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We report on the search for Lorentz-violating sidereal variations of the frequency difference of

colocated spin species while the Earth and hence the laboratory reference frame rotates with respect to

a relic background field. The comagnetometer used is based on the detection of freely precessing nuclear

spins from polarized 3He and 129Xe gas samples using SQUIDs as low-noise magnetic flux detectors. As

result we can determine the limit for the equatorial component of the background field interacting with the

spin of the bound neutron to be ~bn? < 3:7 � 10�32 GeV (95% C.L.).
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A great number of laboratory experiments have been
designed to detect diminutive violations of Lorentz invari-
ance. Among others, the Hughes-Drever-like experiments
[1,2] have been performed to search for anomalous spin
coupling to an anisotropy in space using electron and
nuclear spins with steadily increasing sensitivity [3–14].
Lorentz-violating theories should generally predict the ex-
istence of privileged reference systems. In contrast with the
situation at the end of the 19th century, we have a rather
unique choice nowadays for such a ‘‘preferred inertial
frame,’’ i.e., the frame where the cosmic microwave back-
ground looks isotropic. Trying to measure an anomalous
coupling of spins to a relic background field which per-
meates the Universe and points in a preferred direction in
spacetime as a sort of new aether wind is a modern
analogue of the original Michelson-Morley experiment.

The theoretical framework presented by Kostelecký and
colleagues parametrizes the general treatment of CPT- and
Lorentz-violating effects in a standard model extension
(SME) [15]. The SME was conceived to facilitate experi-
mental investigations of Lorentz andCPT symmetry, given
the theoretical motivation for violation of these symme-
tries. Although Lorentz-breaking interactions are moti-
vated by models such as string theory [16,17], loop
quantum gravity [18–21], etc. (i.e., fundamental theories
combining the standard model with gravity), the low-
energy effective action appearing in the SME is indepen-
dent of the underlying theory. Each term in the effective
theory involves the expectation of a tensor field in the
underlying theory. These terms are small due to Planck-
scale suppression and, in principle, are measurable in
experiments. Predictions for parameters in the SME for a
loop quantum gravity system with a preferred frame were
discussed, e.g., in Ref. [22].

The SME contains a number of possible terms that
couple to the spins of standard model particles like the
electron, proton, and nucleon (mostly the bound neutron)
[23]. These terms have set the most stringent limits onCPT
and Lorentz violations. To determine the leading-order
effects of a Lorentz-violating potential V, it suffices to
use a nonrelativistic description for the particles involved
given by [23]

V ¼ �~bwJ � �w
J ðwith J ¼ X; Y; Z; w ¼ e; p; nÞ: (1)

The most sensitive tests were performed using a
3He-129Xe Zeeman maser to place an upper limit on

the neutron coupling to the anomalous field of ~bn? ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~bnXÞ2 þ ð~bnYÞ2

q
< 10�31 GeV [9,10] and, recently, by use

of a K-3He comagnetometer thereby improving the pre-
vious limit by a factor of 30 [4]. An essential assumption in
these so-called clock comparison experiments is that the

anomalous field ~bwJ does not couple to magnetic moments
but directly to the sample spins �w

J . This direct coupling
allows comagnetometry that uses two different spin species
to distinguish between a normal magnetic field and an
anomalous field coupling.
The comagnetometer used for the presented measure-

ments is based on the detection of freely spin precessing
nuclear spins from polarized 3He and 129Xe samples gas
with SQUIDs as low-noise magnetic flux detectors. Like in
[9,10], we search for sidereal variations of the frequency of
colocated spin species while the Earth and hence the
laboratory reference frame rotates with respect to a relic
background field. The observable to trace possible tiny
sidereal frequency modulations is the combination of
measured Larmor frequencies given by

�! ¼ !L;He � �He

�Xe

�!L;Xe: (2)*Corresponding author.
wheil@uni-mainz.de
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By that measure the Zeeman term is eliminated and
thus any dependence on fluctuations and drifts of the
magnetic field. For the 3He=129Xe gyromagnetic ratios
we took the literature values [24,25] given by �He=�Xe ¼
2:754 081 59ð20Þ.

The essential difference, in particular, from [9,10], is
that by monitoring the free spin precession, an ultrahigh
sensitivity can be achieved with a clock which is almost
completely decoupled from the environment. The design
and operation of the two-species 3He=129Xe comagnetom-
eter has been shown recently [26]. Briefly, in our measure-
ments, we used a low-Tc DC-SQUID magnetometer
system inside the strongly magnetically shielded room
BMSR-2 at PTB [27]. A homogeneous guiding magnetic
field B0 of about 400 nT was provided by one of the two
square coil pairs which were arranged perpendicular to
each other in order to manipulate the sample spins, e.g.,
�=2 spin flip by nonadiabatic switching. The maximum
field gradients were about 33 pT=cm. The 3He=129Xe nu-
clear spins were polarized outside the shielding by means
of optical pumping. Low-relaxation spherical glass vessels
(R ¼ 3 cm) were filled with the polarized 3He=129Xe gases
and placed directly below the Dewar as close as possible to
SQUID sensors, which detect a sinusoidal change in mag-
netic flux due to the spin precession of the gas atoms in the
glass cell. In order to obtain a high commonmode rejection
ratio, gradiometric sensor arrangements are commonly
used. For our analysis it was sufficient to use a first-order
gradiometer in order to suppress environmental distur-
bance fields.

Nitrogen was added as a buffer gas to suppress the van
der Waals spin relaxation of 129Xe [28]. In the regime of
motional narrowing, i.e., at gas pressures of order mbar and
at low magnetic fields [29,30], transverse spin-relaxation
times T�

2 of up to 60 h have been measured for 3He.
The actual limitation in the T�

2;Xe of xenon is given by the

relatively short wall relaxation time of 8 h< TXe
1;wall <

16 h. Therefore, the total observation time T of free spin
precession of our 3He=129Xe comagnetometer is set by this
characteristic time constant. According to the Cramer-Rao
lower bound (CRLB) [31], the accuracy by which the
frequency of a damped sinusoidal signal can be determined
is given by

�f �
ffiffiffiffiffiffi
12

p

ð2�Þ � SNR � ffiffiffiffiffiffiffiffiffi
fBW

p � T3=2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CðT; T�

2Þ
q

: (3)

SNR denotes the signal-to-noise ratio, fBW is the band-
width, and CðT; T�

2Þ describes the effect of exponential
damping of the signal amplitude with T�

2 . For observation
times T � T�

2 , CðT; T�
2) is of order one. Deviations from

the CRLB power law, due to noise sources inherent in the
comagnetometer itself, did not show up in Allan standard
deviation plots used to identify the power-law model for
the phase noise spectrum of our runs with T � 14 h,
typically [26].

The recorded signal is a superposition of the 3He
and 129Xe precession signals at Larmor frequencies
!He ¼ �He � B0 � 2� � 13:4 Hz and !Xe ¼ �Xe � B0 �
2� � 4:9 Hz as shown in Fig. 1. Analogue to similar
problems of data analysis [32] phases of subdata sets
were analyzed: The data of each run (j ¼ 1; . . . ; 7) were
divided into sequential time intervals (i) of � ¼ 3:2 s
(i ¼ 1; . . . ; Nj). The number of obtained subdata sets laid

between 13 350<Nj < 18 000 corresponding to observa-

tion times Tj of coherent spin precessions in the range of

12 h< Tj < 16 h. For each subdata set a �2 minimization

was performed, using the fit function

AiðtÞ ¼ Ai
He � sinð!i

HetÞþBi
He � cosð!i

HetÞþAi
Xe � sinð!i

XetÞ
þBi

Xe � cosð!i
XetÞþ ðci0 þ cilin � tÞ (4)

with a total of 8 fit parameters. Within the relatively short
time intervals, the term (ci0 þ cilin � t) represents the ade-

quate parameterization of the SQUID gradiometer offset
showing a small linear drift due to the elevated 1=f noise at
low frequencies (< 1 Hz) [26]. On the other hand, the
chosen time intervals are long enough to have a sufficient
number of data points (800) for the �2 minimization. The
sum of sine and cosine terms are chosen to have only linear
fitting parameters for the subdata set phases which are
given by

’i ¼ arctanðBi=AiÞ: (5)

The normalized �2 (�2=d:o:f:) of most subdata sets (i) is
close to 1 which is consistent with the assigned uncertainty
to each data point of�34 fT (k ¼ 1); see Fig. 1. The latter
value is the typical noise signal Ns derived from the mean

system noise ��s � 3 fT=
ffiffiffiffiffiffi
Hz

p
in the recorded effective

bandwidth of 100 Hz. Jumps in the SQUID signal in the
order of 1 pT caused by external disturbances gave
�2=d:o:f: 	 1 for the respective subdata sets. In the analy-
sis we therefore disregarded all subdata sets with
�2=d:o:f: � 2 (< 0:5% in total). For each subdata set
of chosen time interval �1:6 s � ðt� ti�1;jÞ � þ1:6 s
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FIG. 1. Typical subdata set of 3.2 s length showing the re-
corded SQUID gradiometer signal of the precessing 3He=129Xe
sample spins (sampling rate: rs ¼ 250 Hz). The uncertainty at
each data point is �34 fT (k ¼ 1) and therefore less than the
symbol size. The signal amplitudes at the beginning of each run
were typically SHe � 13 pT and SXe � 4 pT.

C. GEMMEL et al. PHYSICAL REVIEW D 82, 111901(R) (2010)

RAPID COMMUNICATIONS

111901-2



(see Fig. 1), we finally obtain numbers for the respective fit
parameters !i

He, !
i
Xe, ’

i
He, and ’i

Xe including error bars.
In a further step, we can deduce values for the average

frequency �!j ¼ 1
Nj

PNj

i¼1 !
i for each run. The accumulated

phase (omitting the index j) is then determined to be1

�ðt ¼ m�Þ ¼ �ðt ¼ ðm� 1Þ�Þ þ �! � �þ ’m

�mod½�ðt ¼ ðm� 1Þ�Þ þ �!�; 2�
 (6)

with m ¼ 1; . . . ; N � 1 and �ðt ¼ 0Þ ¼ ’1 being the
phase offset of the first time interval. Following Eq. (2)

the extracted phase difference ��ð1ÞðtÞ ¼ �ð1Þ
HeðtÞ �

ð�He=�XeÞ ��ð1Þ
XeðtÞ is plotted for run 1. ��ð1ÞðtÞ is ex-

pected to be constant if there is no sidereal modulation of
the spin-precession frequency and/or no other drifts and
noise sources. Nevertheless, in addition to an arbitrary
phase offset an almost linear time dependence is seen in
Fig. 2(a). The dominant contribution is caused from the
Earth’s rotation, i.e., the rotation of the SQUID detector
with respect to the precessing spins. For the location of the
PTB Berlin, Germany (� ¼ 52:5164� north) and the angle
between north-south direction and the guiding magnetic
field (� ¼ 28�), the linear term in the weighted phase
difference due to Earth’s rotation is given by [26]

�Earth ¼ ��SD � ð1� �He=�XeÞ � cos� � cos� � t
¼ 6:87263� 10�5 rad=s � t: (7)

�SD is the angular frequency of the sidereal day with
�SD ¼ 2�=TSD ¼ 2�=ð23h: 56min: 4:091sÞ. Subtracting

this term from ��ð1ÞðtÞ, we get the corrected phase

��ð1Þ
corrðtÞ which is plotted in Fig. 2(a), too. Let us assume

that there is no sidereal variation of the 3He=129Xe fre-
quencies induced by Lorentz-violating couplings, and then

��ðjÞ
corrðtÞ can be described best by

�ðjÞ
fit ðtÞ ¼ �ðjÞ

0 þ �!ðjÞ
linðt� t0;jÞ þ EðjÞ

He � exp
��ðt� t0;jÞ

T�ðjÞ
2;He

�

þ EðjÞ
Xe � exp

��ðt� t0;jÞ
T�ðjÞ
2;Xe

�
(8)

with

�ðjÞ
fit ðtÞ ¼

�
�ðjÞ

fit ðtÞ for t0;j � t � ðt0;j þ Nj � �Þ;
0 elsewhere.

t0;j is the absolute starting time of each run. Our interpre-

tations of the terms are as follows: �ðjÞ
0 is a general phase

offset and �!ðjÞ
linðt� t0;jÞ is an additional linear phase shift

mainly arising from deviations of the gyromagnetic ratios
of 3He and 129Xe from their literature values due to chemi-
cal shifts and uncertainties in the subtraction of�Earth [26].

The two exponential terms with amplitudes EðjÞ
He and EðjÞ

Xe

reflect the respective phase shift due to demagnetization
fields in a nonideal spherical cell seen by the spin ensem-
bles (self-shift). These phase shifts are directly correlated

to the decay times TðjÞ
2;He and TðjÞ

2;Xe of the respective signal

amplitude of the precessing helium and xenon spins [26].

As the T�ðjÞ
2 times can be determined independently for

both spin species from the experiment, four fit parameters
are left for each run, such that the fit model is basically a
linear function in parameters.

Fitting the corrected phase difference ��ðjÞ
corrðtÞ to

Eq. (8) and subtracting the fit function from ��ðjÞ
corrðtÞ

results in the phase residual as shown for run 1 in
Fig. 2(b). Because of the exponential decay of the signal
amplitudes, mainly that of xenon with the shorter T�

2;Xe of

only 4–5 h, the SNR decreases resulting in an increase of

the residual phase noise, i.e., ��;res / expðt=T�ðjÞ
2;XeÞ [26].

In the last step, a piecewise fit function was defined,
which is a combined fit to all seven runs, now including the
parameterization of the sidereal phase modulation
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FIG. 2. (a) Measured phase differences ��ð1ÞðtÞ for run 1 and

the corresponding corrected phases ��ð1Þ
corrðtÞ after subtraction of

the effect of the Earth’s rotation. (b) Phase residuals after
subtraction of phase drifts given by the fit model of Eq. (8)
(one data point comprises 20 subdata sets, i.e., �t ¼ 64 s).

1As the maximal frequency deviation �! from the mean �!j

was smaller than 5 � 10�6 rad=s in the course of one run [26], we
had at all times �! � � � 2�.
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�SD
fit ðtÞ ¼

X7
j¼1

�ðjÞ
fit ðtÞ þ fas � sinð�SDðt� t0;1Þ þ ’SDÞ

� ac � cosð�SDðt� t0;1Þ þ ’SDÞg: (9)

’SD ¼ 2� � tSD represents the phase offset of sidereal
modulation at the local sidereal time (vernal equinox
J2000.0) on 2009 March 21 at 20:52 UT (universal time)
which is the starting time t0;1 of the first run. Neglecting

multiples of 24 h the local sidereal time is 9.7 h, which in
units of a sidereal day gives tSD ¼ 0:4053.

Figure 3 shows the corrected phase differences �ðjÞ
corrðtÞ

together with the fit function �SD
fit ðtÞ (white solid line) for

all seven runs. The �2=d:o:f: of the fit gave 1.868, which
shows that the phase model of Eq. (8) may be somewhat
incomplete or, what is more likely, the phase errors are
underestimated in the analysis of the subdata sets. In order
to take an (unknown) uncertainty into account, the errors
on the phases were scaled to obtain a �2=d:o:f: of one, as
recommended, e.g., by Refs. [33,34]. In Table I (2nd row)
the fit results for the amplitudes ac and as of the sidereal
phase modulation are shown together with their correlated
and uncorrelated 1� errors.

It is noticeable that the uncorrelated error which repre-
sents the integrated measurement sensitivity of our
3He=129Xe comagnetometer is about a factor of 50 less
than the correlated one. The big correlated error on as and

ac is caused by a piecewise similar time structure of�ðjÞ
fit ðtÞ

and the sidereal phase modulation in the fit function of
Eq. (9). On a closer look, this can be traced back to the

relatively short T�ðjÞ
2;Xe times (compared to TSD) that enter in

the argument of the exponential terms of Eq. (8).
Therefore, the present sensitivity limit of our 3He=129Xe
comagnetometer is set by the correlated error. In order to
substantiate that more clearly, we changed the fit model of
Eq. (9) by taking multiples of �SD (�0

SD ¼ g ��SD), i.e.,

replacing TSD by T0
SD ¼ TSD=g. The results show that the

correlated error approaches the uncorrelated one already
for g � 3 (see Table I). The uncorrelated error, however, is
only marginally affected by this procedure, as expected.
From Table I (2nd row) we now extract the rms value of the

sidereal phase amplitude �SD ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2s þ a2c

p
, yielding

ð2:25� 2:29Þ mrad (95% C.L.). This result is consistent
with the absence of Lorentz- and CPT-violating effects,
giving reasonable assumptions about the probability distri-
bution for �SD [35].
In terms of the SME [23] we can express the sidereal

phase amplitudes according to

as ¼ 2�

�SD

� �	X and ac ¼ 2�

�SD

� �	Y (10)

with

2�j�	X;Yj � ℏ ¼ j2 � ð1� �He=�XeÞ � sin� � ~bnX;Yj: (11)

� is the angle between the Earth’s rotation axis
and the quantization axis of the spins with � ¼
arccosðcos� � cos�Þ ¼ 57�. Within the Schmidt model
[36], the valence neutron of 3He and 129Xe determines
the spin and the magnetic moment of the nucleus. Thus,
our 3He=129Xe comagnetometer is sensitive to the bound

neutron parameters ~bnX;Y . From that, we can deduce

numbers for ~bnX;Y:

~b n
X ¼ ð3:36� 1:72Þ � 10�32 GeVð1�Þ; (12)

~b n
Y ¼ ð1:43� 1:33Þ � 10�32 GeVð1�Þ; (13)

which can be interpreted as j~bn?j< 3:7 � 10�32 GeV at
95% confidence level for the upper limit of the equatorial
component of the background tensor field interacting with
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FIG. 3. Corrected phase differences ��ðjÞ
corrðtÞ with combined

fit function �SD
fit ðtÞ (white solid line) for the seven runs (one data

point comprises 20 subdata sets, i.e., �t ¼ 64 s). In order to
present these results in a common plot, the general phase offset

�ðjÞ
0 was subtracted from ��ðjÞ

corrðtÞ for each run.

TABLE I. Results for the sidereal phase amplitudes ac and as together with their correlated
and uncorrelated 1� errors (2nd row) determined by a �2 minimization using the fit model of
Eq. (9). In order to demonstrate the strong dependence of the correlated error on the angular
frequency of the sidereal day �SD, corresponding fit results are shown for multiples of �SD:
�0

SD ¼ g ��SD.

ac (mrad) �corr
ac (mrad) �uncorr

ac (mrad) as (mrad) �corr
as (mrad) �uncorr

as (mrad)

0:5 ��SD 3.353 6.572 0.018 0.488 7.991 0.016

�SD �0:882 0.814 0.015 �2:067 1.057 0.019

2 ��SD �0:048 0.120 0.016 �0:149 0.112 0.017

3 ��SD �0:184 0.052 0.019 �0:011 0.043 0.016

4 ��SD �0:001 0.034 0.018 0.057 0.030 0.016
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the spin of the bound neutron. For the calculation of the

upper limit on ~bn? Eqs. (10) and (11) were used putting in
the 95% C.L. for the rms value of the sidereal phase
amplitude �SD.

Further improvements for Lorentz and CPT tests using
the free spin-precession 3He=129Xe comagnetometer can
be achieved via two mayor steps: First, the relatively short
wall relaxation time of 129Xe limiting the total observation
time T of free spin precession has to be increased consid-
erably (T1;wall � TSD) such that we approach the measure-

ment sensitivity given by the uncorrelated error. Since the

latter one follows the / T�3=2 power law according to
CRLB of Eq. (3), the longer observation time T will lead
to an additional increase in sensitivity. Second, the number
of measurement runs has to be increased to a period of
100 days. Besides gain in statistics, the long time span
provides an important separation between sidereal and
possible diurnal variations.

This work was supported by the Deutsche
Forschungsgemeinschaft (DFG) under Contract No. BA
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error by setting
R��SD

0 Pð�SDÞd�SD ¼ 0:95 giving

��SD ¼ 2:29 mrad.
[36] Th. Schmidt, Z. Phys. 106, 358 (1937).
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