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We report the observation of electroweak single top quark production in 3:2 fb�1 of p �p collision data

collected by the Collider Detector at Fermilab at
ffiffiffi
s

p ¼ 1:96 TeV. Candidate events in the W þ jets

topology with a leptonically decayingW boson are classified as signal-like by four parallel analyses based

on likelihood functions, matrix elements, neural networks, and boosted decision trees. These results are

combined using a super discriminant analysis based on genetically evolved neural networks in order to

improve the sensitivity. This combined result is further combined with that of a search for a single top

quark signal in an orthogonal sample of events with missing transverse energy plus jets and no charged

lepton. We observe a signal consistent with the standard model prediction but inconsistent with the

background-only model by 5.0 standard deviations, with a median expected sensitivity in excess of 5.9

standard deviations. We measure a production cross section of 2:3þ0:6
�0:5ðstatþ sysÞ pb, extract the value of

the Cabibbo-Kobayashi-Maskawa matrix element jVtbj ¼ 0:91þ0:11
�0:11ðstatþ sysÞ � 0:07 ðtheoryÞ, and set a

lower limit jVtbj> 0:71 at the 95% C.L., assuming mt ¼ 175 GeV=c2.

DOI: 10.1103/PhysRevD.82.112005 PACS numbers: 14.65.Ha, 12.15.Hh, 12.15.Ji, 13.85.Qk

I. INTRODUCTION

The top quark is the most massive known elementary
particle. Its mass, mt, is 173:3� 1:1 GeV=c2 [1], about 40
times larger than that of the bottom quark, the second-most
massive standard model (SM) fermion. The top quark’s
large mass, at the scale of electroweak symmetry breaking,
hints that it may play a role in the mechanism of mass
generation. The presence of the top quark was established
in 1995 by the CDF and D0 Collaborations with approxi-
mately 60 pb�1 of p �p data collected per collaboration atffiffiffi
s

p ¼ 1:8 TeV [2,3] in Run I at the Fermilab Tevatron. The
production mechanism used in the observation of the top
quark was t�t pair production via the strong interaction.

Since then, larger data samples have enabled detailed
study of the top quark. The t�t production cross section [4],
the top quark’s mass [1], the top quark decay branching
fraction to Wb [5], and the polarization of W bosons in
top quark decay [6] have been measured precisely.
Nonetheless, many properties of the top quark have not
yet been tested as precisely. In particular, the Cabibbo-
Kobayashi-Maskawa (CKM) matrix element Vtb remains
poorly constrained by direct measurements [7]. The
strength of the coupling, jVtbj, governs the decay rate of

the top quark and its decay width intoWb; other decays are
expected to have much smaller branching fractions. Using
measurements of the other CKM matrix elements, and
assuming a three-generation SM with a 3� 3 unitary
CKM matrix, jVtbj is expected to be very close to unity.
Top quarks are also expected to be produced singly in

p �p collisions via weak, charged-current interactions. The
dominant processes at the Tevatron are the s-channel pro-
cess, shown in Fig. 1(a), and the t-channel process [8],
shown in Fig. 1(b). The next-to-leading-order (NLO) cross

u

d

W+

b

t

(a)

b

u d

t

W+

(b)

g

b

b
W_

t
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FIG. 1. Representative Feynman diagrams of single top quark
production. Figures (a) and (b) are s- and t-channel processes,
respectively, while figure (c) is associated Wt production, which
contributes a small amount to the expected cross section at the
Tevatron.
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sections for these two processes are �s ¼ 0:88� 0:11 pb
and �t ¼ 1:98� 0:25 pb, respectively [9,10]. This cross-
section is the sum of the single t and the single �t predic-
tions. Throughout this paper, charge conjugate states are
implied; all cross sections and yields are shown summed
over charge conjugate states. A calculation has been per-
formed resumming soft gluon corrections and calculating
finite-order expansions through next-to-next-to-next-to-
leading order (NNNLO) [11], yielding �s ¼ 0:98�
0:04 pb and �t ¼ 2:16� 0:12 pb, also assuming mt ¼
175 GeV=c2. Newer calculations are also available [12–
14]. A third process, the associated production of a W
boson and a top quark, shown in Fig. 1(c), has a very small
expected cross section at the Tevatron.

Measuring the two cross sections �s and �t provides a
direct determination of jVtbj, allowing an overconstrained
test of the unitarity of the CKM matrix, as well as an
indirect determination of the top quark’s lifetime. We
assume that the top quark decays to Wb 100% of the
time in order to measure the production cross sections.
This assumption does not constrain jVtbj to be near unity,
but instead it is the same as assuming jVtbj2 � jVtsj2 þ
jVtdj2. Many extensions to the SM predict measurable
deviations of �s or �t from their SM values. One of the
simplest of these is the hypothesis that a fourth generation
of fermions exists beyond the three established ones. Aside
from the constraint that its neutrino must be heavier than
MZ=2 [15] and that the quarks must escape current experi-
mental limits, the existence of a fourth generation of
fermions remains possible. If these additional sequential
fermions exist, then a 4� 4 version of the CKM matrix
would be unitary, and the 3� 3 submatrix may not neces-
sarily be unitary. The presence of a fourth generation
would in general reduce jVtbj, thereby reducing the single
top quark production cross sections �s and �t. Precision
electroweak constraints provide some information on pos-
sible values of jVtbj in this extended scenario [16], but a
direct measurement provides a test with no additional
model dependence.

Other new physics scenarios predict larger values of �s

and �t than those expected in the SM. A flavor-changing
Ztc coupling, for example, would manifest itself in the
production of p �p ! t �c events, which may show up in
either the measured value of �s or �t depending on the
relative acceptances of the measurement channels. An
additional charged gauge boson W 0 may also enhance the
production cross sections. A review of new physics models
affecting the single top quark production cross section and
polarization properties is given in [17].

Even in the absence of new physics, assuming the SM
constraints on jVtbj, a measurement of the t-channel single
top production cross section provides a test of the b parton
distribution function of the proton.

Single top quark production is one of the background
processes in the search for the Higgs boson H in the

WH ! ‘�b �b channel, since they share the same final state,
and a direct measurement of single top quark production
may improve the sensitivity of the Higgs boson search.
Furthermore, the backgrounds to the single top quark
search are backgrounds to the Higgs boson search.
Careful understanding of these backgrounds lays the
groundwork for future Higgs boson searches. Since the
single top quark processes have larger cross sections than
the Higgs boson signal in theWH ! ‘�b �bmode [18], and
since the single top signal is more distinct from the back-
grounds than the Higgs boson signal is, we must pass the
milestone of observing single top quark production along
the way to testing for Higgs boson production.
Measuring the single top quark cross section is well

motivated but it is also extremely challenging at the
Tevatron. The total production cross section is expected
to be about one-half of that of t�t production [19], and with
only one top quark in the final state instead of two, the
signal is far less distinct from the dominant background
processes than t�t production is. The rate at which a W
boson is produced along with jets, at least one of which
must have a displaced vertex which passes our require-
ments for B hadron identification (we say in this paper that
such jets are b-tagged), is approximately 12 times the
signal rate. The a priori uncertainties on the background
processes are about a factor of 3 larger than the expected
signal rate. In order to expect to observe single top quark
production, the background rates must be small and well
constrained, and the expected signal must be much larger
than the uncertainty on the background. A much more pure
sample of signal events therefore must be separated from
the background processes in order to make observation
possible.
Single top quark production is characterized by a num-

ber of kinematic properties. The top quark mass is known,
and precise predictions of the distributions of observable
quantities for the top quark and the recoil products are also
available. Top quarks produced singly via the weak inter-
action are expected to be nearly 100% polarized [20,21].
The backgroundW þ jets and t�t processes have character-
istics which differ from those of single top quark produc-
tion. Kinematic properties, coupled with the b-tagging
requirement, provide the keys to purification of the signal.
Because signal events differ from background events in
several ways, such as in the distribution of the invariant
mass of the final-state objects assigned to be the decay
products of the top quark and the rapidity of the recoiling
jets, and because the task of observing single top quark
production requires the maximum separation, we apply
multivariate techniques. The techniques described in this
paper together achieve a signal-to-background ratio of
more than 5:1 in a subset of events with a significant signal
expectation. This high purity is needed in order to over-
come the uncertainty in the background prediction.
The effect of the background uncertainty is reduced by

fitting for both the signal and the background rates together
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to the observed data distributions, a technique which is
analogous to fitting the background in the sidebands of a
mass peak, but which is applied in this case to multivariate
discriminant distributions. Uncertainties are incurred in
this procedure—the shapes of the background distributions
are imperfectly known from simulations. We check in de-
tail the modeling of the distributions of the inputs and the
outputs of the multivariate techniques, using events passing
our selection requirements, and also separately using
events in control samples depleted in signal. We also check
the modeling of the correlations between pairs of these
variables. In general we find excellent agreement, with
some imperfections. We assess uncertainties on the shapes
of the discriminant outputs both from a priori uncertain
parameters in the modeling, as well as from discrepancies
observed in the modeling of the data by the Monte Carlo
(MC) simulations. These shape uncertainties are included
in the signal rate extraction and in the calculation of the
significance.

Both the CDF and the D0 Collaborations have searched
for single top quark production in p �p collision data taken
at

ffiffiffi
s

p ¼ 1:96 TeV in Run II at the Fermilab Tevatron. The
D0 Collaboration reported evidence for the production of
single top quarks in 0:9 fb�1 of data [22,23] and observa-
tion of the process in 2:3 fb�1 [24]. More recently, D0 has
conducted a measurement of the single top production
cross section in the �þ jets final state using 4:8 fb�1 of
data [25]. The CDF Collaboration reported evidence in
2:2 fb�1 of data [26] and observation in 3:2 fb�1 of data
[27]. This paper describes in detail the four W þ jets
analyses of [27]; the analyses are based on multivariate
likelihood functions (LF), artificial neural networks (NN),
matrix elements (ME), and boosted decision trees (BDT).
These analyses select events with a high-pT charged lep-
ton, large missing transverse energy ET, and two or more
jets, at least one of which is b tagged. Each analysis
separately measures the single top quark production cross
section and calculates the significance of the observed
excess. We report here a single set of results and therefore
must combine the information from each of the four analy-
ses. Because there is 100% overlap in the data and
Monte Carlo events selected by the analyses, a natural
combination technique is to use the individual analyses’
discriminant outputs as inputs to a super discriminant
function evaluated for each event. The distributions of
this super discriminant are then interpreted in the same
way as those of each of the four component analyses.

A separate analysis is conducted on events without an
identified charged lepton, in a data sample which corre-
sponds to 2:1 fb�1 of data. Missing transverse energy plus
jets, one of which is b tagged, is the signature used for this
fifth analysis (MJ), which is described in detail in [28].
There is no overlap of events selected by the MJ analysis
and the W þ jets analyses. The results of this analysis are
combined with the results of the super discriminant analy-

sis to yield the final results: the measured total cross
section �s þ �t, jVtbj, the separate cross sections �s and
�t, and the statistical significance of the excess. With the
combination of all analyses, we observe single top quark
production with a significance of 5.0 standard deviations.
The analyses described in this paper were blind to the

selected data when they were optimized for their expected
sensitivities. Furthermore, since the publication of the
2:2 fb�1 W þ jets results [26], the event selection require-
ments, the multivariate discriminants for the analyses
shared with that result, and the systematic uncertainties
remain unchanged; new data were added without further
optimization or retraining. When the 2:2 fb�1 results were
validated, they were done so in a blind fashion. The dis-
tributions of all relevant variables were first checked for
accurate modeling by our simulations and data-based back-
ground estimations in control samples of data that do not
overlap with the selected signal sample. Then the distribu-
tions of the discriminant input variables, and also other
variables, were checked in the sample of events passing the
selection requirements. After that, the modeling of the low
signal-to-background portions of the final output histo-
grams was checked. Only after all of these validation steps
were completed were the data in the most sensitive regions
revealed. Two new analyses, BDT and MJ, have been
added for this paper, and they were validated in a similar
way.
This paper is organized as follows: Sec. II describes the

CDF II detector, Sec. III describes the event selection,
Sec. IV describes the simulation of signal events and the
acceptance of the signal, Sec. V describes the background
rate and kinematic shape modeling, Sec. VI describes a
neural-network flavor separator which helps separate b jets
from others, Sec. VII describes the four W þ jets multi-
variate analysis techniques, Sec. VIII describes the system-
atic uncertainties we assess, Sec. IX describes the
statistical techniques for extraction of the signal cross
section and the significance, Sec. X describes the super
discriminant, Sec. XI presents our results for the cross
section, jVtbj, and the significance, Sec. XII describes an
extraction of �s and �t in a joint fit, and Sec. XIII summa-
rizes our results.

II. THE CDF II DETECTOR

The CDF II detector [29–31] is a general-purpose parti-
cle detector with azimuthal and forward-backward sym-
metry. Positions and angles are expressed in a cylindrical
coordinate system, with the z axis directed along the proton
beam. The azimuthal angle � around the beam axis is
defined with respect to a horizontal ray running outwards
from the center of the Tevatron, and radii are measured
with respect to the beam axis. The polar angle � is defined
with respect to the proton beam direction, and the pseudor-
apidity � is defined to be � ¼ � ln½tanð�=2Þ�. The trans-
verse energy (as measured by the calorimetry) and
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momentum (as measured by the tracking systems) of a
particle are defined as ET ¼ E sin� and pT ¼ p sin�, re-
spectively. Figure 2 shows a cutaway isometric view of the
CDF II detector.

A silicon tracking system and an open-cell drift chamber
are used to measure the momenta of charged particles. The
CDF II silicon tracking system consists of three subdetec-
tors: a layer of single-sided silicon microstrip detectors,
located immediately outside the beam pipe (layer 00) [32];
a five-layer, double-sided silicon microstrip detector
(SVX II) covering the region between 2.5 to 11 cm from
the beam axis [33]; and intermediate silicon layers (ISL)
[34] located at radii between 19 cm and 29 cm which
provide linking between track segments in the drift cham-
ber and the SVX II. The typical intrinsic hit resolution of
the silicon detector is 11 �m. The impact parameter reso-
lution is �ðd0Þ � 40 �m, of which approximately 35 �m
is due to the transverse size of the Tevatron interaction
region. The entire system reconstructs tracks in three di-
mensions with the precision needed to identify displaced
vertices associated with b and c hadron decays.

The central outer tracker (COT) [35], the main tracking
detector of CDF II, is an open-cell drift chamber, 3.1 m in
length. It is segmented into eight concentric superlayers.
The drift medium is a mixture of argon and ethane. Sense
wires are arranged in eight alternating axial and�2� stereo
superlayers with 12 layers of wires in each. The active
volume covers the radial range from 40 cm to 137 cm. The
tracking efficiency of the COT is nearly 100% in the range
j�j � 1, and with the addition of silicon coverage, the
tracks can be detected within the range j�j< 1:8.

The tracking systems are located within a superconduct-
ing solenoid, which has a diameter of 3.0 m, and which
generates a 1.4 T magnetic field parallel to the beam axis.
The magnetic field is used to measure the charged particle
momentum transverse to the beamline. The momentum

resolution is �ðpTÞ=pT � 0:1% 	 pT for tracks within
j�j � 1:0 and degrades with increasing j�j.
Front electromagnetic lead-scintillator sampling calo-

rimeters [36,37] and rear hadronic iron-scintillator sam-
pling calorimeters [38] surround the solenoid and measure
the energy flow of interacting particles. They are seg-
mented into projective towers, each one covering a small
range in pseudorapidity and azimuth. The full array has an
angular coverage of j�j< 3:6. The central region j�j<
1:1 is covered by the central electromagnetic calorimeter
(CEM) and the central and end-wall hadronic calorimeters
(CHA and WHA). The forward region 1:1< j�j< 3:6 is
covered by the end-plug electromagnetic calorimeter
(PEM) and the end-plug hadronic calorimeter (PHA).
Energy deposits in the electromagnetic calorimeters are
used for electron identification and energy measurement.
The energy resolution for an electron with transverse en-
ergy ET (measured in GeV) is given by �ðETÞ=ET �
13:5%=

ffiffiffiffiffiffi
ET

p 
 1:5% and �ðETÞ=ET � 16:0%=
ffiffiffiffiffiffi
ET

p 
 1%
for electrons identified in the CEM and PEM, respectively.
Jets are identified and measured through the energy they
deposit in the electromagnetic and hadronic calorimeter
towers. The calorimeters provide jet energy measurements
with a resolution of approximately �ðETÞ � 0:1 	 ET þ
1:0 GeV [39]. The CEM and PEM calorimeters have
two-dimensional readout strip detectors located at shower
maximum [36,40]. These detectors provide higher resolu-
tion position measurements of electromagnetic showers
than are available from the calorimeter tower segmentation
alone, and also provide local energy measurements. The
shower-maximum detectors contribute to the identification
of electrons and photons, and help separate them from �0

decays.
Beyond the calorimeters resides the muon system, which

provides muon detection in the range j�j< 1:5. For the
analyses presented in this article, muons are detected in
four separate subdetectors. Muons with pT > 1:4 GeV=c
penetrating the five absorption lengths of the calorimeter
are detected in the four layers of planar multiwire drift
chambers of the central muon detector (CMU) [41].
Behind an additional 60 cm of steel, a second set of four
layers of drift chambers, the central muon upgrade (CMP)
[29,42], detects muons with pT > 2:2 GeV=c. The CMU
and CMP cover the same part of the central region j�j<
0:6. The central muon extension (CMX) [29,42] extends
the pseudorapidity coverage of the muon system from 0.6
to 1.0 and thus completes the coverage over the full fiducial
region of the COT. Muons with 1:0< j�j< 1:5 are de-
tected by the barrel muon chambers (BMU) [43].
The Tevatron collider luminosity is determined with

multicell gas Cherenkov detectors [44] located in the re-
gion 3:7< j�j< 4:7, which measure the average number
of inelastic p �p collisions per bunch crossing. The total
uncertainty on the luminosity is �6:0%, of which 4.4%
comes from the acceptance and the operation of the lumi-
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FIG. 2 (color online). Cutaway isometric view of the CDF II
detector.
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nosity monitor and 4.0% comes from the uncertainty of the
inelastic p �p cross section [45].

III. SELECTION OF CANDIDATE EVENTS

Single top quark events (see Fig. 3) have jets, a charged
lepton, and a neutrino in the final state. The top quark
decays into a W boson and a b quark before hadronizing.
The quarks recoiling from the top quark, and the b quark
from top quark decay, hadronize to form jets, motivating
our event selection which requires two or three energetic
jets (the third can come from a radiated gluon), at least one
of which is b tagged, and the decay products of aW boson.
In order to reduce background from multijet production via
the strong interaction, we focus our event selection on the
decays of the W boson to e�e or ��� in these analyses.

Such events have one charged lepton (an electron or a
muon), missing transverse energy resulting from the un-
detected neutrino, and at least two jets. These events
constitute theW þ jets sample. We also include the accep-
tance for signal and background events in whichW ! ���,
and the MJ analysis also is sensitive toW boson decays to �
leptons.

Since the p �p collision rate at the Tevatron exceeds the
rate at which events can be written to tape by 5 orders of
magnitude, CDF has an elaborate trigger system with three
levels. The first level uses special-purpose hardware [46] to
reduce the event rate from the effective beam-crossing
frequency of 1.7 MHz to approximately 15 kHz, the maxi-
mum rate at which the detector can be read out. The second
level consists of a mixture of dedicated hardware and fast
software algorithms and takes advantage of the full infor-
mation read out of the detector [47]. At this level the trigger
rate is reduced further to less than 800 Hz. At the third
level, a computer farm running fast versions of the offline
event reconstruction algorithms refines the trigger selec-
tions based on quantities that are nearly the same as those
used in offline analyses [48]. In particular, detector cali-
brations are applied before the trigger requirements are
imposed. The third-level trigger selects events for perma-
nent storage at a rate of up to 200 Hz.

Many different trigger criteria are evaluated at each
level, and events passing specific criteria at one level are
considered by a subset of trigger algorithms at the next
level. A cascading set of trigger requirements is known as a
trigger path. This analysis uses the trigger paths which
select events with high-pT electron or muon candidates.
The acceptance of these triggers for tau leptons is included
in our rate estimates but the triggers are not optimized for
identifying tau leptons. An additional trigger path, which
requires significant ET plus at least two high-pT jets, is also
used to add W þ jets candidate events with nontriggered
leptons, which include charged leptons outside the fiducial
volumes of the electron and muon detectors, as well as tau
leptons.
The third-level central electron trigger requires a COT

track with pT > 9 GeV=c matched to an energy cluster in
the CEM with ET > 18 GeV. The shower profile of this
cluster as measured by the shower-maximum detector is
required to be consistent with those measured using test-
beam electrons. Electron candidates with j�j> 1:1 are
required to deposit more than 20 GeV in a cluster in the
PEM, and the ratio of hadronic energy to electromagnetic
energy EPHA=EPEM for this cluster is required to be less
than 0.075. The third-level muon trigger requires a COT
track with pT > 18 GeV=c matched to a track segment in
the muon chambers. The ET þ jets trigger path requires
ET > 35 GeV and two jets with ET > 10 GeV.
After offline reconstruction, we impose further require-

ments on the electron candidates in order to improve the
purity of the sample. A reconstructed track with pT >
9 GeV=c must match to a cluster in the CEM with ET >
20 GeV. Furthermore, we require EHAD=EEM < 0:055þ
0:000 45� E=GeV and the ratio of the energy of the
cluster to the momentum of the track E=p has to be smaller
than 2:0c for track momenta � 50 GeV=c. For electron
candidates with tracks with p > 50 GeV=c, no require-
ment on E=p is made as the misidentification rate is small.
Candidate objects which fail these requirements are more
likely to be hadrons or jets than those that pass.
Electron candidates in the forward direction (PHX) are

defined by a cluster in the PEM with ET > 20 GeV and
EHAD=EEM < 0:05. The cluster position and the primary
vertex position are combined to form a search trajectory in
the silicon tracker and seed the pattern recognition of the
tracking algorithm.
Electron candidates in the CEM and PHX are rejected if

an additional high-pT track is found which forms a com-
mon vertex with the track of the electron candidate and has
the opposite sign of the curvature. These events are likely
to stem from the conversion of a photon. Figure 4(a) shows
the ð�;�Þ distributions of CEM and PHX electron
candidates.
Muon candidates are identified by requiring the presence

of a COT track with pT > 20 GeV=c that extrapolates to a
track segment in one or more muon chambers. The muon
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FIG. 3. Feynman diagrams showing the final states of the
dominant (a) s-channel and (b) t-channel processes, with lep-
tonicW boson decays. Both final states contain a charged lepton,
a neutrino, and two jets, at least one of which originates from a b
quark.
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trigger may be satisfied by two types of muon candidates,
called CMUP and CMX. A CMUP muon candidate is one
in which track segments matched to the COT track are
found in both the CMU and the CMP chambers. A CMX
muon is one in which the track segment is found in the
CMX muon detector. In order to minimize background
contamination, further requirements are imposed. The en-
ergy deposition in the electromagnetic and hadronic calo-
rimeters has to correspond to that expected from a
minimum-ionizing particle. To reject cosmic-ray muons
and muons from in-flight decays of long-lived particles
such as K0

S, K
0
L, and � particles, the distance of closest

approach of the track to the beam line in the transverse
plane is required to be less than 0.2 cm if there are no
silicon hits on the muon candidate’s track, and less than
0.02 cm if there are silicon hits. The remaining cosmic rays
are reduced to a negligible level by taking advantage of
their characteristic track timing and topology.

In order to add acceptance for events containing muons
that cannot be triggered on directly, several additional
muon types are taken from the extended muon coverage
(EMC) of the ET þ jets trigger path: a track segment only
in the CMU and a COT track not pointing to CMP (CMU),
a track segment only in the CMP and COT track not
pointing to CMU (CMP), a track segment in the BMU
(BMU), an isolated track not fiducial to any muon cham-
bers (CMIO), an isolated track matched to a muon segment
that is not considered fiducial to a muon detector (SCMIO),

and a track segment only in the CMX but in a region that
can not be used in the trigger due to tracking limitations of
the trigger (CMXNT). Figure 4(b) shows the ð�;�Þ dis-
tributions of muon candidates in each of these categories.
We require exactly one isolated charged lepton candi-

date with j�j< 1:6. A candidate is considered isolated if
the ET not assigned to the lepton inside a cone defined by

R � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið��Þ2 þ ð��Þ2p
< 0:4 centered around the lepton is

less than 10% of the lepton ET (pT) for electrons (muons).
This lepton is called a tight lepton. Loose charged lepton
candidates pass all of the lepton selection criteria except
for the isolation requirement. We reject events which have
an additional tight or loose lepton candidate in order to
reduce the Z=	� þ jets and diboson background rates.
Jets are reconstructed using a cone algorithm by sum-

ming the transverse calorimeter energy ET in a cone of
radius R � 0:4. The energy deposition of an identified
electron candidate, if present, is not included in the jet
energy sum. The ET of a cluster is calculated with respect
to the z coordinate of the primary vertex of the event. The
energy of each jet is corrected [49] for the � dependence
and the nonlinearity of the calorimeter response. Routine
calibrations of the calorimeter response are performed
and these calibrations are included in the jet energy cor-
rections. The jet energies are also adjusted by subtracting
the extra deposition of energy from additional inelastic p �p
collisions on the same bunch crossing as the triggered
event.
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FIG. 4 (color online). Distributions in (�� �) space of the (a) electron and (b) muon selection categories, showing the coverage of
the detector that each lepton category provides. The muon categories are more complicated due to the geometrical limitations of the
several different muon detectors of CDF.
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Reconstructed jets in events with identified charged
lepton candidates must have corrected ET > 20 GeV and
detector j�j< 2:8. Detector � is defined as the pseudor-
apidity of the jet calculated with respect to the center of the
detector. Only events with exactly two or three jets are
accepted. At least one of the jets must be tagged as con-
taining a B hadron by requiring a displaced secondary
vertex within the jet, using the SECVTX algorithm [31].
Secondary vertices are accepted if the transverse decay
length significance (�Lxy=�xy) is greater than or equal to

7.5.
Events passing the ET þ jets trigger path and the EMC

muon segment requirements described above are also re-
quired to have two sufficiently separated jets: �Rjj > 1.

Furthermore, one of the jets must be central, with j�jetj<
0:9, and both jets are required to have transverse energies
above 25 GeV. These offline selection requirements ensure
full efficiency of the ET þ jets trigger path.

The vector missing ET ( ~ET) is defined by

~E T ¼ �X
i

Ei
Tn̂i; (1)

i ¼ calorimeter tower number with j�j< 3:6; (2)

where n̂i is a unit vector perpendicular to the beam axis and

pointing at the i-th calorimeter tower. We also define ET ¼
j ~ETj. Since this calculation is based on calorimeter towers,
ET is adjusted for the effect of the jet corrections for all
jets.

A correction is applied to ~ET for muons since they
traverse the calorimeters without showering. The trans-
verse momenta of all identified muons are added to the
measured transverse energy sum and the average ionization
energy is removed from the measured calorimeter energy
deposits. We require the corrected ET to be greater than
25 GeV in order to purify a sample containing leptonic W
boson decays.
A portion of the background consists of multijet events

which do not contain W bosons. We call these ‘‘non-W’’
events below. We select against the non-W background by
applying additional selection requirements which are
based on the assumption that these events do not have a
largeET from an escaping neutrino, but rather the ET that is
observed comes from lost or mismeasured jets. In events
lacking a W boson, one would expect small values of the
transverse mass, defined as

MW
T ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðp‘

TET � p‘
xET

x � p‘
yET

yÞ
q

: (3)

Because the ET in events that do not contain W bosons
often comes from jets which are erroneously identified as

charged leptons, ~ET often points close to the lepton candi-
date’s direction, giving the event a low transverse mass.
Thus, the transverse mass is required to be above 10 GeV
for muons and 20 GeV for electrons, which have more of
these events.
Further removal of non-W events is performed with a

variable called ET significance (ET;sig), defined as

E T;sig ¼ ETffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
jets C

2
JEScos

2ð��jet; ~ET
ÞEraw

T;jet þ cos2ð�� ~ET;uncl; ~ET
ÞP ET;uncl

q ; (4)

where CJES is the jet energy correction factor [49], Eraw
T;jet is

a jet’s energy before corrections are applied, ~ET;uncl refers
to the vector sum of the transverse components of calo-
rimeter energy deposits not included in any reconstructed
jets, and

P
ET;uncl is the sum of the magnitudes of these

unclustered energies. The angle between the projections in
the r� plane of a jet and ~ET is denoted ��jet; ~ET;uncl

, and the

angle between the projections in the r� plane of
P

ET;uncl

and ~ET is denoted�� ~ET;uncl;
~E6 T
. When the energies in Eq. (4)

are measured in GeV, ET;sig is an approximate significance,
as the dispersion in the measured ET in events with no true
ET is approximated by the denominator. Central electron
events are required to have ET;sig > 3:5� 0:05MT and
ET;sig > 2:5� 3:125��jet2; ~ET

, where jet 2 is the jet with

the second-largest ET, and all energies are measured in
GeV. Plug electron events must have ET;sig > 2 and ET >
45� 30��jet; ~ET

for all jets in the event. These require-

ments reduce the amount of contamination from non-W
events substantially, as shown in the plots in Fig. 5.

To remove events containing Z bosons, we reject events
in which the trigger lepton candidate can be paired with
an oppositely signed track such that the invariant mass of
the pair is within the range 76 GeV=c2 � m‘;track �
106 GeV=c2. Additionally, if the trigger lepton candidate
is identified as an electron, the event is rejected if a cluster
is found in the electromagnetic calorimeter that, when
paired with the trigger lepton candidate, forms an invariant
mass in the same range.

IV. SIGNAL MODEL

In order to perform a search for a previously undetected
signal such as single top quark production, accurate models
predicting the characteristics of expected data are needed
for both the signal being tested and the SM background
processes. This analysis uses Monte Carlo programs to
generate simulated events for each signal and background
process, except for non-W QCD multijet events for which
events in data control samples are used.
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A. s-channel single top quark model

The matrix element generator MADEVENT [50] is used to
produce simulated events for the signal samples. The gen-
erator is interfaced to the CTEQ5L [51] parametrization of
the parton distribution functions (PDFs). The PYTHIA

[52,53] program is used to perform the parton shower
and hadronization. Although MADEVENT uses only a
leading-order matrix element calculation, studies [10,54]
indicate that the kinematic distributions of s-channel
events are only negligibly affected by NLO corrections.
The parton shower simulates the higher-order effects of
gluon radiation and the splitting of gluons into quarks, and
the Monte Carlo samples include contributions from
initial-state sea quarks via the proton PDFs.

B. t-channel single top quark model

The t-channel process is more complicated. Several
authors point out [10,55–57] that the leading-order contri-
bution to t-channel single top quark production as modeled
in parton-shower Monte Carlo programs does not ade-
quately represent the expected distributions of observable
jets, which are better predicted by NLO calculations.

The leading-order process is a 2 ! 2 process with a
b quark in the initial state: bþ u ! dþ t, as shown in
Fig. 6(a). For antitop quark production, the charge con-
jugate processes are implied. A parton distribution function
for the initial-state b quark is used for the calculation.

Since flavor is conserved in the strong interaction, a �b
quark must be present in the event as well. In what follows,
this �b quark is called the spectator b quark. Leading-order
parton-shower programs create the spectator b quark
through backward evolution following the DGLAP scheme
[58–60]. Only the low-pT portion of the transverse mo-
mentum distribution of the spectator b quark is modeled
well, while the high-pT tail is not estimated adequately
[10]. In addition, the pseudorapidity distribution of the
spectator b quark, as simulated by the leading-order pro-
cess, is biased towards higher pseudorapidities than pre-
dicted by NLO theoretical calculations.
We improve the modeling of the t-channel single top

quark process by using two samples: one for the leading
2 ! 2 process bþ q ! q0 þ t, and a second one for the

b

u d

t

W+

(a)

g

u d

t

b

b

W+

(b)

FIG. 6. The two different t-channel processes considered in
our signal model: (a) the 2 ! 2 process and (b) the 2 ! 3
process.

FIG. 5 (color online). Plots of ET;sig vs M
W
T for W þ jets Monte Carlo, the selected data in the ‘þ ET þ 2 jet sample, and the two

distributions subtracted for all CEM candidates. The black lines indicate the requirements which are applied. Events with lower ET;sig

or MW
T are not selected.
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2 ! 3 process in which an initial-state gluon splits into b �b,
gþ q ! q0 þ tþ �b. In the second process the spectator b
quark is produced directly in the hard scattering described
by the matrix element [Fig. 6(b)]. This sample describes
the most important NLO contribution to t-channel produc-
tion and is therefore suitable to describe the high-pT tail of
the spectator b quark pT distribution. This sample, how-
ever, does not adequately describe the low-pT portion of
the spectrum of the spectator b quark. In order to construct
a Monte Carlo sample which closely follows NLO predic-
tions, the 2 ! 2 process and the 2 ! 3 process must be
combined.

A joint event sample was created by matching the pT

spectrum of the spectator b quark to the differential cross
section predicted by the ZTOP program [10] which operates
at NLO. The matched t-channel sample consists of 2 ! 2
events for spectator b quark transverse momenta below a
cutoff, called KT, and of 2 ! 3 events for transverse
momenta above KT. The rates of 2 ! 2 and 2 ! 3
Monte Carlo events are adjusted to ensure the continuity
of the spectator b quark pT spectrum at KT. The value of
KT is adjusted until the prediction of the fraction of
t-channel signal events with a detectable spectator b quark
jet—with pT > 20 GeV=c and j�j< 2:8—matches the
prediction by ZTOP. We obtain KT ¼ 20 GeV=c. All de-
tectable spectator b quarks with pT > 20 GeV=c of the
joint t-channel sample are simulated using the 2 ! 3
sample.

Figure 7 illustrates the matching procedure and com-
pares the outcome with the differential pT andQ‘ 	 � cross
sections of the spectator b quark, whereQ‘ is the charge of
the lepton from W boson decay. Both the falling pT spec-
trum of the spectator b quark and the slightly asymmetric
shape of the Q‘ 	 � distribution are well modeled by the
matched MADEVENT sample. Figure 7(a) shows the pT

distribution of the spectator b quark on a logarithmic scale.
The combined sample of t-channel events has a much
harder pT spectrum of spectator b quarks than the 2 ! 2
sample alone provides. The tail of the distribution extends
beyond 100 GeV=c, while the 2 ! 2 sample predicts very
few spectator b quarks with pT above 50 GeV=c.

C. Validation

It is important to evaluate quantitatively the modeling of
single top quark events. We compare the kinematic distri-
butions of the primary partons obtained from the s-channel
and the matched t-channel MADEVENT samples to theoreti-
cal differential cross sections calculated with ZTOP [10].
We find, in general, very good agreement. For the
t-channel process, in particular, the pseudorapidity distri-
butions of the spectator b quark in the two predictions are
nearly identical, even though that variable was not used to
match the two t-channel samples.
One can quantify the remaining differences between the

Monte Carlo simulation and the theoretical calculation by
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FIG. 7 (color online). Matching of t-channel single top quark events of the 2 ! 2 and the 2 ! 3 processes. The pT distributions of
the spectator b quark are shown, (a) on a logarithmic pT scale, and (b) on a linear pT scale. The ratio of 2 ! 2 to 2 ! 3 events is
adjusted such that the rate of spectator b quarks with pT > 20 GeV=c and j�j< 2:8matches the theoretical prediction. The fraction of
these events is illustrated in (b) by the shaded area. The matched MADEVENT sample reproduces both the rate and the shape of the
differential ZTOP (c) pT and (d) Q‘ 	 � cross-section distributions of the spectator b quark.
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assigning weights to simulated events. The weight is de-
rived from a comparison of six kinematic distributions: the
pT and the� of the top quark and of the two highest-ET jets
which do not originate from the top quark decay. In case of
t-channel production, we distinguish between b-quark jets
and light-quark jets. The correlation between the different
variables, parametrized by the covariance matrix, is deter-
mined from the simulated events generated by MADEVENT.
We apply the single top quark event selection to the
Monte Carlo events and add the weights. This provides
an estimate of the deviation of the acceptance in the
simulation compared to the NLO prediction. In the W þ
2 jet sample we find a fractional discrepancy of ð�1:8�
0:9Þ% (MC stat.) for the t-channel, implying that the
Monte Carlo estimate of the acceptance is a little higher
than the NLO prediction. In the s-channel we find excellent
agreement:�0:3%� 0:7% (MC stat.). More details on the
t-channel matching procedure and the comparison to ZTOP

can be found in Refs. [61,62]. The general conclusion from
our studies is that the MADEVENT Monte Carlo events
represent faithfully the NLO single top quark production
predictions. The matching procedure for the t-channel
sample takes the main NLO effects into account. The
remaining difference is covered by a systematic uncer-
tainty of �1% or �2% on the acceptance for s- and
t-channel events, respectively.

Recently, an even higher-order calculation of the
t-channel production cross section and kinematic distribu-
tions has been performed [56,57], treating the 2 ! 3 pro-
cess itself at NLO. The production cross section in this
calculation remains unchanged, but a larger fraction of
events have a high-pT spectator b within the detector
acceptance. This calculation became available after the
analyses described in this paper were completed. The net
effect is to slightly decrease the predicted t-channel signal
rate in the dominant sample with two jets and one b tag,
and to significantly raise the comparatively low signal
prediction in the double-tagged samples and the three-jet
samples, compensating each other. Thus, the expected as
well as the observed change of the outcome is insignificant
for the combined and the separate extraction of the signal
cross section and significance.

D. Expected signal yields

The number of expected events is given by

�̂ ¼ � 	 "evt 	Lint; (5)

where � is the theoretically predicted cross section of the
respective process, "evt is the event detection efficiency,
and Lint is the integrated luminosity. The predicted cross
sections for t-channel and s-channel single top quark pro-
duction are quoted in Sec. I. The integrated luminosity
used for the analyses presented in this article is Lint ¼
3:2 fb�1.

The event detection efficiency is estimated by perform-
ing the event selection on the samples of simulated events.
Control samples in the data are used to calibrate the
efficiencies of the trigger, the lepton identification, and
the b tagging. These calibrations are then applied to the
Monte Carlo samples we use.
We do not use a simulation of the trigger efficiency in

the Monte Carlo samples; instead we calibrate the trigger
efficiency using data collected with alternate trigger paths
and also Z ! ‘þ‘� events in which one lepton triggers the
event and the other lepton is used to calculate the fraction
of the time it, too, triggers the event. We use these data
samples to calculate the efficiency of the trigger for
charged leptons as a function of the lepton’s ET and �.
The uncorrected Monte Carlo based efficiency prediction,
"MC is reduced by the trigger efficiency "trig. The effi-

ciency of the selection requirements imposed to identify
charged leptons is estimated with data samples with
high-pT triggered leptons. We seek in these events oppo-
sitely signed tracks forming the Z mass with the triggered
lepton. The fraction of these tracks passing the lepton
selection requirements gives the lepton identification effi-
ciency. The Z vetoes in the single top quark candidate
selection requirements enforce the orthogonality of our
signal samples and these control samples we use to esti-
mate the trigger and identification efficiencies.
A similar strategy is adopted for using the data to

calibrate the b-tag efficiency. At LEP, for example, single-
and double-b-tagged events were used [63] to extract the
b-tag efficiency and the b-quark fraction in Z decay. Jet
formation in p �p collisions involves many more processes,
however, and the precise rates are poorly predicted. A jet
originating from a b quark produced in a hard scattering
process, for example, may recoil against another b jet, or it
may recoil against a gluon jet. The invariant mass require-
ment used in the lepton identification procedure to purify a
sample of Z decays is not useful for separating a sample of
Z ! b �b decays because of the low signal-to-background
ratio [64].
We surmount these challenges and calibrate the b-tag

efficiency in the data using the method described in
Ref. [31], and which is briefly summarized here. We select
dijet events in which one jet is tagged with the SECVTX

algorithm, and the other jet has an identified electron
candidate with a large transverse momentum with respect
to the jet axis in it, to take advantage of the characteristic
semileptonic decays of B hadrons. The purity of b �b events
in this sample is nearly unity. We determine the flavor
fractions in the jets containing electron candidates by
fitting the distribution of the invariant mass of the recon-
structed displaced vertices to templates for b jets, charm
jets, and light-flavor jets, in order to account for the pres-
ence of non-b contamination.
The fraction of jets with electrons in them passing the

SECVTX tag is used to calibrate the SECVTX tagging effi-
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ciency of b jets which contain electrons. This efficiency is
compared with that of b jets passing the same selection
requirements in the Monte Carlo, and the ratio of the
efficiencies is applied to the Monte Carlo efficiency for
all b jets. Systematic uncertainites to cover differences in
Monte Carlo mismodeling of semileptonic and inclusive B
hadron jets are assessed. The b-tagging efficiency is ap-
proximately 45% per b jet from top quark decay, for b jets
with at least two tracks and which have j�j< 1. The ratio
between the data-derived efficiency and the Monte Carlo
prediction does not show a noticeable dependence on the
j�j of the jet or the jet’s ET.

The differences in the lepton identification efficiency
and the b tagging between the data and the simulation
are accounted for by a correction factor "corr on the single
top quark event detection efficiency. Separate correction
factors are applied to the single b-tagged events and the
double b-tagged events. Systematic uncertainties are as-
sessed on the signal acceptance due to the uncertainties on
these correction factors.
The samples of simulated events are produced such that

the W boson emerging from top quark decay is only
allowed to decay into leptons, that is e�e, ���, and ���.

Tau lepton decay is simulated with TAUOLA [65]. The value

TABLE II. Summary of predicted numbers of signal and background events with two or more
b tags, with systematic uncertainties on the cross-section and Monte Carlo efficiencies included.
The total numbers of observed events passing the event selections are also shown. TheW þ 2 jet
and W þ 3 jet samples are used to test for the signal, while the W þ 4 jet sample are used to
check the background modeling.

W þ 2 jet W þ 3 jet W þ 4 jet

Wb �b 75:9� 23:6 27:4� 8:5 8:2� 2:6
Wc �c 3:7� 1:2 2:4� 0:8 1:1� 0:4
Wcj 3:2� 1:0 1:3� 0:4 0:4� 0:1
Mistags 2:2� 0:6 1:6� 0:4 0:7� 0:2
Non-W 2:3� 0:9 0:2� 0:1 2:4� 1:0
t�t production 36:4� 6:0 104:7� 17:3 136:0� 22:4
Diboson 5:0� 0:6 2:0� 0:3 0:6� 0:1
Z=	� þ jets 1:7� 0:3 1:0� 0:2 0:3� 0:1
Total Background 130:4� 26:8 140:6� 19:7 149:8� 22:5
s-channel 12:8� 2:1 4:5� 0:7 1:0� 0:2
t-channel 2:4� 0:4 3:5� 0:6 1:1� 0:2
Total Prediction 145:6� 26:9 148:6� 19:7 151:9� 22:5
Observation 139 166 154

TABLE I. Summary of the predicted numbers of signal and background events with exactly
one b tag, with systematic uncertainties on the cross section and Monte Carlo efficiencies
included. The total numbers of observed events passing the event selections are also shown. The
W þ 2 jet and W þ 3 jet samples are used to test for the signal, while the W þ 1 jet and W þ 4
jet samples are used to check the background modeling.

W þ 1 jet W þ 2 jets W þ 3 jets W þ 4 jets

Wb �b 823:7� 249:6 581:1� 175:1 173:9� 52:5 44:8� 13:7
Wc �c 454:7� 141:7 288:5� 89:0 95:7� 29:4 27:2� 8:5
Wcj 709:6� 221:1 247:3� 76:2 50:8� 15:6 10:2� 3:2
Mistags 1147:8� 166:0 499:1� 69:1 150:3� 21:0 39:3� 6:2
Non-W 62:9� 25:2 88:4� 35:4 35:4� 14:1 7:6� 3:0
t�t production 17:9� 2:6 167:6� 24:0 377:3� 54:8 387:4� 54:8
Diboson 29:0� 3:0 83:3� 8:5 28:1� 2:9 7:1� 0:7
Z=	� þ jets 38:6� 6:3 34:8� 5:3 14:6� 2:2 4:0� 0:6
Total Background 3284:1� 633:8 1989:9� 349:6 926:0� 113:4 527:7� 60:3
s-channel 10:7� 1:6 45:3� 6:4 14:7� 2:1 3:3� 0:5
t-channel 24:9� 3:7 85:3� 12:6 22:7� 3:3 4:4� 0:6
Total Prediction 3319:7� 633:8 2120:4� 350:1 963:4� 113:5 535:4� 60:3
Observation 3516 2090 920 567
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of "MC, the fraction of all signal MC events passing our
event selection requirements, is multiplied by the branch-
ing fraction of W bosons into leptons, "BR ¼ 0:324. The
selection efficiencies for events in which the W boson
decays to electrons and muons are similar, but the selection
efficiency for W ! ��� decays is less, because many tau
decays do not contain leptons, and also because the pT

spectrum of tau decay products is softer than those of
electrons and muons. In total, the event detection efficiency
is given by

"evt ¼ "MC 	 "BR 	 "corr 	 "trig: (6)

Including all trigger and identification efficiencies we find
"evtðt-channelÞ ¼ ð1:2� 0:1Þ% and "evtðs-channelÞ ¼
ð1:8� 0:1Þ%. The predicted signal yields for the selected
two- and three-jet events with one and two (or more)
b-tagged jets are listed in Tables I and II.

V. BACKGROUND MODEL

The final state of a single top quark event—a charged
lepton, missing transverse energy from the undetected
neutrino, and two or three jets with one or more B hadrons,
is also the final state of theWb �b process, which has a much
larger cross-section. Other processes which produce simi-
lar final states, such as Wc �c and t�t, also mimic the single
top quark signature because of misreconstruction or be-
cause of the loss of one or more components of the ex-
pected final state. A detailed understanding of the rates and
of the kinematic properties of the background processes is
necessary in order to accurately measure the single top
quark production cross section.

The largest background process is the associated pro-
duction of a leptonically decaying W boson and two or
more jets. Representative Feynman diagrams are shown in
Fig. 8. The cross section for W þ jets production is much
larger than that of the single top quark signal, and theW þ
jets production cross sections are difficult to calculate
theoretically. Furthermore, W þ jets events can be kine-
matically quite similar to the signal events we seek, and in
the case that the jets contain b quarks, the final state can be
identical to that of single top quark production. The narrow
top quark width, the lack of resonant structure in W þ jets
events, and color suppression make the quantum-

mechanical interference between the signal and the back-
ground very small.
Top quark pair production, in which one or two jets, or

one charged lepton, has been lost, also constitutes an
important background process (Fig. 9). There are also
contributions from the diboson production processes
WW, WZ, and ZZ, which are shown in Fig. 10, Z=	� þ
jets processes in which one charged lepton from Z boson
decay is missed, [Fig. 11(a)], and QCD multijet events,
which do not contain W bosons but instead have a fake
lepton and mismeasured ET [Fig. 11(b)]. The rates and
kinematic properties of these processes must be carefully
modeled and validated with data in order to make a precise
measurement of single top quark production.
Because there are many different background processes,

we use a variety of methods to predict the background
rates. Some are purely based on Monte Carlo simulations
scaled to high-order predictions of the cross section (such
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as t�t); some are purely data-based (non-W); and some
require a combination of Monte Carlo and data (W þ jets).

A. Monte Carlo based background processes

We use samples of simulated Monte Carlo events to
estimate the contributions of t�t, diboson, and Z=	� þ jets
production to the b-tagged leptonþ jets sample. The cor-
responding event detection efficiencies "evt are calculated
in the sameway as the single top quark processes described
in Sec. IV and Eq. (6). We apply Eq. (5) to calculate the
final number of expected events. Therefore, it is essential
that the given physical process is theoretically well under-
stood, i.e., the kinematics are well described in simulated
events and the cross section is well known.

To model the t�t production contribution to our selected
samples, we use PYTHIA [53] Monte Carlo samples, scaled
to the NLO theoretical cross-section prediction [66,67] of
�t�t ¼ ð6:70� 0:83Þ pb, assuming mt ¼ 175 GeV=c2. The
systematic uncertainty contains a component which covers
the differences between the calculation chosen and others
[19,68]. The event selection efficiencies and the kinematic
distributions of t�t events are predicted using these PYTHIA

samples. Because the Monte Carlo efficiencies for lepton
identification and b tagging differ from those observed in
the data, the t�t efficiencies estimated from the Monte Carlo
are adjusted by factors 
corr, which are functions of the
numbers of leptonically decaying W bosons and b-tagged
jets.

To estimate the expected number of diboson events in
our selected data sample we use the theoretical cross
section predicted for a center-of-mass energy of

ffiffiffi
s

p ¼
2:00 TeV using the MCFM program [69] and extrapolate
the values to

ffiffiffi
s

p ¼ 1:96 TeV. This leads to �WW ¼
ð13:30� 0:80Þ pb, �WZ ¼ ð3:96� 0:34Þ pb, and �ZZ ¼
ð1:57� 0:21Þ pb. The cross-section uncertainties reported
in [69] are smaller than those obtained with MCFM Version
5.4; we quote here the larger uncertainties. The event
selection efficiencies and the kinematic distributions of
diboson events are estimated with PYTHIA Monte Carlo
samples, with corrections applied to bring the lepton iden-
tification and b-tagging efficiency in line with those esti-
mated from data samples.

Events with Z=	� boson production in association with
jets are simulated using ALPGEN [70], with PYTHIA used to
model the parton shower and hadronization. The Z=	� þ
jets cross section is normalized to that measured by CDF in
the Z=	�ð! eþe�Þ þ jets sample [71], within the kine-
matic range of the measurement, separately for the differ-
ent numbers of jets. Lepton universality is assumed in Z
decay.

B. Non-W multijet events

Estimating the non-W multijet contribution to the sam-
ple is challenging because of the difficulty of simulating
these events. A variety of QCD processes produce copious

amounts of multijet events, but only a tiny fraction of these
events pass our selection requirements. In order for an
event lacking a leptonic W boson decay to be selected, it
must have a fake lepton or a real lepton from a heavy-flavor
quark decay. In the same event, the ET must be mismeas-
ured. The rate at which fake leptons are reconstructed and
the amount of mismeasured ET are difficult to model
reliably in Monte Carlo.
The non-W background is modeled by selecting data

samples which have less stringent selection requirements
than the signal sample. These samples, which are described
below, are dominated by non-W events with similar kine-
matic distributions as the non-W contribution to the signal
sample. The normalization of the non-W prediction is
separately determined by fitting templates of the ET dis-
tribution to the data sample.
We use three different data samples to model the non-W

multijet contributions. One sample is based on the princi-
ple that non-W events must have a jet which passes all
lepton identification requirements. A data sample of inclu-
sive jets is subjected to all of our event selection require-
ments except the lepton identification requirements. In lieu
of an identified lepton, a jet is required with ET > 20 GeV.
This jet must contain at least four tracks in order to reduce
contamination from real electrons from W and Z boson
decay, and 80–95% of the jet’s total calorimetric energy
must be in the electromagnetic calorimeter, in order to
simulate a misidentified electron. The b-tagging require-
ment on other jets in the event is relaxed to requiring a
taggable jet instead of a tagged jet in order to increase the
size of the selected sample. A taggable jet is one that is
within the acceptance of the silicon tracking detector and
which has at least two tracks in it. This sample is called the
jet-based sample.
The second sample takes advantage of the fact that fake

leptons from non-W events have difficulty passing the
lepton selection requirements. We look at lepton candi-
dates in the central electron trigger that fail at least two of
five identification requirements that do not depend on the
kinematic properties of the event, such as the fraction of
energy in the hadronic calorimeter. These objects are
treated as leptons and all other selection requirements are
applied. This sample has the advantage of having the same
kinematic properties as the central electron sample. This
sample is called the ID-based sample.
The two samples described above are designed to model

events with misidentified electron candidates. Because of
the similarities in the kinematic properties of the ID-based
and the jet-based events, we use the union of the jet-based
and ID-based samples as our non-W model for triggered
central electrons (the CEM sample). Remarkably, the same
samples also simulate the kinematics of events with mis-
identified triggered muon candidates; we use the samples
again to model those events (the CMUP and CMX
samples). The jet-based sample alone is used to model
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the non-W background in the PHX sample because the
angular coverage is greater.

The kinematic distributions of the reconstructed objects
in the EMC sample are different from those in the CEM,
PHX, CMUP, and CMX samples due to the trigger require-
ments, and thus a separate sample must be used to model
the non-W background in the EMC data. This third sample
consists of events that are collected with the ET þ jets
trigger path and which have a muon candidate passing all
selection requirements except for the isolation require-
ment. It is called the nonisolated sample.

The non-W background must be determined not only for
the data sample passing the event selection requirements,
but also for the control samples which are used to deter-
mine the W þ jets backgrounds, as described in Secs. VC
and VD. The expected numbers of non-W events are
estimated in pretag events—events in which all selection
criteria are applied except the secondary vertex tag require-
ment. We require that at least one jet in a pretagged event is
taggable. In order to estimate the non-W rates in this
sample, we also remove the ET event selection require-
ment, but we retain all other non-W rejection requirements.
We fit templates of the ET distributions of theW þ jets and

the non-W samples to the ET spectra of the pretag data,
holding constant the normalizations of the additional tem-
plates needed to model the small diboson, t�t, Zþ jets, and
single top backgrounds. The fractions of non-W events are
then calculated in the sample with ET > 25 GeV. The
inclusion or omission of the single top contribution to these
fits has a negligible impact on the non-W fractions that are
fit. These fits are performed separately for each lepton
category (CEM, PHX, CMUP, CMX, and EMC) because
the instrumental fake lepton fractions are different for
electrons and muons, and for the different detector compo-
nents. In all lepton categories except PHX, the full ET

spectrum is used in the fit. For the PHX electron sample,
we require ET > 15 GeV in order to minimize sensitivity
to the trigger. The fits in the pretag region are also used to
estimate the W þ jets contribution in the pretag region, as
described in Sec. VC. As Fig. 12 shows, the resulting fits
describe the data quite well.
Estimates of the non-W yields in the tagged samples

used to search for the single top signal are also needed.
These samples are more difficult because the non-W mod-
eling samples are too small to apply tagging directly—only
a few events pass the secondary vertex requirement.
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FIG. 12 (color online). Fits to ET distributions in the pretag samples for the five different lepton categories (CEM, PHX, CMUP,
CMX, EMC) in W þ 2 jet events. The fractions of non-W events are estimated from the portions of the templates above the ET

thresholds shown by the arrows. Overflows are collected in the highest bin of each histogram. The data are indicated with points with
error bars, and the shaded histograms show the best-fit predictions. The non-W templates are not shown stacked, but the W þ jets and
‘‘Others’’ templates are stacked. The unshaded histogram is the sum of the fitted shapes.
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However, since the data show no dependence of the
b-tagging rate on ET, we use the untagged non-W tem-
plates in the fits to the ET distributions in the tagged
samples. These fits are used to extract the non-W fractions
in the signal samples. As before, the Monte Carlo predic-
tions of diboson, t�t, Zþ jets, and single top production are
held constant and only the normalizations of the W þ jets
and the non-W templates are allowed to float. The resulting
shapes are shown in Fig. 13 for the single-tagged sample,
and these are used to derive the non-W fractions in the
signal samples. As before, the inclusion or omission of the
single top contributions in the fits has a negligible effect on
the fitted non-W fractions. Because of the uncertainties in
the tagging rates, the template shapes, and the estimation
methods, the estimated non-W rates are given systematic
uncertainties of �40% in single-tagged events and �80%
in double-tagged events. These uncertainties cover the
differences in the results obtained by fitting variables other
than ET, as well as by changing the histogram binning,
varying the fit range, and using alternative samples to
model the non-W background. The uncertainty in the
double-tagged non-W prediction is larger because of the
larger statistical uncertainty arising from the smaller size
of the double-tagged sample.

C. W þHeavy flavor contributions

Events with a W boson accompanied by heavy-flavor
production constitute the majority of the b-tagged leptonþ
jets sample. These processes are Wb �b, shown in Fig. 8(a),
Wc �c, which is the same process as Wb �b, but with charm
quarks replacing the b quarks, andWcj, which is shown in
Fig. 8(b). Each process may be accompanied by more jets
and pass the event selection requirements for the W þ 3
jets signal sample. Jets may fail to be detected, or they may
fail to pass our selection requirements, and such events
may fall into the W þ 1 jet control sample. While these
events can be simulated using the ALPGEN generator, the
theory uncertainties on the cross sections of these pro-
cesses remain large compared with the size of the single
top quark signal [72–79]. It is because of these large
a priori uncertainties on the background predictions and
the small signal-to-background ratios in the selected data
samples that we must use advanced analysis techniques to
purify further the signal. We also use the data itself, both in
control samples and in situ in the samples passing all
selection requirements, to constrain the background rates,
reducing their systematic uncertainties. The in situ fits are
described in Sec. IX, and the control sample fits are de-
scribed below.
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FIG. 13 (color online). Fits to ET distributions in the single-tagged sample for the five different lepton categories (CEM, PHX,
CMUP, CMX, EMC) in W þ 2 jet events. The fraction of non-W events is estimated from the fraction of the template above the ET

threshold shown by the arrows. Overflows are collected in the highest bin of each histogram. The data are indicated with points with
error bars, and the shaded histograms show the best-fit predictions. The non-W template is not shown stacked, but the W þ jets and
Others templates are stacked. The unshaded histogram is the sum of the fitted shapes.

T. AALTONEN et al. PHYSICAL REVIEW D 82, 112005 (2010)

112005-18



The control samples used to estimate the W þ heavy
flavor predictions and uncertainties are the pretaggedW þ
n jet samples and the taggedW þ 1 jet sample. We use the
ALPGENþ PYTHIA Monte Carlo model to extrapolate the
measurements in the control samples to make predictions
of the W þ heavy flavor background contributions in the
data samples passing our signal selection requirements.
The pretagged W þ n jet samples are used to scale the
ALPGEN predictions, and the tagged W þ 1 jet sample is

used to check and adjust ALPGEN’s predictions of the
fractions of W þ jets events which are Wb �b, Wc �c, and
Wcj events. A full description of the method follows.

The number of pretag W þ jets events is estimated by
assuming that events not included in the predictions based
on Monte Carlo (these are the t�t and diboson predictions—
the single top quark signal is a negligible component of the
pretag sample) or non-W multijet events, are W þ jets
events. That is

N
pretag
Wþjets ¼ N

pretag
data � ð1� f

pretag
non-WÞ � N

pretag
MC ; (7)

whereN
pretag
data is the number of observed events in the pretag

sample, fpretagnon-W is the fraction of non-W events in the pretag
sample, as determined from the fits described in Sec. VB,

and N
pretag
MC is the expected number of pretag t�t and diboson

events. ALPGEN typically underestimates the inclusiveW þ
jets rates by a factor of roughly 1.4 [80]. To estimate the
yields of Wb �b, Wc �c, and Wcj events, we multiply this
data-driven estimate of the W þ jets yield by heavy-flavor
fractions.

The heavy-flavor fractions in W þ jets events are also
not well predicted by our ALPGENþ PYTHIA model. In
order to improve the modeling of these fractions, we
perform fits to templates of flavor-separating variables in
the b-tagged W þ 1 jet data sample, which contains a
vanishingly small component of single top quark signal
events and is not otherwise used in the final signal extrac-
tion procedure. This sample is quite large and is almost
entirely composed of W þ jets events. We include
Monte Carlo models of the small contributions from t�t
and diboson events as separate templates, normalized to
their SM expected rates, in the fits to the data. Care must be
exercised in the estimation of the W þ heavy flavor frac-
tions, because fitting in theW þ 1 jet sample and using the
fit values for the W þ 2 jet and W þ 3 jet samples is an
extrapolation. We seek to estimate the b and charm frac-
tions in these events with as many independent methods as
possible and we assign generous uncertainties that cover
the differences between the several estimations of the rates.

We fit the distribution of the jet-flavor separator bNN
described in Sec. VI. Template distributions are created
based on ALPGENþ PYTHIA Monte Carlo samples for the
W þ LF, Wc �c, Wcj, Wb �b, and Z=	� þ jets processes,
where W þ LF events are those in which none of the jets
accompanying the leptonically decayingW boson contains

a b or c quark. The template distributions for these five
processes are shown in Fig. 14(a). The t�t and diboson
templates are created using PYTHIA Monte Carlo samples.
The non-W model described in Sec. VB is also used. The
W þ LF template’s rate is constrained by the data-derived
mistag estimate, described in Sec. VD, within its uncer-
tainty; the other W þ jets templates’ rates are not con-
strained. The t�t, diboson, Z=	� þ jets, and non-W
contributions are constrained within their uncertainties.
The Wb �b and Wc �c components float in the fit but are
scaled with the same scaling factor, as the same diagrams,
with b and c quarks interchanged, contribute in the ALPGEN

model, and we expect a similar correspondence for the
leading processes in the data. We also let the Wcj fraction
float in the fit. The best fit in theW þ 1 jet sample is shown
in Fig. 14(b).
The fit indicates that the ALPGEN-predictedWb �bþWc �c

fraction must be multiplied by 1:4� 0:4 in order for the
templates to match the data, and the best-fit value of the
Wcj fraction is also 1:4� 0:4 larger than that predicted by
ALPGEN. In addition to the fit to the bNN distribution, we

also fit theW þ heavy flavor fractions in the b-taggedW þ
1-jet sample with another variable, the reconstructed in-
variant mass of the secondary vertex. We perform this
alternate fit in our standard b-tagged sample as well as in
one with loosened b-tag requirements.
We obtain additional information from [81], in which a

direct measurement of the Wc fraction is made using
lepton charge correlations. The central value of this mea-
surement agrees well with the Monte Carlo predictions. We
thus set the multiplicative factor of the Wc component to
1:0� 0:3 for use in the two- and three-jet bins.
The 30% uncertainties assessed on theWb �bþWc �c and

Wcj yields cover the differences in the measured fit values
and also approximates our uncertainty in extrapolating
this fraction to W þ 2 and 3 jet events. We check these
extrapolations in the W þ 2 and 3 jet events as shown
in Figs. 14(c) and 14(d); no additional fit is performed
for this comparison. The rates and flavor compositions
match very well with the observed data in these samples.
The uncertainties in the fit fractions arising from the
uncertainties on the shapes of the bNN templates discussed
in Sec. VI are a negligible component of the total
uncertainty.
Since the yields of W þ heavy flavor events are esti-

mated from b-tagged data using the same SECVTX algo-
rithm as is used for the candidate event selection, the
uncertainty in the b-tagging efficiency does not factor
into the prediction of these rates.

D. Rates of events with mistagged jets

Some W þ LF events pass our event selection require-
ments due to the presence of mistagged jets. A mistagged
jet is one which does not contain a weakly-decaying B or
charm hadron but nonetheless passes all of the secondary
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vertex tagging requirements of the SECVTX algorithm [31].
Jets are mistagged for several reasons: tracking errors such
as hit misassignment or resolution effects cause the recon-
struction of false secondary vertices, the multiprong decays
of long-lived particles like the K0

s and the �0 supply real
secondary vertices, and nuclear interactions with the de-
tector material also provide a real source of non-b=c
secondary vertices.

The estimation of the background yields from tracking
resolution related mistags is accomplished without the use
of detector simulation. The procedure is to measure
the fractions of jets which have negative decay lengths
(defined below) to estimate the fraction of light-flavor
jets which have incorrect positive decay lengths. This
fraction is adjusted in order to account for the asymmetry
between the negative decay length distribution and the
positive decay length distribution, and to account for
the heavy-flavor contribution in the jet data, to obtain
the mistag probability. This probability is multiplied
by an estimate of W þ LF jet yield in each of our
samples, separately for each lepton category and jet-

number category. Each of these steps is described in detail
below.
Events passing inclusive jet triggers with vertices with

negative two-dimensional (2D) decay lengths comprise the
control sample used to estimate the mistag rate. The 2D
decay length Lxy is the magnitude of the displacement from

the primary vertex to the reconstructed secondary vertex,
projected first onto the plane perpendicular to the beam
axis, and then projected again onto the jet axis’s projection
in the plane perpendicular to the beam axis. The sign is
given by the sign of the dot product of the 2D decay length
and the jet momentum. Tracking resolution effects are
expected to produce a symmetric distribution of the 2D
decay length of light-flavor misreconstructed secondary
vertices, centered on zero. A jet is said to be ‘‘negatively
tagged’’ if the transverse decay length significance
Lxy=�Lxy

<�7:5, while Lxy=�Lxy
> 7:5 defines a ‘‘posi-

tively tagged’’ jet.
The per-jet mistag rate is not a single number but rather

it is parametrized as a function of six kinematic variables:
the ET and � of the jet, the number of tracks in the jet, the
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FIG. 14 (color online). Templates (a) of the jet flavor separator bNN for W þ light, W þ charm (adding the Wc �c and Wcj
contributions because of their similar shapes), and W þ bottom events. The template labeled ‘‘Other’’ represents the diboson and
Z=	� þ jets contributions. The strong discrimination bNN provides to separate jet flavors makes it a powerful variable in multivariate
analyses. Panel (b) shows the outcome of the fit to the W þ 1 jet data sample allowing the b, c, and light-flavor components to float as
described in Sec. V. Panels (c) and (d) compare the data and the corresponding predictions in the W þ 2 jet and W þ 3 jet samples. In
panels (b) through (d), the data are indicated with points with error bars, and the model predictions are shown with shaded histograms
stacked in the same order as the legend.
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scalar sum of transverse energy of the tight jets, the number
of reconstructed primary vertices, and the z coordinate of
the primary vertex associated with the jet. Since the nega-
tive tag rate does not fully reflect the positive mistags due
to the decays of long-lived particles and interactions with
the detector material, a correction factor �� for the mistag
asymmetry is applied. The factor � corrects for the asym-
metry between the positive and negative tag rates of light-
flavor jets, and the factor � corrects for the presence of b
jets in the jet samples used to derive the mistag rate. These
correction factors are extracted from fits to distributions of
the invariant mass of the reconstructed secondary vertex in
tagged jets in an inclusive jet sample. A systematic uncer-
tainty is derived from fits to templates of pseudo-c�, which
is defined as Lxy

m
pT

[31], where m is the invariant mass of

the tracks in the displaced vertex, and pT is the magnitude
of the vector sum of the transverse momenta of the tracks in
the displaced vertex. The systematic uncertainty on the
asymmetry factor �� is the largest component of the
uncertainty on the mistag estimate. Another component
is estimated from the differences in the negative tag rates
computed with different jet data samples with varying
trigger requirements. The average rate for jets to be mis-
tagged is approximately 1%, although it depends strongly
on the jet ET.

The per-jet mistag probabilities are multiplied by data-
driven estimates of the W þ LF yields, although we must
subtract the yields of the other components. We subtract
the pretagged W þ heavy flavor contributions from the
pretagged W þ jets yield of Eq. (7) to estimate the W þ
LF yield:

Npretag
WþLF ¼ Npretag

Wþjets � Npretag

Wb �b
� Npretag

Wc �c � Npretag
Wcj : (8)

The pretagged W þ heavy flavor contributions are esti-
mated by dividing the tagged W þ heavy flavor contribu-
tions by the b-tagging efficiencies for each event category.
The mistag parametrization is applied to each of the
Monte Carlo and data samples used in Eqs. (7) and (8),
in order for the total mistag yield prediction not to be
biased by differences in the kinematics of the several W þ
jets flavor categories.

We use ALPGENþ PYTHIA Monte Carlo samples to pre-
dict the kinematics of W þ LF events for use in the analy-
ses of this paper. The mistag rate parametrization described
above is applied to each jet in W þ LF MC events, and
these rates are used to weight the events to predict the yield
of mistagged events in each bin of each histogram of each
variable.

The predicted numbers of background events, signal
events, and the overall expected normalizations are given
in Tables I, for events with exactly one b tag, and in
Table II for events with two or three b tags. Only two
selected events in the data have three b tags, consistent
with the expectation assuming that the third tag is a mistag.
The observed event counts and predicted yields are sum-

marized graphically as functions of jet multiplicity in
Fig. 15.

E. Validation of Monte Carlo simulation

Because multivariate analyses depend so heavily on
properly simulating events, it is very important to validate
the modeling of the distributions in Monte Carlo by check-
ing them with the data. We do this by comparing hundreds
of data and Monte Carlo distributions. We make compari-
sons in control samples in which no jets have been
b-tagged to test the W þ LF shapes, we test the modeling
of W þ 1 jet events to examine W þ heavy flavor fraction
and shapes, we compare the data and Monte Carlo distri-
butions of kinematic variables in the signal regions of
tagged 2- and 3-jet events to check the modeling of all of
these variables, and we verify the modeling of the correla-
tions between the discriminating variables.
A sample of the validation plots we examine is shown in

Figs. 16–18. The close match of the distributions gives
confidence in the results. The validations of the modeling
of other observable quantities are shown later in this paper.
Out of the hundreds of distributions checked for discrep-

ancies, only two distributions in the untagged W þ jets
data were found to be poorly simulated by our
Monte Carlo model: the pseudorapidity of the lowest-
energy jet in both W þ 2 jet and W þ 3 jet events and
the distance between the two jets in�� � space inW þ 2
jet events. These discrepancies are used to estimate sys-
tematic uncertainties on the shapes of our final discrimi-
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FIG. 15 (color online). The number of events predicted and
observed forW þ jets events in which at least one jet is b tagged.
The data are indicated with points, and the shaded histograms
show the signal and background predictions, which are stacked
to form the total prediction. The stacking order is the same as the
legend. The systematic uncertainty on the rates is far too large to
use a simple counting experiment to measure the single top
quark cross section.
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FIG. 16 (color online). Validation plots comparing data and Monte Carlo for basic kinematic quantities for events passing the event
selection requirements with two jets and at least one b tag. The data are indicated with points, and the shaded histograms show the
signal and background predictions which are stacked to form the total prediction. The stacking order follows that of the legend.
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FIG. 17 (color online). Validation plots comparing data and Monte Carlo for basic kinematic quantities for events passing the event
selection requirements with three identified jets and at least one b tag. The data are indicated with points, and the shaded histograms
show the signal and background predictions which are stacked to form the total prediction. The stacking order follows that of the
legend.
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nant variables. These distributions and the discussion of
associated systematic uncertainties are presented in
Sec. VIII.

VI. JET FLAVOR SEPARATOR

In our event selection, we identify b-quark jets by re-
quiring a reconstructed secondary vertex. A large fraction,
48%, of the expected background events with b-tagged jets
have no B hadrons in them at all. This is due to the long
lifetime and the mass of charm hadrons, the false recon-
struction of secondary vertices in light jets, and the fact that
the fraction of pretagged W þ jets events containing B
hadrons is small compared with the charm and light-
flavored components. Tagged jets without B hadrons in
them can be separated from those containing B hadrons by
extending the vertex requirement using reconstructed
quantities that differentiate the two classes of jets. These
quantities take advantage of the long lifetime (� � 1:6 ps)
and the large mass (m � 5 GeV=c2) of B hadrons.

The invariant mass of the tracks in the reconstructed
vertex is larger on average for vertices arising from a B
hadron decay than it is in vertices in jets that do not contain
B hadrons. The number of tracks in the secondary vertex is
also on average larger, and the significance of the trans-
verse decay length (�Lxy=�xy) is larger for B hadron

vertices.
In addition to the vertex properties, attributes of the

tracks in the jet are suitable to discriminate jets containing
a B hadron. Tracks of charged particles originating from
the decay of a B hadron have larger impact parameters and
higher transverse momenta relative to the jet axis. The
presence of semileptonic B hadron decays increases the
number and transverse momenta relative to the jet axis of
electrons and muons in b jets as compared to non-b jets.

To make full use of all discriminating quantities and
their correlations, the variables are used as inputs to a
neural network which is applied to jets selected by the

SECVTX secondary vertex tagger [82]. This network is

trained with simulated events of single top quark produc-
tion and the main background processes, mixed according
to the background estimation. Processes with secondary
vertices due toB hadron decays are treated as signal events,
namely, single top quark, t�t, andWb �b production. Physical
processes containing no b quarks but charm and light
flavors are treated as background: Wc �c, Wcj, and W þ
light jets.
The NEUROBAYES package [83] used for the neural-

network jet flavor separator combines a three-layer feed
forward neural network with a complex robust preprocess-
ing. Transforming the input variables to be distributed as
unit-width Gaussians reduces the influence of long tails;
diagonalization and rotation transform the covariance ma-
trix of the variables into a unit matrix. The neural network
uses Bayesian regularization techniques for the training
process. The network infrastructure consists of one input
node for each input variable plus one bias node, ten hidden
nodes, and one output node which gives a continuous out-
put variable bNN in the interval ½�1; 1�. Jets with secondary
vertices induced by the decay of a B hadron tend to have
bNN values close to 1, while jets with falsely reconstructed
vertices tend to have bNN values near �1.
The significances of the training variables are deter-

mined automatically during the preprocessing in
NEUROBAYES. The correlation matrix of all preprocessed

input variables is calculated, including the correlation of all
variables to the target variable, which isþ1 for jets with B
hadron decays and �1 for all other jets. The variables are
omitted one at a time to determine the loss of total corre-
lation to the target caused by their removal. The variable
with the smallest loss of correlation is discarded leading to
an (n� 1)-dimensional correlation matrix. The same pro-
cedure is repeated with the reduced correlation matrix to
find the least important of the (n� 1) remaining variables.
The significance of each variable is calculated by dividing
the loss of correlation induced by its removal by the square
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FIG. 18 (color online). Validation plots comparing data and Monte Carlo for missing transverse energy for events passing our event
selection requirements with (a) two jets and (b) three jets, both with at least one b tag. The data are indicated with points, and the
shaded histograms show the signal and background predictions which are stacked to form the total prediction. The stacking order
follows that of the legend.
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root of the sample size. We investigated 50 candidate input
variables but chose to include as inputs only those with a
significance larger than 3.0, of which there are 25.

Because the neural-network jet flavor separator is
trained using simulated events, it is essential to verify
that the input and output distributions are modeled well,
and to assess systematic uncertainties where discrepancies
are seen. The shapes of the input variable distributions in
the data are found to be reasonably well reproduced by the
simulation. We also examine the distribution of bNN for
both b signal and non-b background. The b signal distri-
bution is checked with double-SECVTX-tagged dijet events
and compared against Monte Carlo jets with B hadron
decays. One jet in addition is required to have an electron
with a large transverse momentum with respect to the jet
axis, in order to purify further the b content of the sample.
The jet opposite to the electron-tagged jet is probed for its
distribution of the neural-network output. The distribution
of bNN in these jets is well simulated by that of b jets in the
Monte Carlo [82].

To test the response of the network to light-flavored jets,
negative-tagged jets were tested in data and Monte Carlo.
A correction function was derived [82] to adjust for the
small discrepancy observed in the output shape. This cor-
rection function is parametrized in the sum of transverse
energies in the event, the number of tracks per jet, and the
transverse energy of the jet. The correction function is
applied to light-flavored and charm Monte Carlo jets in
the analyses presented in this paper, but not to b jets. The
uncorrected neural-network outputs are used to evaluate
systematic uncertainties on the shapes of the final discrimi-
nant distributions.

The resulting network output bNN distinguishes the b
signal from the charm and light-flavored background pro-
cesses with a purity that increases with increasing bNN, as
can be seen in Fig. 14(a). Furthermore, the network gives
very similar shapes for different b-quark–producing pro-
cesses, indicating that it is sensitive to the properties of
b-quark jets and does not depend on the underlying pro-
cesses that produce them.

Not only is bNN a valuable tool for separating the single
top quark signal from background processes that do not
contain b jets, it is also valuable for separating the different
flavors of W þ jets events, which is crucial in estimating
the background composition. As described in Sec. V, the
distribution of bNN is fit in b-tagged W þ 1 jet events, and
the heavy-flavor fractions for b and charm jets are ex-
tracted. Using also a direct measurement of the Wc rate
[81], predictions are made of the b and charm jet fractions
in the two- and three-jet bins. These predictions are used to
scale the ALPGEN Monte Carlo samples, which are then
compared with the data in the two- and three-jet b-tagged
samples, without refitting the heavy-flavor composition, as
shown in Figs. 14(c) and 14(d). The three-jet sample has a
larger sample of t�t events which are enriched in b jets. The

successful modeling of the changing flavor composition as
a function of the number of identified jets provides con-
fidence in the correctness of the background simulation.
All multivariate methods described here use bNN as an

input variable, and thus we need bNN values for all
Monte Carlo and data events used to model the final
distributions. For the mistagged W þ LF shape prediction,
we use theW þ LFMonte Carlo sample, where the events
are weighted by the data-based mistag prediction for each
taggable jet. This procedure improves the modeling over
what would be obtained if Monte Carlo mistags were used,
as the mistag probabilities are based on the data, and it
increases the sample size we use for the mistag modeling.
An issue that arises is that parametrized mistagged events
do not have bNN values and random values must be chosen
for them from the distribution in light-flavor events. If a
W þ LF event has more than one taggable jet, then random
values are assigned to both jets. These events are used for
both the single-mistag prediction and the double-mistag
prediction with appropriate weights. The randomly chosen
flavor separator values must be the same event-by-event
and jet-by-jet for each of the four analyses in this paper in
order for the super discriminant combination method to be
consistent.
The distributions of bNN for non-W multijet events are

more difficult to predict because the flavor composition of
the jets in these events is poorly known. Specifically, since
a non-W event must have a fake lepton (or a lepton from
heavy-flavor decay), and also mismeasured ET, the flavor
composition of events passing the selection requirements
depends on the details of the detector response, particularly
in the tails of distributions which are difficult to model. It is
necessary therefore to constrain these flavor fractions with
CDF data, and the flavor fractions thus estimated are
specific to this analysis. The non-W event yields are con-
strained by the data as explained in Sec. VB.
The fraction of each flavor: b, charm, and light-flavored

jets (originating from light quarks or gluons), is estimated
by applying the jet flavor separator to b-tagged jets in the
15< ET < 25 GeV sideband of the data. In this sample,
we find a flavor composition of 45% b quark jets, 40% c
quark jets, and 15% light-flavored jets. Each event in the
non-W modeling samples (see Sec. VB) is randomly as-
signed a flavor according to the fraction given above and
then assigned a jet flavor separator value chosen at random
from the appropriate flavor distribution. The fractions of
the non-W events in the signal sample are uncertain both
due to the uncertainties in the sideband fit and the extrapo-
lation to the signal sample. We take as an alternative flavor
composition estimate 60% b quark jets, 30% c quark jets,
and 10% light-flavored jets, which is the most b-like
possibility of the errors on the flavor measurement. This
alternative flavor composition affects the shapes of the final
discriminant distribution through the different flavor sepa-
rator neural-network values.
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VII. MULTIVARIATE ANALYSIS

The search for single top quark production and the
measurement of its cross section present substantial ex-
perimental challenges. Compared with the search for t�t
production, the search for single top quarks suffers from a
lower SM production rate and a larger background. Single
top quark events are also kinematically more similar to
W þ jets events than t�t events are, since there is only one
heavy top quark and thus only one W boson in the single
top quark events, while there are two top quarks, each
decaying to Wb, in t�t events. The most serious challenge
arises from the systematic uncertainty on the background
prediction, which is approximately 3 times the size of the
expected signal. Simply counting events which pass our
selection requirements will not yield a precise measure-
ment of the single top quark cross section no matter how
much data are accumulated because the systematic uncer-
tainty on the background is so large. In fact, in order to
have sufficient sensitivity to expect to observe a signal at
the 5� level, the systematic uncertainty on the background
must be less than one-fifth of the expected signal rate.

Further separation of the signal from the background is
required. Events that are classified as being more signal-
like are used to test for the presence of single top quark
production and measure the cross section, and events that
are classified as being more background-like improve our
knowledge of the rates of background processes. In order
to optimize our sensitivity, we construct discriminant func-
tions based on kinematic and b-tag properties of the events,
and we classify the events on a continuous spectrum that
runs from very signal-like for high values of the discrim-
inants to very background-like for low values of the dis-
criminants. We fit the distributions of these discriminants
to the background and signalþ background predictions,
allowing uncertain parameters, listed in Sec. VIII, to float
in a manner described in Sec. IX.

To separate signal events from background events, we
look for properties of the events that differ between signal
and background. Events from single top quark production
have distinctive energy and angular properties. The back-
grounds, too, have distinctive features which can be ex-
ploited to help separate them. Many of the variables we
compute for each selected candidate event are motivated
by a specific interpretation of the event as a signal event or
a background event. It is not necessary that all variables
used in a discriminant are motivated by the same interpre-
tation of an event, nor do we rely on the correctness of the
motivation for the interpretation of any given event.
Indeed, each analysis is made more optimal when it in-
cludes a mixture of variables that are based on different
ways to interpret the measured particles in the events. We
optimize our analyses by using variables for which the
distributions are maximally different between signal events
and background events, and for which we have reliable
modeling as verified by the data.

We list below some of the most sensitive variables, and
explain why they are sensitive in terms of the differences
between the signal and background processes that they
exploit. The three multivariate discriminants, likelihood
functions, neural networks, and boosted decision trees,
use these variables, or variations of them, as inputs; the
analyses also use other variables. The matrix element
analysis uses all of these features implicitly, and it uses
bNN explicitly. Normalized Monte Carlo predictions
(‘‘templates’’) and modeling comparisons of these varia-
bles are shown in Figs. 19 and 20.
(i) M‘�b: the invariant mass of the charged lepton, the

neutrino, and the b jet from the top quark decay. The
pz of the neutrino, which cannot be measured, is
inferred by constraining M‘� to the W boson mass,
using the measured charged lepton candidate’s mo-
mentum and setting p�

T ¼ ET. The neutrino’s pz is

the solution of a quadratic equation, which may have
two real solutions, one real solution, or two complex
solutions. For the case with two real solutions, the
one with the lower jpzj is chosen. For the complex
case, the real part of the pz solution is chosen. Some
analyses use variations of this variable with different
treatments of the unmeasured jpzj of the neutrino.
The distribution of M‘�b peaks near mt for signal
events, with broader spectra for background events
from different processes.

(ii) HT: the scalar sum of the transverse energies of the
jets, the charged lepton, and ET in the event. This
quantity is much larger for t�t events than for W þ
jets events; single top quark events populate the
region in between W þ jets events and t�t events in
this variable.

(iii) Mjj: the invariant dijet mass, which is substantially

higher on average for events containing top quarks
than it is for events with W þ jets.

(iv) Q� �: the sign of the charge of the lepton times
the pseudorapidity of the light-quark jet [84]. Large
Q� � is characteristic of t-channel single top
quark events, because the light quark recoiling
from the single top quark often retains much of
the momentum component along the z axis it had
before radiating the W boson. It, therefore, often
produces a jet which is found at high j�j.
Multiplying � by the sign of the lepton’s charge
Q improves the separation power of this variable
since 2=3 of single top quark production in the t
channel is initiated by a u quark in the proton or a
( �u) quark in the antiproton, and the sign of the
lepton’s charge determines the sign of the top
quark’s charge and is correlated with the sign of
the � of the recoiling light-flavored jet. The other
1=3 of single top quark production is initiated by
down-type quarks and has the opposite charge-�
correlation. W þ jets and t�t events lack this corre-
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lation, and also have fewer jets passing our ET

requirement at large j�j than the single top quark
signal.

(v) cos�‘j: the cosine of the angle between the charged

lepton and the light-quark jet [20]. For t-channel
events, this tends to be positive because of the V �
A angular dependence of the W boson vertex. This
variable is most powerful when computed in the rest
frame of the top quark.

(vi) bNN: the jet flavor separator described in Sec. VI.
This variable is a powerful tool to separate the
signal from W þ LF and W þ charm events.

(vii) MW
T : the ‘‘transverse mass’’ of the charged lepton

candidate and the ~ET vector. The transverse mass is

defined to be the invariant mass of the projections
of the three-momentum components in the plane
perpendicular to the beam axis, and is so defined as
to be independent of the unmeasured pz of the
neutrino. Events without W bosons in them (but
with fake leptons and mismeasured ET) have lower
MW

T on average than W þ jets events, signal
events, and t�t events. Events with two leptonically
decaying W bosons—some diboson and t�t
events—have even higher average values of MW

T .
The distribution ofMW

T is an important cross-check
of the non-W background rate and shape modeling.

While there are many distinctive properties of a single
top quark signal, no single variable is sufficiently sensitive
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FIG. 19 (color online). Monte Carlo templates (left) and validation plots (right) comparing data and Monte Carlo for variables with
good discriminating power for events passing our selection requirements with two or three identified jets and at least one b tag. The
data are indicated with points, and the shaded histograms show the signal and background predictions which are stacked to form the
total prediction. The stacking order follows that of the legend. Overflows are collected in the highest bin of each histogram.
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to extract the signal with the present data sample. We must
therefore use techniques that combine the discrimination
power of many variables. We use four such techniques in
the W þ jets sample, a multivariate likelihood function, a
matrix element method, an artificial neural network, and a
boosted decision tree. These are described in detail in the
following sections. Each of these techniques makes use of
the most sensitive variables described above in different
ways, and in combination with other variables. The mea-
surements using the separate techniques are highly corre-
lated because the same events are analyzed with each
technique and because many of the same features are
used, but the differences between the techniques provide
more discrimination power in combination as well as

the ability to cross-check each result with the others
separately.
The measured single top quark cross section and the

significance of the result depend on the proper modeling of
the input variable distributions for the signals and the
background processes. We examine the distributions of
all input variables in the selected candidate events, com-
paring the data to the sum of the background and SM signal
predictions, and we also compare the distributions in a
sample of events with no b tags but which pass all other
event selection requirements. The untagged event sample
is much larger than the tagged data sample and has no
overlap with it, providing very precise checks of the
Monte Carlo’s modeling of the data. We do not limit the
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FIG. 20 (color online). Monte Carlo templates (left) and validation plots (right) comparing data and Monte Carlo for variables with
good discriminating power for events passing our selection requirements with two identified jets and at least one b tag. The data are
indicated with points, and the shaded histograms show the signal and background predictions which are stacked to form the total
prediction. The stacking order follows that of the legend. Overflows are collected in the highest bin of each histogram.
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investigation to input variables but also check the distribu-
tions of other kinematic variables not used in the discrim-
inants. We also check the distributions of each discriminant
output variable in events with no b tags. Each of these
investigations is done for each technique, for 2-jet and 3-jet
events separately, and for each category of charged lepton
candidates, requiring the examination of thousands of
histograms.

A. Multivariate likelihood function

A multivariate likelihood function [85] is one method
for combining several sensitive variables. This method
makes use of the relative probabilities of finding an event
in histograms of each input variable, compared between
the signal and the background.

The likelihood function Lk for event class k is con-
structed using binned probability density functions for
each input variable. The probability that an event from
sample k will populate bin j of input variable i is defined
to be fijk. The probabilities are normalized so thatP

jfijk ¼ 1 for all variables i and all samples k. For the

signal, k ¼ 1, and in this paper, four background classes
are used to construct the likelihood function: Wb �b, t�t,
Wc �c=Wc, and W þ LF, which are event classes k ¼ 2, 3,
4, and 5, respectively. Histogram underflows and overflows
are properly accounted for. The likelihood function for an
event is computed in two steps. First, for each recon-
structed variable i, the bin j in which the event falls is
obtained, and the quantities

pik ¼
fijkP

5
m¼1 fijm

(9)

are computed for each variable i and each event class k.
The pik are used to compute

L k ¼
Qnvar

i¼1 pikP5
m¼1

Qnvar
i¼1 pim

; (10)

where nvar is the number of input variables. The signal
likelihood function, referred to as the LF discriminant in
the following, is the one which corresponds to the signal
class of events, L1. This method does not take advantage
of the correlations between input variables, which may be
different between the signal and the background processes.
The predicted distributions of the likelihood functions are
made from fully simulated Monte Carlo and data sets
where appropriate, with all correlations in them, and so
while correlations are not taken advantage of, they are
included in the necessary modeling. The reduced depen-
dence on the correlations makes the LF analysis an impor-
tant cross-check on the other analyses, which make use of
the correlations. More detailed information on this method
can be found in [86,87].

Three likelihood functions are computed for use in the
search for single top quark production. The first, Lt, is
optimized for the t-channel signal; it is used for events with
two jets and one b tag. Another, Ls, is optimized for the
s-channel signal; it is applied to events with two jets and
two b tags. The Ls-based analysis was separately labeled
the LFS analysis in [27]. The third, L3j, is optimized for the

sum of both s- and t-channel single top quark production; it
is applied to events with three jets. The inputs to these three
likelihood functions are described in Secs. VII A 2–
VIIA 4, respectively.

1. Kinematic constraints

The likelihood function input variables include the
squares of the quantum-mechanical matrix elements, using
MADGRAPH [50], computed with the measured four-

vectors. These calculations depend very strongly on the
invariant masses of the ‘� system and the ‘�b system,
which result from the W boson and top quark decay,
respectively. The neutrino leaves no trace in the detector;
ET is an approximation to its transverse momentum, and
p�
z is not measured. The b quark is also imperfectly re-

constructed; a b-tagged jet’s energy is an approximation to
the b quark’s momentum. We solve for the pz of the
neutrino and the energy of the b quark while requiring
that M‘� ¼ MW and M‘�b ¼ mt. The W boson mass con-
straint results in two solutions. If both are real, the one with
the smaller jpzj is used. If both are complex, a minimal
amount of additional ET is added parallel to the jet axis
assigned to be the b from the top quark’s decay until a real
solution for jp�

z j can be obtained. In rare cases in which this
procedure still fails to produce a real jp�

z j, additional ET is
added along the b-jet axis to minimize the imaginary part
of jp�

z j, and then a minimal amount of ET is added per-
pendicular to the b-jet axis until a real jp�

z j is obtained.
The top quark mass constraint can be satisfied by scaling

the b-jet’s energy, holding the direction fixed, untilM‘�b ¼
mt. As the b-jet’s energy is scaled, the ET is adjusted to be
consistent with the change. We then recalculate p�

z using
the MW constraint described above, and the process is
iterated until M‘�b ¼ mt. The resulting four-vectors of
the b quark and the neutrino are then used with the mea-
sured four-vector of the charged lepton in the matrix
element expressions to construct discriminant variables
that separate the signal from the background.

2. 2-Jet t-channel likelihood function

The t-channel likelihood function Lt uses seven varia-
bles, and assumes the b-tagged jet comes from top quark
decay. The variables used are
(i) HT: the scalar sum of the ET’s of the two jets, the

lepton ET, and ET.
(ii) Q� �: the charge of the lepton times the pseudor-

apidity of the jet which is not b tagged.
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(iii) 2
kin: the 

2 of the comparison of the measured b jet

energy and the one the kinematic constraints re-
quire in order to makeM‘�b ¼ mt andM‘� ¼ MW ,
using the nominal uncertainty in the b jet’s
energy. Any additional ET which is added to
satisfy the m‘� ¼ MW constraint is added to 2

kin

using the nominal uncertainty in the ET

measurement.
(iv) cos�‘j: the cosine of the angle between the charged

lepton and the untagged jet in the top quark decay
frame.

(v) Mjj: the invariant mass of the two jets.

(vi) MEt-chan: the differential cross section for the
t-channel process, as computed by MADGRAPH us-
ing thef constrained four-vectors of the b, ‘, and �.

(vii) The jet flavor separator output bNN described in
Sec. VI.

3. 2-Jet s-channel likelihood function

The s-channel likelihood function Ls uses nine varia-
bles. Because these events have exactly two jets, both of
which are required to be b tagged, we decide which jet
comes from the top quark decay with a separate likelihood
function that includes the transverse momentum of the b
quark, the invariant mass of the b quark and the charged
lepton, and the product of the scattering angle of the b jet in
the initial quarks’ rest frame and the lepton charge. To
compute this last variable, the pz of the neutrino has been
solved for using the mW constraint.

The variables input to Ls are
(i) Mjj: the invariant mass of the two jets.

(ii) pjj
T : the transverse momentum of the two-jet system.

(iii) �Rjj: the separation between the two jets in �-�

space.
(iv) M‘�b: the invariant mass of the charged lepton, the

neutrino, and the jet assigned to be the b jet from
the top quark decay.

(v) Ej1
T : the transverse energy of the leading jet, that is,

the jet with the largest ET.
(vi) �j2 : the pseudorapidity of the nonleading jet.

(vii) p‘
T: the transverse momentum of the charged

lepton.
(viii) Q� �: the charge of the lepton times the pseu-

dorapidity of the jet which is not assigned to have
come from the top quark decay.

(ix) The logarithm of the likelihood ratio constructed by
matrix elements computed by MADGRAPH, using
the p�

z solution which maximizes the likelihood
described in the next point. This likelihood ratio

is defined as MEsþMEt

MEsþMEtþMEWbb
.

(x) The output of a kinematic fitter which chooses a
solution of p�

z that maximizes the likelihood of the
solution by allowing the values of p�

x and p
�
y to vary

within their uncertainties. This likelihood is multi-
plied by the likelihood used to choose the b jet that

comes from the top quark, and their product is used
as a discriminating variable.

4. 3-Jet likelihood function

Three-jet events have more ambiguity in the assignment
of jets to quarks than two-jet events. A jet must be assigned
to be the one originating from the b quark from top quark
decay, and another jet must be assigned to be the recoiling
jet, which is a light-flavored quark in the t-channel case
and a b quark in the s-channel case. In all there are six
possible assignments of jets to quarks not allowing for
grouping of jets together. The same procedure described
in Sec. VII A 1 is used on all six possible jet assignments. If
only one jet is b tagged, it is assumed to be the b quark
from top quark decay. If two jets are b tagged, the jet with
the highest � ln2 þ 0:005pT is chosen, where 2 is the
smaller of the outputs of the kinematic fitter, one for each
p�
z solution. This algorithm correctly assigns the b jet 75%

of the time.
There is still an ambiguity regarding the proper assign-

ment of the other jets. If exactly one of the remaining jets is
b tagged, it is assumed to be from a b quark, and the
untagged jet assigned to be the t-channel recoiling jet;
otherwise, the jet with larger ET is assigned to be the
t-channel recoiling jet. In all cases, the smaller jp�

z j solu-
tion is used.
The likelihood function L3j is defined with the following

input variables:
(i) M‘�b: the invariant mass of the charged lepton, the

neutrino, and the jet assigned to be the b jet from the
top quark decay.

(ii) bNN: the output of the jet-flavor separator.
(iii) The number of b-tagged jets.
(iv) Q� �: the charge of the lepton times the pseudor-

apidity of the jet assigned to be the t-channel re-
coiling jet.

(v) The smallest �R between any two jets, where �R is
the distance in the �-� plane between a pair of jets.

(vi) The invariant mass of the two jets not assigned to
have come from top quark decay.

(vii) cos�‘j: the cosine of the angle between the charged

lepton and the jet assigned to be the t-channel
recoiling jet in the top quark’s rest frame.

(viii) The transverse momentum of the lowest-ET jet.
(ix) The pseudorapidity of the reconstructed W boson.
(x) The transverse momentum of the b jet from top

quark decay.

5. Distributions

In each data sample, distinguished by the number of
identified jets and the number of b tags, a likelihood
function is constructed with the input variables described
above. The outputs lie between zero and one, where zero is
background-like and one is signal-like. The predicted dis-
tributions of the signals and the expected background
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processes are shown in Fig. 21 for the four b-tag and jet
categories. The templates, each normalized to unit area, are
shown separately, indicating the separation power for the
small signal. The sums of predictions normalized to our
signal and background models, which are described in
Secs. IV and V, respectively, are compared with the data.
Figure 22(a) shows the discriminant output distributions
for the data and the predictions summed over all four b-tag
and jet categories.

6. Validation

The distributions of the input variables to each likeli-
hood function are checked in the zero-, one-, and two-tag
samples for two- and three-jet events. Some of the most
important variables’ validation plots are shown in Secs VE
and VII. The good agreement seen between the predictions
and the observations in both the input variables and the
output variables gives confidence in the validity of the
technique.

Each likelihood function is also tested in the untagged
sample, although the input variables which depend on
b-tagging are modified in order to make the test. For
example, bNN is fixed to �1 for untagged events, Q� �
uses the jet with the largest j�j instead of the untagged jet,
and the taggable jet with the highest ET is used as the
b-tagged jet in variables which use the b-tagged jet as an
input. The modeling of the modified likelihood function
in the untagged events is not perfect, as can be seen in
Fig. 22(b). This mismodeling is covered by the systematic
uncertainties on the ALPGEN modeling of W þ jets events
which constitute the bulk of the background. Specifically,
using the untagged data as the model for mistagged W þ
jets events as well as shape uncertainties on �Rjj and �j2

cover the observed discrepancy.

7. Background likelihood functions

Another validation of the Monte Carlo modeling and the
likelihood function discriminant technique is given by
constructing discriminants that treat each background con-
tribution separately as a signal. These discriminants then
can be used to check the modeling of the rates and distri-
butions of the likelihood function outputs for each back-
ground in turn by purifying samples of the targeted
backgrounds and separating them from the other compo-
nents. The same procedure of Eq. (10) is followed, except
k ¼ 2, 3, 4, or 5, corresponding to the Wb �b, t�t, Wc �c=Wc,
and the W þ LF samples, respectively, changing only the
numerator of Eq. (10). Each of these discriminants acts in
the same way as the signal discriminant, but instead it
separates one category of background from the other cat-
egories and also from the signals. Distributions of
LWþbottom, Lt�t, LWþcharm, and LWþLF are shown in
Fig. 23 for b-tagged W þ 2 jet events passing our event
selection. The modeling of the rates and shapes of these
distributions gives us confidence that the individual back-

ground rates are well predicted and that the input variables
to the likelihood function are well modeled for the main
background processes, specifically in the way that they are
used for the signal discriminant.

B. Matrix element method

The ME method relies on the evaluation of event prob-
abilities for signal and background processes based on
calculations of the relevant SM differential cross sections.
These probabilities are calculated on an event-by-event
basis for the signal and background hypotheses and quan-
tify how likely it is for the event to have originated from a
given signal or background process. Rather than combine
many complicated variables, the matrix element method
uses only the measured energy-momentum four-vectors of
each particle to perform its calculation. The mechanics of
the method as it is used here are described below. Further
information about this method can be found in [88].

1. Event probability

If we could measure the four-vectors of the initial and
final-state particles very precisely, the event probability for
a specific process would be

Pevt  d�

�
;

where the differential cross section is given by [7] and

d� ¼ ð2�Þ4jMj2
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq1 	 q2Þ2 �m2

q1m
2
q2

q d�nðq1 þ q2;p1; . . . ; pnÞ;

(11)

where M is the Lorentz-invariant matrix element for the
process under consideration; q1, q2 and mq1 , mq2 are the

four momenta and masses of the incident particles; and
d�n is the n-body phase space given by [7]

d�nðq1 þ q2;p1; . . . ; pnÞ

¼ �4

�
q1 þ q2 �

Xn
i¼1

pi

�Yn
i¼1

d3pi

ð2�Þ32Ei

: (12)

However, several effects have to be considered: (1) the
partons in the initial state cannot be measured, (2) neutrinos
in the final state are not measured directly, and (3) the
energy resolution of the detector cannot be ignored. To
address the first point, the differential cross section is
weighted by parton distribution functions. To address the
second and third points, we integrate over all particle
momenta which we do not measure (the momentum of
the neutrino), or do not measure well, due to resolution
effects (the jet energies). The integration gives a weighted
sum over all possible parton-level variables y leading to the
observed set of variables x measured with the CDF detec-
tor. The mapping between the particle variables y and the
measured variables x is established with the transfer func-
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FIG. 21 (color online). Templates of predictions for the signal and background processes, each scaled to unit area (left) and
comparisons of the data with the sum of the predictions (right) of the likelihood function for each selected data sample. Single top
quark events are predominantly found on the right-hand sides of the histograms while background events are mostly found on the left-
hand sides. The two-jet, one-b-tag plots are shown on a logarithmic vertical scale for clarity, while the others are shown on a linear
scale. The data are indicated by points with error bars, and the predictions are shown stacked, with the stacking order following that of
the legend.
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tion Wðy; xÞ, which encodes the detector resolution and is
described in Sec. VII B 2. Thus, the event probability takes
the form

PðxÞ ¼ 1

�

Z
d�ðyÞdq1dq2½fðjqz1=pbeamjÞfðjqz2=pbeamjÞ

�Wðy; xÞ�; (13)

where d�ðyÞ is the differential cross section in terms of the
particle variables; fðqzi =pbeamÞ are the PDFs, which are
functions of the fraction of the proton momentum pbeam

carried by quark i. The initial quark momentum is assumed
to be in the direction of the beam axis for purposes of this
calculation. Substituting Eqs. (11) and (12) into Eq. (13)
transforms the event probability to
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FIG. 22 (color online). Comparison of the data with the sum of the predictions of the likelihood function for the sum of all selected
data samples (left) and for two-jet one-tag events (right) applied to the untagged sideband, the latter with appropriate modifications to
variables that rely on b tagging. The stacking order follows that of the legend. The discrepancies between the prediction and the
observation in the untagged sideband seen here are covered by systematic uncertainties on the W þ jets background model.
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FIG. 23 (color online). Distributions of LWþbottom, Lt�t, LWþcharm, and LWþLF for b-tagged W þ 2 jet events passing our event
selection. The signal and background contributions are normalized to the same predicted rates that are used in the signal extraction
histograms. In each plot, the background process which the discriminant treats as signal is stacked on top of the other background
processes. The stacking orderings follow those of the legends.
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PðxÞ ¼ 1

�

Z
2�4jMj2 fðEq1=EbeamÞ

Eq1

� fðEq2=EbeamÞ
Eq2

Wðy; xÞd�4dEq1dEq2 ; (14)

where we have used the approximationffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq1 	 q2Þ2 �m2

q1m
2
q2

q
’ 2Eq1Eq2 , neglecting the masses

and transverse momenta of the initial partons.
We calculate the squared matrix element jMj2 for the

event probability at LO by using the helicity amplitude
subroutines for Feynman diagram evaluations (HELAS)
package [89]. The correct subroutine calls for a given
process are automatically generated by MADGRAPH [50].
We calculate event probabilities for all significant signal
and background processes that can be easily modeled to
first order: s-channel and t-channel single top quark pro-
duction as well as the Wb �b, Wcg, Wgg (shown in Fig. 8),
and t�t (Fig. 9) processes. TheWcg andWgg processes are
only calculated for two-jet events because they have very
little contribution to three-jet background.

The matrix elements correspond to fixed-order tree-level
calculations and thus are not perfect representations of the
probabilities for each process. Since the integrated matrix
elements are not interpreted as probabilities but instead are
used to form functions that separate signal events from
background events, the choice of the matrix element cal-
culation affects the sensitivity of the analysis but not its
accuracy. The fully simulated Monte Carlo uses parton
showers to approximate higher-order effects on kinematic
distributions, and systematic uncertainties are applied to
the Monte Carlo modeling in this analysis in the same way
as for the other analyses.

While the matrix element analysis does not directly use
input variables that are designed to separate signals from
backgrounds based on specific kinematic properties such
as M‘�b, the information carried by these reconstructed
variables is represented in the matrix element probabilities.
ForM‘�b in particular, the pole in the top quark propagator
in M provides sensitivity to this reconstructed quantity.
While the other multivariate analyses use the best-fit kine-
matics corresponding to the measured quantities on each
event, the matrix element analysis, by integrating over the
unknown parton momenta, extracts more information, also
using the measurement uncertainties.

2. Transfer functions

The transfer function, Wðy; xÞ, is the probability of
measuring the set of observable variables x given specific
values of the parton variables y. In the case of well-
measured quantities, Wðy; xÞ is taken as a � function (i.e.
the measured momenta are used in the differential cross-
section calculation). When the detector resolution cannot
be ignored, Wðy; xÞ is a parametrized resolution function

based on fully simulated Monte Carlo events. For unmeas-
ured quantities, such as the three components of the mo-
mentum of the neutrino, the transfer function is constant.
Including a transfer function between the neutrino’s trans-

verse momentum and ~ET would double-count the trans-
verse momentum sum constraint. The choice of the transfer
function affects the sensitivity of the analysis but not its
accuracy, since the same transfer function is applied to
both the data and the Monte Carlo samples.
The energies of charged leptons are relatively well mea-

sured with the CDF detector and we assume � functions for
their transfer functions. The angular resolution of the
calorimeter and the muon chambers is also good and we
assume � functions for the transfer functions of the
charged lepton and jet directions. The resolution of jet
energies, however, is broad and it is described by a transfer
function WjetðEparton; EjetÞ.
The jet energy transfer functions map parton energies to

measured jet energies after correction for instrumental
detector effects [49]. This mapping includes effects of
radiation, hadronization, measurement resolution, and en-
ergy outside the jet cone not included in the reconstruction
algorithm. The jet transfer functions are obtained by pa-
rametrizing the jet response in fully simulated Monte Carlo
events. We parametrize the distribution of the difference
between the parton and jet energies as a sum of two
Gaussian functions: one to account for the sharp peak
and one to account for the asymmetric tail. We determine
the parameters of the WjetðEparton; EjetÞ by performing a

maximum likelihood fit to jets in events passing the selec-
tion requirements. The jets are required to be aligned
within a cone of �R< 0:4 with a quark or a gluon coming
from the hard scattering process.
We create three transfer functions: one for b jets, which

is constructed from the b quark from top quark decay in
s-channel single top quark events; one for light jets, which
is constructed from the light quark in t-channel single top
quark events; and one for gluons, which is constructed
from the radiated gluon in Wcg events. In each process,
the appropriate transfer function is used for each final-state
parton.

3. Integration

To account for poorly measured variables, the differen-
tial cross section must be integrated over all variables—14
variables for two-jet events, corresponding to the momen-
tum vectors of the four final-state particles (12 variables)
and the longitudinal momenta of the initial-state partons (2
variables). There are 11 delta functions inside the integrals:
four for total energy and momentum conservation and
seven in the transfer functions (three for the charged lep-
ton’s momentum vector and four for the jet angles). The
calculation of the event probability therefore involves a
three-dimensional integration. The integration is per-
formed numerically over the energies of the two quarks
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and the longitudinal momentum of the neutrino (p�
z ). For

three-jet events, the additional jet adds one more dimen-
sion to the integral.

Because it is not possible to tell which parton resulted in
a given jet, we try all possible parton combinations, using
the b-tagging information when possible. These probabil-
ities are then added together to create the final event
probability.

Careful consideration must be given to t�t events falling
into the W þ 2 jet and W þ 3 jet samples because these
events have final-state particles that are not observed. In
two-jet events, these missing particles could be a charged
lepton and a neutrino (in the case of t�t ! ‘þ�‘‘

0� ��‘0b �b
decays) or two quarks (in the case of t�t ! ‘þ�‘q �q

0b �b
decays), and since both of these are decay products of a
W boson, we treat the matrix element in either case as
having a final-state W boson that is missed in the detector.
The particle assignment is not always correct, but the
purpose of the calculation is to construct variables that
have maximal separation power between signal and back-
ground events, and not that they produce a correct assign-
ment of particles in each event. The choice of which
particles are assumed to have been missed is an issue of
the optimization of the analysis and not of the validity of
the result. We integrate over the three components of the
hypothetical missing W boson’s momentum, resulting in a
six-dimensional integral. In the three-jet case, we integrate
over the momenta of one of the quarks from the W boson
decay.

The numerical integration for the simpler two-jet s- and
t-channel and Wb �b diagrams is performed using an adap-
tation of the CERNLIB routine RADMUL [90]. This is a
deterministic adaptive quadrature method that performs

well for smaller integrations. For the higher-dimensional
integrations needed for the three-jet and t�tmatrix elements,
a faster integrator is needed. We use the DIVONNE algo-
rithm implemented in the CUBA library [91], which uses a
Monte Carlo based technique of stratified sampling over
quasirandom numbers to produce its answer.

4. Event probability discriminant

Event probabilities for all processes are calculated for
each event for both data events and Monte Carlo simulated
events. For each event, we use the event probabilities as
ingredients to build an event probability discriminant
(EPD), a variable for which the distributions of signal
events and background events are as different as possible.
Motivated by the Neyman-Pearson lemma [92], which
states that a likelihood ratio is the most sensitive variable
for separating hypotheses, we define the EPD to be
EPD ¼ Ps=ðPs þ PbÞ, where Ps and Pb are estimates of
the signal and background probabilities, respectively. This
discriminant is close to zero if Pb � Ps and close to unity
if Ps � Pb. There are four EPD functions in all, for W þ
two- or three-jet events with one or two b tags.
Several background processes in this analysis have no b

jet in the final state, and the matrix element probabilities do
not include detector-level discrimination between b jets
and non-b jets. In order to include this extra information,
we define the b-jet probability as b ¼ ðbNN þ 1Þ=2 and use
it to weight each matrix element probability by the b flavor
probability of its jets. Since single top quark production
always has a b quark in the final state, we write the event-
probability-discriminant as

EPD ¼ b 	 Ps

b 	 ðPs þ PWb �b þ Pt�tÞ þ ð1� bÞ 	 ðPWc �c þ PWcg þ PWggÞ ; (15)

where Ps ¼ Ps-channel þ Pt-channel. Each probability is mul-
tiplied by an arbitrary normalization factor, which is
chosen to maximize the expected sensitivity. Different
values are chosen in each b-tag and jet category in order
to maximize the sensitivity separately in each. The result-
ing templates and distributions are shown for all four EPD
functions in their respective selected data samples in
Fig. 24. All of them provide good separation between
single top quark events and background events. The
sums of predictions normalized to our signal and
background models, which are described in Sections IV
and V, respectively, are compared with the data. Fig-
ure 25(a) corresponds to the sum of all four b-tag and jet
categories.

5. Validation

We validate the performance of the Monte Carlo to
predict the distribution of each EPD by checking the
untagged W þ jets control samples, setting bNN ¼ 0:5 so
that it does not affect the EPD. An example is shown in
Fig. 25(b), for W þ two-jet events. The agreement in this
control sample gives us confidence that the information
used in this analysis is well modeled by the Monte Carlo
simulation.
Because the t�t background is the most signal-like of the

background contributions in this analysis, the matrix ele-
ment distribution is specifically checked in the b-tagged
four-jet control sample, which is highly enriched in t�t
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FIG. 24 (color online). Templates of predictions for the signal and background processes, each scaled to unit area (left) and
comparisons of the data with the sum of the predictions (right) of the ME discriminant EPD for each selected data sample. Single top
quark events are predominantly found on the right-hand sides of the histograms while background events are mostly found on the left-
hand sides. The data are indicated by points with error bars, and the predictions are shown stacked, with the stacking order following
that of the legend.
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events. Each EPD function is validated in this way, for two
or three jets, and one or two b tags, using the highest-ET

jets in W þ four-jet events with the appropriate number of
b tags. An example is shown in Fig. 26 for the two-jet
one-b-tag EPD function.

C. Artificial neural network

A different approach uses artificial neural networks to
combine sensitive variables to distinguish a single top
quark signal from background events. As with the neural-
network flavor separator bNN described in Sec. VI, the
NEUROBAYES [83] package is used to create the neural

networks. We train a different neural network in each

selected data sample—indexed by the number of jets, the
number of b-tagged jets, and whether the charged lepton
candidate is a triggered lepton or an EMC lepton. For all
samples, the t-channel Monte Carlo is used as the signal
training sample except for the two-jet two-b-tag events, in
which s-channel events are treated as a signal. The back-
ground training sample is a mix of standard model pro-
cesses in the ratios of the estimated yields given in Tables I
and II.
Each training starts with more than 50 variables, but the

training procedure removes those with no significant dis-
criminating power, reducing the number to 11–18 varia-
bles. Each neural network has one hidden layer of 15 nodes
and one output node.
As in other cases, the transverse momentum of the

neutrino is inferred from the ET of the event. The compo-
nent of the momentum of the neutrino along the beam axis
is calculated from the assumed mass of the W boson and
the measured energy and momentum of the charged lepton.
A quadratic equation in p�

z must be solved. If there is one
real solution, we use it. If there are two real solutions, we
use the one with the smaller jp�

z j. If the two solutions are
complex, a kinematic fit which varies the transverse com-

ponents of ~ET is performed to find a solution as close as

possible to ~ET [93] which results in a real p�
z .

If only one jet is b-tagged, it is assumed to be from top
quark decay. If there is more than one b-tagged jet, the jet
with the largest Q‘ � � is chosen. More detailed informa-
tion about this method can be found in [62].

1 Input variables

The variables used in each network are summarized in
Table III. The following are descriptions of the variables:
(i) M‘�b: the reconstructed top quark mass.
(ii) M‘�bb: the reconstructed mass of the charged lep-

ton, the neutrino, and the two b-tagged jets in the
event.
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FIG. 25 (color online). Comparison of the data with the sum of the predictions of the matrix element discriminant for the sum of all
selected data samples (left). The discriminant output for two-jet one-b-tag events applied to the untagged W þ 2 jet control sample
(right) shows that the Monte CarloW þ 2 jet samples model the ME distribution of the data well. The data are indicated by points with
error bars, and the predictions are shown stacked, with the stacking order following that of the legend.
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FIG. 26 (color online). The event probability discriminant for
two-jet one-b-tag events applied to the b-tagged W þ 4 jet
control sample, showing that the Monte Carlo t�t samples model
the EPD distribution of the data well. The data are indicated by
points with error bars, and the predictions are shown stacked,
with the stacking order following that of the legend.
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(iii) M‘�b
T : the transverse mass of the reconstructed top

quark.
(iv) Mjj: the invariant mass of the two jets. In the three-

jet networks, all combinations of jets are included
as variables.

(v) MW
T : the transverse mass of the reconstructed W

boson.

(vi) E
btop
T : the transverse energy of the b quark from top

decay.

(vii) Ebother
T : the transverse energy of the b quark not

from top decay.

(viii)
P

Ejj
T : the sum of the transverse energies of the

two most energetic jets. In the three-jet one-tag
network, all combinations of two jets are used to

construct separate
P

Ejj
T input variables.

(ix) Elight
T : the transverse energy of the untagged or

lowest-energy jet.

(x) p‘
T: the transverse momentum of the charged lepton.

(xi) p‘�jj
T : the magnitude of the vector sum of the trans-

verse momentum of the charged lepton, the neu-
trino, and all the jets in the event.

(xii) HT: the scalar sum of the transverse energies of the
charged lepton, the neutrino, and all the jets in the
event.

(xiii) ET: the missing transverse energy.
(xiv) ET;sig: the significance of the missing transverse

energy ET, as defined in Eq. (4).
(xv) cos�‘j: the cosine of the angle between the charged

lepton and the untagged or lowest-energy jet in the
top quark’s reference frame.

(xvi) cos�W‘W : the cosine of the angle between the

charged lepton and the reconstructed W boson in
the W boson’s reference frame.

(xvii) cos�t‘W : the cosine of the angle between the

charged lepton and the reconstructed W boson
in the top quark’s reference frame.

(xviii) cos�tjj: the cosine of the angle between the two

most energetic jets in the top quark’s reference
frame.

(xix) Q� �: the charge of the lepton multiplied by the
pseudorapidity of the untagged jet.

(xx) �‘: the pseudorapidity of the charged lepton.
(xxi) �W : the pseudorapidity of the reconstructed W

boson.
(xxii)

P
�j: the sum of the pseudorapidities of all jets.

(xxiii) ��jj: the difference in pseudorapidity of the two

most energetic jets. In the three-jet two-tag net-
work, the difference between the two least ener-
getic jets is also used.

(xxiv) ��t;light: the difference in pseudorapidity be-

tween the untagged or lowest-energy jet and the
reconstructed top quark.

(xxv)
ffiffiffî
s

p
: the energy of the center-of-mass system of

the hard interaction, defined as the ‘�b system
plus the recoiling jet.

(xxvi) Centrality: the sum of the transverse energies of

the two leading jets divided by
ffiffiffî
s

p
.

(xxvii) bNN: the jet flavor separator neural-network out-
put described in Sec. VI. For two-tag events, the
sum of the two outputs is used.

2. Distributions

In each data sample, distinguished by the number of
identified jets and the number of b tags, a neural network is
constructed with the input variables described above. The
outputs lie between �1:0 and þ1:0, where �1:0 is
background-like and þ1:0 is signal-like. The predicted
distributions of the signals and the expected background
processes are shown in Fig. 27 for the four b-tag and jet
categories. The templates, each normalized to unit area, are
shown separately, indicating the separation power for the

TABLE III. Summary of variables used in the different neural
networks in this analysis. An explanation of the variables is
given in the text.

2-jet 3-jet

Variable 1-tag 2-tag 1-tag 2-tag

M‘�b X X X

M‘�bb X X

M‘�b
T X X X X

Mjj X X X X

MW
T X X

E
btop
T X X

Ebother
T XP
Ejj
T X X

E
light
T X X

p‘
T X

p‘�jj
T X X

HT X X

ET X

ET;sig X

cos�‘j X X X

cos�W‘W X

cos�t‘W X

cos�tjj X X

Q� � X X X

�‘ X

�W X XP
�j X X

��jj X X

��t;light Xffiffiffî
s

p
X

Centrality X

Jet flavor separator X X X
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FIG. 27 (color online). Templates of predictions for the signal and background processes, each scaled to unit area (left) and
comparisons of the data with the sum of the predictions (right) of the neural-network output for each signal region. Single top quark
events are predominantly found on the right-hand sides of the histograms while background events are mostly found on the left-hand
sides. The data are indicated by points with error bars, and the predictions are shown stacked, with the stacking order following that of
the legend.
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small signal. The sums of predictions normalized to our
signal and background models, which are described in
Secs. IV and V, respectively, are compared with the data.
Figure 28(a) corresponds to the sum of all four b-tag and
jet categories.

3. Validation

The distributions of the input variables to each neural
network are checked in the zero-, one-, and two-tag
samples for two- and three-jet events. Comparisons of
the observed and predicted distributions of some of the
variables which confer the most sensitivity are shown in
Secs. VE and VII. The good agreement seen between the
predictions and the observations in both the input variables
and the output variables gives us confidence in the
Monte Carlo modeling of the output discriminant
distributions.

We validate the performance of each network by check-
ing it in the untagged sideband, appropriately modifying
variables that depend on tagging information. An example
is shown in Fig. 28(b). The agreement in this sideband

gives us confidence that the information used in this analy-
sis is well modeled by the Monte Carlo simulation.

4. High NN discriminant output

To achieve confidence in the quality of the signal con-
tribution in the highly signal-enriched region of the NN
discriminant, further studies have been conducted. By
requiring a NN discriminant output above 0.4 in the event
sample with 2 jets and 1 b tag, a signal-to-background ratio
of about 1:3 is achieved. This subsample of signal candi-
dates is expected to be highly enriched with signal candi-
dates and is simultaneously sufficient in size to check the
Monte Carlo modeling of the data. We compare the expec-
tations of the signal and background processes to the
observed data of this subsample in various highly discrimi-
nating variables. The agreement is good, as is shown, for
example, for the invariant mass of the charged lepton, the
neutrino, and the b-tagged jet M‘�b in Fig. 29(a). Since
only very signal-like background events are within this
subsample, the background shapes are very similar to the
signal shapes. This is because the M‘�b is one of the most
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FIG. 28 (color online). Comparison of the data with the sum of the predictions of the neural-network output for the sum of all
selected signal data samples (left) and the neural-network output for two-jet one-b-tag events applied to the untagged control sample,
showing close modeling of the data and good control over theW þ light-flavor shape. The data are indicated by points with error bars,
and the predictions are shown stacked, with the stacking order following that of the legend.
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FIG. 29 (color online). Comparison of the predictions and the data for M‘�b for events with an output above 0.4 of the original NN
(left) and a specially trained NN0 (right) discriminant. The data are indicated by points with error bars, and the predictions are shown
stacked, with the stacking order following that of the legend.
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important input variables of the NN discriminant, leading
to a signal-like sculpted shape for background events in
this subsample. As a consequence, the shape of this distri-
bution does not carry information as to whether a signal is
present or absent.

To overcome the similar shapes of signal and back-
ground events in the signal-enriched subsample, a special
neural-network discriminant (NN0) is constructed in ex-
actly the same way as the original, but without M‘�b as an
input. Since M‘�b is highly correlated with other original
neural-network input variables, such as M‘�b

T (with a cor-
relation coefficient of 65%), HT (45%), and Mjj (24%),

these variables are also omitted for the training of the
special NN0 discriminant. Despite the loss of discrimina-
tion through the removal of some very important input
variables, the NN0 discriminant is still powerful enough
to enrich a subsample of events with signal. With the
requirement NN0 > 0:4, the signal-to-background ratio is
somewhat reduced compared with that of the original NN
discriminant. The benefit of this selection is that the pre-
dicted distributions of the signal and background are now
more different from each other. We predict that back-
ground events are dominant at lower values of M‘�b while
the single top quark signal is concentrated around the
reconstructed top quark mass of 175 GeV=c2, as shown
in Fig. 29(b). Because of the more distinct shapes of the
signal and background expectations, the observed shape of
the data distribution is no longer explicable by the back-
ground prediction alone; a substantial amount of signal
events is needed to describe the observed distribution.
The NN0 network is used only for this cross-check; it is
not included in the main results of this paper.

D. Boosted decision tree

A decision tree classifies events with a series of binary
choices; each choice is based on a single variable. Each
node in the tree splits the sample into two subsamples, and
a decision tree is built using those two subsamples, con-
tinuing until the number of events used to predict the signal
and background in a node drops below a set minimum. In
constructing a tree, for each node, the variable used to split
the node’s data into subsamples and the value of the
variable on the boundary of the two subsamples are chosen
to provide optimal separation between signal and back-
ground events. The same variable may be used in multiple
nodes, and some variables may not be used at all. This
procedure results in a series of final nodes with maximally
different signal-to-background ratios.

Decision trees allow many input variables to be com-
bined into a single output variable with powerful discrimi-
nation between signal and background. Additionally,
decision trees are insensitive to the inclusion of poorly
discriminating input variables because the training algo-
rithm will not use nondiscriminating variables when con-
structing its nodes. In this analysis, we train a different

BDT in each data sample. We use the TMVA [94] package
to perform this analysis [95]. The boosting procedure is
described below.
The criterion used to choose the variable used to split

each node’s data and to set the value of the variable on the
boundary is to optimize the Gini index [96] pð1� pÞ ¼
sb=ðsþ bÞ2, where p ¼ s=ðsþ bÞ is the purity and s and b
are the number of signal and background events in the
node, respectively.
A shortcoming of decision trees is their instability with

respect to statistical fluctuations in the training sample
from which the tree structure is derived. For example, if
two input variables exhibit similar separation power, a
fluctuation in the training sample may cause the algorithm
to decide to use one variable early in the decision chain,
while a slightly different training sample may result in a
tree which uses the other variable in its place, resulting in a
substantially different tree.
This problem is overcome by a boosting [97] procedure

that extends this concept from one tree to several trees
which form a ‘‘forest’’ of decision trees. The trees are
derived from the same training ensemble by reweighting
events, and are finally combined into a single classifier
which is given by a weighted average of the individual
decision trees. Boosting stabilizes the response of the
decision trees with respect to fluctuations in the training
sample and is able to considerably enhance the perform-
ance with respect to a single tree.
This analysis uses the ADABOOST [97] (adaptive boost)

algorithm, in which the events that were misclassified in
one tree are multiplied by a common boost weight � in the
training of the next tree. The boost weight is derived from
the fraction of misclassified events, r, of the previous tree,

� ¼ 1� r

r
: (16)

The resulting event classification yBDTðxÞ for the boosted
tree is given by

yBDTðxÞ ¼
X

i2forest

lnð�iÞ 	 hiðxÞ; (17)

where the sum is over all trees in the forest. Large (small)
values of yBDTðxÞ indicate a signal-like (background-like)
event. The result hiðxÞ of an individual tree can either be
defined to be þ1 (� 1) for events ending up in a signal-
like (background-like) leaf node according to the majority
of training events in that leaf, or hiðxÞ can be defined as the
purity of the leaf node in which the event is found. We
found that the latter option performs better for single-tag
samples, while the double tag samples—which have fewer
events—perform better when trained with the former
option.
While nonoverlapping samples of Monte Carlo events

are used to train the trees and to produce predictions of the
distributions of their outputs, there is the possibility of
‘‘over-training’’ the trees. If insufficient Monte Carlo
events are classified in a node of a tree, then the training
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FIG. 30 (color online). Templates of predictions for the signal and background processes, each scaled to unit area (left) and
comparisons of the data with the sum of the predictions (right) of the boosted decision tree output for each data sample. Single top
quark events are predominantly found on the right-hand sides of the histograms while background events are mostly found on the left-
hand sides. The data are indicated by points with error bars, and the predictions are shown stacked, with the stacking order following
that of the legend.
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procedure can falsely optimize to separate the few events it
has in the training sample and perform worse on a statis-
tically independent testing sample. In order to remove
statistically insignificant nodes from each tree we employ
the cost complexity [98] pruning algorithm. Pruning is the
process of cutting back a tree from the bottom up after it
has been built to its maximum size. Its purpose is to remove
statistically insignificant nodes and thus reduce the over-
training of the tree.

The background processes included in the training are t�t
and Wb �b for double-b-tag channels, and those as well as
Wc and W þ LF for the single-b-tag channels. Including
the nondominant background processes is not found to
significantly increase the performance of the analysis.

1. Distributions

In each data sample, distinguished by the number of
identified jets and the number of b tags, a BDT is con-
structed with the input variables described above. The
output for each event lies between �1:0 and 1.0, where
�1:0 indicates the event has properties that make it appear
much more to be a background event than a signal event,
and 1.0 indicates the event appears much more likely to
have come from a single top signal. The predicted distri-
butions of the signals and the expected background pro-
cesses are shown in Fig. 30 for the four b-tag and jet
categories. The templates, each normalized to unit area,
are shown separately, indicating the separation power for
the small signal. The sums of predictions normalized to our
signal and background models, which are described in
Secs. IV and V, respectively, are compared with the data.
Figure 31(a) corresponds to the sum of all four b-tag and
jet categories.

2. Validation

The distributions of the input variables to each BDT are
checked in the zero, one, and two b-tag samples for two-

and three-jet events, and also in the four-jet sample con-
taining events with at least one b tag. Some of the most
important variables’ validation plots are shown in
Secs. VE and VII. The good agreement seen between the
predictions and the observations in both the input variables
and the output variables gives us confidence in the
Monte Carlo modeling of the distributions of the discrimi-
nant outputs.
We validate the modeling of the backgrounds in each

boosted tree by checking it in the sample of events with no
b tags, separately for events with two and three jets. For
variables depending on b-tagging information like M‘�b

and Q� �, the leading jet is chosen as the b-tagged jet,
and for the bNN variable the output value is randomly
taken from a W þ LF template. An example is shown in
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FIG. 31 (color online). Comparison of the data with the sum of the predictions of the BDT output for the sum of all selected data
samples (left) and the BDT output for two-jet one-b-tag events applied to the untagged two-jet control sample (right), where the
dominant contributing process is W þ light-flavored jets. The data are indicated by points with error bars, and the predictions are
shown stacked, with the stacking order following that of the legend.
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FIG. 32 (color online). The BDT output for four-jet events
containing one or more b tags. The dominant source of back-
ground is t�t events. The data are indicated with points and the
stacked histograms show the prediction, scaled to the total data
rate, with the stacking order following that of the legend.

T. AALTONEN et al. PHYSICAL REVIEW D 82, 112005 (2010)

112005-42



Fig. 31(b), which shows the two-jet, one b-tag BDT tested
with the two-jet, zero b-tag sample. The dominant source
of background tested in Fig. 31(b) is W þ LF, and the
ALPGEN Monte Carlo predicts the BDT output very well.

We further test the four-jet sample with one or more b-tags,
shown in Fig. 32, taking the leading two jets to test the two-
jet, one b-tag BDT. The dominant background in this test is
t�t, and the good modeling of the distribution of the output
of the BDT by PYTHIA raises our confidence that this
background, too, is modeled well in the data samples.

VIII. SYSTEMATIC UNCERTAINTIES

The search for single top quark production and the
measurement of the cross section require substantial input
from theoretical models, Monte Carlo simulations, and
extrapolations from control samples in data. We assign
systematic uncertainties to our predictions and include
the effects of these uncertainties on the measured cross
sections as well as the significance of the signal.

We consider three categories of systematic uncertainty:
uncertainty in the predicted rates of the signal and back-
ground processes, uncertainty in the shapes of the distri-
butions of the discriminant variables, and uncertainty
arising from the limited number of Monte Carlo events
used to predict the signal and background expectations in
each bin of each discriminant distribution. Sources of
uncertainty may affect multiple signal and background
components. The effects of systematic uncertainty from
the same source are considered to be fully correlated. For

example, the integrated luminosity estimate affects the
predictions of the Monte Carlo based background pro-
cesses and the signal, so the uncertainty on the integrated
luminosity affects all of these processes in a correlated
way. The effects of different sources of systematic uncer-
tainty are considered to be uncorrelated.
The effects of all systematic uncertainties are included

in the hypothesis tests and cross-section measurements
performed by each analysis, as described in Sec. IX.
Detailed descriptions of the sources of uncertainty and
their estimation are given below.

A. Rate uncertainties

Rate uncertainties affect the expected contributions of
the signal and background samples. Some sources have
asymmetric uncertainties. All rate uncertainties are as-
signed truncated Gaussian priors, where the truncation
prevents predictions from being negative for any source
of signal or background. The sources of rate uncertainties
in this analysis are described below, and their impacts on
the signal and background predictions are summarized in
Table IV.
(1) Integrated luminosity: A symmetric uncertainty of

�6% is applied to all Monte Carlo based predic-
tions. This uncertainty includes the uncertainty in
the p �p inelastic cross section as well as the uncer-
tainty in the acceptance of CDF’s luminosity moni-
tor [44]. The requirement that the primary vertex
position in z is within�60 cm of the origin causes a

TABLE IV. Sources of systematic uncertainty considered in this analysis. Some uncertainties
are listed as ranges, as the impacts of the uncertain parameters depend on the numbers of jets and
b tags, and which signal or background component is predicted. The sources ‘‘Single top
normalization’’ and ‘‘Top mass’’ are used only in the calculation of the p value.

Source of uncertainty Rate Shape Processes affected

Jet energy scale 0–16% X all

Initial-state radiation 0–11% X single top, t�t
Final-state radiation 0–15% X single top, t�t
Parton distribution functions 2–3% X single top, t�t
Acceptance and efficiency scale factors 0–9% single top, t�t, diboson, Z=	� þ jets

Luminosity 6% single top, t�t, diboson, Z=	� þ jets

Jet flavor separator X all

Mistag model X W þ light

Non-W model X Non-W
Factorization and renormalization scale X Wb �b
Jet � distribution X all

Jet �R distribution X all

Non-W normalization 40% Non-W
Wb �b and Wc �c normalization 30% Wb �b, Wc �c
Wc normalization 30% Wc
Mistag normalization 17–29% W þ light

t�t normalization 12% t�t
Monte Carlo generator 1–5% single top

Single top normalization 12% single top

Top mass 2–12% X single top, t�t
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small acceptance uncertainty that is included as
well.

(2) Theoretical cross sections: Our MC-based back-
ground processes are scaled to theoretical predic-
tions at NLO (or better). We apply the associated
theoretical uncertainties. We separate out the effects
of the top quark mass from the other sources of
uncertainty affecting the theoretical predictions.
Not every theoretical cross-section uncertainty is
used in each result; details are given in Sec. IX.

(3) Monte Carlo generator: Different Monte Carlo gen-
erators for the signal result in different acceptances.
The deviations are small but are still included as a
rate uncertainty on the signal expectation as de-
scribed in Sec. IV.

(4) Acceptance and efficiency scale factors: The pre-
dicted rates of the Monte Carlo background pro-
cesses and of the signals are affected by trigger
efficiency, mismodeling of the lepton identification
probability, and the b-tagging efficiency. Known
differences between the data and the simulation
are corrected for by scaling the prediction, and
uncertainties on these scale factors are collected
together in one source of uncertainty since they
affect the predictions in the same way.

(5) Heavy-flavor fraction inW þ jets: The prediction of
the Wb �b, Wc �c, and Wc fractions in the W þ 2 jet
and W þ 3 jet samples are extrapolated from the
W þ 1 jet sample as described in Sec V. It is found
that ALPGEN underpredicts the Wb �b and Wc �c frac-
tions in the W þ 1 jet sample by a factor of 1:4�
0:4. We assume that the Wb �b and Wc �c predictions
are correlated. The uncertainty on this scale factor
comes from the spread in the measured heavy-flavor
fractions using different variables to fit the data, and
in the difference between the Wb �b and Wc �c scale
factors. The Wc prediction from ALPGEN is com-
pared with CDF’s measurement [81] and is found
not to require scaling, but a separate, uncorrelated
uncertainty is assigned to the Wc prediction, with
the same relative magnitude as the Wb �bþWc �c
uncertainty.

(6) Mistag estimate: The method for estimating the
yield of events with incorrectly b-tagged events is
described in Sec. VD. The largest source of
systematic uncertainty in this estimate comes from
extrapolating from the negative tag rate in the
data to positive tags by estimating the asymmetry
between positive light-flavor tags and negative
light-flavor tags. Other sources of uncertainty
come from differences in the negative tag rates of
different data samples used to construct the mistag
matrix.

(7) Non-W multijet estimate: The non-W rate prediction
varies when the ET distribution is constructed with a

different number of bins or if different models are
used for the non-W templates. The ET fits also suffer
from small data samples, particularly in the double-
tagged samples. A relative uncertainty of �40% is
assesed on all non-W rate predictions.

(8) Initial-state radiation (ISR): The model used for
ISR is PYTHIA’s ‘‘backwards evolution’’ method
[52]. This uncertainty is evaluated by generating
newMonte Carlo samples for t�t and single top quark
signals with �QCD doubled or divided in half, to

generate samples with more ISR and less ISR, re-
spectively. Simultaneously, the initial transverse
momentum scale is multiplied by four or divided
by four, and the hard scattering scale of the shower
is multiplied by four or divided by four, for more
ISR and less ISR, respectively. These variations are
chosen by comparing Drell-Yan Monte Carlo and
data samples. The pT distributions of dileptons are
compared as a function of the dilepton invariant
mass, and the ISR more/less prescriptions gener-
ously bracket the available data [99]. Since the
ISR prediction must be extrapolated from the Z
mass scale to the higher-Q2 scales of t�t and single
top quark events, the variation chosen is much more
than is needed to bracket the pZ

T data.
(9) Final-state radiation (FSR): PYTHIA’s model of

gluon radiation from partons emitted from the hard
scattering interaction has been tuned with high pre-
cision to LEP data [52]. Nonetheless, uncertainty
remains in the radiation from beam remnants, and
parameters analogous to those adjusted for ISR are
adjusted in PYTHIA for the final-state showering,
except for the hard scattering scale parameter. The
effects of variations in ISR and FSR are treated as
100% correlated with each other. ISR and FSR rate
uncertainties are not evaluated for the W þ jets
Monte Carlo samples because the rates are scaled
to data-driven estimates with associated uncertain-
ties, and the kinematic shapes of all predictions have
factorization and renormalization scale uncertain-
ties applied, as discussed below.

(10) Jet energy scale (JES): The calibration of the
calorimeter response to jets is a multistep process,
and each step involves an uncertainty which is
propagated to the final jet energy scale [49]. Raw
measurements of the jet energies are corrected
according to test-beam calibrations, detector non-
uniformity, multiple interactions, and energy that
is not assigned to the jet because it lies outside of
the jet cone. The uncertainties in the jet energy
scale are incorporated by processing all events in
all Monte Carlo samples with the jet energy scale
varied upwards and again downwards. The kine-
matic properties of each event are affected, and
some events are recategorized as having a different
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number of jets as jets change their ET inducing
correlated rate and shape uncertainties. An ex-
ample of the shape uncertainty to the NN analysis’s
discriminant is shown in Fig. 33.

(11) Parton distribution functions: The PDFs used in
this analysis are the CTEQ5L set of leading-order
PDFs [51]. To evaluate the systematic uncertainties
on the rates due to uncertainties in these PDFs, we
add in quadrature the differences between the pre-
dictions of the following pairs of PDFs:
(a) CTEQ5L and MRST72 [100], PDF sets com-

puted by different groups. MRST72 is also a
leading-order PDF set.

(b) MRST72 and MRST75, which differ in their
value of �s. The former uses 0.1125; the latter
uses 0.1175.

(c) CTEQ6L and CTEQ6L1, of which the former
has a 1-loop �s correction, and the latter has a
2-loop �s correction.

(d) The 20 signed eigenvectors of CTEQ6M, each com-
pared with the default CTEQ5L PDFs.

The PDF uncertainty induces a correlated rate and shape
uncertainty in the applicable templates.

B. Shape-only uncertainties

Many of the sources of rate uncertainty listed above also
induce distortions in the shapes of the templates for the
signals and background processes used to model the data.
These include ISR, FSR, JES, and PDF uncertainties. Here

we list the sources of shape uncertainties which do not have
associated rate uncertainties.
Shape uncertainty templates are all smoothed with a

median smoothing algorithm. This procedure takes the
ratio of the systematically shifted histograms to the central
histograms and replaces the contents of each bin with the
median of the ratios of a five-bin window around the bin.
The first two bins and the last two bins are left unaffected
by this procedure. The five-bin window was chosen as the
minimum size that provides adequate smoothing, as judged
from many shape variation ratio histograms. The smoothed
ratio histograms are then multiplied by the central histo-
grams to obtain the new varied template histograms. This
procedure reduces the impact of limited Monte Carlo sta-
tistics in the bins of the central and varied templates.
(i) Jet flavor separator modeling: The distribution of

bNN for light-flavor jets is found to require a
small correction, as described in Sec. VI. The full
difference between the uncorrected light-flavor
Monte Carlo prediction and the data-derived cor-
rected distribution is taken as a one-sided systematic
uncertainty. Since a pure sample of charm jets is not
available in the data, a systematic uncertainty is also
assessed on the shape of the charm prediction, taking
the difference between the distribution predicted by
the Monte Carlo simulation and the Monte Carlo
distribution altered by the light-flavor correction
function. These shifts in the distributions of bNN
for these samples are propagated through to the
predictions of the shapes of the corresponding dis-
criminant output histograms.

(ii) Mistag model: To cover uncertainty in modeling the
shape of the analysis discriminant output histo-
grams for mistagged events, the untagged data,
weighted by the mistag matrix weights, are used
to make an alternate shape template for the mistags.
The untagged data largely consist of W þ light
flavored jets, but there is a contamination from
Wb �b, Wc �c, t�t, and even single top quark signal
events, making the estimate of the systematic un-
certainty conservative.

(iii) Factorization and renormalization scale: Because
ALPGEN performs fixed-order calculations to create

W þ jets diagrams, it requires factorization and
renormalization scales as inputs. Both of these
scales are set for each event in our ALPGEN samples
to ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
W þ X

partons

m2
T

s
; (18)

where m2
T ¼ m2 þ p2

T=c
2 is the transverse mass of

the generated parton. For light partons, u, d, s, g,
the mass m is approximately zero; mb is set to
4:7 GeV=c2 and mc is set to 1:5 GeV=c2. The
sum is over all final-state partons excluding the W
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FIG. 33 (color online). An example of systematically shifted
shape templates. This figure shows the jet energy scale shifted
histograms for the single top quark signal in two-jet one-b-tag
events for the NN discriminant. The plot below shows the
relative difference between the central shape and the two alter-
nate shapes.
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boson decay products. In addition, ALPGEN evalu-
ates �s separately at each gqq and ggg vertex, and
the scale at which this is done is set to the trans-
verse momentum of the vertex. The three scales are
halved and doubled together in order to produce
templates that cover the scale uncertainty.
Although ALPGEN’s W þ heavy-flavor cross-
section predictions are strongly dependent on the
input scales, we do not assign additional rate un-
certainties on the W þ heavy flavor yields because
we do not use ALPGEN to predict rates; the yields
are calibrated using the data. We do not consider
the calibrations of these yields to constrain the
values of the scales for purposes of estimating the
shape uncertainty; we prefer to take the customary
variation described above.

(iv) Non-W flavor composition: The distribution of bNN
is used to fit the flavor fractions in the low-ET

control samples in order to estimate the central
predictions of the flavor composition of b-tagged
jets in non-W events, as described in Sec. VI. The
limited statistical precision of these fits and the
necessity of extrapolating to the higher-ET signal
region motivates an uncertainty on the flavor com-
position. The central predictions for the flavor com-
position are 45% b jets, 40% c jets, and 15% light-
flavored jets. The ‘‘worst-case’’ variation of the
flavor composition is 60% b jets, 30% c jets, and
10% light-flavor jets, which we use to set our
uncertainty. The predictions of the yields are un-
changed by this uncertainty, but the distribution of
bNN is varied in a correlated way for each analysis,
and propagated to the predictions of the discrimi-
nant output histograms.

(v) Jet � distribution: Checks of the untagged W þ 2
jet control region show that the rate of appearance of
jets at high j�j in the data is underestimated by the
prediction [Fig. 34(a)]. Inaccurate modeling of the

distribution of this variable has a potentially signifi-
cant impact on the analysis because of use of the
sensitive variable Q� �, which is highly discrimi-
nating for events with jets at large j�j. Three ex-
planations for the discrepancies between data and
MC are possible—beam halo overlapping with real
W þ jets events, miscalibration of the jet energy
scale in the forward calorimeters, and ALPGEN mis-
modeling. We cannot distinguish between these
possibilities with the data, and thus choose to re-
weight all Monte Carlo samples by a weighting
factor based on the ratio of the data and
Monte Carlo in the untagged sideband, to make
alternate shape templates for the discriminants for
all Monte Carlo samples. No corresponding rate
uncertainty is applied.

(vi) Jet �R distribution: Similarly, the distribution of

�Rðj1; j2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið��Þ2 þ ð��Þ2p

, a measure of the
angular separation between two jets, is found to
be mismodeled in the untagged control sample
[Fig. 34(b)]. Modeling this distribution correctly
is important because of the use of the input variable
Mjj, which is highly correlated with �Rðj1; j2Þ in
our discriminants. The mismodeling of �Rðj1; j2Þ
is believed to be due to the gluon splitting fraction
in ALPGEN, but since this conclusion is not fully
supported, we take as a systematic uncertainty the
difference in predictions of all Monte Carlo based
templates after reweighting them using the ratio of
the untagged data to the prediction.

IX. INTERPRETATION

The analyses presented in this paper have two goals: to
evaluate the significance of the excess of events compared
with the background prediction, and to make a precise
measurement of the cross section. These goals have
much in common: better separation of signal events from
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FIG. 34 (color online). Graphs showing the poor modeling of the second jet pseudorapidity and the distance between the two jets in
the �-� plane. These are accounted for with systematic uncertainties on the shapes of theW þ jets predictions. The data are indicated
by points with error bars, and the predictions are shown stacked, with the stacking order following that of the legend.
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background events and the reduction of uncertainties help
improve both the cross-section measurements and the ex-
pected significance if a signal is truly present. But there are
also differences. For example, the systematic uncertainty
on the signal acceptance affects the precision of the cross-
section measurement, but it has almost no effect on the
observed significance level, and only a minor effect on the
predicted significance level; Sec. IXD discusses this point
in more detail. More importantly, a precision cross-section
measurement relies most on increasing acceptance and
understanding the background in a larger sample. The
significance of an excess, however, can be much larger if
one bin in an analysis has a very low expected background
yield and has data in it that are incompatible with that
background, even though that bin may not contribute much
information to the cross-section measurement.

The contents of the low signal-to-background bins are
important for the proper interpretation of the high signal-
to-background bins. They serve as signal-depleted control
samples which can be used to help constrain the back-
ground predictions. Not all bins are fully depleted in signal,
and the signal-to-background ratio varies from very small
to about 2:1 in some analyses. Simultaneous use of all bins’
contents, comparing the observations to the predictions, is
needed to optimally measure the cross section and to
compute the significance. Systematic uncertainties on the
predicted rates and shapes of each component of the back-
ground and the two signals (s-channel and t-channel), and
also bin-by-bin systematic uncertainties, affect the ex-
trapolation of the background fits to the signal regions.

These considerations are addressed below, and the pro-
cedures for measuring the cross section and the signifi-
cance of the excess are performed separately. The handling
of the systematic uncertainties is Bayesian, in that priors
are assigned for the values of the uncertain nuisance pa-
rameters, the impacts of the nuisance parameters on
the predictions are evaluated, and integrals are performed
as described below over the values of the nuisance
parameters.

A. Likelihood function

The likelihood function we use in the extraction of the
cross section and in the determination of the significance is
the product of Poisson probabilities for each bin in each
histogram of the discriminant output variable of each
channel. Here, the channels are the nonoverlapping data
samples defined by the number of jets, the number of b
tags, and whether the charged lepton candidate is a trig-
gered electron or muon, or whether it was an extended
muon coverage candidate event. We do not simply add the
distributions of the discriminants in these very different
samples because doing so would collect bins with a higher
signal purity with those of lower signal purity, diluting our
sensitivity. The Poisson probabilities are functions of the
number of observed data events in each bin di and the

predictions in each bin �i, where i ranges from 1 to nbins.
The likelihood function is given by

L ¼ Ynbins
i¼1

�di
i e

��i

di!
: (19)

The prediction in each bin is a sum over signal and back-
ground contributions:

�i ¼
Xnbkg
k¼1

bik þ
Xnsig
k¼1

sik; (20)

where bik is the background prediction in bin i for back-
ground source k; nbkg is the total number of background

contributions. The signal is the sum of the s-channel and
t-channel contributions; nsig ¼ 2 is the number of signal

sources, and the sik are their predicted yields in each bin.
The predictions bik and sik depend on nnuis uncertain
nuisance parameters �m, where m ¼ 1 . . . nnuis, one for
each independent source of systematic uncertainty. These
nuisance parameters are given Gaussian priors centered on
zero with unit width, and their impacts on the signal and
background predictions are described in the steps below.
In the discussion below, the procedure for applying

systematic shifts to the signal and background predictions
is given step by step, for each kind of systematic uncer-
tainty. Shape uncertainties are applied first, then bin-by-bin
uncertainties, and finally rate uncertainties. The bin-by-bin
uncertainties arise from limited Monte Carlo (or data from
a control sample) statistics and are taken to be independent
of each other and all other sources of systematic uncer-
tainty. The steps are labeled b0 for the central, unvaried
background prediction in each bin, and b4 for the predic-
tion with all systematic uncertainties applied.
The contribution to a bin’s prediction from a given

source of shape uncertainty is modified by linearly inter-
polating and extrapolating the difference between the cen-
tral prediction b0ik and the prediction in a histogram

corresponding to a þ1� variation �mþ
b;ik if �m > 0, and

performing a similar operation using a �1� varied histo-
gram if �m < 0:

b1ik ¼ b0ik þ
Xnnuis
m¼1

� ð�mþ
b;ik � b0ikÞ�m: �m � 0

ðb0ik � �m�
b;ikÞ�m: �m < 0

: (21)

The parameter list is shared between the signal and back-
ground predictions because some sources of systematic
uncertainty affect both in a correlated way. The application
of shape uncertainties is not allowed to produce a negative
prediction in any bin for any source of background or
signal:

b2ik ¼ maxð0; b1ikÞ: (22)

Each template histogram, including the systematically
varied histograms, has a statistical uncertainty in each bin.
These bin-by-bin uncertainties are linearly interpolated in
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each bin in the same way as the predicted values. This
procedure works well when the shape-variation templates
share all or most of the same events, but it overestimates
the bin-by-bin uncertainties when the alternate shape tem-
plates are filled with independent samples. If the bin-by-
bin uncertainty on b0ik is �0

b;ik, and the bin-by-bin uncer-

tainty on bm�
ik is �m�

b;ik, then

�1
b;ik ¼ �0

b;ik þ
Xnnuis
m¼1

� ð�mþ
b;ik � �0

b;ikÞ�m: �m � 0
ð�0

b;ik � �m�
b;ikÞ�m: �m < 0

: (23)

Each bin of each background has a nuisance parameter
�b;ik associated with it;

b3ik ¼ b2ik þ �1
b;ik�b;ik; (24)

where�b;ik is drawn from a Gaussian centered on zero with

unit width when integrating over it. If b3ik < 0, then �b;ik is

redrawn from that Gaussian.
Finally, rate uncertainties are applied multiplicatively. If

the fractional uncertainty on b0ik due to nuisance parameter

m is �mþ
b;ik for a þ1� variation and it is �m�

b;ik for a negative

variation, then a quadratic function is determined to make a
smooth application of the nuisance parameter to the pre-
dicted value:

bik ¼ b4ik

¼ b3ik
Ynnuis
m¼1

�
1þ �mþ

b;ik þ �m�
b;ik

2
�2m þ �mþ

b;ik � �m�
b;ik

2
�m

�
:

(25)

The rate uncertainties are applied multiplicatively because
most of them affect the rates by scale factors, such as the
luminosity and acceptance uncertainties, and they are ap-
plied last because they affect the distorted shapes in the
same way as the undistorted shapes. Multiple shape un-
certainties are treated additively because most of them
correspond to events migrating from one bin to another.

The signal predictions are based on their standard model
rates. These are scaled to test other values of the single top
quark production cross sections:

sik ¼ s4ik�k; (26)

where �s scales the s-channel signal and �t scales the
t-channel signal, and the superscript, 4, indicates that the
same chain of application of nuisance parameters is ap-
plied to the signal prediction as is applied to the
background.

The likelihood is a function of the observed data D ¼
fdig, the signal scale factors � ¼ f�s; �tg, the nuisance
parameters � ¼ f�mg and � ¼ f�s;ik; �b;ikg, the central

values of the signal and background predictions s ¼ fs0ikg
and b ¼ fb0ikg, and the rate, shape, and bin-by-bin uncer-

tainties � ¼ f�m�
b;ik; �

m�
s;ik g, � ¼ f�m�

b;ik; �
m�
s;ik g, � ¼

f�0
b;ik; �

m�
b;ik; �

0
s;ik; �

m�
s;ik g:

L ¼ LðDj�;�;�; s; b;�;�;�Þ: (27)

B. Cross-section measurement

Because the signal template shapes and the t�t back-
ground template rates and shapes are functions of mt, we
quote the single top quark cross section assuming a top
quark mass of mt ¼ 175 GeV=c2 and also evaluate
@�sþt=@mt. We therefore do not include the uncertainty
on the top quark mass when measuring the cross section.

1. Measurement of �sþt

We measure the total cross section of single top quark
production�sþt, assuming the SM ratio between s-channel
and t-channel production: �s ¼ �t � �. We use a
Bayesian marginalization technique [10] to incorporate
the effects of systematic uncertainty:

L0ð�Þ ¼
Z

LðDj�;�;�; s; b;�;�;�Þ�ð�Þ�ð�Þd�d�;
(28)

where the � functions are the Bayesian priors assigned to
each nuisance parameter. The priors are unit Gaussian
functions centered on zero which are truncated whenever
the value of a nuisance parameter would result in a non-
physical prediction. The measured cross section corre-
sponds to the maximum of L0, which occurs at �max:

�meas
sþt ¼ �SM

sþt�
max: (29)

The uncertainty corresponds to the shortest interval
½�low; �high� containing 68% of the integral of the poste-

rior, assuming a uniform positive prior in � �ð�Þ ¼ 1:

0:68 ¼
R�high

�low
L0ð�Þ�ð�Þd�R1

0 L0ð�Þ�ð�Þd� : (30)

This prescription has the property that the numerical value
of the posterior on the low end of the interval is equal to
that on the high end of the interval.
Following the example of other top quark properties

analyses, the single top quark cross section is measured
assuming a top quark mass of 175 GeV=c2. This measure-
ment is repeated with separate Monte Carlo samples and
background estimates generated with masses of
170 GeV=c2 and 180 GeV=c2, and the result is used to
find d�sþt=dmt.

2. Extraction of bounds on jVtbj
The parameter

� ¼ �meas
sþt

�SM
sþt

(31)

is identified in the standard model as jVtbj2, under the
assumption that jVtdj2 þ jVtsj2 � jVtbj2, and that new
physics contributions affect only jVtbj. The theoretical
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uncertainty on�SM
sþt must be introduced for this calculation.

The 95% confidence lower limit on jVtbj is calculated by
requiring 0 � jVtbj � 1 and finding the point at which
95% of the likelihood curve lies to the right of the point.
This calculation uses a prior which is flat in jVtbj2.

C. Check for bias

As a cross-check of the cross-section measurement
method, simulated pseudoexperiments were generated,
randomly fluctuating the systematically uncertain nuisance
parameters, propagating their impacts on the predictions of
each signal and background source in each bin of each
histogram, and drawing random Poisson pseudodata in
those bins from the fluctuated means. Samples of pseu-
doexperiments were generated assuming different signal
cross sections, and the cross-section posterior was formed
for each one in the same way as it is for the data. We take
the value of the cross section that maximizes the posterior
as the best-fit value, and calculate the total uncertainty on it
in the same way as for the data. The resulting pull distri-
bution is a unit Gaussian, provided that the input cross
section for the pseudoexperiments is sufficiently far away
from zero.

Because the prior for the cross section does not allow
negative values, the procedure described here cannot pro-
duce a negative cross-section measurement. For an input
cross section of zero, half of the pseudoexperiments will
have measured cross sections that are exactly zero, and the
other half form a distribution of positive cross sections. We
therefore compare the median measured cross section with
the input cross section of the pseudoexperiments because
the average measured cross section is biased. Distributions
of 68% and 95% of extracted cross sections centered on the
median are shown as a function of the input cross section in
Fig. 35, demonstrating that the measurement technique
does not introduce bias for any value of the cross section
used as input to the pseudoexperiments. These checks were
performed for each analysis; Fig. 35 shows the results for
the super discriminant combination, which is described in
Sec. X. Some nuisance parameters have asymmetric priors,
and the inclusion of their corresponding systematic uncer-
tainties will shift the fitted cross section. This is not a bias
which must be corrected but rather it is a consequence of
our belief that the values of the uncertain parameters are
not centered on their central values.

D. Significance calculation

The other goal of the search is to establish observation of
single top quark production. The significance is summa-
rized by a p value, the probability of observing an outcome
of an experiment at least as signal-like as the one observed,
assuming that a signal is absent. We follow the convention
that a p value less than 1:35� 10�3 constitutes evidence
for a signal, and that a p value less than 2:87� 10�7

constitutes a discovery. These are the one-sided integrals

of the tails of a unit Gaussian distribution beyondþ3� and
þ5�, respectively.
We rank experimental outcomes on a one-dimensional

scale using the likelihood ratio [92]

� 2 lnQ ¼ �2 ln
LðDj�; �̂SM; �̂SM; s ¼ sSM; b;�;�;�Þ

LðDj�; �̂0; �̂0; s ¼ 0;b;�;�;�Þ ;

(32)

where �̂SM and �̂SM are the best-fit values of the nuisance
parameters which maximize L given the data D, assuming

the single top quark signal is present at its SM rate, and �̂0

and �̂0 are the best-fit values of the nuisance parameters
which maximize L assuming that no single top quark
signal is present. These fits are employed not to incorporate
systematic uncertainties, but to optimize the sensitivity.
Fits to other nuisance parameters do not appreciably im-
prove the sensitivity of the search and are not performed.
Therefore, only the most important nuisance parameters
are fit for the heavy-flavor fraction in W þ jets events and
the mistag rate.
The desired p value is, then,

p ¼ pð�2 lnQ � �2 lnQobsjs ¼ 0Þ; (33)

since signal-like outcomes have smaller values of �2 lnQ
than background-like outcomes. Systematic uncertainties
are included not in the definition of �2 lnQ, which is a
known function of the observed data and is not uncertain,
but rather in the expected distributions of�2 lnQ assuming
s ¼ 0 or s ¼ sSM, since our expectation is what is uncer-

FIG. 35 (color online). Check of the bias of the cross-section
measurement method using pseudoexperiments, for the super
discriminant combination described in Sec. X. The points in-
dicate the median fit cross section, and the bands show the 68%
and 95% quantiles of the distribution of the fitted cross section as
functions of the input cross section. A line is drawn showing
equal input and fitted cross sections; it is not a fit to the points.
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tain. These uncertainties are included in a Bayesian fashion
by averaging the distributions of�2 lnQ over variations of
the nuisance parameters, weighted by their priors. In prac-
tice, this is done by filling histograms of �2 lnQ with the
results of simulated pseudoexperiments, each one of which
is drawn from predicted distributions after varying the
nuisance parameters according to their prior distributions.
The fit to the main nuisance parameters insulates �2 lnQ
from the fluctuations in the values of the nuisance parame-
ters and optimizes our sensitivity in the presence of
uncertainty.

The measured cross section and the p value depend on
the observed data. We gauge the performance of our tech-
niques not based on the single random outcome observed
in the data but rather by the sensitivity—the distribution of
outcomes expected if a signal is present. The sensitivity of
the cross section measurement is given by the median
expected total uncertainty on the cross section, and the
sensitivity of the significance calculation is given by the
median expected significance. The distributions from
which these sensitivities are computed are Monte Carlo
pseudoexperiments with all nuisance parameters fluctuated
according to their priors. Optimizations of the analyses
were based on the median expected p values, without
reference to the observed data. Indeed, the data events
passing the event selection requirements were hidden dur-
ing the analysis optimization.

In the computation of the observed and expected p
values, we include all sources of systematic uncertainty
in the pseudoexperiments, including the theoretical uncer-
tainty in the signal cross sections and the top quark mass.
Because the observed p value is the probability of an
upward fluctuation of the background prediction to the
observed data, with the outcomes ordered as signal-like
based on �2 lnQ, the observed p value depends only
weakly on the predicted signal model, and, in particular,
almost not at all on the predicted signal rate. Hence, the
inclusion of the signal rate systematic uncertainty in the
observed p value has practically no impact, and the shape
uncertainties in the signal model also have little impact
(the background shape uncertainties are quite important
though). On the other hand, the expected p value and the
cross-section measurement depend on the signal model and
its uncertainties; a large signal is expected to be easier to
discover than a small signal, for example.

X. COMBINATION

The four analyses presented in Sec. VII each seek to
establish the existence of single top quark production and
to measure the production cross section, each using the
same set of selected events. Furthermore, the same models
of the signal and background expectations are shared by all
four analyses. We therefore expect the results to have a
high degree of statistical and systematic correlation.
Nonetheless, the techniques used to separate the signal

from the background are different and are not guaranteed
to be fully optimal for observation or cross-section mea-
surement purposes; the figures of merit optimized in the
construction of each of the discriminants are not directly
related to either of our goals, but instead are synthetic
functions designed to be easy to use during the training,
such as the Gini function [96] used by the BDT analysis,
and a sum of classification errors squared used by the
neural-network analysis.
The discriminants all perform well in separating the

expected signal from the expected background, and in
fact their values are highly correlated, event to event, as
is expected, since they key on much of the same input
information, but in different ways. The coefficients of
linear correlation between the four discriminants vary
between 0.55 and 0.8, depending on the pair of discrim-
inants chosen and the data or Monte Carlo sample used to
evaluate the correlation. Since any invertible function of a
discriminant variable has the same separating power as the
variable itself, and since the coefficients of linear correla-
tion between pairs of variables change if the variables are
transformed, these coefficients are not particularly useful
except to verify that indeed the results are highly, but
possibly not fully, correlated.
As a more relevant indication of how correlated the

analyses are, pseudoexperiments are performed with fully
simulated Monte Carlo events analyzed by each of the
analyses, and the correlations between the best-fit cross-
section values are computed. The coefficients of linear
correlation of the output fit results are given in Table V.
The four discriminants, LF, ME, NN, BDT make use of

different observable quantities as inputs. In particular, the
LF, NN, and BDT discriminants use variables that make
assignments of observable particles to hypothetical partons
from single top quark production, while the ME method
integrates over possible interpretations. Furthermore, since
the correlations between pairs of the four discriminants are
different for the different physics processes, we expect this
information also to be useful in separating the signal from
the background processes. In order to extract a cross sec-
tion and a significance, we need to interpret each event
once, and not 4 times, in order for Poisson statistics to
apply. We therefore choose to combine the analyses by
forming a super discriminant, which is a scalar function of
the four input discriminants, and which can be evaluated

TABLE V. Correlation coefficients between pairs of cross-
section measurements evaluated on Monte Carlo pseudoexperi-
ments.

LF ME NN BDT

LF 1.0 0.646 0.672 0.635

ME 	 	 	 1.0 0.718 0.694

NN 	 	 	 	 	 	 1.0 0.850

BDT 	 	 	 	 	 	 	 	 	 1.0
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for each event in the data and each event in the simulation
samples. The functional form we choose is a neural net-
work, similar to that used in the 2:2 fb�1 single top quark
combination at CDF [26] as well as the recent H ! WW
search at CDF [102]. The distributions of the super dis-
criminant are used to compute a cross section and a sig-
nificance in the same way as is done for the component
analyses.

In order to train, evaluate, and make predictions which
can be compared with the observations for the super dis-
criminant, a common set of events must be analyzed in the
ME, NN, LF, and BDT frameworks. The discriminant
values are collected from the separate analysis teams for
each data event and for each event simulated in
Monte Carlo. Missing events or extra events in one or
more analyses are investigated and are restored or omitted
as discrepancies are found and understood. The W þ jets
predictions, in particular, involve weighting Monte Carlo
events by mistag probabilities and by generator luminosity
weights, and these event weights are also unified across
four analysis teams. The procedure of making a super
discriminant combination provides a strong level of cross
checks between analysis teams. It has identified many
kinds of simple mistakes and has required us to correct
them before proceeding. All of these crosschecks were
performed at the stage in which event data were exchanged
and before the training of the final discriminant, preserving
the blindness of the result.

We further take the opportunity during the combination
procedure to optimize our final discriminant for the goal
that we set, that is, to maximize the probability of observ-
ing single top quark production. A typical approach to
neural-network training uses a gradient descent method,
such as back-propagation, to minimize the classification
error, defined by

Pðoi � tiÞ2, where oi is the output of the
neural network and ti is the desired output, usually zero for
background and one for signal. Although back propagation
is a powerful and fast technique for training neural net-
works, it is not necessarily true that minimizing the clas-
sification error will provide the greatest sensitivity in a
search. The best choice is to use the median expected p
value for discovery of single top quark production as the
figure of merit to optimize, but it cannot be computed
quickly. Once a candidate network is proposed, the
Monte Carlo samples must be run through it, the distribu-
tions made, and many millions of pseudoexperiments run
in order to evaluate its discovery potential. Even if a more
lightweight figure of merit can be computed from the
predicted distributions of the signals and background pro-
cesses, the step of reading through all of the Monte Carlo
samples limits the number of candidate neural networks
that can be practically considered.

We therefore use the novel neural-network training
method of neuro-evolution, which uses genetic algorithms
instead of back propagation, to optimize our networks.

This technique allows us to compute an arbitrary figure
of merit for a particular network configuration which de-
pends on all of the training events and not just one at a time.
The software package we use here is Neuro-Evolution of
Augmenting Topologies (NEAT) [103]. NEAT has the ability
to optimize both the internode weights and the network
topology, adding and rearranging nodes as needed to im-
prove the performance.
We train the NEAT networks using half of the events in

each Monte Carlo sample, reserving the other half for use
in predicting the outcomes in an unbiased way, and to
check for over-training. All background processes are in-
cluded in the training except non-W because the non-W
sample suffers from extremely low statistics. The output
values are stored in histograms which are used for the
figure of merit calculation. We use two figures of merit
which are closely related to the median expected p value,
but which can be calculated much more quickly:
(i) o value: This figure of merit (so named because it is

closely related to the expected p value) is obtained
from an ensemble of pseudoexperiments by taking
the difference in the median of the test statistic
�2 lnQ for the background-only and signal-plus-
background hypotheses, divided by the quadrature
sum of the widths of those distributions:

o ¼ �2 lnQmed
B þ 2 lnQmed

SþBffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�2 lnQBÞ2 þ ð�2 lnQSþBÞ2
p : (34)

Typically, 2500 pseudoexperiments give a precision
of roughly 1–2% and require one to two minutes to
calculate. This is still too slow to be used directly in
the evolution, but it is used at the end to select the
best network from a sample of high-performing net-
works identified during the evolution. This figure of
merit includes all rate and shape systematic
uncertainties.

(ii) Analytic figure of merit:As a faster alternative to the
figure of merit defined above, we calculate the
quadrature sum of an expected signal divided by

the square root of the expected background (s=
ffiffiffi
b

p
)

in each bin of each histogram. To account for the
effects of finite Monte Carlo statistics, this figure of
merit is calculated repeatedly, each time letting the
value of the expected signal and background pro-
cesses fluctuate according to a Gaussian distribution
with a width corresponding to the Monte Carlo
statistical error on each bin. The median of these
trials is quoted as the figure of merit. This figure of
merit does not include rate and shape systematic
uncertainties.

The network training procedure also incorporates an
optimization of the binning of the histograms of the net-
work output. In general, the sensitivity is increased by
separating events into bins of different purity; combining
the contents of bins of different purity degrades our ability
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FIG. 36 (color online). Normalized templates (left) and plots comparing the predicted distributions with data (right) of the final
combined neural-network output for each selected data sample. These distributions are more sensitive than any single analysis. The
data are indicated by points with error bars, and the predictions are shown stacked, with the stacking order following that of the legend.
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to test for the existence of the signal and to measure the
cross section. Competing against our desire for fine grada-
tions of purity is our need to have solid predictions of the
signal and background yields in each bin with reliable
uncertainties—binning the output histogram too finely
can result in an overestimate of the sensitivity due to
downward fluctuations in the Monte Carlo background
predictions. Care is taken here, as described below, to
allow the automatic binning optimization to maximize
our sensitivity without overestimating it.

The procedure, applied to each channel separately, is to
first use a fixed binning of 100 bins in the neural-network
output from zero to one. The network output may not
necessarily fill all 100 bins; different choices of network
parameters, which are optimized by the training, will fill
different subsets of these bins. To avoid problems with
Monte Carlo statistics at the extreme ends of the distribu-
tions, bins at the high end of the histogram are grouped
together, and similarly at the low end, sacrificing a bit of
separation of signal from background for more robust
predictions. At each step, the horizontal axis is relabeled
so that the histogram is defined between zero (lowest signal
purity) and one (highest purity). The bins are grouped first
so that there are no bins with a total background prediction
of zero. Next, we require that the histograms have a mono-
tonically decreasing purity as the output variable decreases
from one toward zero. If a bin shows an anomalously high
purity, its contents are collected with those of all bins with
higher network outputs to form a new end bin. Finally, we
require that on the high-purity side of the histogram, the
background prediction does not drop off too quickly. We
expect ln

R
1
x B / ln

R
1
x S for all x in the highest purity region

of the histogram. If the background decreases at a faster
rate, we group the bins on the high end together until this
condition is met. After this procedure, we achieve a signal-
to-background ratio exceeding 5:1 in the highest-
discriminant output bins in the two-jet, one b-tag sample.

The resulting templates and distributions are shown for
all four selected data samples in Fig. 36. In the compari-
sons of the predictions to the data, the predictions are
normalized to our signal and background models, which
are described in Secs. IV and V, respectively. Each distri-
bution is more sensitive than any single analysis.

XI. ONE-DIMENSIONAL FIT RESULTS

We use the methods described in Sec. IX to extract the
single top cross section, the significance of the excess over
the background prediction, and the sensitivity, defined to
be the median expected significance, separately for each
component analysis described in Sec. VII, and for the SD,
which is described in Sec. X. The results are listed in
Table VI. The cross-section measurements of the individ-
ual analyses are quite similar, which is not surprising due
to the overlap in the selected data samples. The measure-
ments are only partially correlated, though, as shown in

Table V, indicating that the separate analyses extract highly
correlated but not entirely identical information from each
event.
Because the super discriminant has access to the most

information on each event, and because it is optimized for
the expected sensitivity, it is the most powerful single
analysis. It is followed by the NN and BDT) analyses,
and the ME analysis. The LF analysis result in the table
is shown only for the t-channel optimized likelihood func-
tions, although the s-channel signals were included in the
templates.
A separate result, a measurement just of the s-channel

signal cross section, is extracted from just the two-jet,
two-b-tag LF analysis, assuming the t-channel signal cross
section is at its SM value. The result thus obtained is�LF

s ¼
1:5þ0:9

�0:8 pb, with an observed significance of 2:0� and an

expected significance of 1:1�.
The super discriminant analysis, like the component

analyses, fits separately the distributions of events in eight
nonoverlapping categories, defined by whether the events
have two or three jets passing the selection requirements,
one or two b-tags, and whether the charged lepton was a
TLC, as opposed to a nontriggered EMC. A separate cross-
section fit is done for each of these categories, and the
results are shown in Table VII. The dominant components
of the uncertainties are statistical, driven by the small data
sample sizes in the most pure bins of our discriminant
distributions. The cross sections extracted for each final
state are consistent with each other within their
uncertainties.
The results described above are obtained from the ‘þ

ET þ jets selection. An entirely separate analysis con-
ducted by CDF is the search for single top quark events
in the ET plus two- and three-jet sample [28] (MJ), which
uses a data sample corresponding to 2:1 fb�1 of data. The
events selected by the MJ analysis do not overlap with
those described in this paper because the MJ analysis
imposes a charged lepton veto and an isolated high-pT

TABLE VI. A summary of the analyses covered in this paper,
with their measured cross sections, observed significances, and
sensitivities, defined to be their median expected p values,
converted into Gaussian standard deviations. The analyses are
combined into a SD, which is combined with the orthogonal
ET þ jets sample (MJ) to make the final CDF combination.

Analysis Cross section Significance Sensitivity

[pb] [�] [�]
LF 1:6þ0:8

�0:7 2.4 4.0

ME 2:5þ0:7
�0:6 4.3 4.9

NN 1:8þ0:6
�0:6 3.5 5.2

BDT 2:1þ0:7
�0:6 3.5 5.2

SD 2:1þ0:6
�0:5 4.8 >5:9

MJ 4:9þ2:5
�2:2 2.1 1.4

SDþ MJ combination 2:3þ0:6
�0:5 5.0 >5:9
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track veto. The MJ analysis separates its candidate events
into three subsamples based on the b-tagging requirements
[28], and the results are summarized in Table VII.

The distributions of the super discriminant in the ‘þ
ET þ jets sample and the MJ neural-network discriminant
in the ET þ jets sample are shown in Fig. 37, summed over
the event categories, even though the cross section fits are
performed and the significances are calculated separating
the categories. The sums over event categories add the
contents of bins of histograms with different s=b together
and thus do not show the full separation power of the
analyses. Another way to show the combined data set is
to collect bins with similar s=b in all of the channels of the
SD andMJ discriminant histograms and graph the resulting
distribution as a function of log10ðs=bÞ, which is shown in

Fig. 38(a). This distribution isolates, at the high s=b side,
the events that contribute the most to the cross-section
measurement and the significance. Figure 38(b) shows
the integral of this distribution, separately for the back-
ground prediction, the signal-plus-background prediction,
and the data. The distributions are integrated from the
highest s=b side downwards, accumulating events and
predictions in the highest s=b bins. The data points are
updated on the plot as bins with data entries in them are
added to the integral, and thus are highly correlated from
point to point. A clear excess of data is seen over the
background prediction, not only in the most pure bins,
but also as the s=b requirement is loosened, and the excess
is consistent with the standard model single top prediction.
Because the ‘þ ET þ jets sample and the ET þ jets

sample have no overlapping events, they can be combined
as separate channels using the same likelihood technique
described in Sec. IX. The joint posterior distribution in-
cluding all 11 independent categories simultaneously is
shown in Fig. 39(a). From this distribution, we obtain a
single top quark cross-section measurement of �sþt ¼
2:3þ0:6

�0:5 pb, assuming a top quark mass of 175 GeV=c2.
The dependence of the measured cross section on the
assumed top quark mass is @�sþt=@mt ¼
þ0:02 pb=ðGeV=c2Þ. Table VII shows the results of fitting
for �s and �t in the separate jet, b-tag, and lepton catego-
ries. The dominant source of uncertainty is the statistical
component from the data sample size. Our best-fit single
top quark cross section is approximately 1 standard devia-
tion below the standard model prediction of [9,10]. The
prediction of [11] is somewhat higher, but it is also con-
sistent with our measurement.
To extract jVtbj from the combined measurement, we

take advantage of the fact that the production cross section
�sþt is directly proportional to jVtbj2. We use the relation

jVtbj2measured ¼ �measured
sþt jVtbj2SM=�SM

sþt; (35)

where jVtbj2SM � 1 and �SM
sþt ¼ 2:86� 0:36 [9,10].

TABLE VII. A summary of the measured values of the single
top production cross section �s þ �t using the super discrimi-
nant analysis, separately for each of the nonoverlapping final-
state categories, based on the number of jets, the number of b
tags, and the lepton category. Also listed are the MJ cross-section
fit results by b-tagging category.

Category Cross section [pb]

SD 2-Jet, 1-Tag, TLC 1:7þ0:7
�0:6

SD 2-Jet, 2-Tag, TLC 4:1þ2:3
�1:9

SD 3-Jet, 1-Tag, TLC 2:4þ2:1�1:7

SD 3-Jet, 2-Tag, TLC 6:3þ4:9
�4:2

SD 2-Jet, 1-Tag, EMC 2:3þ1:4
�1:1

SD 2-Jet, 2-Tag, EMC 9:8þ5:7
�4:4

SD 3-Jet, 1-Tag, EMC 7:2þ5:5
�4:6

SD 3-Jet, 2-Tag, EMC 0:0þ8:8
�0:0

SD 2:1þ0:6
�0:5

MJ 2-Tag 5:9þ4:2�3:7

MJ 1-Tagþ JETPROB 2:7þ4:6
�2:7

MJ 1-Tag 4:3þ2:6
�2:3

MJ 4:9þ2:5
�2:2

SDþ MJ combination 2:3þ0:6
�0:5
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FIG. 37 (color online). Comparison of the predicted distributions with data summed over all selected data samples of the super
discriminant (left) and the MJ discriminant (right). Points with error bars indicate the observed data, while the stacked, shaded
histograms show the predictions, including a standard model single top signal. In each panel, the order of the stacked components
follows that of the legend.
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Equation (35) further assumes that jVtbj2 � jVtsj2 þ
jVtdj2, because we are assuming that the top quark decays
to Wb 100% of the time, and because we assume that the
production cross section scales with jVtbj2, while the other

CKM matrix elements may contribute as well if they were
not very small. We drop the ‘‘measured’’ subscripts and
superscripts elsewhere. Figure 39(b) shows the joint pos-
terior distribution of all of our independent channels as a

FIG. 38 (color online). Distributions of data and predictions for the SD and MJ analyses, where bins of similar s=b have been
collected together (left). The points with error bars indicate the observed data, while the stacked, shaded histograms show the
predictions, including a standard model single top signal. These distributions are integrated starting on the high-s=b side and the
resulting cumulative event counts are shown on the right, separately for the observed data, for the background-only prediction and the
signal-plus-background prediction.

(a) (b)

(c)

FIG. 39 (color online). The posterior curve of the cross-section measurement calculated with (a) the super discriminant histograms
as inputs, (b) the posterior curve for the jVtbj calculation, and (c) the distributions of �2 lnQ in simulated Sþ B and B-only
pseudoexperiments, assuming a standard model single top quark signal. The value of �2 lnQ observed in the data is indicated with an
arrow.
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function of jVtbj2 (which includes the theoretical uncer-
tainty on the predicted production rate, which is not part of
the cross-section posterior), from which we obtain jVtbj ¼
0:91� 0:11ðstatþ systÞ � 0:07ðtheoryÞ and a 95% confi-
dence level lower limit of jVtbj> 0:71.

We compute the p value for the significance of this
result as described in Sec. IXD. The distributions of
�2 lnQ from which the p value is obtained, are shown in
Fig. 39(c). We obtain a p value of 3:1� 10�7 which
corresponds to a 4.985 standard deviation excess of data
above the background prediction. We quote this to two
significant digits as a 5.0 standard deviation excess. The
median expected p value is in excess of 5.9 standard
deviations; the precision of this estimate is limited by the
number of pseudoexperiments which were fit. The fact that
the observed significance is approximately one sigma be-
low its SM expectation is not surprising given that our
cross-section measurement is also approximately one
sigma below its expectation, although this relation is not
strictly guaranteed.

Recently, the cross-section measurement shown here has
been combined with that measured by D0 [24]. The same
technique for extracting the cross section in combination as
for each individual measurement is used [104], and the
best-fit cross section is �sþt ¼ 2:76þ0:58

�0:47 pb, assuming

mt ¼ 170 GeV=c2.

XII. TWO-DIMENSIONAL FIT RESULTS

The extraction of the combined signal cross section�sþt

proceeds by constructing a one-dimensional Bayesian pos-
terior with a uniform prior in the cross section to be
measured. An extension of this is to form the posterior in
the two-dimensional plane, �s vs �t, and to extract the
s-channel and the t-channel cross sections separately. We
assume a uniform prior in the �s vs �t plane, and integrate
over the nuisance parameters in the same way as we did for
the one-dimensional cross-section extraction. The input
histograms for this extraction are the distributions of the
super discriminant for the W þ jets analyses, and the MJ
discriminant histograms are also included, exactly as is
done for the one-dimensional cross-section fit.

The best-fit cross section is the one for which the pos-
terior is maximized, and corresponds to �s ¼ 1:8þ0:7

�0:5 pb
and �t ¼ 0:8þ0:4

�0:4 pb. The uncertainties on the measure-

ments of �s and �t are correlated with each other because
s-channel and t-channel signals both populate the signal-
like bins of each of our discriminant variables. Regions of
68.3%, 95.5%, and 99.7% credibility are derived from the
distribution of the posterior by evaluating the smallest
region in area that contains 68.3%, 95.5% or 99.7% of
the integral of the posterior. Each region has the property
that the numerical values of the posterior along the bound-
ary of the region are equal to each other. The best-fit
values, the credibility regions, and the SM predictions of
�s and �t are shown in Fig. 40. We compare these with the

NLO SM predictions of �t ¼ 1:98� 0:25 pb and �s ¼
0:88� 0:11 pb [9,10], and also with the NNNLO predic-
tions of �t ¼ 2:16� 0:12 pb and �s ¼ 0:98� 0:04 pb
[11].
The coverage of the technique is checked by generating

1500 pseudo-datasets randomly drawn from systematically
varied predictions assuming that a single top signal is
present as predicted by the SM, and performing the two-
dimensional extraction of �s and �t for each one in the
same way as is done for the data. No bias is seen in the
median fit �s and �t values. Each pseudo-dataset has a
corresponding set of regions at 68.3%, 95.5%, and 99.7%
credibility. The fractions of the pseudo-datasets’ fit bands
that contain the input prediction for �s and �t are consis-
tent with the credibility levels at which the bands are
quoted.
The two-dimensional fit result is not in good agreement

with the SM prediction; the difference is at approximately
the 2 standard deviation level of significance. The differ-
ences between the measured values of the s- and t-channel
cross sections and their SM predictions are driven by the
deficit of events observed in the high-discriminant output
regions of the two-jet, one-b-tag channels relative to
the SM signal-plus background prediction as shown in
Fig. 36(b), and the excess of events observed in the two-
jet, two-b-tag distributions, as shown in Fig. 36(d). The
measured total cross sections in these jet and b-tagging
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FIG. 40 (color online). The results of the two-dimensional fit
for �s and �t. The black point shows the best-fit value, and the
68.3%, 95.5%, and 99.7% credibility regions are shown as
shaded areas. The SM predictions are also indicated with their
theoretical uncertainties. The SM predictions shown are those of
[9,10] (NLO) and [11] (NNNLO).
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categories, listed in Table VII, show the effects of these
discrepancies with respect to the SM predictions.

The newer calculation of the t-channel kinematic distri-
butions [56,57] predicts a larger fraction of t-channel
signal events with a visible recoiling b jet, which is nor-
mally not reconstructed because it is beyond the forward
acceptance of the detector or because the jet ET is too
small. This calculation has almost the same overall cross-
section prediction for�t as the onewe use elsewhere in this
paper [9], but it reduces the two-jet, one b-tag prediction
for the t-channel signal and raises the two-jet two-b-tag
and 3-jet predictions. After fully simulating and recon-
structing the signal events, the effects on the predicted
yields are small; the 3-jet channels’ contribution to our
measurement sensitivity is also small. The change to the
1D and 2D fit results is not noticeable when using the
model of [56,57] compared to our central prediction within
the rounding precision of the results we quote.

The t-channel process is sensitive to the b quark PDF of
the proton, while the s-channel process is not. The low
measured value of �t reported here is not in good agree-
ment with the SM predictions. The D0 Collaboration has
recently measured �t ¼ 3:14þ0:94

�0:80 pb using a data sample

corresponding to 2:3 fb�1 of integrated luminosity [105],
which is larger than the standard model prediction. Taken
together, there is insufficient evidence to exclude a stan-
dard model explanation of the results.

XIII. SUMMARY

The observation of single top quark production poses
many difficult experimental challenges. CDF performs this
analysis in proton-antiproton collisions at 1.96 TeV in
events with a leptonically decaying W boson and jets.
The low signal-to-background ratio in the data samples
passing our selection requirements necessitates precise
modeling of the signal and background kinematic distri-
butions with matrix element Monte Carlo generators using
full parton showering and detailed detector simulation, and
also requires the normalization of the dominant back-
ground rates to measured rates in sideband data samples.
The small signals and large, uncertain background pro-
cesses also require us to take maximum advantage of the
expected kinematic and flavor differences between the
signals and the background processes. We develop novel,
powerful techniques for combining information from sev-
eral observable quantities computed for each event. We
purify a subsample of single top quark events with a
predicted signal-to-background ratio exceeding 5:1 from
a sample starting with a signal-to-background ratio of 1:16
after b tagging.

Our final discriminant variables are functions of many
kinematic and b-tagging variables. Incorrect modeling of
one or more variables, or even of the correlations between
variables, can bias the results. We therefore evaluate an
exhaustive list of systematic uncertainties which affect the

predicted signal and background components’ rates and
kinematic distributions, including both theoretical uncer-
tainties and uncertainties which arise from discrepancies
observed between the data and the simulations in control
regions. The correlations between the systematic uncer-
tainties on the rate and shape predictions of the signal and
background processes in several data samples are taken
into account in all of the results and in computing the
expected sensitivities presented in this paper. We also
consider Monte Carlo statistical uncertainties in each bin
of each template histogram in each channel independently.
We constrain the major background rates in situ in the
selected event samples to further reduce the uncertainties
in their values and to improve the sensitivity of our results.
Our analyses were optimized based on predictions and

were blinded to the data during their development. The
analyses were cross-checked using the data in control
samples before looking at the data in the signal regions.
We perform many checks of our methods—we compare
the observed and predicted distributions of the discrimi-
nant input and output variables in independent control
samples, and we also train discriminants that enrich
samples of each background as if it were signal. The vast
majority of our cross checks show that the predictions
model the data very well, and those that show discrepan-
cies contribute to our systematic uncertainties.
The four analyses in the ‘þ ET þ jets sample described

in this paper are combined with a statistically independent
analysis in the ET þ jets sample [28] to maximize the total
sensitivity. We report an observation of electroweak single
top quark production with a p value of 3:1� 10�7, which
corresponds to a significance of 5.0 standard deviations.
The measured value of the combined s- and t-channel
cross section is �sþt ¼ 2:3þ0:6

�0:5 pb assuming the top quark

mass is 175 GeV=c2, and also assuming the SM value of
�s=�t. The dependence of the measured cross section on
the assumed top quark mass is @�sþt=@mt ¼
þ0:02 pbc2=GeV. We extract a value of jVtbj ¼ 0:91�
0:11ðstatþ systÞ � 0:07ðtheoryÞ and a 95% confidence
level lower limit of jVtbj> 0:71, using the prediction of
[9,10] for the SM cross section, and also assuming that
jVtbj2 � jVtsj2 þ jVtdj2. With a two-dimensional fit for �s

and �t, using the same combination of analyses as the one-
dimensional fit, we obtain �s ¼ 1:8þ0:7

�0:5 pb and �t ¼
0:8þ0:4

�0:4 pb.
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