.0

Alekhin et al. [33] 0:0013� 0:0009� 0:0002 	 0:02 8
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The contribution from the strange momentum asymme-
try to the GLS sum rule is strongly dependent on the
crossover point x0 at which s�ðxÞ crosses zero. If the
crossover point for s�ðxÞ occurred at a value x0 
 0:1,
then strange quarks would make an extremely small con-
tribution to the GLS sum rule. It is difficult to imagine a
physical mechanism that would cause s�ðxÞ to change sign
at such small crossover points x0 as have been found in
these phenomenological analyses [29,30,32,33]. Indeed,
model calculations almost invariably yield a zero at
x� 0:1 or higher [38–41]. The NuTeV group found that
with a moderate increase in �2 one could obtain consi-
derably larger values of x0 and corresponding large de-
creases in the second moment S� [29].

C. Contributions from charge symmetry
violating PDFs

We also can estimate the contribution from parton CSV.
For an isoscalar target this is given by

�SCSVGLSðxÞ ¼
Z 1

x

��
Bðx0Þ � 1

2

�
�d�ðx0Þ

�
�
Bðx0Þ þ 1

2

�
�u�ðx0Þ

�
dx0: (29)

For this we need the valence CSV parton distribution
functions [7]. We adopt the functional form used by the
MRST group [9],

�u�ðxÞ¼��d�ðxÞ¼�x�0:5ð1�xÞ4ðx�0:0909Þ: (30)

The best fit value of MRSTwas � ¼ �0:2. This produced
contributions very much like the quark model valence CSV
calculations of Rodionov et al. [42] evaluated at Q2 ¼
10 GeV2. Here we choose � ¼ �0:3, which approximates
quite well the quark model valence CSV from Rodionov,
plus the valence CSV arising from ‘‘QED splitting’’
[43,44]. If we assume that �d�ðxÞ ¼ ��u�ðxÞ, the term
SCSVGLSðxÞ in Eq. (29) has the form

�SCSVGLSðxÞ ¼ �2
Z 1

x
Bðx0Þ�u�ðx0Þdx0: (31)

We insert the analytic form of Eq. (30) into Eq. (31) and
evaluate at xmin ¼ 0:015, the minimum x value for the
CCFR measurements. As for the strange quark contribu-
tion we evaluate this using two different values for the
weighting function, BðxÞ ¼ 1 and BðxÞ ¼ 2. We assign a
100% error to the CSV contribution. Thus we obtain

�SCSVGLS ¼ 0:013� 0:013; BðxÞ ¼ 1;

¼ 0:026� 0:026; BðxÞ ¼ 2: (32)

The partonic charge symmetry violating contributions
correspond to a value Q2 � 10 GeV2. This is sufficiently
close to the valueQ2 ¼ 8 GeV2 that we do not modify this
further.

D. Nonisoscalar and nuclear corrections

Until now our equations have assumed an isoscalar
target. We must include corrections to account for the
excess neutrons in iron. From Eq. (6) there are a number
of small corrections in the case that N � Z. For our pur-
poses the most important will be an additional contribution
to the quantity �FWA

2 ðxÞ of the form
�ð�FWA

2 ðxÞÞ ¼ �fx½u�ðxÞ � d�ðxÞ�: (33)

When multiplied by the quantity BðxÞ, divided by x, and
integrated over x0 from x ! 1, this leads to the contribution

�S
�f

GLSðxÞ ¼ �f

Z 1

x
Bðx0Þ½u�ðx0Þ � d�ðx0Þ�dx0: (34)

For convenience we take the lower limit of this integral to
be x ¼ 0; in the limit where BðxÞ is approximated as a
constant, BðxÞ � B, the remaining integral is just one, so in
this approximation we obtain

�S
�f

GLS � �fB; ¼ 0:058; for B ¼ 1;

¼ 0:115; for B ¼ 2: (35)

Note that all of the contributions to the GLS sum rule
(strange quark asymmetry, quark model valence CSV and
QED splitting CSV, and nonisoscalar effects) are of the
same sign. Thus, their contributions will add coherently in
modifying the GLS sum rule.
The contributions listed here for strange quarks, CSV

parton distributions, and N � Z effects were included in
the experimental results but not in the theoretical calcula-
tions of Hinchliffe and Kwiatkowski [2]. Consequently we
choose to subtract these contributions from the experi-
mental results, in order to compare with theory. At
Q2 ¼ 8 GeV2 the quoted experimental result for the
Gross–Llewellyn Smith sum rule was 2:76� 0:14. We
take the strange quark contribution from Eq. (28), the
CSV contribution from Eq. (32), and the N � Z contribu-
tion from Eq. (35). These effects are multiplied by the
QCD correction factor fð�sÞ from Eq. (22). We assume
that the errors can be combined in quadrature. This leads to
the net result

S
expt
GLSjQ2¼8 GeV2 ! 2:62� 0:15; BðxÞ ¼ 1;

! 2:50� 0:17; BðxÞ ¼ 2: (36)

We can compare this with the theoretical value SthGLS ¼
2:62. We see that these additional terms improve the agree-
ment between theory and experiment. In the approximation
BðyÞ ¼ 1 there is now excellent agreement between theory
and experiment; when BðyÞ ¼ 2 the experimental point is
now below the data but still within 1 standard deviation.
Since the errors are added in quadrature, the net result is a
small increase in the overall error.
For the purpose of completeness we will review the

corrections that were applied to the experimental data by
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the CCFR group. Before solving for the structure func-
tions from the neutrino and antineutrino cross sections
[see Eq. (13) and following equations], the CCFR
Collaboration made a series of corrections to the cross
sections. First, as we have mentioned previously, the
neutrino and antineutrino cross sections were normalized
to the total fluxes. Next, the cross sections were multi-
plied by four nuclear correction factors,

�corr ¼ �iso � �rad � �c � �W: (37)

In Eq. (37), the term �rad includes the radiative corrections
to the cross sections, calculated from the prescription of
Bardin and Dokochueva [45]. The term �c represents a
correction for the finite charm quark mass since the data,
particularly at low Q2, are taken in a region close to charm
quark threshold. The term �W is a correction for the finite
W mass. The remaining correction, �iso, was an attempt to
account for the neutron asymmetry in iron. We will review
this correction in some detail.

On average for the CCFR target, the neutron excess is
given by �f ¼ ðN � ZÞ=A ¼ 0:0567 [19]. The CCFR

group made an ‘‘isoscalar correction’’ to the neutrino and
antineutrino cross sections. They calculated the quark and
antiquark neutrino momentum densities on iron, via the F2

structure functions per nucleon for � and �� on a non-
isoscalar target,

xq�AðxÞ¼2x

�
Z

A
ðdpðxÞþspðxÞÞþN

A
ðdnðxÞþsnðxÞÞ

�

¼xð1��fÞdðxÞþxð1þ�fÞuðxÞþ2xsðxÞ;x �q�AðxÞ
¼xð1��fÞ �uðxÞþxð1þ�fÞ �dðxÞ;xq ��AðxÞ
¼xð1��fÞuðxÞþxð1þ�fÞdðxÞ;x �q ��AðxÞ
¼xð1��fÞ �dðxÞþxð1þ�fÞ �uðxÞþ2x �sðxÞ: (38)

The cross sections were then renormalized by the ‘‘isosca-
lar correction factor,’’

corr iso � �ðisoscalar targetÞ
�ðFe targetÞ ¼ �ð�f ¼ 0Þ

�ð�f ¼ 0:0567Þ : (39)

The isoscalar correction is different for neutrinos and for
antineutrinos. Note that this process is circular—the iso-
scalar correction applied to the cross sections requires
knowledge of the parton distributions, which are them-
selves extracted from the cross sections. Thus the process
was applied iteratively. An isoscalar correction was applied
to the cross sections from Eq. (39) using the parton dis-
tributions from Eq. (38). The structure functions were then
determined by inserting the renormalized cross sections
into Eq. (13). From the structure functions one can extract
new parton distributions, from which a new isoscalar cor-
rection factor could be determined. The process was then
iterated until the difference in the extracted structure
functions became sufficiently small.

The isoscalar correction factor applied by the CCFR
Collaboration should account for most of the neutron
asymmetry corrections. However, after this correction has
been applied, it is then difficult to isolate the remaining
contribution from the �FWA

2 term in Eq. (13). Certainly

there is a term present in the coupled equations that has not
been accounted for by the CCFR group. It should be
straightforward to include this term in any reanalysis of
neutrino cross section data. One could add this as a per-
turbation and could obtain decent estimates of the strange
quark and CSV contributions as outlined in Sec. III.
The sign and magnitude of the strange and CSV con-

tributions should be similar to our estimate of these terms
for an isoscalar target. There may also be small additional
contributions from neutron asymmetry to xF3, which have
not been accounted for by the isoscalar correction made by
CCFR. We have not made further corrections for any
nuclear modification of the parton distributions in iron.
Several groups have estimated the magnitude of nuclear
effects on parton distribution functions [11–17].

V. CONCLUSIONS

The Gross–Llewellyn Smith sum rule is obtained from
the first moment of the structure function xF3 from neutrino
charged-current deep inelastic scattering. In principle these
structure functions can be obtained by comparing sums and
differences of neutrino and antineutrino DIS cross sections
on an isoscalar nucleus. Previous analyses of the GLS sum
rule have neglected potential contributions from strange
quark asymmetries and from partonic charge symmetry
violation. At the time, such contributions were largely un-
known and could be assumed to be negligibly small.
However, recently one has more quantitative results for

strange quark asymmetries from several groups [29–33].
All of these analyses rely on measurements of opposite-
sign dimuon production in neutrino and antineutrino re-
actions on iron from the CCFR and NuTeV collaborations
[34,35]. All of these analyses obtained a positive value for
hxs�ðxÞi; with the exception of the NNPDF analysis [31]
(which used a neural network approach, was relatively
insensitive to the s quark distribution, and obtained very
large error bars), these analyses found a crossover point
for the s�ðxÞ PDFs that occurred at an extremely small
value x0 � 0:01. We chose as an example the strange
quark analysis by the NuTeV group, Mason et al. [29],
but the correction to the GLS sum rule arising from the
strange quark asymmetry should be quite similar if one
used instead the CTEQ [30], MSTW [32], or Alekhin [33]
analyses.
Furthermore, one now has reasonable estimates for con-

tributions from valence quark CSV. First, there are now
phenomenological analyses of parton distributions that
include partonic CSV [9]. Second, there have been calcu-
lations of partonic CSV arising from the different electro-
magnetic coupling of photons to up and down quarks
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[43,44]. Finally, there are quark model calculations of
partonic CSV [7]. We used these to estimate the partonic
CSV contribution to the Gross–Llewellyn Smith sum rule.
Finally, we estimated the contribution to the GLS sum rule
from the fact that iron is a nonisoscalar target.

The correct procedure would be to incorporate these
effects into the initial analysis of the neutrino cross sec-
tions. In particular, one should take into account the effect
of the term �FWA

2 ðxÞ in Eq. (6). Since this term has not
been included in previous analyses of neutrino cross sec-
tions we can only estimate its effect on the Gross–
Llewellyn Smith sum rule. This has been carried out in
this paper. To summarize our conclusions: first, the con-
tributions from strange quarks, parton CSV, and noniso-
scalar effects all appear to have the same sign and hence to
add coherently; second, we estimate that these effects
should contribute an amount on the order of 1 to 2 standard
deviations in the GLS sum rule; third, we find that
inclusion of all of these contributions should bring the

theoretical and experimental determinations of the GLS
sum rule in agreement within 1�. In Sec. IVD we noted
that the cross section corrections adopted by the CCFR
group make it difficult to provide quantitative estimates
of the effects of strange quarks and partonic charge sym-
metry violation to the Gross–Llewellyn Smith sum rule.
Nevertheless, if these corrections were to be integrated into
a reanalysis of the neutrino cross sections, one should be
able to obtain an accurate quantitative assessment of the
contributions from these quantities.
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