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The form factor provides a convenient way to describe properties of topological solitons in the full

quantum theory, when semiclassical concepts are not applicable. It is demonstrated that the form factor

can be calculated numerically using lattice Monte Carlo simulations. The approach is very general and can

be applied to essentially any type of soliton. The technique is illustrated by calculating the kink form

factor near the critical point in 1þ 1-dimensional scalar field theory. As expected from universality

arguments, the result agrees with the exactly calculable scaling form factor of the two-dimensional Ising

model.
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Topological solitons play an important role in a wide
range of physical systems [1–3], and they have been
studied extensively both experimentally and theoretically.
Although in many of these systems quantum mechanical
effects are significant, theoretical studies have been mainly
limited to the classical limit in all but the simplest cases. In
principle, one can use perturbation theory to calculate
‘‘semiclassical’’ quantum corrections to classical quanti-
ties [4]. However, this only works when the quantum
effects are small and in practice can only be used for
very simple models [5]. A fully quantum mechanical
analysis requires not only a new calculational method but
also a different set of observables; the simplest classical
observables do not have well-defined quantum mechanical
counterparts.

In this paper we investigate one such observable, the
soliton form factor. The form factor is a fully nonperturba-
tive quantum observable which does not rely on any semi-
classical concepts, and it can be defined for any soliton in
an analogous way. Form factors are used in many areas of
physics to characterize properties of quantum objects, from
atomic [6] and nuclear physics [7] to integrable systems
[8]. The soliton form factor describes the scattering of a
particle with a soliton; it can be loosely interpreted as (the
Fourier transform of) the soliton profile in the quantum
theory. It is therefore the most natural quantum observable
beyond the soliton mass, and it carries a large amount of
nontrivial information about the soliton and its interac-
tions. By studying the form factor, one can therefore
move away completely from semiclassical ideas of soliton
shape to work with fully nonperturbative results for exci-
tations and interactions.

Choosing a concrete example with both nontrivial criti-
cal behavior and well-understood semiclassical limits, we
shall focus on the kink form factor [9–13] in 1þ
1-dimensional field theory. Previously [14], we studied
semiclassical aspects of kinks with lattice Monte Carlo
simulations by measuring the field correlation function in
the presence of a kink. Here we show that the same
approach can be further developed to calculate the kink

form factor in a fully nonperturbative way. We demonstrate
this by carrying out simulations near the critical point,
where we find excellent agreement with exact results
from the two-dimensional Ising model, as predicted by
universality arguments. This approach can be generalized
to solitons in other theories.
Let us consider a theory with a real scalar field �ðt; xÞ

and kinks in 1þ 1 dimensions. Our discussion will be valid
for any such theory, but as a concrete example, we use the
��4 model with Lagrangian

L ¼ 1

2
ð@��Þð@��Þ þm2

2
�2 � �

4!
�4: (1)

For fixed coupling � there is a critical mass parameter
value m2

c below which the Z2 symmetry of this theory
is spontaneously broken, and the scalar field has a vacuum
expectation value h�i ¼ �v. In the classical theory

m2
c ¼ 0 and v ¼ m

ffiffiffiffiffiffiffiffiffi
6=�

p
. The kink corresponds to a state

which interpolates between one vacuum on one side and
the other vacuum on the other side.
We assume that the system is in a state with one kink.

Classically, this simply corresponds to the exact kink so-

lution �kinkðxÞ ¼ v tanhðmx=
ffiffiffi
2

p Þ. In the quantum theory,
the same can be achieved by imposing twisted antiperiodic
boundary conditions in the spatial direction [15]. In fact,
this only restricts the number of kinks to odd values, but
states with more than one kink are exponentially sup-
pressed in the infinite-volume limit. Note that this way of
preparing the system preserves translation invariance and
is fully nonperturbative as it makes no reference to any
classical background configuration.
The ground state j0i of this one-kink sector of the theory

corresponds to a kink in a momentum eigenstate with zero
momentum, and its energy E0 is therefore simply the kink
massM. This state is therefore translation invariant. Above
this, the spectrum consists of moving kink states jki with
momentum k and energy Ek ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

p
, up to the energy

Eexc of the first excited state of the kink. Above Mþm,
there are also states with one or more free scalar particles.
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Wewant to calculate the kink form factor fðk; k0Þ, which
is defined as the matrix element

fðk; k0Þ ¼ 1

v
hk0j�̂ð0Þjki; (2)

where we have scaled it by the vacuum expectation value v
to make it independent of the field normalization, and the
momentum states jki have the Lorentz invariant normal-
ization

hk0jki ¼ 2��ðk� k0ÞEk: (3)

Lorentz invariance of the theory implies that, when ex-
pressed in terms of rapidities �k ¼ arcsinhk=M, the form
factor is a function of the rapidity difference only [10],
fðk; k0Þ ¼ fð�k � �k0 Þ.

Semiclassically, the kink form factor is given by the
Fourier transform of the static kink solution [9,11],

fclð�Þ ¼ 4

3
i�v2 1

sinh 2
3�v

2�
: (4)

This means that even in the quantum theory the form factor
can be thought of as the effective kink profile. However,
this interpretation should not be taken literally because, as
always, there are many quantum observables that have the
same semiclassical limit. The semiclassical approximation
is valid at weak coupling. In our model (1), the dimension-
less coupling is �=m2 ¼ 6=v2, thus weak coupling implies
a large vacuum expectation value.

What makes the theory (1) a particularly useful test bed is
that the form factor is also known exactly at strong coupling,
by which we mean near the critical point m2 � m2

c in
the quantum theory. The theory is in the same universality
class as the two-dimensional Ising model, and near the
critical point the form factor should approach the exact
Ising model result [16,17],

fIsingð�Þ ¼ i coth
�

2
: (5)

Matrix elements like (2) cannot be computed directly
using Monte Carlo simulations. Instead, the basic observ-
able is the field correlation function, which we consider in
the ground state j0i of the one-kink sector. We calculate it
in momentum space, taking the Fourier transform in space
but not in time, and write a spectral expansion in terms of
energy eigenstates j�i with energies E�,

h�ð0;kÞ�ðt;qÞi¼X
�

h0j�̂ðkÞj�ih�j�̂ðqÞj0i
h0j0i eitðE��E0Þ: (6)

Lattice Monte Carlo simulations are carried out in
Euclidean space, which is obtained by carrying out a
Wick rotation t ! it. This does not affect the coefficients
of the spectral expansion, but the exponentials become
real,

h�ð0; kÞ�ðt; qÞi ¼ X
�

h0j�̂ðkÞj�ih�j�̂ðqÞj0i
h0j0i e�tðE��E0Þ:

(7)

At long enough time separation,

t � 1

Eexc � E0

; (8)

the dominant contribution comes from the single-particle
moving kink states jki. For them, the coefficient of the
expansion is essentially the form factor, because

hk0j�̂ðqÞjki ¼ vfðk; k0Þ2��ðk� q� k0Þ: (9)

The momentum conservation delta function restricts the
expansion to only states with overall momentum k, and
therefore we have

h�ð0; kÞ�ðt; qÞi ¼ 2��ðkþ qÞ
L

v2jfðk; 0Þj2
EkE0

e�tð
ffiffiffiffiffiffiffiffiffiffiffi
k2þM2

p
�MÞ

þOðe�tðEexc�MÞÞ; (10)

where L is the spatial length of the system, and we have
used h0j0i ¼ LE0 as implied by our normalization.
Furthermore, the Euclidean spacetime is necessarily

finite in actual Monte Carlo simulations. We assume peri-
odic boundary conditions in the time direction, and denote
the length of the system by T. In the periodic Euclidean
time, the field correlator is

h�ð0; kÞ�ðt; qÞi ¼ TrÛðT � tÞ�̂ðqÞÛðtÞ�̂ðkÞ
TrÛðTÞ ; (11)

where ÛðtÞ ¼ expð�ĤtÞ is the Euclidean time evolution
operator. As in Eq. (7), at long enough time separations the
only contribution comes from single-particle kink momen-
tum eigenstates jki, so we can approximate the trace in
Eq. (11) by an integral over them,

h�ð0; kÞ�ðt; qÞi ¼
R

dk0
2�Ek0

hk0jÛðT � tÞ�̂ðqÞÛðtÞ�̂ðkÞjk0iR
dk0

2�Ek0
hk0jÛðTÞjk0i :

(12)

Using

hk0jÛðtÞjki ¼ 2��ðk� k0ÞEke
�Ekt; (13)

we can write the denominator as

Z dk0

2�Ek0
hk0jÛðTÞjk0i ¼ L

Z dk0

2�
e�Ek0T: (14)

Inserting complete sets of momentum eigenstates,
the numerator becomes
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Z dk0

2�Ek0
hk0jÛðT � tÞ�̂ðqÞÛðtÞ�̂ðkÞjk0i

¼ 2��ðqþ kÞ
Z dk0

2�

v2jfðk0 � k; k0Þj2
Ek0�kEk0

e�Ek0 ðT�tÞ�Ek0�kt:

(15)

As illustrated in Fig. 1, this integral has a simple geo-
metrical interpretation: The kink travels from time 0 to
time t at momentum k0 � k, where it interacts with a �
particle. This changes its momentum to k0, with which it
moves forward in time through the periodic boundary back
to time 0. To calculate the integrals (14) and (15), we use
the saddle point approximation. The saddle point k0 for
Eq. (15) is found by minimizing the action

Sðk0Þ ¼ Ek0 ðT � tÞ þ Ek0�kt�MT (16)

for given t. By approximating the integral by a Gaussian
around the saddle point, we obtain

h�ð0; kÞ�ðt; qÞi

¼ 2��ðkþ qÞ
L

ffiffiffiffiffi
T

M

s
v2jfðk0; k0 � kÞj2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ek0�kEk0S

00ðk0Þ
q e�Sðk0Þ: (17)

This approximation is only valid when the action is suffi-
ciently peaked and well approximated by a Gaussian. The
latter assertion requires

S00ðk0Þ2 � Sð4Þðk0Þ: (18)

This implicitly imposes a lower limit for the system size T
in the time direction, so for higher k we need to use larger
lattices. As usual, the lattice size also has to be larger than
any inverse mass, including the kink mass M.

Finally, we note that because � is real and the kink has
odd parity, the form factor is odd and purely imaginary.
Therefore, we can use Eq. (17) to determine it from the
field correlator, up to a sign. For given k and t, we obtain
the saddle point k0 by minimizing Eq. (16), and the form
factor for rapidity difference � is given by

fð�Þ ¼ fðk0; k0 � kÞ ¼ �i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffih�ð0; kÞ�ðt;�kÞip
v

�
�
MEk0�kEk0S

00ðk0Þ
T

�
1=4

eSðk0Þ; (19)

where

� ¼ arcsinh
k0
2M

� arcsinh
k0 � k

2M
: (20)

While Eq. (19) is an approximation, it becomes exact for
sufficiently large T as discussed above; one must also
satisfy Eq. (8) by excluding small t.
We tested this result by calculating the form factor near

the critical point using lattice Monte Carlo simulations.
The Euclidean lattice action for the theory (1) is given in
lattice units by

S ¼ X
x

�
� X2

�¼1

�ðxÞ�ðxþ �̂Þ þ
�
2�m2

2

�
�ðxÞ2

þ �

4!
�ðxÞ4

�
(21)

with � ¼ 0:6. Square lattice sizes of L ¼ T 2
f125; 250; 375g were used. A kink is created by imposing
antiperiodic boundary conditions in the space direction,
�ðxþ L; tÞ ¼ ��ðx; tÞ. This also leads to discretization of
momentum, k ¼ ð2nþ 1Þ�=L.
We measured the momentum space unequal-time field

correlator at various time separations and then used
Eq. (19) to calculate the form factor for various rapidities.
At the strong couplings used here, the correlator measure-
ments are reliable even at very long distance thanks to
the hybrid Monte Carlo algorithm which was helpful in
fighting critical slowing down and thermalizing long-
distance modes efficiently. In principle, Eq. (19) gives
the form factor for a range of � from a single choice
of parameters fk; L;m2g because the same simulation gives
the correlator for all values of the time separation t.
However, these values are strongly correlated; we report
only one data point per combination with a quoted
error obtained from a bootstrap resampling of all measure-
ments [18].
Given Eq. (8), the time separation t has to be long

enough that excited states and two-particle states are sup-
pressed sufficiently. This happens when t * 1=2M.
However, at greater distances statistical noise starts to
grow. Therefore, we select the value of t with the smallest
statistical error within the permitted range.

FIG. 1. Illustration corresponding to Eq. (15). The kink is
constrained by periodic boundary conditions in the Euclidean
time direction, so the worldline must match up at either end of
the lattice. The defect is not pointlike, and has a form factor
which is represented here by the interaction between the scalar
and the defect having a finite size.
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In addition to the field correlator, Eq. (19) also involves
the vacuum expectation value v of �, and the kink
mass M. We measured v using simulations with periodic
boundary conditions. We take the ensemble average
v ¼ hjPx2V�ðxÞji of the average field’s absolute value.

To obtain the kink mass M, we again used Eq. (12) and
the saddle point approximation, but this time taking the
lowest available momentum, k ¼ �=L, leaving the higher
momentum measurements as independent data sets for the
study of the form factor. Then, as long as k � M, Eq. (16)
simplifies and we find the saddle point k0 ¼ kt=T for
arbitrary t. We can, therefore, apply the saddle point ap-
proximation analytically, and we find [14]

h�ð0; kÞ�ðt; qÞi / e�
ffiffiffiffiffiffiffiffiffiffiffi
M2þk2

0

p
t�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2þðk�k0Þ2

p
ðT�tÞþMT: (22)

We then fit the k ¼ �=L correlator data to this expression
to obtain the mass M with a bootstrap error. The results of
this fitting are shown in Fig. 2. Alternatively, the mass
could also be calculated from the free energy difference
between the kink and vacuum sectors [15].

This way, we have measured all the quantities that
appear in Eq. (19). We can calculate the form factor fð�Þ
at a wide range of rapidities for different momenta and
different values of m2. Finally, we have checked the con-
sistency of the saddle point approximation leading to
Eq. (17) when Eq. (18) is satisfied.

The results in the critical regime are shown in Fig. 3,
together with the exact Ising model result (5) for compari-
son. The agreement is very good. This demonstrates that

we can calculate the kink form factor reliably even at
strong coupling where perturbative approaches fail.
Unlike the Ising model, the scalar field theory (1) in which
we carried out the calculation is not exactly solvable, and
we made no use of any special features of the theory.
Therefore, we expect that the same method will work
equally well in other theories.
We have shown how to calculate soliton form factors

nonperturbatively from field correlation functions mea-
sured in lattice field theory simulations. The approach
can be applied directly to other theories with kinks, such
as the Sine-Gordon model, and generalization to other
theories where twisted boundary conditions can create
topological solitons [19–21] should be straightforward.
In more complicated theories, one will obtain several

form factors which describe interactions of the soliton
with different particle species. In the case of pointlike
solitons, such as ’t Hooft-Polyakov monopoles in 3þ
1-dimensional gauge field theory [22], the calculation
will follow the same lines. Generalization to extended
solitons, such as domain walls, strings or higher-
dimensional membranes is less trivial but should still be
possible. For example, this will make it possible to study
nonperturbatively the quantum mechanical properties and
interactions of cosmic strings.
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and made use of the Imperial College HPC Service.
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FIG. 2. The kink mass M as a function of m2 in different
volumes. The data agree with the known results for the Ising
universality class [23]: extrapolating to the infinite-volume limit,
the dependence on m2 is linear.
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FIG. 3. The form factor as a function of the rapidity difference.
Measurements are shown for several lattice sizes at various
momenta, and the form factors for the Ising model and for a
semiclassical kink are also shown.
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