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We consider the leading large string tension correction to correlation functions of three vertex operators

of particular massive string states in AdS5 � S5 string theory. We assume that two of these states are

‘‘heavy’’ carrying large spins (of order string tension) and thus can be treated semiclassically while the

third state is ‘‘light’’ having fixed quantum numbers. We study several examples. In the case when the

‘‘heavy’’ states are described by a folded string with large-spin in AdS5 the 3-point function scales as a

semiclassical spin parameter of the ‘‘heavy’’ state in power of the string level of the ‘‘light’’ massive string

state. We observe similar behavior in the case of ‘‘heavy’’ states which admit a small angular momentum

limit, which may thus represent creatures of three quantum massive string states.
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I. INTRODUCTION

According to the AdS/CFT duality [1] between the
N ¼ 4 SYM (supersymmetric Yang-Mills) theory and
the superstring theory in AdS5 � S5, the planar correlators
of single-trace conformal primary operators in gauge
theory should be related to the correlation functions of
the corresponding closed-string vertex operators on a
world sheet with the two-sphere topology. The integrated
vertex operators may be parametrized by a point xm on
the AdS5 boundary VðxÞ ¼ R

d2�Vðxð�Þ � x; . . .Þ. They
depend on quantum numbersQi ¼ ðS; J; . . .Þ (such as spins
and orbital momenta) and the 4d dimension (or AdS
energy) � of the string states they represent. The dimen-
sion � is related to the quantum numbers Qi and the string

tension T ¼
ffiffiffi
�

p
2� by the marginality condition on the vertex

operator V.
As we will review below in Sec. II, the vertex operators

have generically an exponential dependence on the dimen-
sion � and the charges Qi of the corresponding string
states. Thus, when these quantum numbers are as large as
the string tension, the vertex operators effectively scale
exponentially with the string tension. It is then natural to

expect that the leading large
ffiffiffiffi
�

p
contribution to correlation

functions of such operators is determined by a semiclassi-
cal string trajectory with sources provided by the vertex
operators. This observation may lead to a prediction for
the strong-coupling behavior of the corresponding gauge
theory correlators for the dual (BPS) operators.

Such semiclassical approach was developed success-
fully for the calculation of two-point functions in [2–6]
and also for the calculation of correlators involving Wilson
loops [7–11]. A generalization to certain three-point func-
tions was discussed in [6,12] and more recently addressed
in [13,14].

More generally, one may consider a correlation function
of some number of ‘‘heavy’’ (or ‘‘semiclassical’’) vertex

operators VH with��Qi �
ffiffiffiffi
�

p � 1 and some number of
‘‘light’’ (or ‘‘quantum’’) operators VL with Qi � 1 and

�� ffiffiffiffi
�4

p
(or �� 1 for ‘‘massless’’ or BPS states). In this

case one may again expect that, in a large
ffiffiffiffi
�

p
expansion,

the leading-order contribution to

KH1...HnL1...Lm
¼ hVH1

ðx1Þ . . .VHn
ðxnÞ

� VL1
ðxnþ1Þ . . .VLm

ðxnþmÞi (1.1)

will be given by the semiclassical string trajectory deter-
mined by the ‘‘heavy’’ operator insertions. To compute
KH1...HnL1...Lm

one should first construct the classical string

solution that determines the leading large
ffiffiffiffi
�

p
contribution

to KH1...Hn
¼ hVH1

ðx1Þ . . .VHn
ðxnÞi and then compute (1.1)

by simply evaluating the product of ‘‘light’’ vertex opera-
tors VL1

ðxnþ1Þ . . .VLm
ðxnþmÞ on this solution.

One may understand this procedure as a limit of the
general semiclassical computation for the correlator of
nþm ‘‘heavy’’ operators, all of which have large quantum
numbers. In this case the classical trajectory should be
determined by a solution of the string equations with
source terms provided by all the nþm operators.
Finding such surface appears to be hard in general, but if
we formally assume that the charges of m of the nþm
sources are much smaller than the other n, then the semi-
classical trajectory will be dominated by the contribution
of the n large charges (the effect of the m small-charge
sources may then be included perturbatively). Thus the
leading contribution to the correlator will then be com-
puted as suggested above for KH1...HnL1...Lm

. We will return

to the discussion of the validity of this approach and the
computation of quantum ( 1ffiffiffi

�
p ) corrections to the leading

approximation in the concluding Sec. V.
Three-point correlation functions are the first nontrivial

examples where these considerations become relevant.
*radu@phys.psu.edu
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While finding a semiclassical trajectory controlling the
leading contribution to hVH1

ðx1ÞVH2
ðx2ÞVH3

ðx3Þi is so far

an unsolved problem [12], the discussion above suggests
that one can use the semiclassical trajectory for the corre-
lation function of two ‘‘heavy’’ operators hVH1

ðx1ÞVH2
ðx2Þi,

which is straightforward to find [4,6], to compute the lead-
ing contribution to a correlator containing two ‘‘heavy’’ and
one ‘‘light’’ state hVH1

ðx1ÞVH2
ðx2ÞVLðx3Þi. Examples of

such computations, with VH corresponding to a semiclassi-
cal string state with large-spin in S5 and VL representing a
BPS state corresponding to a massless (supergravity) scalar
or dilaton mode, were recently presented in [13,14].

The aim of the present paper is to consider more general
cases when VL may represent a massive string mode.1 We
shall study few explicit examples, attempting to clarify the
general structure of such three-point functions. We shall
also consider several choices for the ‘‘heavy’’ operator VH.
One will be the physically interesting case when VH rep-
resents a folded string with large-spin S in AdS5 dual to
twist J operator. We will also try to shed light on the
correlation function of three massive string states from
the first excited string level by choosing VH to represent
a ‘‘small’’ semiclassical string that admits a smooth fixed-
spin limit as proposed in [17].

The two-point and three-point correlation functions are
special in that their dependence on the position of the
operators is controlled by the target space conformal
invariance2

hV1ðx1ÞV2ðx2Þi ¼
C12��1;�2

jx1 � x2j2�1
; (1.2)

hV1ðx1ÞV2ðx2ÞV3ðx3Þi
¼ C123

jx1 � x2j�1þ�2��3 jx1 � x3j�1þ�3��2 jx2 � x3j�2þ�3��1
:

(1.3)

Here in (1.2) V1 ¼ V�
2 . The two-point function coefficient

C12 may be set to unity by a choice of normalization of
vertex operators. The three-point function coefficient C123

may be extracted by setting x1, x2, x3 to specific values. As
we shall see below, in the case of hVHðx1ÞVHðx2ÞVLðx3Þi a
natural choice will be jx1j ¼ jx2j ¼ 1 and x3 ¼ 0.
To isolate the issue of normalization of operators one

may consider ratios of particular three-point correlators
with different operators or different values of quantum
numbers of the same operator. Combining such correlators
one may hope to extract information about normalization-
independent data, like factors involving quantum numbers
of the different types of the vertex operators at the same
time. For example, in the combined ratio

hVHðx1ÞVHðx2ÞVLðx3Þi
hVHðx1ÞVHðx2ÞVL0 ðx3Þi

� hVH0 ðx1ÞVH0 ðx2ÞVL0 ðx3Þi
hVH0 ðx1ÞVH0 ðx2ÞVLðx3Þi (1.4)

the normalization factors of both ‘‘heavy’’ and ‘‘light’’
states cancel out. Here H and H0 and well as L and L0
may differ by, e.g., choice of charges. This ratio is deter-
mined completely by terms in the three-point function
hVHðx1ÞVHðx2ÞVLðx3Þi which depend in a nontrivial way
on the charges of both the ‘‘heavy’’ and the ‘‘light’’ states.
The structure of the rest of the paper is as follows. In

Sec. II we review the structure of the bosonic part of some
closed-string vertex operators of the AdS5 � S5 super-
string. We consider several examples which will be used
in later sections: the ‘‘massless’’ operators representing
dilaton and the superconformal primary state of charge J,
the massive state with spin S on the leading Regge trajec-
tory and a special singlet string state existing on massive
string levels.
In Sec. III we review the semiclassical calculation of

two-point correlation functions of large charge operators.
We discuss in detail the string states dual to large-spin
twist-two operators and to large twist J operators.
We then proceed in Sec. IV to discuss the three-point

functions of one ‘‘light’’ and two ‘‘heavy’’ operators dis-
cussed in Sec. II and III. We also use the same approach to
construct the three-point functions in the case when the
‘‘heavy’’ operators are described by a classical trajectory
admitting a small-spin limit. In all cases we will identify
the normalization-independent features of the three-point
function coefficient.
Some concluding remarks including comments on the

validity of our approach and on the calculation of quantum
corrections to the three-point functions are made in Sec. V.

II. EXAMPLES OF STRING VERTEX OPERATORS

Let us start with a review of the structure of relevant
vertex operators following [4,17]. Their form is perhaps
most transparent in the 6þ 6 embedding coordinates.3 In
these coordinates the action of the AdS5 � S5 superstring
sigma model has the following structure:

1Correlation functions of (non-near-BMN) massive string
states were not discussed in the past, apart from not directly
related study of decay of semiclassical spinning string in [15,16].

2Here we assume for simplicity that the primary operators are
scalar. In the case of primary with spin operators there are extra
kinematic factors (see, e.g., [18]). For example, from a three-
point function of two scalar operators and one spin s operator
Vm1...ms

ðx3Þ (which is a symmetrized traceless tensor) we get an

extra factor dm1
. . . dms

, where dm ¼ ðx3�x1Þm
ðx3�x1Þ2 �

ðx3�x2Þm
ðx3�x2Þ2 . In the

case of ‘‘heavy’’ operators with spins such factors may be
ignored as we will consider ratios of three-point functions to
their two-point functions. In the case when the ‘‘light’’ operator
corresponds to spin s operator like trð �ZDsþZÞ we shall implicitly

assume that the corresponding extra factor ðdþÞs ¼ ½ðx3�x1Þþ
ðx3�x1Þ2 �ðx3�x2Þþ

ðx3�x2Þ2 �s is included.

3We shall follow the notation of [6]. The relation to the
notation for the coordinates of AdS5 and S5 in [4] is:
YM ! NM, Xk ! nk.
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I ¼
ffiffiffiffi
�

p
4�

Z
d2�ð@YM

�@YM þ @Xk
�@Xk þ fermionsÞ; (2.1)

YMY
M ¼ �Y2

0 � Y2
5 þ Y2

1 þ Y2
2 þ Y2

3 þ Y2
4 ¼ �1;

XkXk ¼ X2
1 þ . . .þ X2

6 ¼ 1: (2.2)

For a world sheet with Minkowski signature the 2d deriva-
tives are @ ¼ @þ, �@ ¼ @�. In general, the vertex operators
are constructed in terms of YM, Xk and fermions and
correspond to the highest-weight states of SOð2; 4Þ �
SOð6Þ representations. They are (exactly) marginal opera-
tors of dimension two, i.e. are particular linear combina-
tions of products of YM, Xk and their derivatives that are
eigenvectors of the 2d anomalous dimension operator.4

Fermions render the AdS5 � S5 sigma model UV finite;
since we will be interested in the leading-order of the
semiclassical expansion we may nevertheless ignore
them both in the action and the vertex operators. Being
interested in the leading large string tension approximation
we may also ignore all �0 � 1ffiffiffi

�
p corrections to the bosonic

part of the vertex operators (see also Sec. V).
Let us recall the basic relation between the embedding

coordinates and the global and Poincaré coordinates in
AdS5 that we will use below:

Y5 þ iY0 ¼ cosh�eit; Y1 þ iY2 ¼ sinh� cos�ei�1 ;

Y3 þ iY4 ¼ sinh� sin�ei�2 ; Ym ¼ xm
z
;

Y4 ¼ 1

2z
ð�1þ z2 þ xmxmÞ; Y5 ¼ 1

2z
ð1þ z2 þ xmxmÞ;

(2.3)

where xmxm ¼ �x20 þ xixi (m ¼ 0, 1, 2, 3; i ¼ 1, 2, 3). If a
highest-weight state of an SO(2, 4) representation is labeled
by the three Cartan generators ðE; S1; S2Þ corresponding to
rotations in the planes (5, 0), (1, 2) and (3, 4), a wave
function or a vertex operator representing a state with
AdS energy E should contain a factor ðY5 þ iY0Þ�E ¼
ðcosh�Þ�Ee�iEt. This is just theAdS analog of the flat-space
energy dependent plane wave factor e�iEt. If, equivalently,
the representation is labeled by the SO(1, 1) generator in the
(5, 4) plane, then the corresponding factor is ðY5 þ Y4Þ��,
where� is the eigenvalue of the dilatation generator (acting
as z ! kz, xm ! kxm).

For the construction of the classical string solution
describing the semiclassical approximation of the two-
point function of ‘‘heavy’’ vertex operators it is useful, as
described in [4,6], to consider the Euclidean continuation

te ¼ it; Y0e ¼ iY0; x0e ¼ ix0; (2.4)

so that YMYM ¼ �Y2
5 þ Y2

0e þ YiYi þ Y2
4 ¼ �1. The SO

(2, 4) symmetry is then replaced by SO(1, 5), which con-
tains the discrete transformation Y0e $ Y4, E $ � that
relates the factors ðY5 þ iY0Þ�E and ðY5 þ Y4Þ��. Up to a
normalization factor, we shall sometimes denote this factor
by K in the following:

Kðx; zÞ ¼ k�ðYþÞ�� ¼ k�ðzþ z�1xmxmÞ��;

Yþ � Y5 þ Y4: (2.5)

As is well known, Kðx� x0; zÞ ¼ k�½zþ z�1ðx� x0Þ2���

is a solution of the scalar Laplace equation in AdS5 with
mass m2 ¼ �ð�� 4Þ; the normalization constant k� can

be chosen such that Kðx� x0; z ! 0Þ ¼ �ð4Þðx� x0Þ.
In general, an unintegrated vertex operator will have the

structure

V� ðYþÞ��½ð@sYÞr . . . ð �@mXÞn þ . . .�
� ðYþÞ��UðY; X; . . .Þ: (2.6)

To construct an integrated vertex operator parametrized
by the four coordinates of a point on the boundary of the
Euclidean Poincaré patch of AdS5 space, we should shift
xm ¼ ðx0e; xiÞ by a constant vector xm (translations in xm
are part of global conformal symmetry)

VðxÞ ¼
Z

d2�Vðxð�Þ � x; . . .Þ

¼
Z

d2�Kðxð�Þ � x; zð�ÞÞU½xð�Þ � x; zð�Þ; Xð�Þ�:
(2.7)

Let us now discuss some examples of such vertex operators
which we shall use as ‘‘heavy’’ or ‘‘light’’ factors in the
three-point correlation functions below.

A. Dilaton operator

The 10-d dilaton field is decoupled from the metric
perturbation in the Einstein frame [19], i.e. it satisfies
the free massless 10-d Laplace equation in AdS5 � S5.
Keeping nonzero value of S5 momentum (corresponding
to a higher KK harmonic of the 10-d dilaton), the corre-
sponding massless string vertex operator representing a
highest-weight state of SOð2; 4Þ � SOð6Þ is simply pro-
portional to the world sheet Lagrangian

VðdilÞ
J ¼ ðYþÞ��ðXxÞJð@YM

�@YM þ @Xk
�@Xk þ fermionsÞ;

Xx � X1 þ iX2 ¼ cos#ei’: (2.8)

Here and below in this section we shall ignore the fermi-
onic terms and overall normalization factors in the vertex
operators. The marginality condition is 2 ¼ 2� 1

2
ffiffiffi
�

p �
½�ð�� 4Þ � JðJ þ 4Þ� þOð 1

ð ffiffiffi
�

p Þ2Þ, so that to the leading-

order in the large
ffiffiffiffi
�

p
expansion � ¼ 4þ J. Inclusion of

fermions should guarantee that all higher-order corrections
vanish as this should be a BPS state. The corresponding

4Even though the sigma model of the Green-Schwarz type is
not a factorized CFT, the (anti)holomorphy of the two compo-
nents of the stress tensor guarantees that the left and right
dimensions are well-defined quantities.
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dual gauge theory operator should be�trðF2
mnZ

J þ . . .Þ or,
for J ¼ 0, just the SYM Lagrangian.

The form of the resulting integrated dilaton operator
(2.7) and (2.8), can be understood as follows. On
string side, 10-d dilaton couples to string action asR
d2�eð1=2Þ�ðXÞgIJðXÞ@XI �@XJ þ . . . where gIJðXÞ is

Einstein-frame metric and XI are 10-d coordinates. To
get the on shell (marginal) vertex operator one is to lin-
earize in � and restrict � to be a solution of the corre-
sponding wave equation. In the AdS/CFT context we
should then have (ignoring KK momentum dependence)
�ðx; zÞ ¼ R

d4xKðx� x; zÞ�ðxÞ, where the ‘‘4-d dilaton’’
�ðxÞ ¼ �ðx; z ! 0Þ is an arbitrary boundary source func-
tion. The corresponding (D3-brane) coupling on the gauge

theory side is
R
d4x tr½e��ðxÞF2

mnðxÞ þ . . .�. The string
theory and gauge theory correlation functions are then
obtained by taking functional derivatives over �ðxÞ; inser-
tion of the gauge theory Lagrangian into a gauge theory

correlator corresponds to insertion of VðdilÞ, i.e. the string
theory Lagrangian multiplied by the function K � ðYþÞ��,
into the string theory correlator.

Note that the constant part of the dilaton appears in the
string action in the same way as the string tension factorffiffiffiffi
�

p
and in the gauge theory action as the gauge coupling �.

Taking the derivative � @
@� of a gauge theory correlator

corresponds to the insertion of the gauge theory action;
applying � @

@� to a string theory correlator corresponds to

the insertion of the string theory action. The two are indeed
related as the ‘‘zero-momentum dilaton’’ corresponds to
the dilaton operator (� ¼ 4) integrated over the four-
space,

Vð0�dilÞ�
Z
d4xVðdilÞðxÞ

!
Z
d4x

Z
d2�ðzþz�1jxð�Þ�xj2Þ�4ð@YM

�@YMþ...Þ:
(2.9)

Doing first the integral over x one finds that the K � ðzþ
z�1jx� xj2Þ�4 factor goes away and we end up just with

the string action, i.e. Vð0�dilÞ � R
d2�ð@YM

�@YM þ . . .Þ.
This implies, in particular, the following ‘‘zero-

momentum dilaton’’ relation,

hVðx1ÞV�ðx2ÞVð0�dilÞi ¼ �
@

@�
hVðx1ÞV�ðx2Þi

¼ ��
@�

@�

1

jx1 � x2j2�
lnjx1 � x2j2;

(2.10)

i.e. the insertion into a two-point function of the dilaton
operator integrated over four-space (i.e. of the gauge
theory action on the gauge theory side or the string theory
action on the string theory side) is proportional to the

�-derivative of the dimension (see [14] for a closely related
discussion).
As a result, the C123 corresponding to hVðx1Þ�

V�ðx2ÞVðdilÞðx3Þi should be proportional to � @
@��. Indeed,

taking �1 ¼ �2 ¼ � and �3 ¼ 4 in (1.3) and integrating
over x3 one gets C123jx1 � x2j�2�þ4

R
d4x3

1
jx3�x1j4jx3�x2j4 .

The latter is proportional toC123jx1 � x2j�2� lnð	jx1 � x2jÞ
(	 is a cutoff) and should be compared with (2.10).

B. Superconformal primary scalar operator

This scalar represents the superconformal primary state
and is the highest-weight state of the SO(6) representation
½0; J; 0�, J � 2. The corresponding dimension is � ¼ J.
The dual gauge theory operator is the BMN operator trZJ.
The dilaton operator is the supersymmetry descendant of
this operator.
The corresponding massless string state originates from

the trace of the graviton in S5 directions that induces also
the components of the graviton in AdS5 directions and
mixes with the RR five-form [19,20]. As discussed in
[7,13], the bosonic part of corresponding vertex operator
can be taken in the form (ignoring derivative terms that will
not contribute to the computation done in Sec. IV)

V ðscalÞ
J ¼ ðYþÞ��XJ

x½z�2ð@xm �@xm � @z �@zÞ � @Xk
�@Xk�:
(2.11)

The two-derivative factor here can also be written as
½z�2ð@xm �@xm � @Zk

�@ZkÞ�, with Zk ¼ zXk, ZkZk ¼ z2, so
this is just the string Lagrangian with the 4d and 6d parts
taken with opposite sign.5

C. Operators with spin on leading Regge trajectory

In flat-space (bosonic) string theory a spin S state on

the leading Regge trajectory is represented by VS ¼
e�iEtð@xx �@xxÞðS=2Þ, xx ¼ x1 þ ix2, with the marginality

condition being 2 ¼ S� 1
2�

0E2, i.e. E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
�0 ðS� 2Þ

q
. By

analogy, in AdS5 � S5, candidate operators for states on
the leading Regge trajectory are (after the Euclidean con-
tinuation and E ! � flip)

VS¼ðYþÞ��ð@Yx
�@YxÞðS=2Þþ . . . ; Yx¼Y1þ iY2; (2.12)

VJ ¼ ðYþÞ��ð@Xx
�@XxÞðJ=2Þ þ . . . ; Xx ¼ X1 þ iX2;

(2.13)

5Note that a similar factor would appear if one would start
with a near-horizon limit of the D3-brane metric ds2 ¼
H�1=2ðzÞdxmdxm þH1=2ðzÞdZkdZk, H ¼ Q

z4
and formally con-

sider a local deformation of the Q parameter. A similar defor-
mation (but with different coefficients for the ‘‘4d’’ and ‘‘6d’’
parts of the metric) corresponds to a fixed scalar dual to
trF4 þ . . . operator which is a supersymmetry descendant of
the trZ4 operator [21].
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where the ellipsis stand for terms resulting from the diag-
onalization of the 2d anomalous dimension operator.

In general, ignoring fermions, the operator ð@Xx
�@XxÞðJ=2Þ

in the SO(6) sigma model may mix with

ðXxÞ2pþ2qð@XxÞðJ=2Þ�2pð �@XxÞðJ=2Þ�2qð@X‘@X‘Þpð �@Xk
�@XkÞq;
(2.14)

where p; q ¼ 0; . . . ; J4 ; l; k ¼ 1; . . . ; 6. The operator

ðYþÞ��ð@Yx
�@YxÞðS=2Þ in the SO(2, 4) sigma model may

mix with

ðYþÞ�E�p�qYpþq
x ð@YþÞpð@YxÞðS=2Þ�pð �@YþÞqð �@YxÞðS=2Þ�q

þOð@YM@Y
M �@YK

�@YKÞ; (2.15)

where p; q ¼ 0; . . . ; S4 ; M, K ¼ 0; 1; . . . 5. The true vertex

operators are eigenvectors of the anomalous dimension
matrix, i.e. they are particular linear combinations of
the above structures determined, e.g., by solving Laplace
(or Lichnerowitz) type equation for the corresponding
tensor wave function, e.g., 
̂� ¼ ½2� Sþ 1

2�
0r2 þP

ck�
0kðR . . .Þn . . .rp�� ¼ 0.

Since all operators in Eqs. (2.14) and (2.15) have the
same classical dimension, their mixing is not suppressed
by �0 � 1ffiffiffi

�
p . However, considering such operators as the

‘‘heavy’’ ones in a correlation function (i.e. treating them
semiclassically assuming that their dimension � and spins

are as large as
ffiffiffiffi
�

p
) makes it unnecessary to consider

explicitly the effects of the mixing. Indeed, all that is
required is that the classical solution they source should
have a definite energy or�, thus effectively representing an
eigenvector of the 2d anomalous dimension operator [4,6].

D. Singlet scalar operators on higher string levels

There exist special massive string state vertex operators
with finite quantum numbers for which the leading-order
bosonic part is known explicitly and thus they can be used
as candidates for ‘‘light’’ vertex operators in the semiclas-
sical computation of the correlation functions discussed in
the introduction. These are singlet operators that do not
mix with other operators to leading nontrivial order in
1ffiffiffi
�

p [4,17].

Consider, e.g., an operator built out of derivatives of S5

coordinates Xk. An example of a scalar operator carrying
no spins is6

V q ¼ ðYþÞ��½ð@Xk
�@XkÞq þ . . .�: (2.16)

This operator corresponds to a scalar string state at level
n ¼ q� 1 so that the fermionic contributions should make
the q ¼ 1 state massless (BPS), with � ¼ 4 following

from the marginality condition. The q ¼ 2 choice corre-
sponds to a scalar state on the first excited string level.7

The number of ð@Xk
�@XkÞ factors in an operator cannot

increase due to renormalization [4]; thus if an operator
does not contain any such factors, they cannot be induced
by renormalization. This leads to an example of another
scalar operator which is a true singlet and is known
explicitly at the leading-order

V r ¼ ðYþÞ��ð@Xk@Xk
�@X‘

�@X‘Þr=2; r ¼ 2; 4; . . . :

(2.17)

Ignoring fermionic contributions, its dimension is deter-
mined from 0 ¼ 
̂ ¼ 2� 2rþ 1

2
ffiffiffi
�

p ½�ð�� 4Þ þ 8r� þ
Oð 1

ð ffiffiffi
�

p Þ2Þ, i.e. � ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
r� 1

p ffiffiffiffi
�4

p þ 2� 2r�1ffiffiffiffiffiffiffi
r�1

p ffiffiffi
�4

p þOð 1
ð ffiffiffi

�4
p Þ3Þ.

While the contribution of fermions may, of course, change
the subleading terms, cf. [17,22], they cannot alter the form
of the fermion-independent part of the vertex operator. As
this operator represents a singlet scalar, the corresponding
field should satisfy a simple Laplace-type equation8

ð�r2 þM2Þ� ¼ 0, M2 ¼�ð�� 4Þ ¼ 4ðr� 1Þ ffiffiffiffi
�

p þ . . . .
Thus adding S5 KK momentum is straightforward by
simply including a factor of XJ

x as in (2.8).
We may also consider the AdS5 counterpart of the

singlet operator (2.17), namely

V k ¼ ðYþÞ��ð@YM@Y
M �@YK

�@YKÞk=2; k ¼ 2; 4; . . . :

(2.18)

The operators Vr in (2.17) and Vk in (2.18) have a very
special structure: their derivative factor is constructed out
of chiral components Tþþ ¼ T and T�� ¼ �T of the stress
tensor of the S5 or AdS5 sigma models, respectively, i.e.

Vr ¼ ðYþÞ��ðT �TÞr=2. Thus, when evaluated on a classical

string solutions9 the factor ðT �TÞr=2 will simply be a con-
stant in power r=2. Up to this constant the contribution of
this singlet operator to a three-point correlator with two
‘‘heavy’’ operators will then be the same as that of the
‘‘naive’’ scalar operator ðYþÞ��XJ

x .
The simplest example of the operator (2.17) is r ¼ 2

representing a massive state on the first excited string level,
which should be dual to a member of Konishi multiplet
(see [17]). We may thus use it not only to evaluate three-
point correlators of a singlet massive string mode with two
‘‘heavy’’ modes represented by large-spin operators like
(2.12), but also with two ‘‘heavy’’ modes corresponding to

6The marginality condition for this operator is 0¼ 
̂¼ 2�
2qþ 1

2
ffiffiffi
�

p ½�ð��4Þþ2qðq�1Þ�þ 1
ð ffiffiffi

�
p Þ2 ½23qðq�1Þðq� 7

2Þþ4q�þ
Oð 1

ð ffiffiffi
�

p Þ3Þ.

7Then [17] �ð�� 4Þ ¼ 4
ffiffiffiffi
�

p � 4þOð 1ffiffiffi
�

p Þ, so that � ¼
2

ffiffiffiffi
�4

p þ 2þ 0ffiffiffi
�4

p þOð 1
ð ffiffiffi

�4
p Þ3Þ. Here the subleading terms should

not, however, be trusted as fermions are expected to change
the � independent terms in the one-loop anomalous dimension.

8To leading-order in large
ffiffiffiffi
�

p
we may ignore a constant shift

in �, i.e. ignore position of that scalar in a supermultiplet.
9In conformal gauge the classical stress tensors of the bosonic

AdS5 and S5 sigma models are separately conserved and trace-
less so that their holomorphic components can be chosen to be
constant; the Virasoro condition equates their sums to zero.
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a ‘‘small’’ semiclassical string which may also be used to
represent string modes on the first excited level as dis-
cussed in [17]. As we shall discuss below, such a calcu-
lation may then determine the leading term in the
correlation function of there ‘‘light’’ massive string modes
like three Konishi-type states.

III. REVIEW OF SEMICLASSICAL
APPROXIMATION FOR TWO-POINT

CORRELATOR OF LARGE-SPIN STATES

The semiclassical calculation of the correlation function
of two ‘‘heavy’’ string states represented by large orbital
momentum (2.8) and (2.11) or large-spin (2.12) and (2.13)
vertex operators was described in [6] (see also [10,12] for
related discussions). Here we review the main points of this
calculation.

The classical solution describing a pointlike string with
large orbital momentum in S5 corresponding, e.g., to BMN-
type states with vertex operators as in (2.8) or (2.11) with�,

J � ffiffiffiffi
�

p
is t ¼ �� (in AdS5) and ’ ¼ �� (in S5). It repre-

sents a massive geodesic in AdS5, running through the
center of the space and never reaching the boundary.
After a Euclidean continuation the geodesic reaches the
boundary: in Poincaré coordinates it is (cf. (2.4))10

z ¼ 1

coshð��eÞ ; x0e ¼ tanhð��eÞ; xi ¼ 0;

’ ¼ �i��e; �e ¼ i�:
(3.1)

The radial coordinate z vanishes in the limits �e ! 	1,
implying indeed that the Euclidean trajectory reaches the
boundary at the two points: x0e ¼ �1, xi ¼ 0 and x0e ¼ 1,
xi ¼ 0.11 These points are the locations of the two vertex
operators sourcing the classical trajectory.

Quite generally, the two vertex operators whose two-
point function we are computing are placed at �e ¼ 	1 on
the Euclidean 2d world sheet cylinder. Their positions
may be mapped to arbitrary positions �1 and �2 on the �
complex plane [4,6] by the transformation:

e�eþi ¼ �� �2

�� �1

: (3.2)

Given a classical solution with given global charges on a
Lorentzian 2d cylinder, its analytically continued form
mapped onto the complex plane should then be the sta-
tionary trajectory of the path integral representing the
two-point correlation function of the vertex operators
with the given global charges. The ‘‘delta-function’’

sources representing the vertex operators for the
(‘‘semiclassical’’) string states are placed at positions �1

and �2. The role of matching onto source terms is to relate
the parameters of the semiclassical solution to the quantum
numbers (�; J; . . . ) that label the vertex operators.12 Then,
using the massless scalar operators like (2.8) or (2.11) with

J ¼ ffiffiffiffi
�

p
� � 1, � ¼ J, the four-dimensional and two-

dimensional conformal invariances imply that, in general,
the two-point function should have the form

hVJðx1ÞV�
J ðx2Þi �

1

jx1 � x2j2�
Z d2�1d

2�2

j�1 � �2j4
: (3.3)

The semiclassical trajectory (3.1) is consistent with the
special choice of x ¼ ð�1; 0; 0; 0Þ, x0 ¼ ð1; 0; 0; 0Þ;
the divergent 2d ‘‘Möbius’’ factor should cancel against
the standard normalization of the string path integral [6].
To apply this method to the two-point function

hVSðx1ÞV�
Sðx2Þi of operators (2.12) and (2.7)

VSðxÞ ¼ c
Z

d2�½zð�Þ þ zð�Þ�1ðxð�Þ � xÞ2���

� ½@Yxðxð�Þ � xÞ �@Yxðxð�Þ � xÞ�S=2

YxðxÞ ¼ Y1ðxÞ þ iY2ðxÞ ¼ x1 þ ix2
z

; (3.4)

we should consider the limit of �� S� ffiffiffiffi
�

p � 1, with
S ¼ Sffiffiffi

�
p being large. As was demonstrated in [6] (see also

[4,5]) the semiclassical trajectory saturating this two-point
correlator is equivalent to the conformally transformed (3.2)
Euclidean continuation of the asymptotic large-spin limit
[23,24] of the spinning folded string solution in AdS3, i.e.

t ¼ ��; � � �1 ¼ ��; � ¼ �;

� ¼ � 
 1

�
lnS � 1:

(3.5)

The background (3.5) approximates the exact elliptic
function solution [3] in the limit �, � � 1 on the interval
 2 ½0; �2�; to obtain the formal periodic solution on

0< � 2� one needs to combine together four stretches
� ¼ � of the folded string.
In the embedding coordinates, the formal Euclidean

continuation of this solution is13

Y5 ¼ coshð��eÞ coshð�Þ;
Y0e ¼ sinhð��eÞ coshð�Þ; Y4 ¼ 0;

Y1 ¼ coshð��eÞ sinhð�Þ;
Y2 ¼ �i sinhð��eÞ sinhð�Þ; Y3 ¼ 0: (3.6)

10The Euclidean stationary-point solution for the coordinates of
S5 is, in general, complex (see also [2,4,5,8,9]) but there is no a
priori condition that such solution should be real.
11By a dilatation and translation, the position of the two
end points may be chosen to be x0e ¼ 0 and x0e ¼ a; the
corresponding solution is then [6]: z ¼ a

2 coshð��eÞ ,
x0e ¼ a

2 ½tanhð��eÞ þ 1�, xi ¼ 0.

12Note that the transformation from a cylinder to the complex
plane is not essential if we are interested only in the value of a
correlator of integrated vertex operators.
13Here we depart from the notation in [6] in that we do not
change the sign of � at the same time as doing the Euclidean
continuation.
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In Poincaré coordinates (2.3) this becomes

z ¼ 1

coshð��eÞ coshð�Þ ; x0e ¼ tanhð��eÞ; (3.7)

x1 ¼ tanhð�Þ; x2 ¼ �i tanhð�Þ tanhð��eÞ; (3.8)

x	 � x1 	 ix2 ¼ re	i� ¼ tanhð�Þ
coshð��eÞ e

	��e ; (3.9)

z2 þ x20e þ x21 þ x22 ¼ 1: (3.10)

While in Poincaré coordinates in Lorentzian signature the
string moves towards the center of AdS, rotating and
stretching, after the Euclidean continuation the resulting
complex world surface described by (3.6) approaches the
boundary (z ! 0) at �e ! 	1 at x0eð	1Þ ¼ 	1 and
‘‘lightlike’’ lines in the (complex) ðx1; x2Þ plane:

�e ! þ1: z ! 0; x0e ! 1;

xþ ! 2 tanhð�Þ; x� ! 0; (3.11)

�e ! �1: z ! 0; x0e ! �1;

xþ ! 0; x� ! 2 tanhð�Þ: (3.12)

The radius r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x20e � z2

q
in the ðx1; x2Þ plane goes

to zero at the boundary while the angle � in (3.9) goes
to 	i1.

Note that the fact that this classical solution does not
simply end at two points at the boundary does not represent
a problem. In general, we are supposed to start with two
vertex operators (2.7) parametrized by some arbitrary
points x1 and x2 (which are also the points where dual
gauge theory operators are inserted in the SYM correlator
corresponding to (1.2)) and then find the classical string
trajectory ‘‘sourced’’ by such operators. As was shown in
[6], doing this for the choice of x1 ¼ ð1; 0; 0; 0Þ and x2 ¼
ð�1; 0; 0; 0Þ (or similar choice related by rescaling and
translation, see footnote 11) leads to the stationary-point
solution (3.7), (3.8), (3.9), and (3.10). Thus positions of the
boundary values of the classical string coordinates need
not, in general, coincide with the positions of the vertex
operators x1 and x2 (though that does happen for simple
string solutions which are pointlike in AdS5, cf. [12,13]).

The discussion above generalizes straightforwardly to
the large-spin operator carrying also large orbital momen-

tum J ¼ ffiffiffiffi
�

p
J in S5,

VS;Jð0Þ ¼
Z

d2�ðYþÞ��ðXxÞJð@Yx
�@YxÞS=2: (3.13)

The corresponding Euclidean semiclassical solution [23] is
given by a generalization of the Euclidean continuation
of (3.5)

te ¼ ��e; � ¼ �i��e;

� ¼ �; ’ ¼ �i��e;
(3.14)

�¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2þ�2

q
; �
 1

�
lnS�1; �¼J : (3.15)

Its energy is

E� S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 þ �

�2
ln2S

s
¼

ffiffiffiffi
�

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘2 þ 1

p
lnS; ‘ � �

�
:

(3.16)

Written in Poincaré coordinates, it is the same as in (3.7),
(3.8), (3.9), and (3.10) with �2 ¼ �2 þ �2 and’ ¼ �i��e.
Note that in the formal limit of � ! 0 we recover the
geodesic solution (3.1). We will use this observation to test
some of the calculations described in the next section.

IV. SEMICLASSICAL COMPUTATION OF
THREE-POINT FUNCTIONS OF TWO
‘‘HEAVY’’ AND ONE ‘‘LIGHT’’ STATES

Let us now apply the strategy described in the introduc-
tion to the computation of the leading semiclassical con-
tribution to the correlators like hVH1

ðx1ÞVH2
ðx2ÞVLðx3Þi

where the ‘‘heavy’’ and ‘‘light’’ vertex operators are among
the operators discussed in Sec. II. Again, since the quantum
numbers of the ‘‘light’’ operators are much smaller than

those of the ‘‘heavy’’ ones (assumed to be order
ffiffiffiffi
�

p
) the

‘‘light’’ source terms in the string equations determining
the stationary-point trajectory can be ignored, so that this
trajectory should be the same as for the two-point correla-
tor hVH1

ðx1ÞVH2
ðx2Þi. Then to compute the above three-

point function we just need to evaluate it on a classical
string solution carrying the same quantum numbers as the
two heavy operators (assumed to be of the same type up
to opposite signs of spins or momenta, i.e. conjugate to
each other).
Given that the xi dependence of the correlators like (1.2)

and (1.3) is determined by the conformal invariance,
it is sufficient to consider a special choice of the points,
fixing, e.g., the position of the ‘‘light’’ operator to be at
zero, x3 ¼ ð0; 0; 0; 0Þ. In this case the contribution of the
‘‘light’’ vertex operator will be given by (see (2.7) and (2.5)

VLð0Þ ¼
Z

d2�ðYþÞ��LU½xð�Þ; zð�Þ; Xð�Þ�: (4.1)

Furthermore, for all simple classical string solutions asso-
ciated with the ‘‘heavy’’ operators we will consider below
will have the following property (cf. (2.3), (3.1), and (3.6):

z2þxmx
m¼1; i:e: Y4¼0; Y5¼Yþ¼ z�1: (4.2)

Then the leading semiclassical contribution to the three-
point function will be given simply by (we assume
�H1

¼ �H2
� �L � �)
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hVH1
ðx1ÞVH2

ðx2ÞVLð0Þi �
Z

d2�z�clU½xð�Þ; zclð�Þ; Xclð�Þ�;
(4.3)

where the subscript cl on the arguments of U emphasizes
that they are given by the classical solution saturating the
two-point correlator of the ‘‘heavy’’ operators.14

Also, the solutions we shall consider below will be such
that they approach the boundary points x1 and x2 which
have jx1j ¼ 1, jx2j ¼ 1.15 In this case to extract the

(normalized) structure coefficients C123 � C123

C12
in (1.3) we

should consider

C123 ¼
hVH1

ðx1ÞVH2
ðx2ÞVLð0Þi

hVH1
ðx1ÞVH2

ðx2Þi
¼ c�

Z
d2�z�clU½xclð�Þ; zclð�Þ; Xclð�Þ�; (4.4)

where c� depends only on the normalization of the ‘‘light’’
operator. In such a ratio the (divergent) ‘‘Möbius’’ factor
(3.3) cancels out as well, guaranteeing a finite result.

In what follows we shall omit the subscript ‘‘cl’’ on
the coordinates of the classical solution. Also, since we
are interested just in the value of the integral in (4.4)
we may compute it directly on the 2d cylinder, i.e. before
doing the conformal transformation (3.2), so thatR
d2� ! R1

�1 d�e
R
2�
0 d.

Let us now consider some specific examples correspond-
ing to different choices of the ‘‘heavy’’ and ‘‘light’’ opera-
tors, i.e. the choices of the classical solution and of VL (4.1)
or U in (4.4).

A. VH corresponding to folded string
with large-spin in AdS5

Let us start with the case when the two ‘‘heavy’’ opera-

tors are VS;J and V�S;�J in (3.4) and (3.13) with S ¼ ffiffiffiffi
�

p
S,

J ¼ ffiffiffiffi
�

p
J and lnS � 1, so that the corresponding semi-

classical trajectory is directly related to the large-spin
solution (3.6), (3.7), (3.8), (3.9), (3.10), (3.11), (3.12),
(3.13), and (3.14).

1. VL as dilaton operator

If we choose VL to be the dilaton operator (2.8) then the
three-point correlator (4.4) takes the form

C123 ¼ c�
Z 1

�1
d�e

Z 2�

0
dz�U; (4.5)

U ¼ ðXxÞj½z�2ð@xm �@xm þ @z �@zÞ þ @Xk
�@Xk�;

� ¼ 4þ j:
(4.6)

Here we denoted the (fixed) KK momentum of the dilaton
by j to distinguish it from the (large) angular momentum J
of the ‘‘heavy’’ operators. In this case the momenta of the
two ‘‘heavy’’ operators should be, in fact, J and�J � j to
satisfy the momentum conservation but as in [13] we shall
formally ignore this as J � j. The normalization constant
c� of the dilaton vertex operator was computed in [7]:

c� ¼ cjþ4 ¼ 2�j=2

2�2
ðjþ 3Þ: (4.7)

Let us note that in the simplest case of the ‘‘heavy’’
operators represented by scalar BPS operators correspond-
ing to supergravity modes when the classical trajectory is
given by (3.1) we find that U ¼ ej��e � ð�2 � �2Þ ¼ 0 so
that the three-point function vanishes identically. This
agrees with the absence of the three-point couplings con-
taining an odd number of dilatons in the NS-NS sector16 of
the type IIB supergravity in the Einstein frame (a similar
statement is true also in weak-coupling expansion of the
dual gauge theory).
Evaluating U on the large-spin folded string classical

solution in (3.14) we get

U ¼ ej��eð�2cosh2�þ�2 � �2sinh2�� �2Þ ¼ 2�2ej��e ;

(4.8)

so that the integral in (4.6) becomes

C123 ¼ 4c�
Z 1

�1
d�e

Z ð�=2Þ

0
d

2�2ej��e

½coshð�Þ coshð��eÞ��
;

�2 ¼ �2 þ �2; (4.9)

where we used that the expression for � in (3.5) approx-
imates the exact folded solution for � � 1 on the interval
ð0; �2Þ and should be combined four times to correspond to a

2� periodic solution. While we should eventually take �
large we shall formally keep it finite at intermediate steps.
Doing the integral over  and �e we get

17

C123 ¼ c�2
jþ8 �

�
Cðj; �ÞBðJ; �

�
Þ; (4.10)

Cðj;�Þ ¼ sinh

�
�

2
�

�
2F1

�
1

2
;
1

2
ð5þ jÞ; 3

2
;�sinh2

�
�

2
�

��
;

(4.11)

14The corresponding world sheet can be pictured as connecting
the x1 and x2 points with the role of the third ‘‘small’’ operator
being to connect it also to the point x1 ¼ 0 (see [13]).
15For example, for (3.6), (3.7), (3.8), (3.9), and (3.10) the
boundary points are xð�e ¼ 1Þ ¼ ð1; tanh�;�i tanh�; 0Þ,
and xð�e ¼ �1Þ ¼ ð�1; tanh�; i tanh�; 0Þ so that jxð�e ¼þ1Þj2 ¼ jxð�e ¼ �1Þj2 ¼ 1.

16We ignore fermions and so do not consider the RR scalar
operators.
17Note that the integral over �e is convergent as ð4þ jÞ� > j�.

R. ROIBAN AND A.A. TSEYTLIN PHYSICAL REVIEW D 82, 106011 (2010)

106011-8



B

�
j;
�

�

�
¼ 2F1ð4þ j; bþ; bþ þ 1;�1Þ

bþ

þ 2F1ð4þ j; b�; b� þ 1;�1Þ
b�

; (4.12)

b	 � 4þ j

�
1	 �

�

�
: (4.13)

Note that in the formal � ! 0 limit corresponding to the
case when the classical trajectory (3.14) degenerates into
a geodesic we recover the vanishing of the three-point
coupling mentioned above

C123j�!0 ¼ c�2
jþ5�

ðjþ 2Þðjþ 3Þ
�2

�
þOð�3Þ: (4.14)

Considering the large-spin or large � ¼ 1
� lnS limit with

fixed ‘ ¼ �
� (cf. (3.16)) we may express (4.10) in terms of

S and ‘ in the following factorized form

C123 ¼ c�2
jþ8Cðj;SÞ ~Bðj; ‘Þ;

~Bðj; ‘Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘2 þ 1

p B

�
j;

‘ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘2 þ 1

p
�
; (4.15)

Cðj;SÞ ¼ 1

2
S1=2ð1� S�1Þ2F1

�
1

2
;
1

2
ðjþ 5Þ; 3

2
;

� 1

4
ðS þ S�1 � 2Þ

�
: (4.16)

Explicitly, for j ¼ 0 or� ¼ 4weget (recalling that� ¼ J )

C123 ¼ 32c�½2þ coshð��Þ� sinhð��=2Þ
9cosh3ð��=2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ‘2

p

¼ 64c�ðS � 1ÞðS2 þ 4S þ 1Þ lnS
9�ðS þ 1Þ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J 2 þ 1

�2 ln
2S

q : (4.17)

In the large S limit this becomes

C123 � lnSffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 þ �

�2 ln
2S

q : (4.18)

Thus if J �
ffiffiffi
�

p
� lnS the three-point coupling againvanishes,

in agreement with the above argument that the dilaton does

not couple to BPS states. If J �
ffiffiffi
�

p
� lnS the three-point

coupling approaches a constant, which is consistent with
the expectation that the dilaton should generically couple to
massive string modes, e.g., via their mass term in a string
field theory action. For example, adding a massive scalar to
a string effective action one gets an exponential dilaton
coupling in the mass term in the Einstein frame, S ¼R
d10x

ffiffiffi
g

p ð@��@��þM2e
��2 þ . . .Þ. Starting with

such action the three-point functionmay be computed using
standard methods [1,25], e.g. as in the case when all three
modes are supergravity modes.

The expression in (4.18) resembles the �-derivative of
the strong-coupling limit of the dimension of the large-spin
twist J operator (equal to the energy of the string solution
in (3.16)):

�
@�S;J

@�
¼ �ln2S

2�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 þ �

�2 ln
2S

q þ . . . ;

�S;J ¼ Sþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 þ �

�2
ln2S

s
þ . . . :

(4.19)

Indeed, this relation should be expected in view of the
discussion in Sec. II A (see (2.9) and (2.10)). Comparing to
(4.18), there is, however, a mismatch in one factor of lnS.
This appears to be depending on how one regularizes
divergent integrals appearing in the case of insertion of
the dilaton operator integrated over four-space (2.9).
Indeed, to repeat the above computation with the dilaton
vertex operator replaced by its zero-momentum version,
i.e. by the string action, we should omit the z� factor

in (4.5). Then for j ¼ 0 we get from (4.9) C123 ¼
8�2c4

R1
�1 d�e

Rð�=2Þ
0 d. Since from the form of the

classical solution (3.6), (3.7), and (3.8) it is clear that the
space-time coordinates depend on �e through ��e ¼ ��e
it is natural to introduce a cutoff L on ��e. That gives

C123 � �2

� L, which is indeed the same function of S and

J as �
@�S;J

@� in (4.19).18

The above relation between the value of the classical
action on a solution (with time integral cut off using t ¼ ��
variable) and the derivative of the corresponding classical
energy over string tension for fixed spins appears to be
quite general (and can be argued for using thermodynam-
ical arguments as in [26]). We shall see it applying also in
the example discussed in Sec. IVB 1.
Let us comment also on the formal limit of large jwhich

is easy to analyze by evaluating the integral in (4.9) over �e
in a saddle-point approximation (see [13] for a similar
discussion).19 Rescaling �e by � first we end up with
(cf. (4.15) and (4.16))

C123 ¼ 8c�

�ð1þ ‘2Þ5=2 Cðj;SÞe
jhð‘Þ; (4.20)

18Note that if we consider unintegrated vertex operators before
dividing over Möbius group factor then in the analog of (1.3) we
will get like in (3.3) an extra factor of world sheet distance
powers: hVðx1; �1ÞV�ðx2; �2ÞV3ðx3; �3Þi � 1

j�1��2j2j�1��3j2j�2��3j2
where V3 ¼ Vð0�dilÞ here is the string Lagrangian. Integrating

this over �3 to get insertion of Vð0�dilÞ or the string action
produces 1

j�1��2j4 lnðaj�1 � �2jÞ where a is a world sheet cutoff.

The integral of this factor then cancels against the normalization
to the two-point function.
19Unlike the �e integral, the  integral in (4.9) does not possess
a real saddle point—the integrand is an increasing function, so
that we evaluate this integral exactly.
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hð‘Þ ¼ � 1

2

�
lnð1þ ‘2Þ þ ‘ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ‘2
p ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ‘2

p
� ‘ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ‘2
p

þ ‘

�
;

(4.21)

where

hð‘Þ ¼
8><
>:

1
2 ‘

2 � 5
12 ‘

4 þ . . . ; ‘ ! 0

ln2� 1
2

�
1
2 þ ln2þ ln‘

�
1
‘2
þ . . . ; ‘ ! 1 :

(4.22)

Taking S ! 1 in Cðj;SÞ given in (4.16) and then expand-
ing it at large j we find20

Cðj;SÞjS!1 ¼ 2jþ2½�ððjþ 4Þ=2Þ�2
�ðjþ 4Þ þOðS�1Þ

¼
ffiffiffiffiffi
�

2j

s
þOðj�3=2;S�1Þ: (4.23)

Since this j dependence is not exponential, it is subject to
corrections coming from fluctuations around the saddle
point of the �e integral.

2. VL as superconformal primary scalar operator

Let us now turn to the case when the ‘‘light’’ operator is
another massless scalar vertex operator in (2.11). In the
case when the classical solution is a BMN geodesic or a
folded spinning string in S5 representing a massive string
mode with spins ðJ1; J2Þ similar computation was done
recently in [13]. Here we will consider the case of the
large-spin folded string solution in AdS5.

In the case of (2.11) the factorU in (4.4) evaluated on the
large-spin solution (3.7), (3.8), and (3.14) takes the form
(we again use j for the S5 momentum of the ‘‘light’’
operator so that here � ¼ j; cf. (4.8))

U ¼ ej��e
�
�2ð 2

cosh2ð��eÞ
� 1Þ

þ�2ð 2

cosh2ð�Þ � 1Þ þ �2

�
: (4.24)

Then the integral in (4.6) becomes

C123 ¼ 4c�
Z 1

�1
d�e

Z ð�=2Þ

0
d

2ej��e

½coshð�Þ coshð��eÞ��

�
"

�2

cosh2ð��eÞ
��2tanh2ð�Þ

#
: (4.25)

In each term the �e and  integrals factorize. Even in the
large � limit the result is a relatively complicated function
of ‘ and j which can be analyzed in various limits.

In the large ‘ ¼ �
� ¼ �J

lnS limit we find

C123 ¼ c�2
jþ2

ffiffiffiffi
�

p j� 1

j

�ðj=2Þ
�ððjþ 3Þ=2Þ ‘þOð‘�1Þ;

(4.26)

i.e. the three-point function scales proportionally to J.
The leading term in the small ‘ expansion for general

� is

C123 ¼ 8c�
ffiffiffiffi
�

p �ððjþ 2Þ=2Þ
j�ððjþ 3Þ=2Þ

�
1

coshðjþ1Þ=2ð��=2Þ
þ ðj� 1Þ 2F1ð

1

2
;
jþ 1

2
;
3

2
;�sinh2ð��=2ÞÞ

�
� sinhð��=2Þ þOð‘Þ: (4.27)

Taking � ¼ 1
� lnS large, the leading term here is

C123 ¼ 8c�
ffiffiffiffi
�

p �ððjþ 2Þ=2Þ
j�ððjþ 3Þ=2Þ

�
� ffiffiffiffi

�
p ðj� 1Þ�ðj=2Þ

2�ððjþ 1Þ=2Þ þ
2j

jSj=2
þ . . .

�
; (4.28)

i.e. the three-coupling approaches a constant.
Note that if we formally take the small � limit for fixed

‘ and j we get

C123 ¼ �
2jþ4�ð1þ ‘2Þc�

4‘2ð1þ jÞ þ ð2þ jÞ2 �
�
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ‘2

p
ð2þ jÞ þ ‘jÞ2F1ð2þ j;

1

2
ð2þ j� ‘jffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ‘2
p Þ; 1

2
ð4þ j� ‘jffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ‘2
p Þ;�1Þ

þ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ‘2

p
ð2þ jÞ � ‘jÞ2F1ð2þ j;

1

2
ð2þ jþ ‘jffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ‘2
p Þ; 1

2
ð4þ jþ ‘jffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ‘2
p Þ;�1Þ

�
: (4.29)

Taking then ‘ ! 0 we find a nonvanishing result:

C123 ¼ �

�
8c��

3=2�ððjþ 4Þ=2Þ
ðjþ 2Þ�ððjþ 3Þ=2Þ þOð‘Þ

�
: (4.30)

This term arises entirely from the contributions that would
vanish if the limit � ! 0 were taken directly in the inte-
grand of Eq. (4.25). The limit ‘ ! 1 of (4.29) leads to

C123 ¼ 2jþ3�c�
jþ 1

�‘½1þOð‘�2Þ�: (4.31)

Since the normalization constant c� of the BPS operator
is [13]

20Numerical analysis suggests that the result below holds also
at finite S.
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c� ¼ cj ¼ ðjþ 1Þ ffiffiffi
j

p
2jþ3�N

ffiffiffiffi
�

p
; (4.32)

it follows that in this limit

C123 ! 1

N
J

ffiffiffi
j

p
: (4.33)

We thus formally recover, as in a similar computation in
[13], the result [20] for the three-point function of the three
BMN-type operators (here with j1 ¼ j2 ¼ J; j3 ¼ j).

3. VL as fixed-spin operator on leading Regge trajectory

To explore the structure of the three-point functions with
the ‘‘light’’ state being a massive string state let us now
consider the insertion of an operator on the leading Regge
trajectory, i.e. Vs in (2.12). We change the notation (S ! s,
� ! �s) assuming now a fixed value of spin s and dimen-

sion �s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðs� 2Þp ffiffiffiffi

�4
p þ . . . , which are much smaller

than the semiclassical parameters (S, �S �
ffiffiffiffi
�

p
) of the

two ‘‘heavy’’ operators which are taken again to corre-
spond to the large-spin folded string solution (3.6), (3.7),
(3.8), (3.9), (3.10), (3.11), (3.12), (3.13), and (3.14). We
shall ignore the ‘‘mixing’’ terms indicated by dots in (2.12)
so that the result for C123 below will be qualitative.

In this case the value ofU in (4.4) is (cf. (4.8) and (4.24))

U ¼ ð@Yx
�@YxÞs=2

¼ e2s��e
�
�2cosh2ð�Þ þ �2sinh2ð�Þ

�
s=2

: (4.34)

For � ¼ 0 (i.e. � ¼ �) this becomes

U ¼ �se2s��e½coshð2�Þ�s=2: (4.35)

Doing the integral in (4.4) we conclude that for large� the
three-point coefficient scales as

C123 ��s�2 � ðlnSÞs�2: (4.36)

It is interesting to note that the 2d operator mixing dis-
cussed in Sec. II C does not alter this behavior. Indeed, it is
not hard to see that each derivative in the vertex operator
brings in a factor of � while the integration measure
cancels two such factors. Since all operators in Eq. (2.15)
have s derivatives, each of them yields an overall �s�2

factor.
Let us now estimate the large s behavior of this corre-

lator. In the large � ¼ 1
� lnS limit, this can be easily done

by evaluating the  and �e integrals in the saddle-point
approximation21

C123 
 �s�2c�s

Z þ1

�1
d�ee

2s�e

cosh�s�e

Z 1

0

dcoshs=2ð2Þ
cosh�s

¼ c�s

�s�2
eHðS;sÞ; (4.37)

H ¼ ðs� 2Þ ln lnS þ h�eðsÞ þ hðsÞ; (4.38)

h�e ¼
�
1

2
�s � s

�
ln

�
1� 2s

�s

�
þ

�
1

2
�s þ s

�
ln

�
1þ 2s

�s

�
;

(4.39)

h ¼ 1

2
�s ln2þ 1

2
�s ln

�
1� s

�s

�
� s ln

�
�s

s
� 1

�
: (4.40)

If we further formally assume that s is as large as
ffiffiffiffi
�

p
, then

�s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðs� 2Þp ffiffiffiffi

�4
p þ . . . will also scale as

ffiffiffiffi
�

p
, so that the

function H in the exponent will be proportional to the
string tension, as should be expected in a semiclassical
limit.

4. VL as singlet massive scalar operator

Let us now show that a similar result to (4.36) is found if
we choose as the ‘‘light’’ operator the singlet scalar opera-
tor (2.17) representing a string state at level r� 1. The
advantage over the previous case is that here the leading

bosonic part of the operator (with dimension �r ¼
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr� 1Þ ffiffiffiffi

�
pq

þ . . . ) is known explicitly. We find that the

corresponding factor U in (4.4) evaluated on the large-spin
solution (3.14) here is (cf. (4.34))

U ¼ ð@Xk@Xk
�@X‘

�@X‘Þr=2 ¼ �2r: (4.41)

The simplicity of this result is a consequence of the special
structure of the singlet operator (2.17) already mentioned
in Sec. II D: it is built out of chiral components of the S5

sigma model stress tensor which enters the Virasoro
conditions. This means that the same constant expression
(4.41) will be found for any classical solution describing a
string moving nontrivially in AdS5 with its center of mass
orbiting big circle in S5. If instead of (2.17) we consider
theAdS5 counterpart of this operator given in (2.18) we get
the same result as in (4.41)

U ¼ ð@YM@Y
M �@YK

�@YKÞr=2 ¼ �2r; (4.42)

since the Virasoro condition relates the AdS5 and S5 com-
ponents of the string stress tensor.
Doing the integral in (4.4) we find (cf. (4.15))

C123 ¼ c�r
Cðr;SÞB̂ðr; ‘Þ; (4.43)

Cðr;SÞ ¼ ðlnSÞ2r�2ðS1=2 �S�1=2Þ
� 2F1

�
1

2
;
1

2
ð�r þ 1Þ;3

2
;�1

4
ðS� 2þS�1Þ

�
;

(4.44)

B̂ðr; ‘Þ ¼ 2�r�2½�ð�r=2Þ�2
�2r�2�ð�rÞ

‘2rffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ‘2

p : (4.45)

In the large-spin limit with fixed ‘ we get

21Here we first rescale the 2d coordinates by � and then take
� ! 1; we choose the real saddle point for the  integral.
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C123 � ðlnSÞ2r�2 ‘2rffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ‘2

p � J2r

lnS
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 þ �

�2 ln
2S

q ; (4.46)

where we ignored an overall �r dependent factor

(
ffiffiffi
�

p
2�r�2�3ð�r=2Þ

�2r�2�ðð�rþ1Þ=2Þ�ð�rÞ ) that may be cancelled against the

normalization c�r
of the ‘‘light’’ vertex operator.

For fixed ‘ the resulting behavior of the three-point
function with large-spin S is thus the same as in (4.36):
lnS in power of the value of the string level. For example,
for the singlet operator from the first excited level r ¼ 2
(which should be dual to a member of Konishi multiplet

[17]) we get C123 � ln2S ‘4ffiffiffiffiffiffiffiffi
1þ‘2

p . At the same time, this

three-point correlator vanishes in the ‘ ! 0 limit (i.e. ifffiffiffi
�

p
� lnS � J), which was not the case for the fixed-spin s

operator in (4.35) and (4.36) (this vanishing follows
directly from the special structure of the singlet operator in
(4.41)).

B. VH corresponding to ‘‘small’’ circular string
solution in S5 with J1 ¼ J2 � J3

Let us now consider the case of a ‘‘heavy’’ state for
which the semiclassical approximation to the two-point
function is dominated by the rigid circular string solution
in S5 with three spins J1 ¼ J2 and J3 [27]. We shall
consider the ‘‘small-string’’ branch of this solution which
admits the small-spin limit (see also [17])

t¼ ��; X1 þ iX2 ¼ aeiw�þi; X3 þ iX4 ¼ aeiw��i;

X5 þ iX6 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2a2

p
ei�� w¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ�2

p
;

�¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2 þ�2

p
; J1 ¼ J2 ¼ J¼ ffiffiffiffi

�
p

a2w;

J3 ¼
ffiffiffiffi
�

p ð1� 2a2Þ�: (4.47)

Transforming t ¼ �� into Poincaré coordinates and rotat-
ing to Euclidean signature as in (3.1)

z¼ 1

coshð��eÞ ; x0e¼ tanhð��eÞ; �e¼ i�; (4.48)

we get a (complex) background for the Xk coordinates in
terms of �e and  which should then be substituted into the
integrand in (4.4).22

1. VL as dilaton operator

In this case the integral in (4.6) is found to be (here
� ¼ 4þ j and the integral over  is trivial as z in (4.48)
depends only on �e)

C123 ¼ 2�c�
Z 1

�1
d�e

ð1� 2a2Þj=2ej��e
½coshð��eÞ��

� 4a2: (4.49)

This expression vanishes as it should in the a ! 0 limit
when the ‘‘heavy’’ state becomes a BMN state. The inte-
gral over �e is convergent since ð4þ jÞ� > j�. Explicitly,
we get

C123 ¼ c�8�a
2ð1� 2a2Þj=2

Z 1

�1
d�e

ej��e

½coshð��eÞ��
:

(4.50)

For � ¼ 0, i.e. for the ‘‘small’’ 2-spin classical trajectory

for which J ¼ ffiffiffiffi
�

p
J , J ¼ a2, �J ¼

ffiffiffiffi
�

p
� ¼ 2

ffiffiffi
J

p ffiffiffiffi
�4

p
, we

get, using that � ¼ jþ 4,

ðC123Þ�¼0 ¼ c�8�
3=2 �ððjþ 6Þ=2Þ

ðjþ 4Þ�ððjþ 5Þ=2Það1� 2a2Þj=2

� ffiffiffi
J

p �
1� 2

Jffiffiffiffi
�

p
�
j=2

: (4.51)

For � � 0 the result is:

C123 ¼ 2jþ7�c�
a2ð1� 2a2Þj=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 þ 4a2
p

�
�
2F1ð4þ j; b�2 ; 1þ b�

2 ;�1Þ
b�

þ 2F1ð4þ j; bþ2 ; 1þ bþ
2 ;�1Þ

bþ

�

b	 ¼ 4þ j	 j�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 4a2

p :

(4.52)

Setting here j ¼ 0 we get

ðC123Þj¼0 ¼ 32

3
�c�

a2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2 þ �2

p : (4.53)

For a ¼ 1ffiffi
2

p when the solution (4.47) reduces to the ‘‘large’’

circular solution with J1 ¼ J2, J3 ¼ 0 and�J ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4J2 þ �

p
[27] we find23

C123 ¼ 16

3
�c�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ w2

p ¼ 16

3
�c�

ffiffiffiffi
�

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4J2 þ �

p : (4.54)

We observe that like in (4.18) and (4.19) (and in agreement
with the general discussion in Sec. II A) this expression is
proportional to the �-derivative of the dimension �J of the
‘‘heavy’’ state, � @

@��J ¼ �

2
ffiffiffiffiffiffiffiffiffiffiffi
4J2þ�

p . The same result was

found in [14] using somewhat different approach.

22Let us mention that a similar semiclassical computation of the
three-point string amplitude involving two states corresponding
to J1 ¼ J2 � 1 circular spinning string and a graviton as a light
operator was first considered in flat-space in [28]. There it was
checked that the result of the semiclassical calculation agrees
with the large-spin limit of the exact correlation three-point
correlation function. 23For j � 0 the limit a ! 1ffiffi

2
p in (4.52) yields vanishing result.
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2. VL as singlet massive scalar operator

In the case of the operator in (2.17) the value of U in
(4.41) is �2r and thus the analog of the integral in (4.49) is

C123 ¼ 2�c��
2r
Z 1

�1
d�e

1

½coshð��eÞ��r
� �2r�1: (4.55)

Then for the ‘‘small’’ string solution with J 1 ¼ J 2 � J
and J 3 ! 0 for which � ¼ ffiffiffiffiffiffiffi

2J
p

we find that

C123 � ð ffiffiffi
J

p Þ2r�1 � ð�JÞ2r�1: (4.56)

We conclude again that the three-point function scales as a
power of the level number of the ‘‘light’’ string state.

As discussed in [17], the small-string or small J ¼ Jffiffiffi
�

p
limit of the solution (4.47) may be used to approximate a
string state with fixed quantum number J. Then, e.g., for
r ¼ 2 representing a state on the first excited string level

we get C123 � ð Jffiffiffi
�

p Þ3=2 � ��3=4, i.e. the three-point function

of such three massive string states is constant for fixed
quantum numbers.

V. CONCLUDING REMARKS

The general correlation functions of local gauge-
invariant operators in planar N ¼ 4 SYM theory ex-
panded at strong coupling are given by perturbative string
theory correlators of vertex operators of the dual string
states. Standard arguments suggest that, for states with
large quantum numbers, a semiclassical approach should
give reliable results. A semiclassical limit of a correlation
function should be determined by a stationary-point of the
classical world sheet action with sources corresponding to
the relevant vertex operators. Introducing additional vertex
operators for states with small quantum numbers may then
be treated as a perturbation of a lower-point correlation
function. To leading-order, the evaluation of an (nþm)-
point correlation functions with n ‘‘heavy’’ states and m
‘‘light’’ states amounts to evaluating the product of m
‘‘light’’ vertex operator factors on the classical world sheet
surface saturating the n-point correlation function of the
‘‘heavy’’ operators.

Using this strategy we analyzed several examples of
three-point functions in which dimension of the two op-
erators is much larger than that of the third. We considered
the case when the ‘‘heavy’’ vertex operators correspond to
the large folded spinning string in AdS5 and also the case
when they correspond to the ‘‘small’’ three-spin circular
string on S5. We have found that if the ‘‘light’’ vertex
operator represents a BPS state, the three-point function
approaches a constant as the charges of the ‘‘heavy’’ states
are scaled to infinity. We have also discussed certain ex-
cited string states as ‘‘light’’ states; in particular, we
considered states on the leading Regge trajectory as well
as special singlet states. In all such cases we found that
the three-point function depends on the semiclassical

parameter raised to a power related to the string level of
the ‘‘light’’ state.24

Let us now discuss possible sources of quantum string
( 1ffiffiffi

�
p ) corrections to the three-point function coefficients

C123 in (1.3) or C123 in (4.4). One source of corrections
to hVHðx1ÞVHðx2ÞVLðx3Þi are corrections to the vertex
operators which are of two types: (1) corrections to the
dimensions of the operators, and (2) corrections to the form
of the vertex operators due to mixing at higher orders. For
the ‘‘heavy’’ operators the former corrections alter only the
world sheet configuration saturating the two-point func-
tion. They can be accounted for by simply replacing the
semiclassical parameters of the classical solution in the
expressions derived at the leading-order by their quantum-
corrected counterparts.
As for the higher-loop mixing terms of 2d operators,

they are suppressed by a factor of 1ffiffiffi
�

p without additional

dependence on the semiclassical parameters. Thus, for the
purpose of finding the leading terms in the string semiclas-
sical expansion, such additional mixings may be ignored.
Note also that in the expressions in the previous section the
dependence on the charges of the classical solution is
decoupled from the dependence on the charges of the
‘‘light’’ vertex operator, so that such corrections will drop
out in ratios of correlation functions that are independent of
the normalizations of vertex operators.
These quantum corrections may be given a simple 2d

Feynman diagram interpretation. Nontrivial contributions
come from contractions involving fields from different
types of operators. The Wick contractions between two
‘‘heavy’’ operators scale quadratically with some large
charge while the Wick contractions between one ‘‘heavy’’
and one ‘‘light’’ operator scale linearly with a large charge.
In a semiclassical approach the contributions of the first
type are already included in the renormalization of the
classical solution describing the two-point functions of
the ‘‘heavy’’ operators. Thus the relevant one-loop correc-
tions to the three-point function coefficients C123 arise
from Wick contractions between one ‘‘heavy’’ and one
‘‘light’’ vertex operator and they scale linearly with the
charges of the ‘‘heavy’’ vertex operators.
Let us now comment on the perturbative calculations of

such correlation functions in dual gauge theory. Weak
coupling calculations of some simple correlation functions
provided some early tests of the AdS/CFT correspondence.
While early calculations focused on three-point correlators
of BPS operators which may be extrapolated to strong
coupling, recent one-loop calculations involving non-BPS
operators [29] (see also [30,31]) suggest an interesting
relation between the three-point coefficients and anoma-
lous dimensions. Indeed, the one-loop correction to the
correlation function of two BPS and one Konishi operator

24This behavior is consistent also with that of the correlators
involving BPS states which belong to the string ground state.
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[32] is proportional to the anomalous dimension of the
Konishi operator. If this pattern persists at higher orders,
this three-point function may provide an independent
determination of the anomalous dimension of the Konishi
operator at strong coupling.

Note that an algebraic Bethe ansatz approach to the
diagonalization of the spin chain Hamiltonian provides
sufficient information to evaluate perturbatively the
three-point function coefficient, without directly resorting
to Feynman diagram approach [33] (for a related approach
using open spin chains see [30]). For operators dual to
‘‘fast’’ strings, described by Landau-Lifshitz type models,
it is possible to do better. In this case a useful representa-
tion for the eigenvectors of the dilatation operator may be
given in terms of coherent states which are, in turn, deter-
mined by solutions of the equations of motion of the LL
model.25 As the Landau-Lifshitz model arises as the fast-
string limit of the string sigma model [34], such an ap-
proach may provide a relation to the semiclassical methods
used in this paper. For example, a successful extrapolation
to strong coupling of non-BPS correlation functions may
expose nonrenormalization theorems akin to those govern-
ing the behavior of certain leading terms in the anomalous
dimensions of ‘‘long’’ operators dual to ‘‘fast’’ strings. It
may also suggest how to use integrability methods to tackle
the problem of three-point function with all three operators
being ‘‘heavy’’.

As outlined in the Introduction, a similar semiclassical
approach may be attempted also for the calculation of
higher-point correlation functions. Unlike three-point
functions, higher-point functions should have a nontrivial
4d position dependence. Some of their general features like
dependence on large quantum numbers may still be pos-
sible to analyze. A semiclassical contribution computed
according to the recipe used here to the correlation func-
tion of two ‘‘heavy’’ and two ‘‘light’’ vertex operators
appears to be given simply by the value of the product of
‘‘light’’ vertex operators on the world surface saturating the
two-point function of the ‘‘heavy’’ operators. It remains to
be seen if it does capture a dominant (in large charge, large
�) part of such four-point functions.26 Study of such four-
point functions combined with their expected factorization
properties may also provide information about other three-
point functions.
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