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We derive an analytic expression for the energy spectrum of gravitational waves from a parabolic

Keplerian binary by taking the limit of the Peters and Mathews spectrum for eccentric orbits. This

demonstrates that the location of the peak of the energy spectrum depends primarily on the orbital

periapse rather than the eccentricity. We compare this weak-field result to strong-field calculations and

find it is reasonably accurate ð�10%Þ provided that the azimuthal and radial orbital frequencies do not

differ by more than �10%. For equatorial orbits in the Kerr spacetime, this corresponds to periapse radii

of rp * 20M. These results can be used to model radiation bursts from compact objects on highly

eccentric orbits about massive black holes in the local Universe, which could be detected by the Laser

Interferometer Space Antenna (LISA).
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I. INTRODUCTION

An important source of gravitational waves for the pro-
posed space-based gravitational wave detector, the Laser
Interferometer Space Antenna (LISA) [1,2], are the inspi-
rals of stellar-mass compact objects into massive black
holes in the centers of galaxies. During the last few years
of inspiral, these systems generate continuous gravitational
waves in the LISA band, which will allow the detection of
as many as several hundred systems out to redshift z� 1
[3]. However, before this phase, the inspiraling object
spends many years on a highly eccentric orbit, generating
bursts of gravitational radiation at each periapse passage.
LISA could resolve individual bursts from sources in the
nearby Universe. Initial estimates [4] suggested a LISA
event rate of �18 yr�1, including �15 yr�1 from the
center of the Milky Way, which was subsequently revised
downwards to �1 yr�1 with negligible contribution from
extragalactic sources [5]. If even a single burst from the
Galactic center is detected during the LISA mission, this
will provide an unparalleled probe of the structure of
spacetime there.

The spectrum of radiation from these bursts will be well
approximated by the spectrum of a parabolic orbit.1 In this
note we derive an analytic approximation to this spectrum
by taking the limit of the Peters and Mathews [6,7] (PM)
energy spectrum for eccentric Keplerian binaries. We show
that the peak of the spectrum depends primarily on the
orbital periapse and only weakly on the eccentricity. We
also estimate the range of validity of the approximation (in
Sec. III) by comparing to numerical Teukolsky data, find-
ing that it is a good approximation for equatorial orbits in
Kerr with periapse rp * 20M. The parabolic spectrum

takes a neat analytic form; deriving it from the bound
spectrum will allow corrections for high-eccentricity
bound orbits to be found in the future. We hope this note
will be a useful resource for future work on gravitational
radiation from high-eccentricity orbits.

II. PARABOLIC LIMIT

A. Energy spectrum

For an orbit of eccentricity e with periapse radius rp,

Peters andMathews [6] give the power radiated into the nth
harmonic of the orbital angular frequency as

PðnÞ ¼ 32
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where the function gðn; eÞ is defined in terms of Bessel
functions of the first kind:

gðn;eÞ ¼ n4
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The Keplerian orbital frequency is

!2
1 ¼

GðM1 þM2Þð1� eÞ3
r3p

¼ ð1� eÞ3!2
c; (3)

where !c is defined as the angular frequency of a circular
orbit of radius rp. The energy radiated per orbit into the nth

harmonic, that is, at frequency !n ¼ n!1, is

EðnÞ ¼ 2�

!1

PðnÞ; (4)

as e ! 1 for a parabolic orbit,!1 ! 0 as the orbital period
becomes infinite. The energy radiated per orbit is then the
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1We use ‘‘parabolic’’ to refer to marginally bound orbits.

Marginally bound Keplerian orbits are parabola; in curved
spacetimes they do not retain such a simple shape.
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total energy radiated. The spacing of harmonics is
�! ¼ !1, giving energy spectrum
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!1 ¼ EðnÞ: (5)

Changing to linear frequency 2�f ¼ !,
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where the function lðn; eÞ is defined in the last line. For a
parabolic orbit, we must take the limit of lðn; eÞ as e ! 1.

We simplify lðn; eÞ using the recurrence formulae
(Watson [8] 2.12):

J��1ðzÞ þ J�þ1ðzÞ ¼ 2�

z
J�ðzÞ (8)

J��1ðzÞ � J�þ1ðzÞ ¼ 2J0�ðzÞ; (9)

and eliminate n using

n ¼ !n

!1

¼ ð1� eÞ�3=2 ~f; (10)

where ~f ¼ !n=!c ¼ fn=fc is a dimensionless frequency.
To find the limit we define two new functions:

Að~fÞ ¼ lim
e!1
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To give a well-defined spectrum, these must be finite.
The Bessel function has an integral representation

J�ðzÞ ¼ 1

�

Z �

0
cosð�# � z sin#Þd#; (12)

we want the limit of this for � ! 1, z ! 1, with z � �.
Using the stationary phase approximation, the dominant
contribution to the integral comes from the regime in
which the argument of the cosine is approximately zero
(Watson [8] 8.2, 8.43), for small #:
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this last expression is an Airy integral and has a standard
form (Watson [8] 6.4)Z 1
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where K�ðzÞ is a modified Bessel function of the second
kind. Using this to evaluate the limit gives
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For our case,
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and the first limiting function is well defined,
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�

ffiffiffi
2

3

s
K1=3

�
23=2 ~f

3

�
: (18)

To find the derivative we combine (9) and (16), and
expand to lowest order, yielding2
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We may reexpress the derivative using the recurrence
formula (Watson [8] 3.71)
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And so finally we obtain the well-defined
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Having obtained expressions for Að~fÞ and Bð~fÞ in terms
of standard functions, we can now calculate the energy
spectrum for a parabolic orbit. From (7)
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where we have used the limit
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This agrees with the e ¼ 1 form of Turner’s result,
which was computed by direct integration along unbound
orbits [9]. Figure 1 shows how lðn; eÞ changes with eccen-
tricity including our result for a parabolic encounter
(cf. Fig. 3 of PM [6]). Although more power is radiated
into higher harmonics, the peak of the spectrum does not
move much: it is always between f ¼ fc and f ¼ 2fc,
with f ¼ 2fc for e ¼ 0 and f ’ 1:637fc for e ¼ 1.

B. Total energy

To check the validity of this limit we can calculate the
total energy radiated by integrating (23) over all frequen-
cies, or by summing the energy radiated into each har-
monic. These must yield the same result. Summing:

2For brevity we suppress the argument of the Bessel functions
ð23=2 ~f=3Þ, so K1=3 � K1=3ð23=2 ~f=3Þ, etc.
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Esum ¼ 64�
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where we have used Eqs. (1), (3), and (4). Peters and
Mathews [6] provide the result:

X
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which is perfectly well behaved as e ! 1,
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Integrating the energy spectrum (23) gives
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The integral can be evaluated numerically asZ 1

0
lð~fÞd~f ¼ 12:5216858 . . . ¼ 425

27=23
: (30)

The two total energies are consistent, Eint ¼ Esum.

III. APPLICABILITY

A. Limit of approximation

The PM approach assumes Keplerian orbits in flat space-
time. This should be a valid approximation in the weak-
field regime far from a massive body. To find the limit of
this approximation, we can compare the PM results with
those from more accurate techniques. Energy spectra for

parabolic orbits do not seem to be available in the literature
yet, so we will make do with the total energy fluxes
calculated by Martel [10], who uses time-domain black
hole perturbation theory for a Schwarzschild black hole of
mass M. Figure 2 shows the ratio of the two energies as a
function of periapse distance. As expected the PM result is
more accurate for larger periapses. The agreement worsens
as the periapsis decreases. At rp ¼ 4M, corresponding to

the radius of the innermost stable circular orbit (ISCO),
the energy flux calculated by Martel diverges, so the ratio
tends to zero. This divergence is because in Schwarzschild
(or Kerr) spacetime a parabolic orbit may have a zoom-
whirl structure where it undergoes a number of near circu-
lar rotations (whirls) about the black hole. As the radius of
the ISCO is approached, the number of whirls tends to
infinity (in the absence of radiation reaction), so an infinite
amount of energy is radiated. Figure 2 also shows how the
ratio of energies follows the number of rotations, defined as
N ¼ ��=2�, where �� is the total change in the azimu-
thal angle over one orbit. As N increases, the PM approxi-
mation worsens because the Keplerian orbit does not
include this extra rotation. The accuracy of the PM result
deteriorates rapidly once the orbit changes to a zoom-whirl
trajectory and is therefore far from parabolic in shape.
The PM result is accurate to �10% for orbits with

N & 1:1. We will adopt this as a cutoff point. For an
equatorial orbit in Kerr spacetime,

N ¼ 1
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FIG. 1. The relative energy (per orbit) spectrum lðn; eÞ for e ¼
0:2 (heavy line), e ¼ 0:5 (medium line), e ¼ 0:7 (light line), and
the limiting result for e ¼ 1 (dashed line) versus frequency.
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FIG. 2. Ratio of the total energy radiated as calculated using
the Peters and Mathews [6] approach to that calculated by Martel
[10] using black hole perturbation theory (solid line) vs periapse
radius rp. The latter approach should give more accurate results.

Also shown is the reciprocal of the number of rotations 1=N
(dashed line). The Keplerian limit corresponds to N ¼ 1.
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where w2 ¼ r3 � ðL2
z=2MÞr2 þ ðLz � aÞ2r; Lz is the

specific angular momentum about the z-axis;
a is the spin parameter; and we have adopted units

withG ¼ c ¼ 1. Wewill find it useful to define r� ¼ M�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � a2

p
and the two nonzero roots of the cubic w2
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the periapsis is the larger root rp > r1. This implicitly gives

Lz as a function of rp. The integral may be rewritten as
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may be evaluated using elliptic integrals (Gradshteyn and
Ryzhik [11] 3.131.8, 3.137.8)
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where �ðnjmÞ ¼ R�=2
0 d#=ð1� nsin2#Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�msin2#

p
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the complete elliptic integral of the third kind. In the limit
of a ! 0 we recover the Schwarzschild result [12]
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where KðmÞ ¼ R�=2
0 d#=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�msin2#

p
is the complete el-

liptic integral of the first kind. Figure 3 shows the periapsis
for which N ¼ 1:1 for a range of spins. Equatorial orbits
with larger periapses should be reasonably approximated by
the PM result.
Nonequatorial orbits are more complicated because of

the additional precession of the orbital plane. This extra
rotation will mean that the PM approach is less accurate;
however, this should be subdominant to the perihelion
precession effect and so the cutoff periapsis should not
be much larger than for the equatorial case.

B. Astrophysical implications

Considering bursts from the Galactic center, orbits with
periapses of rp & 120M could generate bursts that would

be detectable with LISA [4,5]. It is thus likely that any such
burst that was detected would be in the regime of validity
of the PM approach, rp * 20M for equatorial orbits. The

results described here will therefore have application in
that context, and it should be possible to explore the
majority of parameter space using this approximation.
The most interesting orbits, those which come deep within
the strong-field region of the black hole’s spacetime, will
be beyond the range of validity of this approximation, but
these represent a small subset of all plausible events.
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