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Several classes of gravitational backgrounds in 3þ 1 dimensions have been proposed as holographic

duals to Lifshitz-like theories describing critical phenomena in 2þ 1 dimensions with critical exponent

z � 1. We numerically explore one such model, characterized by a temperature T and chemical potential

�, and find how to embed these solutions into anti–de Sitter (AdS) for a range of values of z. We find no

phase transition going from the T � � to the T � � regimes, and find that the solutions smoothly

interpolate between the Lifshitz-like behavior and the relativistic AdS-like behavior. Finally, we exploit

some conserved quantities to find a relationship between the energy density E, entropy density s, and

number density n, E ¼ 2
3 ðTsþ�nÞ. We show that this result is expected from general scaling arguments,

and generalizes to E ¼ d
dþ1 ðTsþ�nÞ for a theory dual to AdSdþ2 (Poincaré patch) asymptotics with a

local Uð1Þ gauge invariance.
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I. INTRODUCTION

Since the Maldacena conjecture [1], AdS/CFT has be-
come an important tool used to study nonperturbative
aspects of field theories (for a review see [2]).
Traditionally, this has been used to study 3þ 1 supercon-
formal field theories in a particle physics context [3];
however, considerably less symmetric theories can be
studied using holographic techniques [4]. It has also been
fruitful to study toy models [5] that imitate certain features
of string theory backgrounds and seem to contain much of
the physics.1

From the (3þ 1)-dimensional cases, it has been learned
that finite temperature corresponds to the presence of a
horizon in the gravitational dual. Further, Uð1Þ gauge
symmetries in the bulk correspond to conserved number
operators in the dual field theory. Therefore, to study a field
theory at finite temperature and chemical potential in a
holographic setup, one studies charged objects with hori-
zons in the bulk: charged black holes [6].

Holographic techniques have recently been applied to
lower dimensional nonrelativistic systems as well [7–9]
(for reviews see [10]). In particular, much effort has gone
into describing quantum critical behavior of these theories.
Quantum critical systems exhibit a scaling symmetry

t ! �zt; xi ! �xi (1)

similar to the scaling invariance of pure anti–de Sitter
(AdS) (z ¼ 1) in the Poincaré patch. From a holographic
standpoint, this suggests the form of the spacetime metric

ds2 ¼ L2

�
r2zdt2 þ r2dxidxj�ij þ dr2

r2

�
; (2)

where the above scaling is realized as an isometry of the
metric along with r ! ��1r.2 The above metric has no
symmetry that mixes time and space, although there are
also models that contain a Galilean (or other nonrelativis-
tic) symmetry [8,13,14]. However, here we will be con-
cerned with models that admit the metric (2) as a solution.
Often, a good place to begin studying any system is to

write down a toy or ‘‘phenomenological’’ model [7,8] to
study generic properties. One may then consider possible
embeddings into a more fundamental theory [13,15–17],
such as a string theory, where more information is known
about the weakly coupled physics. Two toy models that
admit the metric (2) have Lagrangians given by [18]

S0 ¼ 1

16�G4

Z
d4x

ffiffiffiffiffiffiffi�g
p �

R� 2�� 1

4
F 2 � c2

2
A2

�
(3)

(we call this model S0 for short) and [19]

S ¼ 1

16�G4

Z
d4x

ffiffiffiffiffiffiffi�g
p ðR� 2�� 2ðr�Þ2 � e2��F 2Þ

(4)

(we call this model S for short), where in either case F ¼
dA is a two form field strength. There are also examples
of actions with R2 corrections that admit solutions of the
form (2) [20].
There are several differences between the above models.

First, the Lifshitz solution to model S0 is truly invariant
under the Lifshitz rescaling symmetry, while the solution
with metric (2) of model S has a logarithmically running

1Of course, one always prefers string theory models where
one can directly state what the weak coupling degrees of
freedom are.

2Earlier studies of these metrics in a ‘‘brane world’’ scenario
appear ı̀n [11]. It is also interesting to note that this metric,
as well as several other ‘‘nonrelativistic’’ metrics, are coset
spaces [12].
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dilaton, and so we call this a ‘‘Lifshitz-like’’ geometry.
Note also that S has a Uð1Þ gauge symmetry while S0 does
not, and so the field theory dual to S has a conserved
particle number N with chemical potential �. Also of
note is that model S admits an exact black brane solution
[19] that asymptotes to the metric (2), which can also be
generalized to higher dimensions [21]. Finding black brane
solutions for action S0 has proven more difficult, and one
often needs to resort to numeric methods [22–24], but not
always [25] (an analogous analytic statement for an R2

extension may be found in [26], and one should also see
[27] where a certain extension to this model admits an
analytic black hole). For extensions and variations to the
basic model S0, see [26,28], and for the holographically
renormalized action, see [29].

In our current work we study the action S, also studied
in [19,30,31] (for a discussion of general dimensions,
see [21]; for variations and extensions of the action S,
see [32–36], and also [37–39] where an analytic black
brane solution is found for a similar action). In the
Lifshitz-like solutions, the gauge field, and, in fact, the
term e2��F 2 ffiffiffiffiffiffiffi�g

p
in the Lagrangian, diverges. One im-

mediately suspects that one must add a counter term on the
boundary of the form �F ^A, and one would expect
this to change the ensemble from a fixed Uð1Þ potential
to a fixed Uð1Þ charge (again, fixed N in the boundary
theory). One can also consider a fixed charge ensemble to
simply be a limit where the chemical potential � is large
compared to other scales in the theory. Indeed, this is
realized holographically by a geometry that interpolates
between the Lifshitz-like solution and AdS; the large �
limit corresponds to a limit that leaves only the Lifshitz-
like geometry.

We now consider such a solution. We take that the full
geometry is the Lifshitz-like geometry in the r ! 0 limit
and is AdS for r ! 1. This type of solution was already
numerically studied in [31] and is essentially a relativistic
(actually conformally invariant) UV completion of the
theory. In the AdS asymptotics � goes to a constant and
A goes to a constant, and so the growth in both � andA
is cut off in this background. The size of e��At is essen-
tially cut off by the scale where the theory becomes like
AdS. Conversely, the scale in the geometry is determined
by e��At, and we regard this as the chemical potential
�geom ¼ �L2 (where L is the radius of AdS). Therefore,

for such a geometry, we expect to have two regimes for
energy scales: E � � and E � �. For the regime E � �,
the quantity � provides a cutoff for new physics; i.e. it is
the scale at which one can excite quanta associated with
the conserved particle number and can be considered the
scale leading to the renormalization-group (RG) flow of �
in the Lifshitz-like background. Further we can see that if
we perform the rescaling ðt; xi; rÞ ! ð��1t; ��1xi; �

1rÞ for
large �, we are zooming in on the Lifshitz-like part, and
this is scaling � ! 1. Combined with a time rescaling,

this limit will eventually leave only the Lifshitz-like
geometry.
There is, of course, another natural energy scale that one

can introduce: the temperature T. From the above, we
expect there to be two regimes T � � and T � �, and
wewould like to know how the theory interpolates between
these two known asymptotic solutions. We were initially
motivated to find a possible phase transition when going
from one regime to the other, as� offers a new scale. Black
hole phase transitions are typically first order; there are
two solutions for a given set of boundary conditions, but
each solution has different energy densities. Hence, during
the phase transition, one expects a nonhomogeneous phase
(when considering a fixed energy ensemble). However, we
find no such phase transition when studying the system
numerically. A possible explanation is that we are studying
the vacua of a (2þ 1)-dimensional theory. As the vacua
are time independent, the space of vacua for the theory are
defined by a two-dimensional field theory. Such a field
theory cannot have a phase transition that breaks the global
translational and rotational symmetries (the inhomogene-
ous phase mentioned above) due to the Coleman-Mermin-
Wagner theorem (for a recent holographic study, see [40]).
Therefore, one might expect no phase transition to occur
(this leaves open the possibility that for greater values of
the spatial dimension d the theory might have different
thermodynamic behavior). In all our results, we find a
smooth, monotonic change in behavior from Lifshitz-like
behavior to AdS-like behavior, similar to the ‘‘extremal’’
rh ! 0 case studied numerically in [31].
We also explore the consequences of having certain

conserved quantities along the flow, much in the same
spirit as our earlier work [24,25]. Using these con-
served quantities, we are able to show that the energy
density satisfies

E ¼ 2
3ðTsþ�nÞ; (5)

where s is the entropy density and n is the number density
in the dual theory. We argue that this relation is actually
expected in AdS. Essentially, the above relation along
with the first law of thermodynamics allows one to write
a pair of first order linear partial differential equations
(PDEs) for sðT;�Þ and nðT;�Þ. The solutions to these
differential equations have a scaling symmetry that repro-
duces the expected scaling dependence of AdS. In fact, the
scaling dependence of AdS is shown to be equivalent to
relation (5). This argument generalize to

E ¼ d

dþ 1
ðTsþ�nÞ (6)

in d spatial dimensions (of the field theory), i.e. for a theory
with AdSdþ2 asymptotics and a local Uð1Þ gauge theory in
the bulk. We believe these arguments to be general enough
to apply to any theory with only two scales � and T that
has a conformally invariant UV fixed point.

BERTOLDI, BURRINGTON, AND PEET PHYSICAL REVIEW D 82, 106013 (2010)

106013-2



We present this work as follows: in Sec. II we perform
a reduction of the action S along a certain Ansatz and
reproduce the equations of motion from this action. We
find that the system reduces to four first order ordinary
differential equations after introducing certain first inte-
grals (conserved quantities), and we further comment on
the normalization of one such quantityQ. We then perform
a perturbative analysis of solutions near a regular horizon,
around the AdS asymptotics, and around the Lifshitz-like
solution, and display the exact AdS and Lifshitz black
branes. We then discuss the setup for the numeric integra-
tion and comment on how to read the chemical potential
from the background. Finally, in Sec. III, we present the
results of our numeric analysis and the analysis that leads
to Eq. (6).

II. ANALYSIS OF THE MODEL

A. Reduction

We wish to consider dilatonic black brane solutions to
the equations of motion following from the action

S ¼ 1

16�G4

Z
d4x

ffiffiffiffiffiffiffi�g
p ðR� 2�� 2ðr�Þ2 � e2��F 2Þ:

(7)

We reduce the above action on the following Ansatz:

ds2 ¼ �e2AðrÞdt2 þ e2BðrÞððdx1Þ2 þ ðdx2Þ2Þ
þ e2CðrÞdr2� ¼ �ðrÞ;

A ¼ eGðrÞdt; (8)

where F ¼ dA. We will get only ordinary differential
equations in what follows, and so we define @ � @

@r . We

may reduce the action to a one-dimensional (1D) action3

S ¼ 1

16�G4

Z
2dtdx1dx2

Z
drL1D (9)

with Lagrangian

L1D ¼ 2eAþ2B�C@A@Bþ eAþ2B�Cð@BÞ2
þ e�Aþ2B�Cþ2Gþ2��ð@GÞ2 � eAþ2B�Cð@�Þ2
� eAþ2BþC�: (10)

It can be verified that all equations of motion associated
with the action (7) are reproduced by (10) as long as one
uses the equation of motion for C. Here, C acts as a
Lagrange multiplier, imposing the ‘‘zero energy’’ condi-
tion. Further, we note that C allows for generic r diffeo-
morphisms. We will refer to changing r coordinate as
‘‘coordinate gauge’’ transformations, to differentiate from
the Uð1Þ gauge transformations associated with A.

There are many conserved quantities associated with
the above action. First, there is the conserved quantity
associated with the shift symmetry ðA; B; C;�;GÞ ! ðAþ
2�1; B� �1; C;�;Gþ 2�1Þ. This can be understood as a
rescaling of the time coordinate, and the xi coordinates that
leave dtdx1dx2 invariant, and this then descends to the 1D
action as Noether symmetry. Further, we note that there is
the conserved quantity associated with eG ! eG þ const,
which is exactly the gauge symmetry associated with A.
Further, we note that ðA; B; C;�;GÞ ! ðA;B; C;�þ
�2; G� ��2Þ is also a symmetry. One can view this as
saying that the dilaton here is exactly a space dependent
gauge coupling, and we may absorb a normalization of the
gauge coupling into the definition of A. In addition, we
have the Hamiltonian constraint as always. Now we count
four dynamical fields and four conserved quantities. This
implies that the system is completely equivalent to a set of
first order differential equations:

2eAþ2B�C@A@Bþ eAþ2B�Cð@BÞ2
þ e�Aþ2B�Cþ2Gþ2��ð@GÞ2 � eAþ2B�Cð@�Þ2
þ eAþ2BþC� ¼ 0; (11)

eAþ2B�C@A� eAþ2B�C@B

� 2e�Aþ2B�Cþ2Gþ2��@G ¼ D0; (12)

eAþ2B�C@�þ �e�Aþ2B�Cþ2Gþ2��@G ¼ P 0; (13)

e�Aþ2B�CþGþ2��@G ¼ Q: (14)

Note, we still have not fixed a particular coordinate orUð1Þ
gauge. While there are many conserved quantities above,
one can see that they do not Poisson commute, and so the
above is not an integrable system.
Now, let us simplify things a bit and replace @G by Q

using the last of the above relationships. We further take
a different linear combination of the above equations
and find

2eAþ2B�C@A@Bþ eAþ2B�Cð@BÞ2 þ eA�2BþC�2��Q2

� eAþ2B�Cð@�Þ2 þ eAþ2BþC� ¼ 0; (15)

2eAþ2B�Cð2@�þ �ð@A� @BÞÞ ¼ D0; (16)

eAþ2B�C@�þ �QeG ¼ P0; (17)

e�Aþ2B�CþGþ2��@G ¼ Q; (18)

where we have redefined the integration constants 4P 0 þ
2�D0 � D0, P 0 � P0 for convenience. We note that P0 is
the only Uð1Þ gauge dependent quantity; i.e. it transforms
under the map eG ! eG þ const, while the other equations
do not. In the above, we have used the notationQ for a non-
normalized charge density.3We keep track of normalization for later use.
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Notice that the total contribution from the F 2 term is

SF 2 ¼ 1

16�G4

Z
2dtdx1dx2

Z
dr@ðeGÞQ: (19)

When we compactify along an imaginary time coordinate,
the integral over t simply becomes the inverse (unitless)
temperature, and we restrict to a finite patch in x1 and x2, so
that this part of the action reads

SF 2 ¼ 1

16�G4

2
�x1�x2

T̂
Q½eG�jr1rh (20)

when evaluated in a black hole background where rh is the
radius of the horizon. We note that this contribution is
therefore

SF 2 ¼ 1

16�G4

2Q
�x1�x2

T̂
½eG�jr1rh

¼ 1

16�G4

2Q
�x1�x2

T̂
�geom; (21)

where�geom is the potential difference between the bound-

ary and the horizon. Because we are using unitless t, xi,
we will have to restore units with L in this expression via

T ¼ T̂
L , V2 ¼ L2�x1�x2, to find

SF 2 ¼ 1

16�G4

2Q
V2

L2

1

LT
�geom: (22)

This term in the action should give rise to a term 2SF 2 ¼
1
T �geomqgeomV2 (see the general discussion in [41]) where

qgeom is a properly normalized charge density. Therefore,

we identify

Q ¼ qgeom16�G4L
3

4
(23)

with qgeom properly normalized (we have chosen the

charge convention that when�geom is positive, so is qgeom).

Note that in this entire discussion, we are using eG, eA,
eB, eC which have units of length, and e� has no units.
Hence, one can see thatQmust have units of length, and so
qgeom has units of 1

L4 . This is indeed the proper normaliza-

tion for a charge density if the potential has units of length,
E� qV2�geom is an energy, and so q� 1

L4 . However, when

we go to holographic variables, we will want � to have
units of energy, and this is given by

�geom

L2 (this is how we

map length units in AdS to energy units in the field theory).
The conjugate variable must also map, so we find

qgeomL
2 ¼ n; (24)

where n is now the field theory number density. As ex-
pected this has units of L�2, a unitless number divided by
two volume.

B. Perturbation theory at the horizon

Near the horizon, we expect a linear zero in e2A, a simple
pole in e2C, and thatF and the dilaton e� go to constants as
well. In what follows, we will fix coordinate transforma-
tions by changing to ‘‘entropy gauge’’ e2B ¼ L2r2, such
that the horizon radius rh is a direct measure of the entropy
density. Therefore, we expand as follows:

A ¼ lnðLrða0ðr� rhÞ1=2 þ a0a1ðr� rhÞ3=2 þ 	 	 	ÞÞ;
(25)

B ¼ lnðLrÞ; (26)

C ¼ ln

�
L

r
ðc0ðr� rhÞ�1=2 þ c1ðr� rhÞ1=2 þ 	 	 	Þ

�
; (27)

G ¼ lnða0ðgh þ g0ðr� rhÞ þ 	 	 	ÞÞ; (28)

� ¼ lnð�h þ p1ðr� rhÞ þ 	 	 	Þ: (29)

As expected, we find a constraint on the initial conditions

c0 ¼ r1=2hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3� Q2��2�

h

L2r4
h

r : (30)

Other than this, the equations of motion simply furnish the
conserved quantities

D0 ¼ L2r4h�a0
c0

; (31)

P0 ¼ �Qa0gh ¼ �g0ghr
2
ha0�

2�
h

c0
; (32)

Q ¼ g0r
2
h�

2�
h

c0
: (33)

As promised, only P0 is gauge dependent, depending ex-
plicitly on gh, the constant mode in eG.
From the expansion, we can also read the temperature

T ¼ r2ha0
4�c0L

; (34)

where we have restored units with L (we will sometimes

refer to a unitless temperature T̂ ¼ TL). Recall that in
the above we have assumed that a0 is picked so that
eA asymptotes to Lr with coefficient 1. Another way of
packaging the same material is to say that a0 is chosen so
that eA asymptotes to a1Lr. One would then read the
temperature as

T ¼ r2ha0
4�c0La1

: (35)

This expression is time rescaling invariant, and so it can be
used in any (time rescaled) gauge.
Finally, we note that the P0 ¼ 0 gauge has some physi-

cal interpretation at this point. When we consider a
Euclideanized time coordinate, the choice gh ¼ 0 is nec-
essary to make the one form eGdt well defined on the
‘‘cigar’’ geometry. In some sense this makes P0 ¼ 0 the
preferred gauge.
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C. Perturbation theory at r ¼ 1: AdS asymptotics

Here we expand about r ¼ 1 and require that the
solution asymptotes to AdS. Our perturbative parameter
will always be powers of 1=r. However, note that the
Hamiltonian with nonvanishing charge Q plugged in will
be ‘‘zero’’ only in the large r limit. Because of this, we find
the set of equations

2eAþ2B�C@A@Bþ eAþ2B�Cð@BÞ2
þ e�Aþ2B�Cþ2Gþ2��ð@GÞ2 � eAþ2B�Cð@�Þ2
þ eAþ2BþC� ¼ 0; (36)

2eAþ2B�Cð2@�þ �ð@A� @BÞÞ ¼ D0; (37)

eAþ2B�C@�þ �QeG ¼ P0; (38)

e�Aþ2B�CþGþ2��@G ¼ Q; (39)

easier to expand. We parametrize our expansion as

AðrÞ ¼ lnðLrÞ þ A1ðrÞ; BðrÞ ¼ lnðLrÞ; (40)

CðrÞ ¼ lnðL=rÞ þ C1ðrÞ; GðrÞ ¼ lnðgbÞ þG1ðrÞ;
(41)

�ðrÞ ¼ lnð�bÞ þ�1ðrÞ; (42)

where we have taken that functions with a subscript
are perturbative; they fall off at large r. Further, we note
that in the above we have already restricted to the ‘‘entropy
gauge’’ where r directly measures the horizon area.

It is a straightforward matter to plug in the above func-
tions and simply integrate the equations to find a solution.
While doing so, integration constants are introduced that
shift the boundary value of gb and �b, and so we absorb
these integration constants into the definition of gb and�b.
We find

A1ðrÞ ¼ Ab �D0 þ 4�Qgb � 4P0

6�L2r3
þ Q2

2�2�
b L2r4

; (43)

C1ðrÞ ¼ D0 þ 4�Qgb � 4P0

6�L2r3
� 2Q2

3�2�
b L2r4

; (44)

G1ðrÞ ¼ � Q

gb�
2�
b r

; (45)

�1ðrÞ ¼ 4�Qgb � 4P0

12L2r3
� Q2�

4�2�
b L2r4

: (46)

We note that in the above, we may remove Ab at the cost of
changing the definition of gb by a rescaling of the time
coordinate. We do so, and so we effectively set Ab ¼ 0. At
the horizon, this is interpreted as taking a value of a0 such
that the function eA asymptotes to Lr with coefficient 1
(rather than any other constant). We will see later that this
corresponds to picking an appropriate value of D0.

In fact, one can read one interesting result directly from
the above. We expect the ‘‘energy mode’’ to be determined
by the 1

r3
mode in A1 or C1. Therefore, the above gives us a

very important piece of information. We first set P0 ¼ 0 so
that the horizon value of eG is 0 (and so defines a good one
form). Comparing to the horizon data, we see thatD0 / Ts
andQgb / n�, where n is the number density and� is the
chemical potential in the field theory. This gives us that the
energy density E ¼ C1Tsþ C2�n with C1 and C2 being
constants. We will have more to say about this in Sec. III.
There is, of course, the black brane solution in pure AdS

space given by

AðrÞ ¼ ln

0
@Lr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�
rh
r

�
3

s 1
A; BðrÞ ¼ lnðLrÞ; (47)

CðrÞ ¼ ln

0
B@ L

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðrhr Þ3

q
1
CA; GðrÞ ¼ lnðgbÞ; (48)

�ðrÞ ¼ lnð�bÞ: (49)

This solution has Q ¼ 0, P0 ¼ 0, and D0 ¼ 3L2�r3h. Note
that in the Euclidean version of the above background

eGðrÞ ¼ 0 is the only constant value allowed so that no
singularity occurs at the tip of the ‘‘cigar’’ geometry.

D. Perturbation theory about Lifshitz asymptotics

We begin by writing down the solution for the Lifshitz
type solution. The equations read

AðrÞ¼ lnðaLLLr
zÞ; BðrÞ¼ lnðLrÞ;

GðrÞ¼ lnðaLgLrzþ2þ ĝLÞ; 2��ðrÞ¼ lnðr�4�LÞ;
CðrÞ¼ ln

�
LL

r

�
: (50)

Above we have used the two length scales L [appearing in
BðrÞ] and LL [appearing in CðrÞ]. The scale L is given in
terms of the cosmological constant � in the same way as
other sections, so that the coordinate gauge choice for BðrÞ
is the same. All of the constants in the above solution are
given by

L2
L ¼ ðzþ 2Þðzþ 1Þ

6
L2;

� ¼ � 3

L2
� ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffi

z� 1
p $ z ¼ �2 þ 4

�2
;

�L ¼ Q2ðzþ 1Þ
3L2ðz� 1Þ ; gL ¼ L2ðz� 1Þ

2Q
;

P0 ¼ 2
QĝLffiffiffiffiffiffiffiffiffiffiffiffi
z� 1

p ; (51)

and in the above background, the conserved quantity
D0 ¼ 0. One may read the above in the same way as we
read the black horizon functions: the quantity LL is not an
independent parameter, but depends on other constants.
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However, this time it does not depend on other ‘‘horizon’’
information, only on information from the Lagrangian �,
L. Note also that we could choose a Uð1Þ gauge where the
constant part of At is zero,

ĝ L ¼ 0; (52)

at the horizon and we do this henceforth; i.e. the back-
ground we are dealing with has ĝL ¼ 0 and so P0 ¼ 0 to
leading order.

We write also the conserved quantity Q in terms of the
horizon values of the fields as we did before

Q ¼ 6gL�L

zþ 1
: (53)

We now expand as before, taking

AðrÞ ¼ lnðaLLLr
zÞ þ A1ðrÞ; BðrÞ ¼ lnðLrÞ;

GðrÞ ¼ lnðaLgLrzþ2Þ þG1ðrÞ;
2��ðrÞ ¼ lnðr�4�LÞ þ 2��1ðrÞ;

CðrÞ ¼ ln

�
LL

r

�
þ C1ðrÞ; (54)

assuming that the perturbing functions with 1 subscripts are
small. One may solve all of the equations via a single
power law rn Ansatz because all terms come out homoge-
neous in powers of r. Doing so, we find solutions for the
perturbed equations to be

A1ðrÞ ¼ C1r�ðz=2Þ�1þð�=2Þ þ C2r�ðz=2Þ�1�ð�=2Þ

� D0

ffiffiffiffiffiffiffiffiffiffiffiffi
z� 1

p
4ðzþ 1ÞL2aL

r�z�2 þ Â1; (55)

C1ðrÞ ¼ C1r�ðz=2Þ�1þð�=2Þ þ C2r�ðz=2Þ�1�ð�=2Þ

þ D0

ffiffiffiffiffiffiffiffiffiffiffiffi
z� 1

p
4ðzþ 1ÞL2aL

r�z�2; (56)

G1 ¼ C1
ð� z

2 � 1þ �
2Þ

z� 1
r�ðz=2Þ�1þð�=2Þ

þ C2
ð� z

2 � 1� �
2Þ

z� 1
r�ðz=2Þ�1�ð�=2Þ

þD0ðz� 1Þ þ 2P0ð�z� 2Þ
2

ffiffiffiffiffiffiffiffiffiffiffiffi
z� 1

p
aLðzþ 2ÞL2

r�z�2 þ Â1;

�1ðrÞ ¼ �C1
1ffiffiffiffiffiffiffiffiffiffiffiffi
z� 1

p r�ðz=2Þ�1þð�=2Þ

� C2
1ffiffiffiffiffiffiffiffiffiffiffiffi
z� 1

p r�ðz=2Þ�1�ð�=2Þ; (57)

where we have defined the useful constant

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðzþ 2Þð9zþ 10Þ

p
: (58)

The modes above were already found in [31].

A few comments are in order. First, the constant Â1

appearing above may be removed by time rescaling, and
amounts to a shift in the definition of a0. Henceforth we

take Â1 ¼ 0. Further, the terms proportional to D0 are
related to the mass parameter given in [19,31,42].
Further, the last two terms in G1 may be set to zero via
an appropriate gauge choice, as the term r�2�z in G1 is a
pure Uð1Þ gauge transformation.
Note that if we want to add an IR (r ! 0) irrelevant

perturbation, the only mode that is available is

r�ðz=2Þ�1þð�=2Þ [31]. Further, it should be noted that this
term does not affect the values of D0 or P0. Therefore,
one can imagine flowing from the P0 ¼ 0, D0 ¼ 0
Lifshitz fixed point (with ĝL ¼ 0) to the D0 ¼ 0, P0 ¼ 0
AdS fixed point.
Finally, we write down the exact black brane solution in

[19,31,42]

AðrÞ¼ ln

�
aLLLr

z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�
rh
r

�
2þz

s �
; BðrÞ¼ lnðLrÞ;

CðrÞ¼ ln

�
LL

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ðrhr Þ2þz

q
�
;

GðrÞ¼ lnðaLgLðr2þz� r2þz
h ÞÞ; 2��ðrÞ¼ lnðr�4�LÞ:

(59)

All constants are as before, and rh is the location of the
horizon. This background has

P0 ¼ 0; D0 ¼ 2aLL
2r2þz

h ð2þ zÞffiffiffiffiffiffiffiffiffiffiffiffi
z� 1

p (60)

(P0 was set to 0 by construction; see Sec. II B about the
perturbation theory about the horizon). This allows that all
of the asymptotic functions found above may be removed
by redefinition of rh, or Uð1Þ gauge, or time rescaling
except for those multiplied by C1 and C2.

E. Setup for numeric integration

From the earlier discussions, we have found that P0 ¼ 0
is a convenient Uð1Þ gauge choice. We will want to take a
particular coordinate gauge condition as well, and above
we have always taken

B ¼ lnðLrÞ: (61)

This completely fixes the coordinate gauge. Further, we
will find it useful to reexpress the differential equations in
terms of ‘‘correction’’ functions as

A ¼ lnðLrÞ þ A1ðrÞ; (62)

B ¼ lnðLrÞ; (63)

C ¼ ln

�
L

r

�
þ C1ðrÞ; (64)
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G ¼ lnðLÞ þG1ðrÞ; (65)

� ¼ �: (66)

What we have essentially done here is to pull off all of the
units from the functions, and so the resulting differential
equations will be unitless if we identify the correct units for
P0, D0, and Q and use L to construct unitless quantities.
The correct identification is

D0 ¼ D̂0L
2; (67)

P0 ¼ P̂0L
2 ¼ 0; (68)

Q ¼ Q̂L; (69)

where the hatted quantities are unitless. Inserting these into
the above differential equations, we see that one has four
first order differential equations for three functions.
Therefore, one combination must be algebraic. We find
this combination and solve for � to find

e2�� ¼ �Q̂2r2eA1þC1

3�r6ðeA1þC1 � eA1�C1Þ þ �e�A1þC1ð�Q̂eG1Þ2 � 4r3ð�Q̂eG1Þ � r3D̂0

: (70)

The remaining differential equations become

@eA1 � 1

2

eC1ð4�Q̂eG1 þ D̂0Þ
r4�

¼ 0; (71)

@eC1 � 1

2

ðeC1Þ2ð2�3eC1Q̂2ðeG1Þ2 � 4�Q̂eG1eA1r3 � D̂0e
A1r3Þ

�ðeA1Þ2r7 ¼ 0; (72)

@eG1 � 3�r6ðeA1Þ2ððeC1Þ2 � 1Þ þ �3Q̂2ðeC1eG1Þ2 � r3eC1eA1ð4�Q̂eG1 þ D̂0Þ
Q̂�r4eC1eA1

¼ 0: (73)

We now remark on several features of the differential
equations. First off, there is the global symmetry already
mentioned ðA; B;C;�;GÞ ! ðA; B; C;�þ �2; G� ��2Þ.
This symmetry has the effect of rescaling the charge Q in
the differential equations by Q ! e�2�Q, correctly repro-
ducing the transformation property in Eq. (70). Hence,
using this global symmetry, one may, in fact, set Q̂ to be
any value one wishes, knowing that all solutions are related
to this one by the global symmetry.4 One can go further
with this line of reasoning. Note that if we take a time
rescaling, this has the effect of taking ðA; B; C;�;GÞ !
ðAþ �; B; C;�;Gþ �Þ. While this is not a global sym-
metry of the reduced action, it simply rescales the action,
and so maps solutions to solutions (this is an example of a
Lie point symmetry). Further, one can see that onlyD0 and

P0 rescale under this transformation. Therefore, as long as
D0 is not zero, we may scale this to any quantity we wish.
Therefore, to efficiently parametrize the horizon data that
we start with, we take the inputs D̂0 ¼ 3�r3h (which, given
rh, are always possible to set via time rescaling), and
Q̂ ¼ 1 (which is always possible using the global symme-
try).We note, however, that this will lead to fields not being
normalized at infinity. Then, the rescalings used to nor-
malize them are written easily in terms of the asymptotic
values of the fields which are the output of the numeric
integration. This then allows us to conclude what the
‘‘correct’’ value of Q̂ and D̂0 should have been.

Using D̂0 ¼ 3�r3h and Q̂ ¼ 1 as inputs, we numerically

integrate given initial data c0 and rh. Conveniently, c0 only
has a window in which it is defined (given the black brane
in AdS and the black brane in Lifshitz solutions),

ffiffiffiffiffi
rh
3

r

 c0 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 2

p

�

ffiffiffiffiffi
rh
3

r
: (74)

Physically, when c0 approaches
ffiffiffiffi
rh
3

q
, we get the usual black

brane in AdS. This should be a zero charge, zero chemical

potential solution. As c0 increases to
ffiffiffiffiffiffiffiffiffi
�2þ2

p
�

ffiffiffiffi
rh
3

q
, it

approaches a Lifshitz asymptotic solution, and such a

4Similar considerations were noted in [31] for extremal solu-
tions. However, here we have two quantities affected by the
symmetry of AdS rescaling the coordinates ðt; xi; rÞ !ð�t; �xi; ��1rÞ, Q and D0 (and P0, but this is pure gauge).
Therefore, rather than having all solutions related to one solu-
tion, as the authors of [31] had for the extremal solutions, we
expect to have a one parameter family of solutions that are
distinct. This is essentially getting at the fact that the thermo-
dynamics should be sensitive only to �

T , and this is our one
parameter family.
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solution has a divergent potential5 and finite temperature,
and so should be considered a �

T ! 1 solution. We always

include an AdS completion, and fix the value of �, and
therefore the above limit should be an extremal limit. Such
a solution would simply be the spacetime with the r ! 0
limit being the Lifshitz solution, and the r ! 1 limit being
AdS numerically studied in [31]. These expectations will
bear out in our numeric analysis.

For completeness, we include the seed functions used to
supply the initial conditions at (actually near) r ¼ rh,

eA1 ¼ a0ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r� rh

p þ a1ðr� rhÞ3=2 þ 	 	 	Þ; (75)

eC1 ¼ c0
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r� rh
p þ c1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r� rh

p þ 	 	 	 ; (76)

eG1 ¼ a0ðg0ðr� rhÞ þ g1ðr� rhÞ2 þ 	 	 	Þ; (77)

with

a0 ¼ c0D̂0

�r4h
;

a1 ¼ 9�2c40 þ 6c20rhð2� �2Þ þ ð�2 � 8Þr2h
4r3h

;

(78)

c0 ¼ c0;

c1 ¼ c0ð27�2c40 � 6c20rhð2þ 3�2Þ þ r2hð8þ 3�2ÞÞ
4r3h

;

(79)

g0 ¼ ð3c20 � rhÞr2h
c0Q̂

;

g1 ¼ r3hð2þ �2Þ � 3c20r
2
hð2þ �2Þ � 9c40rh�

2 þ 27c60�
2

2c0rhQ̂
:

(80)

As mentioned above, after performing the numeric
integration we see that eA1 does not asymptote to 1.
Therefore, to get a physically meaningful result, we have
to do a time rescaling. This essentially rescales the value of

D̂0 to be the correct value to give the correct asymptotic.
This is the first piece of output: we get the physical value of
D0 that should be associated with the solution, and this is
used to determine part of the energy density.

However, now we run into a small puzzle. The physical
value of eG1 is not strictly determined. We may use
the global symmetry ðA; B; C;�;GÞ ! ðA; B;C;�þ �2;
G� ��2Þ to rescale this value to any value we wish.
Because this is a global symmetry that does not involve

the metric, the stress-energy tensor (and therefore the
geometry) is not determined by this number. In fact, only
global symmetry invariants can determine anything in the
geometry (this was also noticed in [31] for extremal solu-
tions). We wish to consider� as a scale in the theory; i.e. it
is the scale at which new particles can be added/excited,
and so we expect this to correspond to some scale in AdS,
and so must be a global symmetry invariant.
One way to fix this ambiguity is to note that the gauge

coupling at infinity is the asymptotic value of e2�� (which
also transforms under the global symmetry). Hence, we
would like the gauge kinetic term to go to a canonical
value. This can be arranged by using the global symmetry
to scale e2��jr¼1 ¼ 1. From the beginning we should have
expected such a statement: only fixing both the asymptotic
value of e�� and the asymptotic value of eG1 will deter-

mine the geometry. We had traded this for eG1 and Q̂ in the
above discussions. Therefore, one can read the output
value of � from the numeric integration as

�̂ ¼ eG1e��

eA1

��������r¼1
: (81)

The factor of eA1 in the denominator accounts for the fact
that eG1 transforms under the time rescaling used to set the
asymptotic value of eA1 to be 1, and the factor of e�� in the
numerator is there because of using the global symmetry to
set e�� ¼ 1. Let us assume that eA1 goes to 1 at infinity.
Then the above simply states that what we have done is
take some bare quantities qgeom and �geom and combined

them into the global symmetry invariant qgeom�geom ¼
ðe��jr¼1qgeomÞðe���jr¼1�geomÞ. The second expression

is made out of global symmetry invariants, and so can
define scales in the geometry. These are what we use to
define the physical chemical potential �geom, and why we

will find e��jr¼1 ¼ 1 a convenient representative from all
solutions related by the global symmetry.
As with all other formulas, the above has units restored

using only L via �geom ¼ L�̂, this defines the length scale

in the geometry, and so � ¼ �̂
L defines an energy scale in

the field theory. One should further note that Q̂ has
changed under this global symmetry rescaling and so

becomes an output of the numeric analysis as Q̂ ¼
Q̂input

e��
jr¼1 ¼ 1

e��
jr¼1.

Schematically, what we have then is that

ðc0; rh; �; Q̂input ¼ 1; D̂0;inputðrh; �ÞÞ is input, and this gets

mapped to ðT;�; D̂0; Q̂Þ, which are determined by the
asymptotic values of the fields.
We expect all relevant physical information is contained

in �
T , given the scaling invariance of AdS (see the Sec. III).

One way to scan through such values is to start with an rh
and scan through values of c0 in the window of allowed
values to find a fixed value of �. Then we may scan
through rh for different values. This process is fixing �

5One can see this as the combined function e��eG diverging
in the Lifshitz solutions. This combination is a global sym-
metry invariant and is saying that �, as we have defined it, is
becoming large.
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and scanning through rh to see what the output values of T
are. If T becomes multiple valued, then we expect a phase
transition, and if it is monotonic, there is no phase tran-
sition. Further, we expect that as rh � �̂ we will get
Lifshitz-like behavior, and for rh � �̂ we will get AdS-
like behavior. This is essentially the limits T � � and
T � � in the field theory.

We now turn to the results of the numeric analysis
we have described above, and our result relating E to Ts
and �n.

III. DISCUSSION AND RESULTS

The first point we wish to address is whether there is a
phase transition. More concretely, we wish to determine
whether there is more than one black brane solution given

values of �̂ and T̂. We can do this by setting �̂ ¼ 2 (the
value is arbitrary) and then seeing whether the temperature
is a single or multiple valued function of rh. We show log-

log plots6 of the temperature T̂ ¼ TL as a function of rh in
Fig. 1. We find that we always get monotonic behavior for
a wide range of values of �. Hence there is no phase
transition associated with going from T � � to T � �.
Further, we see that we get the correct asymptotic behav-

iors on both ends of the graphs with T̂ / rh for rh � 2 and

T̂ / rzh for rh � 2 where z ¼ �2þ4
�2 as before. Note that the

scale of the changeover occurs approximately at lnðrhÞ ¼
lnð2Þ ¼ lnð�̂Þ. This justifies the association of L�̂ with a
scale in AdS.

Next, we graph the functions eA1 , eG1 , eC1 , and e2�� for

� ¼ 2 after adjusting D̂0 and Q̂ to give the correct asymp-
totic values of eA1 , eG1 , eC1 , and e2��. We plot solutions for
a small value of rh and a large value of rh in Fig. 2. We see
no qualitative difference in behavior in that eA1 , eG1 , eC1 ,
and e2�� appear to be monotonic regardless of whether
rh � �̂ or rh � �̂ (we omit plots for rh � �̂, as these
look very similar too).

Another way to analyze the solutions is to look at log-
log plots of the metric functions and fields for a small value
of rh. For this, we expect to see a section closely approx-
imating the pure Lifshitz spacetime, and indeed this is
what we find. We plot an example of this in Fig. 3.
Finally, we turn to the matter of the energy density. Here
we use a simple background subtraction à la Hawking and
Horowitz [43].7 Recall that they define the energy via the
on-shell Hamiltonian, and this gives

E ¼ � 1

8�G4

Z
�t;r

ðNtðK � K0Þ � N�
t p��r̂

�Þ; (82)

where K is the extrinsic curvature of a constant radial slice
at a fixed time, giving the submanifold �r;t. K0 is extrinsic

curvature associated with the background ‘‘reference’’
space time used as a regulator. The reference background
for us is pure Poincaré patch AdS. Further the shift vector
N

�
t is 0, and so only the first term contributes. Evaluating

the integrand on our Ansatz gives

E ¼ � 1

8�G4

Z
dx1dx2e

Að@re2BÞe�2Bðe�C � e�C0Þ;
(83)

where we have used the fact that BðrÞ is gauge fixed to be
the same in the new and reference backgrounds. It is clear
that this goes to 0 at r ¼ rh because e

�C and eA vanish here
(and eC0 for the reference is finite). Further, the x1; x2
integrals simply give a volume factor, and so the integrand
may be regarded as the energy density. Therefore, we may
simply take the large r limit of the integrand to get the
energy density, and this only relies on the perturbative
analysis done at r ¼ 1. Taking the large r limit of the
above integrand, we find

E ¼ 1

16�G4L
4
D0 þ 4�Qgb

6�L2
(84)

(where we have already set P0 ¼ 0). Therefore

FIG. 1 (color online). We have plotted lnðTLÞ as a function of
lnðrhÞ for fixed �̂ ¼ 2. The different graphs correspond to
different values of z: z ¼ 1:25 (� ¼ 4) (red dashed curve), z ¼
2 (� ¼ 2) (orange dotted curve), z ¼ 5 (� ¼ 1) (green dash-
dotted curve), z ¼ 73

9 ¼ 8:�1 (� ¼ 0:75) (blue long-dashed

curve). The solid black curve is a plot for the pure AdS black
brane lnðTLÞ ¼ lnð3rh4�Þ, the asymptotic value of all graphs in

the lnðrhÞ ! 1 limit. The slopes of the graphs approach z as
lnðrhÞ ! �1.

6Maple worksheets are available upon request.
7In general one would like to be more careful about such a

definition, and use holographic renormalization to correctly
identify the energy. Later, however, we will use scaling symme-
tries to argue that background subtraction gives the correct result
in this case.
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E 1 ¼ 4
D̂0 þ 4�Q̂g1;b

6�
(85)

is a unitless measure of the energy, and where we have
denoted g1;b ¼ eG1 jr¼1 when e2��jr¼1 ¼ 1. We plot this

in Fig. 4.
Next, we will argue on general grounds that this expres-

sion for the energy density should be expected. First, we
recall a few facts,

D0 ¼ L2r4h�
a0
c0

; Q ¼ n16�G4L

4
;

gb ¼ L�̂ ¼ L2�; T ¼ r2h
4�L

a0
c0

; s ¼ 4�r2h
16�G4

:

(86)

Now, in the energy density we have a term D0 � r4h � Ts
and a term Qgb ��n. Further, gb is the value of the
potential at the boundary (after we fix e�� ¼ 1 at the
boundary), and gbQ is a global symmetry invariant (under

shifting of G and �). In deriving the above, we have
assumed that eA1 asymptotes to 1, fixing the time rescaling.
Finally, the above observations allow us to write

E ¼ 2
3ðTsþ�nÞ: (87)

In fact, we can derive such a relationship using only
conformal symmetry. We note that T and � are energies, n
and s are densities, and E is an energy density. Hence, we
expect that in d spatial dimensions these quantities should
scale as

ðE; T;�; s; nÞ ! ð�dþ1E; �T; ��; �ds; �dnÞ; (88)

and so the general functional form must be

E ¼ T1þdf

�
�

T

�
; s ¼ Tdg

�
�

T

�
; n ¼ Tdh

�
�

T

�
:

(89)

Next, we assume the first law of thermodynamics

dE ¼ Tdsþ�dn: (90)

FIG. 2 (color online). The plots depict the metric functions and fields as a function of r, the top plots for a small value of rh ¼ 0:4,
and the bottom plots for a large value of rh ¼ 40. The plots show eA1 (red dashed curve), eC1 (orange dotted curve), eG1 (green dash-
dotted curve), and e2�� (blue long-dashed curve). Plots (b) and (d) simply show that the asymptotics are correct with the convention
that e2�� is set to 1 at the boundary.
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We take the above differentials and equate the d� coeffi-
cient to find

f0 ¼ g0 þ�

T
h0 (91)

and equate the dT coefficient to find

Tdð1þ dÞf� T1þd �

T2
f0 ¼ Tdgd� TdT

�

T2
g0

þ�Td�1hd��Td �

T2
h0:

(92)

Using (91) this reads

T1þdf ¼ d

dþ 1
ðTTdgþ�TdhÞ; (93)

which is identical to

E ¼ d

dþ 1
ðTsþ�nÞ: (94)

Further, the relationship (91) becomes

d

dþ 1

�
g0 þ�

T
h0 þ h

�
¼ g0 þ�

T
h0 (95)

or rearranging a bit

Td�1g0 ¼ dTd�1h� Td�2�h0; @�s ¼ @Tn: (96)

The generalization of the above argument for an arbitrary
number of particle species is straightforward and gives

E ¼ d

dþ 1
ðTsþ�iniÞ;

@�i
s ¼ @Tni þ ð@�j

ni � @�i
njÞ

�j

T
: (97)

Using this and the Euler relation E ¼ TS� PV þ�iNi,
we arrive at the familiar E ¼ Pd: the stress-energy tensor is
traceless.
For the case at hand, the argument is reversible; i.e. the

scaling relation can be obtained from a relation of the sort

E ¼ C1Tsþ C2�n: (98)

Again, we assume the first law of thermodynamics,

dE ¼ Tdsþ�dn; (99)

FIG. 3 (color online). We have plotted the metric functions A1

(red dashed curve), C1 (orange dotted curve), the fields G1

(green dash-dotted curve), and 2�� (blue long-dashed curve)
as a function of lnðrÞ for fixed �̂ ¼ 2 and horizon radius rh ¼
0:2. We see that all the functions have an approximately linear
portion in the region �1< lnðrÞ< 0. The slopes of these linear
portions can be shown to approximately reproduce the Lifshitz
background with z ¼ 2 (� ¼ 2). Further, the asymptotic value of
G1ðrÞ ! lnð2Þ is seen, as opposed to the asymptotic value of all
other graphs lnð1Þ ¼ 0.

FIG. 4 (color online). We have plotted lnðE1Þ as a function of
lnðTLÞ for fixed �̂ ¼ 2. The different graphs correspond to
different values of z: z ¼ 1:25 (� ¼ 4) (red dashed curve), z ¼
2 (� ¼ 2) (orange dotted curve), z ¼ 5 (� ¼ 1) (green dash-
dotted curve), and z ¼ 73

9 ¼ 8:�1 (� ¼ 0:75) (blue long-dashed

curve). The solid black curve is a plot for the pure AdS black
brane lnðE1Þ ¼ lnð2�r3h ¼ 27�3

33
T3Þ, the asymptotic value of all

graphs in the lnðrhÞ ! 1 limit. The slopes of the graphs ap-
proach 0 as lnðrhÞ ! �1. This is merely an indication of a finite
energy held in the Uð1Þ gauge field, and may be considered an
extremal limit with ‘‘mass ¼ charge’’ in the right units. One
can check this by graphing Qout

E1
and seeing that it goes to 6

16�̂

(independent of �) for rh ! 0; however, we do not display such
plots. Above we have cut off the red dashed graph after it has
reached its constant asymptotic value to save computation time.
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write all functions in terms of the thermodynamic variables
T, �, and find

dE ¼ ðT@Tsþ�@TnÞdT þ ðT@�sþ�@�nÞd�
¼ @TðC1Tsþ C2�nÞdT þ @�ðC1Tsþ C2�nÞd�:

(100)

Equating differentials allows us to write two first order
differential equations

T@Tsþ�@Tn ¼ @TðC1Tsþ C2�nÞ; (101)

T@�sþ�@�n ¼ @�ðC1Tsþ C2�nÞ: (102)

Taking the integrability condition for these two equations
(@� acting on the first equation minus @T acting on the

second), we find that

@�s ¼ @Tn; (103)

which is the same relation as the one above (96). This
allows us to separate the equations and find

ð1� C1ÞT@Tsþ ð1� C2Þ�@�s ¼ C1s; (104)

ð1� C1ÞT@Tnþ ð1� C2Þ�@�n ¼ C2n: (105)

The above differential equations have the following solu-
tions:

s ¼ TC1=1�C1 ĝ

�
�1�C1

T1�C2

�
; n ¼ �C2=1�C2 ĥ

�
T1�C2

�1�C1

�

(106)

(these functions are related easily to g and h above), and

the integrability condition (103) relates ĥ to ĝ via

ĥ 0
�
T1�C2

�1�C1

�
¼ 1� C1

1� C2

T1=1�C1

�1=1�C2
ĝ0
�
�1�C1

T1�C2

�
: (107)

Next, we would like to know what initial set of data
specifies the thermodynamics in the entire ðT;�Þ plane.
More specifically, we already know that we have a solution
for the � ¼ 0 case (this is the uncharged black brane in
the AdS case), and we would like to know if this, or any
additional information, can specify the thermodynamics
off of this curve. To do so, we would like to calculate the
characteristic equation for paths in T, � space, parametri-
cally given by Tð	Þ, �ð	Þ. The characteristic curves are
those that satisfy

ð1� C1ÞT d�

d	
� ð1� C2Þ� dT

d	
¼ 0 (108)

(we note that the characteristic equations are the same
for both of our linear PDEs). The most general solution
to these equations, up to reparametrization of 	, are

T ¼ T0	
1�C1 ; � ¼ �0	

1�C2 : (109)

These curves are given by Tð1�C2Þ��ð1�C1Þ ¼ const. These
are either hyperbolalike curves that do not intersect T ¼ 0
or � ¼ 0 (the degenerate case being the ‘‘hyperbolalike’’

curve Tð1�C2Þ��ð1�C1Þ ¼ 0), or they are power law curves
that go through the origin at T ¼ 0, � ¼ 0 (degenerate
cases given by T ¼ 0 or � ¼ 0), depending on the par-
ticular values ofC1 andC2. For us we haveC1 ¼ C2 so that
lines of constant T

� are related, which matches the scaling

argument above.
Note that the curve � ¼ 0 is a characteristic curve,

simply setting �0 ¼ 0. This means that the initial condi-

tions provided by the curve � ¼ 0 are not sufficient to

determine the functions s and n off of the curve � ¼ 0
(see, for example, [44]). Further, no amount of additional

perturbative information will yield a complete amount of

information off a characteristic curve. This is realized by

the presence of the general function ĝ in the general

solutions (106). This basically comes down to saying

something that we already knew: all relevant information

differentiating models depends on �#

T (again, # ¼ 1 for

AdS). This is reflected in the geometry by saying that �
defines a scale, T defines a scale, and all solutions related

by rescaling ð�; TÞ ! ð��; �TÞ are related by the diffeo-

morphism ðr; t; xiÞ ! ð�r; ��1t; ��1xiÞ that leave the AdS
asymptotics alone, but shift the relevant scales in the bulk.

What we have learned is that no amount of perturbative

information around a solution can fix the thermodynamics.

This is good because there are many different holographic

models with a Uð1Þ gauge invariance, all of which presum-

ably have different thermal behavior.
Finally note that along a characteristic curve, the

functions ĝ and ĥ are constant. This allows us to quickly

deduce that along a characteristic curve, 	 ! 	�̂,

ðT0; �0; s0; n0Þ ! ð�̂1�C1T0; �̂
1�C2�0; �̂

C1s0; �̂
C2n0Þ. For

us C1 ¼ C2 ¼ d
dþ1 . Calling �̂ ¼ �dþ1 we find that

the scaling becomes ðT0; �0; s0; n0Þ ! ð�T0; ��0; �
ds0;

�dn0Þ. This is just the scaling in AdSdþ2 noted above

[the scaling of E follows from (94)].
To summarize, we believe that the above arguments are

general enough to apply to a theory where the only two
scales are the chemical potential � and the temperature T,
and where the theory has a conformally invariant UV fixed
point. Under these conditions, we expect (94) to hold, and
that the different models are parametrized by the functions
(say) fð�TÞ. This information is beyond relation (94); i.e.

it is information off of the characteristic curves that it
defines.
We end by mentioning some possible future directions:
(1) It would be interesting to explore the space of

models with different functions fð�TÞ.
(2) One could study field theories on a d-dimensional

sphere, i.e. the black hole geometries with spherical
horizon. In these cases we expect phase transitions.
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(3) Other dimensions: one could expect there to be
different thermal behavior, possibly phase transi-
tions, for general d, as discussed at the end of Sec. I.

(4) One could calculate certain correlation functions in
the dual theory and see how they interpolate be-
tween nonrelativistic and relativistic behavior.

(5) One could also study the dyonically charged ver-
sions of these black holes. There should be constant
dilaton solutions where the magnetic and electric
charges are equal (see [45] for a recent study).

(6) One could also study theories that asymptote to the
Lifshitz-like background and are charged under a
different Uð1Þ field (essentially adding a scale in the
Lifshitz background). However, note the curious
result in [46] where an analytic charged solution is

found, but the potential diverges. It would be inter-
esting to see if there are solutions with a finite
(chemical) potential. Using similar scaling argu-
ments, we expect that a relationship of the type
(98) can be written in such a case with C1 ¼ C2 ¼
d

dþz . However, we would like to back this up with an

explicit calculation.
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