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A note on charged black holes in AdS space and the dual gauge theories
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We study the thermodynamics and the phase structures of Reissner-Nordstrom and Born-Infeld black
holes in AdS space by constructing ‘““off-shell”” free energies using thermodynamic quantities derived
directly from the action. We then use these results to propose “‘off-shell” effective potentials for the
respective boundary gauge theories. The saddle points of the potentials describe all the equilibrium phases

of the gauge theories.
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I. INTRODUCTION

It is by now evident that there exists a correspondence
which relates gravity in anti de Sitter space-time with a
particular class of quantum field theories in one less di-
mension [1,2]. This correspondence, related by duality, has
recently motivated many researchers. This is due to the fact
that one can begin addressing issues in quantum theory of
gravity via computations in weakly coupled field theories
and vice versa. A classic and well studied example of this
type is the supergravity on AdSs X S° which is dual to the
N = 4 super Yang-Mills in four dimensions. In general,
fora (n + 1 + g) dimensional theory of gravity compacti-
fied on AdS,,; | X X9, the dual field theory lives on a space
whose topology is the same as that of the boundary of
AdS, ;. The isometries of X7 becomes global symmetries
of the field theory. For example, when X is a five-sphere,
the SO(6) isometry allows one to introduce three indepen-
dent R-charges corresponding to the three Cartans of
SO(6). Consequently, one can turn on three independent
chemical potentials in N' = 4 SYM. At finite temperature,
the gravity dual of this theory is the R-charged black holes
of N = 2 gauged supergravity [3-5]. For the special case,
when the charges are equal, these black holes reduce to the
Reissner-Nordstrom black holes in AdS space. Many fea-
tures of these black holes and their gauge theory duals were
studied in [6,7].

Working at the supergravity level corresponds to analyz-
ing gauge theories, at infinite coupling, with a large num-
ber of colors. To see any finite coupling/finite color effect
in gauge theory, one requires studying string theory on
AdS. However, since this is as yet a poorly understood
area, many authors have looked into the effects of adding
a' corrections to supergravity. See [8—11] for an incom-
plete list of references. In general, it is also expected that
string theory will introduce higher-order gauge field cor-
rections to supergravity actions. These corrections, in turn,
would modify various equilibrium and nonequilibrium
properties of the gauge theory. See [12] for work in this
direction. At finite temperature, the gravity duals of these
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are the black holes in the presence of higher derivative
corrections. Construction of such black holes becomes
progressively difficult as one introduces more and more
higher derivative terms in the action. In fact, in many cases,
one relies on perturbative construction of the black holes.
However, there exists a rare example of exact black hole
solution which takes into account a specific set of gauge
field higher derivative corrections to all orders. These are
the black holes in the Born-Infeld (BI) theories in the
presence of a negative cosmological constant. BI black
holes were constructed in [13,14]. Assuming that there
exists a dual gauge theory, equilibrium and nonequilibrium
properties of the finite temperature gauge theory were
studied by many authors by exploiting the black hole
solution' [15,16]. The purpose of the present work is to
address some issues along these directions. The main aim
of our work is to propose an off-shell effective potential
for boundary gauge theory on S at finite temperature and
finite chemical potentials which on-shell reproduces vari-
ous phases expected from AdS-CFT correspondence.
These gauge theories are dual to Reissner-Nordstrom and
Born-Infeld black holes. Because of the nonavailability of
a systematic approach to work with strongly coupled theo-
ries, we take an indirect route. First, we construct an off-
shell “free-energy function” in the bulk and then use it,
along with AdS-CFT rules, to propose effective potentials
for the dual gauge theories.

This paper is structured as follows. In the next section we
review the Born-Infeld black hole solutions in AdS space in
(n + 1)-dimensions. In Sec. III we compute the Born-Infeld
actions in two different thermodynamical ensembles—
namely the fixed potential and the fixed charge ensembles.
In the following section we compute different thermody-
namic quantities in the two ensembles directly from the
action. In Sec. V, we go into the study of the phase structure
of those black holes in a grand canonical (fixed potential)

"We have discussed previously that adding a gauge field in the
bulk is equivalent to the turning of a chemical potential in the
gauge theory. Since BI black holes accommodate all order gauge
field corrections, they incorporate large chemical potential con-
tributions into the gauge theory.
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ensemble. Although those have already been well studied
[13,17,18], we use a different mean field theory technique
to find an off-shell potential known as the Bragg-Williams
potential in condensed matter literature [19]. We start with
an easier system, namely, the Reissner-Nordstrom, which
is the zeroth order expansion of Born-Infeld solution and
study its phase structure using Bragg-Williams construction.
This shows a first-order phase transition corresponding to
the Hawking-Page phase transition from black hole phase to
AdS phase. We then repeat the same exercise for the Born-
Infeld case. After constructing the off-shell potentials in
the gravity side, in Sec. VI, we construct off-shell effective
potentials for the boundary theory for both Reissner-
Nordstrom and Born-Infeld cases using AdS-CFT dictio-
nary. Finally we study the phase structures thereof using the
constructed effective potentials and again get first-order
phase transitions, which from the perspective of the
boundary gauge theory, would now correspond to the
confinement-deconfinement transitions. The Appendix to
this work includes a discussion on how using proper scaling
one can go from a black hole geometry with elliptical
horizon to one with flat horizon geometry and obtain ther-
modynamical quantities therein. This scaling, when applied
on the constructed Bragg-Williams potential, leads to the
effective potentials for gauge theories on R3. The example
we have considered there is that of Reissner-Nordstrom, for
simplicity, and we expect the same argument to hold for the
Born-Infeld case as well.

II. BORN-INFELD BLACK HOLES IN ADS SPACE

We start by reviewing some essential features of the
Born-Infeld action and its black hole solution. Let us
consider the (n + 1) dimensional Einstein-Born-Infeld ac-
tion with a negative cosmological constant A of the form

1

__ n+1 — _
S 6nG d" 'x/=gl(R —2A) + L(F)], (1)

where L(F) is given by

F*'F .,

L(F) =432(1 — 1+ = )
2B

The constant 3 is called the Born-Infeld parameter and has

the dimension of mass. In the limit 8 — oo, higher-order

gauge field fluctuations can be neglected and, therefore,

L(F) reduces to the standard Maxwell form

L(F) = —Fr'F,, + O(F*). 3)
Thus the action, S, reduces to the standard form for which
the Reissner-Nordstrom in AdS is the black hole solution.

Thermodynamics and phase structure of such black holes
were studied in detail in [6,7].%

2

’In what follows, for simplicity, we will work in a unit in
which 167G = 1, G being the Newton’s constant in (n + 1)
dimensions.
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Equations of motions can be obtained by varying the
action with respect to the gauge field A, and the metric
guv- For A, and for g, those are, respectively, given by

Frv
V(=) =0 )
1+ £
27
and
1 1 2F o F,°
R,U.V ERg/LV—"_AgMV_Eg/LVL(F)—i_ﬁ’
28?
®)

where R v 18 the Ricci tensor and R, the Ricci scalar. In
order to solve the equations of motion, we use the metric
ansatz
dr? oo
ds*> = —V(r)dt* + —— + f2(r)g;;dx'dx/. (6)
V(r) !
The metric on the foliating submanifold, g;;, is a function
of coordinates x’ and spans an (n — 1)-dimensional hyper-
surface with scalar curvature (n — 1)(n — 2)k, k being a
constant which characterizes the aforementioned hypersur-
face. Depending on whether the black hole horizon is
elliptical, flat or hyperbolic, k can be taken as =1 and O,
respectively, without any loss of generality. For the metric
(6), we have nonvanishing components of Ricci tensor

VI/ V/Rl
t— -1
Ri==% (=D ()
V// V/R/ VRII
Ri=-———-(n-1 —(n=1)—, (8
e e e UR Ve O

. n—2 1
Ri = k —
! ( R? (n— DR™!

VY18, O

where the primed quantities denote the derivatives with
respect to r.

Let us consider the case where all the components of
F*? are zero except F''. In that case (4) can be immedi-
ately solved to yield

V(n—1)(n —2)Bq
V2B T+ (n— D(n - 2)¢°

Here g is an integration constant and is related to the
electromagnetic charge. From (10) we can also find the
electric gauge potential as
A_] q [n—2 1 3n—4
Yoo 2n-2"2"2n -2’

(n — D —2)¢
Y ] — ¢ (11)
where ¢ is a constant and can be interpreted as the electro-
static potential difference between the black hole horizon

Frt =

(10)
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and infinity and c is a constant given by ¢ = —Z(n"__ 12)- We

choose ¢ in a way that makes A, vanish at the horizon.’

1 ¢ [n—2 1 3n—4
20 —1)'2"2(n—1)’
_(n =D —2)¢’
232,,3;172 :|

¢

c r’fzz !

(12)

Now if F' is the only nonzero component of all the
F#¥’s, one can easily check from Eq. (5) that R, = R!
and hence, from (7) and (8) it follows R"(r) = 0 which has
two solutions, f(r) = rand f(r) = Constant. We will con-
sider the case of f(r) = r in this work. With this, and
setting A = —n(n — 1)/2/%, we get the solution for V(r)
as [14,18]

Vr) =k —

m +( 432 1>r2 22

+ - J—
2 nn—1 P (n—1)r2

X ]\/23%2"*2 +(n— Dn—2gdr.  (13)

m here is an integration constant. Later we will see that this
is related to the ADM mass of the black hole. The integral
can also be expressed in terms of hypergeometric func-
tions:

2
V(r) =k — r”nfz + <n(:ﬂ— D + 11_2)r2

2V2BV2B2 7 2 4 (n — D(n — 2)q°

B nn — 1)r=3
2(n — 1)g? n—2 1 3n—4
2 1[2(n -1’2 2(n—1)’
_(n=1Dn —2)¢
252r2n72 ]

nr2n—4

(14)

It is worth mentioning here that there is an ambiguity in the
lower limit of the integral in the right-hand side of Eq. (13).
In order to fix this up, one has to invoke again the fact that
V(r) should reduce to that of Reissner-Nordstrom [6] once
the B — oo limit is taken. This tells that the lower limit of
the integral should be such that the integral vanishes at that
limit.

The black hole horizon satisfies V(r) = 0. Denoting the
solution as r = r,, one can express m in terms of r, as

3Actually A, at the horizon r = r, cannot be chosen arbi-
trarily. The event horizon of the aforementioned background is a
killing horizon of killing vector 9, and therefore contains a
bifurcation surface at r = r; where the killing vector vanishes.
This in turn demands the vanishing of A, at » = r, if the one
form A is to be well-defined [20,21]. A more detailed discussion
regarding this can be found in [22].
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2
m= rﬁ'r_z + [74'8 + l]rﬁ — —Zﬁﬁm
nn—1)
X \/2,82&"_2 + (n—1)(n —2)g?
+2(n—1)q2 [n—Z 1 3n—4
Pl oam—-22"2n-2

nn—1) [

n—2
nrt

— — 2
= in - 2] s

232r2+n—2

Next, to find the temperature of the black hole, we
follow the standard prescription and expand V(r) in
Taylor expansion around » = r. so that

(r - V+)-
r=r4

oV
V(r) ~—
(r) ar

Using this and a redefinition of the variable r, the radial and
temporal part of the metric reduces to the form

A% 2
ds? = dp? + pzd(— I) (16)

ar | =2
7 being the Euclidean time. Now, to avoid conical singu-
larity (2%],—,, 7) should have a periodicity of 27 and the
periodicity in 7 is therefore given by

4
Bon = Wi
or \r=ry

This period is identified with the inverse of black hole
temperature, Ty, = ﬁ

For our case 2% |,_, can be easily found from Eq. (13).
Once again, one has to fix the lower limit of the integral
and regarding this, the discussion at the end of Eq. (14) still
holds. Finally the temperature of the black hole comes out

to be

1 [n—2k+{4,82 n}r+ 228

= + _ . aeNeE
o g n—1 P (n—1)r2

X \/ZBZri”_z +(n—1)n- 2)q2], (17)

I+

which matches exactly with the expression of temperature
obtained in [14,18]. From now on we will take k = 1 for all
our computations.

There are normally two ways to calculate thermody-
namic quantities. First, one assumes that the black hole
satisfies laws of thermodynamics and uses that to find
thermodynamic quantities. The second is to compute the
action for a black hole and use it to derive various state
variables following standard prescription. Here we will
follow the second path.

III. ACTION CALCULATION

We will now calculate the black hole action in two
different ensembles. First we will focus on the grand
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canonical ensemble which is defined as a fixed potential
ensemble. In the language of thermodynamics, this can be
thought of as connecting the system to a heat reservoir full
of quanta at a temperature, T}, the reservoir being identi-
fied as a pure AdS background with charged and uncharged
quanta which are free to fluctuate in the presence of a
constant potential ¢. The scenario is quite different in
case of a fixed charge, namely, the canonical ensemble.
Since AdS with localized charge is not a solution of the
BIAdS equation, the pure AdS background cannot serve
the purpose of a heat reservoir. It turns out that the extremal
black hole background is a good candidate in this regard.*
In order to keep charge Q fixed, we, in this case, retain only
neutral quanta in the heat reservoir.’

A. Fixed potential

The action for this is the one given in (1) analytically
continued to Euclidean space by taking r — i7. We then
use the equation of motion given in (5) for the metric to
eliminate R to obtain the on-shell action as

S=[d"+1x\/_—_g'|:n4i\ _iLfFl)_(nM_ﬂl) 1 ]

=
1+ T
(18)

It is worth mentioning in this regard that since the space
is asymptotically AdS, there is no contribution from the
Gibbons-Hawking-York boundary term. Also the surface
term that arises from the variation of the action with respect
to the gauge field vanishes in this case, since, for this
particular ensemble, the potential is kept fixed at oo.
Furthermore, since we contemplate on purely electrical
solutions only (only nonzero component of F*” being
F'7), the possibility of having a Chern-Simons term does
not arise as well.

Now we use the equation of motion for the gauge field
given in (4) and get the full on-shell action as

Bon 832
Iy, = w,— 1/ d’T[ dr[—r" Iy B 1

n—1
2,22 4 g 2
n—l\/'B

w,—; being the volume of a unit (n — 1) sphere. This
integral is clearly divergent. This is because of the infinite
volume of the black hole space-time. This is where the idea
of introducing a heat reservoir in the form of background
pure AdS space-time, as discussed in the beginning of this

)(n )]’ (19)

“This follows from an argument of [6] where the extremal
black hole solution was used as a background on which the free
energy was computed for canonical ensemble. We expect this to
hold good for our finite 8 case as well.

>In a grand canonical ensemble, an action calculation in four
dimensions was performed earlier in [17]. We generalize the
computation for arbitrary dimensions.
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section, exactly fits in. What we would do is to subtract
from (19) the pure AdS action,

B e 2
IAdS = wn_lf e d'T[ drl:—? r"_l], (20)
0 0 l

which is also evidently infinity.

In order to implement this regularization scheme [23]
properly, we put an upper cutoff R on the radial integration,
which we would eventually take to infinity. For the black
hole space-time to be smooth, By, is given by the inverse of
Hawking temperature, Ty, given in Eq. (17). Bags can, in
general, be anything. But there is one constraint. [Bags
should have the value which makes the geometries of the
AdS and the black hole spacetimes the same on the asymp-
totic hypersurface defined by r = R. This is done by
setting

R? m 432
+ 8 g 1 -+ P R
2 ] 'Bbh[ R"™2 nn—1)

R? 228
4+ —
P nn—1R"3

Brasy| !

X 2B2R*2 + (n — 1)(n — 2)g°
2(n—1)q? 1 3n—4

n [ n—2
nR>=4 2 H2(n—1)2"2(n—1)

(n—1)(n—2)g*>771/2
o 2[82R2n72 ]] : 2
After some algebraic manipulation, this becomes,
mil? 23212
Badgs = Bbh[l T Apn T
n(n—1)
_ _ 2
iy e 22
(n—l)qzl2 [n—2 1 3n—4
nR2 2120 —1)2"2(n—1)
-1 -2 2
_ (n 2181(;:2”2 )q ]] (22)

Using this relation along with Eq. (15) and then taking the
limit R — oo we finally get the Born-Infeld action in the
grand canonical ensemble as

ry 4p%rn
2?2 nn-—1)

-1 ) 2
X{l—\/1+(n 2,8)2(;2”2 )q}
2n—1) 5, 1 n—2 1 3n—4
n 112 ‘[2(n—1)’§’2(n—1)’
(=D =2)q*
232r2+n—2 ]]

_ n—2 __
Igc = wn—lﬁbh["+

(23)
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As a consistency check of our result, we see that with the
B — oo limit,

¢
Ioclpaoo = wn*lﬂbhl:rﬁ_z T ﬁ] 24

+
which is exactly the same as the Reissner-Nordstrom ac-
tion for the grand canonical ensemble as obtained in [6].

B. Fixed charge

In this ensemble, we, instead of fixing the potential at
infinity, fix the charge of the black hole. Then the action
given in (18) is no longer the appropriate one. Since the
potential is not fixed at infinity, the boundary term as
obtained by the variation of the gauge field, unlike in the
case of fixed potential ensemble, has a nonvanishing con-
tribution given by

I, = —4 f d"x—h Ln#A,,, (25)
V1 +—§§;
which after some straightforward computation becomes
n—2 1 3n—4
2n—1)'2"2(n—1)’

q
A=2m—nwﬂmhrﬂﬂ[
ry

n — n— 2
R 06

232,.%:172

h being the determinant of the induced metric at the
boundary and n,, the radial unit vector pointing outward.
Not only that, we also have to subtract the pure AdS
background as before to ensure the convergence of the
integral, the difference with the previous case of fixed
potential ensemble being only that in the present case the
AdS background cannot be interpreted as the metric back-
ground or heat reservoir as argued in the beginning of the
section.
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_ r Y
Top + 1g = Ipgs = wn—1ﬁbh|:r’i 2 - {l_; + 4ﬁzr+}
2~/2
+ 7\/_Br+ \/232}&"72 + (n—1)(n —2)g?
nn—1)
+2(n—1)2q2 [n—Z 1 3n—4
nr=2 2 2m—1)2"2(n—1)
(n=1(n— 2)612]] @7
2ﬁ2rin72 :

The metric background in this case is the extremal black
hole. The action for the extremal black hole can be found
by substituting in (27), the condition for extremality with
ry = Ty, Fex being the horizon of the extremal black hole.

The condition for extremality can be obtained by setting
Tbh =0 as

228

n—1

2
_ n—3 n 4B n—1 _
(n—2)r" % + [1_2 + pa I:Irex

X282+ (n— D(n — 2> =0.  (28)

And with this the action for the extremal black hole
becomes

rn*Z (I’l _ 1)q2
I = 2(” - l)wn—lﬂbhl: e:l + n—2

Nrex

n—2 1 3n—4
XZFII:Z(n -1’22 — 1)’
_m—nm—mfﬂ

2B

(29)

Subtracting the extremal background, finally, the full Born-
Infeld action for canonical ensemble becomes

2B+ (0 = ) — 2)g?

Ic= wn—ngbhlirﬁ_z - {1_2 + P

rLo 4B | 2V2Bry
} - nn—1)

+2(n—1)2q2 [ n—-2 1 3n-4 _(n—l)(n—Z)qz]
nrt2 P2 —1)2" 20— 1) 2p%r3 2
B N I e Ve n—=2 1 3n—4 (n—1)(n—2)q’
2An 1){ P nri? 2Fl[z(n -1’2 2n—1) 2p3%r22 ]}] G0

As a check of our computation, if we take the 8 — oo
limit of (30) we get

" (2n—3)g?
IClB—»oo = wn—lﬁbh[’ﬁ ’- l—; I S
ry
2(n — 1) 20n — 1?2 ¢?
- n ex P rnfzil’ 31D
ex

which is exactly the same as the Reissner-Nordstrom ac-
tion as obtained for the fixed charge ensemble in [6]. In the
next section, we calculate thermodynamic quantities
directly from those actions.

IV. THERMODYNAMICAL QUANTITIES

The state variables for the system can be computed from
the actions, Ig¢ and I given in (23) and (30) respectively.

106008-5



SOUVIK BANERJEE

A. Fixed potential
The grand canonical free energy is given by Fgc = E —
TS — Q¢. Now F is also equal to ;G—bi Combining these

two definitions we can find the state variables for the
system as follows:

Sl 7w P i o PR
§= 'Bbh(z,lgii)¢ — Igc, (33)

Now for this ensemble, ¢ is a constant. Thus to find the
partial derivatives keeping ¢ constant, one has to substitute
the condition % = 0, which we obtain from (11) keeping
in mind that in this case ¢ is no longer a constant, but a
function of r, . With all these, we get the state variables as

rLo AR 242Bry

E=w, (n— 1)[#{2 + {l—; + nn = 1)} n(n —1)

X \/2,82}’3"_2 +(n—1)n—2)q¢*
+2(n—1)q2 [n—2 1 3n—4
nt=2 22 —1)2" 2 — 1)

NSRS o
2877
using (15), which can also write this as
E=w,(n—1)m, (36)
and
S=d4mw, ", (37)

0 =2y2(n — 1)(n —2)w,_q. (38)

B. Fixed charge

In the canonical ensemble, the free energy is given by
F-=E — TS, which is again equal to % Then in a
similar way as done before, one can find the corresponding

state variables as

. dal ¢ _ B B _
E- (—a Bbh)q (n—Dm—(n— Dme,  (39)
ol
S = Bbh(aﬁ;)q —Ic=4mw, r !, (40)

where m,, is given by

2[r2;2+(n—1)q2 [n—Z 1 3n—4

m = o~ )

o n nrtc2 P 2(m—1)2"2(n—1)
(n=1)(n— 2)612]]

2B

(41)
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This expression for mg, can also be obtained by plugging
in (15) the condition for extremality, (28).

Having obtained the thermodynamical quantities, we
would like to study various stable, unstable and metastable
phases associated with the black hole. For that, we con-
struct an ‘“‘off-shell” free energy, the saddle points of
which dictate the (in)stability of the black hole. The details
of this construction are discussed in the next section.

V. CONSTRUCTION OF BRAGG-WILLIAMS FREE
ENERGY AND STUDY OF PHASE STRUCTURE

A novel way to study the phase structure of a thermo-
dynamical system is to construct a Landau free energy.
This free energy is generally a function of order parameter
and also depends on some intensive parameters like tem-
perature, chemical potential, etc. Various phases of the
system appear via extremization of this free-energy func-
tion in terms of the order parameter. There is, however,
another way to analyze stable, unstable or metastable
phases of the system. This is known as the construction
of the Bragg-Williams potential [19,24]. This is particu-
larly useful when transition from one phase to another
phase involves a finite change in the order parameter. For
our purpose, we find it suitable to use the Bragg-Williams
construction. In the case of 8 — oo, i.e. for Reissner-
Nordstrom black hole, we know from [6] that there is a
first-order Hawking-Page (HP) transition. At a critical
temperature, the black hole becomes unstable. The system
prefers the AdS phase. This transition is of first order in
nature, marked by a discontinuous change in the gravita-
tional entropy. Our primary motivation would be to study
the fate of this transition when S is finite. So we would be
interested in constructing the Bragg-Williams potential for
the Born-Infeld black hole. In order to do so, we have to
first decide on an order parameter. To this end, we note that
a first-order phase transition is characterized by a discrete
jump of the order parameter. In our case this jump shows
up in the horizon radius of the black hole. Indeed, at the
Hawking-Page (HP) point, the AdS phase (identified with
ry = 0) crosses over to the black hole phase (with nonzero
r+). So we find it suitable to use r as the order parameter.
Before we go on to discuss the phase structure in the Born-
Infeld theory, we find it instructive to first analyze the
Reissner-Nordstrom case. In a later subsection, we general-
ize this for Born-Infeld black holes. We, further, stick to the
grand canonical ensemble for the rest of our discussions.

A. Reissner-Nordstrom

The Bragg-Williams free energy for a Reissner-
Nordstrom black hole in a grand canonical ensemble is
given by Wge = E — TS — Q¢ with T and ¢ treated as
external parameters. E can be found by taking the 8 — oo
limit of (35) with the understanding that since we are
working in a fixed potential ensemble we have to write ¢
in terms of ¢. In order to achieve this we use the relation
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between the charge and potential of the Reissner-
Nordstrom black hole,

(42)

which can be directly obtained by taking the 8 — oo limit
of Eq. (12).

With this, the Bragg-Williams free energy for the
Reissner-Nordstrom black hole is given by

Wiy =E—TS~ Q¢

= wn_l[(n — D (1 — 2 ¢p?) — 4ot IT
+ - n] 43)

The on-shell temperature can be computed by differentiat-
ing Whiy with respect to r and then setting it to zero. The
temperature comes out to be °

_2121_ 2 2+ 2
Ty = B DL @) Hnrs )
dalr,

which is the same as the 8 — oo limit of (17) and also
matches with the expression for the temperature of the
Reissner-Nordstrom black holes obtained in [6]. The be-
havior of WEYN as a function of the order parameter for a
fixed ¢ and for different temperatures is shown in Fig. 1.

We see from the phase diagram that the 73 term present
in the free-energy expression for n = 4 brings in an asym-
metry in Whiy as a function of r, and results in an
emergence of a secondary minimum at finite value of r.
The value of Wiy at this secondary minimum is greater
than zero when T < T, but becomes zero at the critical
temperature T = T,. Forall T > T, WRY is negative at the
secondary minimum. Thus there is a phase transition from
black hole to AdS as we tune the temperature below T,
with a discontinuous change in r, at T = T,. This is,
clearly, the signature of a first-order phase transition occur-
ringat T =T,.

An analytic expression for 7. can be obtained on requir-
ing that WRY is an extremum with respect to r in equi-
aWRN

ary

free energies of the ordered and the disordered phases
match exactly at the transition, which, in turn, implies,
WEN = 0. From these two conditions, we obtain the criti-
cal value of the order parameter, r .

For the Reissner-Nordstrom case, in (n + 1) dimensions,
the requirement, WS = 0 gives

librium, i.e., ( ) = 0 along with the condition that the

In Eq. (43), r; should be treated as an unconstrained variable.
Only on-shell, r, is related to ¢ and 7. This can be found by
inverting Eq. (44) for r,.
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/

1.5

FIG. 1 (color online). This is a plot of WRY as a function of
for fixed ¢. The phase structure shown here is for n = 4 and
for ¢¢ = 0.0003. The dashed line is for the critical temperature,
T = T, the orange one above this is the transition involving a
metastable phase, another feature of a generic first-order phase
transition. All other lines below the T = T, line (the red, green,
blue and black lines) are for 7> T. in an increasing order of
temperature.

_ 47T + V16T 7 — 4P (n — 1)°(1 — *¢%)

" 2n— 1)
(45)
The other one, namely (85‘;‘;‘%‘?’ = 0, gives

_AmPT + J161T? 7 — 41 (n — 2)(1 — > ¢?)
2n ’

r+
(46)

Equations (45) and (46) can be solved to yield the tran-
sition temperature 7. in terms of the corresponding critical
value of ¢

_ -1

T, 1 — 22 (47)

2l

06F
04

02l

—02f

—04f

-0.6 ; ~—

FIG. 2 (color online). This is a plot of Wiy as a function of r
for fixed T. The phase structure shown here is for n = 4 and for
T = 0.47. The dashed line is for the critical value of potential,
¢ = ¢, the blue one above this is for ¢ < ¢,.. All other lines
below the critical line (the black, orange, red and green lines) are
for ¢ > ¢, in an increasing order of ¢.
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n 1 T
020

FIG. 3. The phase structure of Reissner-Nordstrom in fixed
potential ensembles. The 7= 0 line corresponds to extremal
black holes. The extremal black holes are unstable. This plot is
for n = 4 and we have set [ = 1 here.

This is precisely the same critical temperature 7. as ob-
tained from the WRW vs r,. diagram, as expected.

A similar exercise can also be done keeping T fixed and
studying the phase structure varying the parameter, ¢. The
resulting phase structure is shown in Fig. 2.

The behavior shows, as expected, the features of first-
order phase transition at ¢ = ¢,. The analytic expression
for ¢ = ¢, can be obtained from Eq. (47) as

L[ arrr
b= . 1 - =1 (48)

The full phase structure in ¢ — T plane is shown in Fig. 3.
Having discussed the 8 — oo case, in the next subsection
we turn our attention to finite 8.

B. Born-Infeld

It turns out, owing to the nonlinear relation between ¢
and ¢ as in Eq. (12), a complete analytical treatment is
difficult in this case. One way to circumvent this problem is

1

to make large 8 expansion and introduce the B correction

order by order over the Reissner-Nordstrom construction.
However, this would not allow us to study the Bragg-
Williams potential at finite 8. So we restrict ourselves to
a semianalytic approach to construct the free energy. This
is done as follows. First we define a new variable, x, as

q

x=—". 49)
rt 1
The horizon radius, r,, can now be rewritten as
_ ¢e
re(x, ¢) = F,[ n—=2 1 3n—4 _(nfl)(n*Z)xz]' (50)
X bGe=127 2-1)’ 28°

We can write down the grand canonical Bragg-Williams
free energy for a Born-Infeld black hole as

PHYSICAL REVIEW D 82, 106008 (2010)

FIG. 4 (color online). WS is plotted against r, using x as a
parameter for n = 4. We have fixed ¢ = 0.2 and have plotted
for different values of temperature. The second line from the top
(the red line) is for T = T,. The lines below the critical line (the
blue and green lines) are for 7 > T. in an increasing order of
temperature, whereas the line above the critical line (the orange
line) is for T < T..

Wgw = E—TS — $0, (51)

where E, S and Q are given by (35) with the substitution
(50) being taken care of. To see how WSS, behaves with
change in the order parameter, we, therefore, do a para-
metric plot. The behavior is shown in Fig. 4,” which again
shows a first-order phase transition at a critical tempera-
ture, 7.

We would like to mention one point in this regard. For
the Reissner-Nordstrom, in grand canonical ensemble, we
would observe this phase structure only when ¢c <1 [6].
For the Born-Infeld case also there is a similar critical
value for ¢c¢ which can be determined by plotting
the on-shell free energy against 7" for different values of

¢ [17].

VI. PROPOSAL FOR EFFECTIVE POTENTIALS
IN THE BOUNDARY THEORY

Assuming a gauge theory dual to the Born-Infeld black
hole, in this section we will study some properties of this
theory. In particular, we ask the following question: Can
we at least phenomenologically construct an effective po-
tential in the gauge theory which describes its equilibrium
properties? Since the bulk has electrical charges, the gauge
theory in question must also have associated R-charges and
corresponding chemical potentials.

As we have discussed in the Introduction, direct compu-
tation of the effective potential in terms of the order
parameter (the R-charge) in gauge theory is difficult.

"Those plots go down smoothly to r, = 0 as in the case of
Reissner-Nordstréom. But, unfortunately, that feature is not
clearly visible in this phase diagram because of the fact that
the parameter, x, we have chosen for plotting goes as %
However, this feature can be easily checked from the expression
for free energy directly.
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However, it is possible to use AdS/CFT conjecture and our
computations in the previous sections to propose an effec-
tive potential whose saddle points represent various phases
of the gauge theory. However, we should emphasize that
the potential constructed this way may not be unique,
except perhaps close to the transition line.

In the following, we first deal with the simpler case of
the gauge theory dual of the Reissner-Nordstrom black
hole. Finally we generalize it to the Born-Infeld case.

A. Reissner-Nordstrom

While in the gravity theory the order parameter was r,
in the dual theory the corresponding order parameter
would be the physical charge, Q = [* F, which turns out
to be the same as the charge one derives from the action. In
our case, Q = w,_j gagy/(n — 1)(n — 2)g, where g is the
“charge” that appears in the action and w,,_, the n — 1
dimensional transverse volume. The conjugate chemical
potential, u is the same as the electric potential, ¢ at the
horizon given in Eq. (42). In n + 1 dimensions,

., _|n=1 q 47GQ
T T - De,

(52)

We now use (52) to express Wg{,\lv given in (43) in terms of
QO and ¢ in the following form:

WERN — N_gw |:2772(n —1)(1 = 2¢?) g
BT g2 Wl (n—2) ¢
261=5)/(1=2) 7 Gn=H/(=DT 1O\ (n=1)/(n-2)
- (n — 2)n=D/=2) (g)
N 2n/(n72)77.2n/(r172)(n _ 1) 0 n/(n—2)
(n — 2)"/=2p (E) ]
(53)
03f
02f
o1f g /__,—-”7 ,,,,, o
‘ 6.0604 6.0605
-01f
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where Q is rescaled as Q = 2 - N, being the number

Nl w,_

of colors. The motivation behind doing this scaling is that
in the deconfined phase, the free energy and the charge,
both are of the order of NZ. Therefore, the appropriate
observable in the large N, limit is, instead of Q,

. . n—1
limy _e % We have also used the relation G = 7275\/2 and

while using this in the expression for the effective poten-
tial, we have made it dimensionless by redefining G as l% .
The plot of the boundary effective potential Wiy given in
(53) against the new order parameter Q again gives a first-
order phase transition as shown in Fig. 5. This phase
transition corresponds to the confinement-deconfinement
transition in the strongly coupled gauge theory as discussed
in [23].

The temperature of the gauge theory can be found by
extremizing WY with respect to the order parameter, Q
and this comes out to be

(= 2)22-((n=9)/(0=2) = (Gn=4/(-2)

T n—1
o QN W2 Fa(n — D’ (1 - 2?)
(e I R e Ut
nn =1 -2 _2n/n-2) Y /=2
e (e ) R

(54)

which is exactly the same as the Reissner-Nordstrom tem-
perature as in (44) once we substitute in it Q in terms of 7,
and ¢ through Eq. (52).

Following the discussion in Sec. VI A, we would now try
to find the confinement-deconfinement transition tempera-
ture, T.. The condition WEN = 0 gives

200

100}

—100}

~200F

—300F N

FIG. 5 (color online). Plots of W§¥ vs order parameter, Q (the left one) for small Q values and (the right one) with a relatively large
range of values for Q for n = 4, show the signature of first-order phase transition. The dashed line is for T = T.. The lines above the
critical line (the orange and the black lines) are for 7 < T in decreasing order in temperature, and the lines below the critical line (the
red, the blue and the green lines) are for T > T, in increasing order in temperature. For both the plots ¢ is kept fixed at the value 0.03.
We have also taken N, = 1, w3 = 1 and [ = 1 while plotting these.
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T=27T|:21/(”_2)772/(”_2)< Q) )1/(n—2)]1—n
¢

(n—2
_ _ 242 1/(n—=2) 2/(n—2) 0 (1/n—=2)\yn—2
X[(n (1 = 2@ 720G 1))
8m?

81272 (55)

— 1/(n=2) 2/(n=2)(_Q__y1/(n—2)

L (1= DU DL )"]
whereas, the other requirement, (%) =0, gives (54).
From (55) and (54), we can find an equation involving
critical charge, Q. as

22/("—2)77-4/(n—2)(( QCZ)¢)2/(n_2) P2+ c212¢% =0
n—

(56)
Substituting this relation in (55) or (54) we can write

down the critical temperature, 7, for the confinement-
deconfinement transition as

(n—1)
T. = 1 — 22
S P ¢ Pe

(537

which turns out to be exactly the same as that obtained
in (47).

B. Born-Infeld

One can generalize the ideas mentioned in the previous
subsection to the case of Born-Infeld to find a gauge theory
effective potential. But because of the nonlinear noninver-
tible relationship between the electric potential at the
horizon, ¢, and the charge, Q, as in Eq. (12), it is not
possible to write an exact expression for r, in terms of Q
and ¢. However, a parametric plot suggests that our con-
struction leads us to a candidate effective potential for
the Born-Infeld dual. Following the case of Reissner-
Nordstrom, we propose, in this case, the gauge theory
effective potential, in n = 4 as

Tri 3 (Bt A
W§%=N§w3[—ﬁ—Q¢+W< 3 l—2+r2+
Br+‘/2ﬁ2ri + 87 Q?
342
27T4Q22F1 (%! %y %y - %)
+ 5 - )], (58)
ri

along with the relation among chemical potential, wu,
charge, ¢ and r; from which one has to express r, in
terms of u and g.
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FIG. 6 (color online). Parametric plot of ¢ against r, for
different values of the parameter, ¢.

where ¢ is the charge appearing at the action which can be
related to the physical charge, “Q” through the relation
given in Eq. (38). One can solve this equation numerically
to find a relation between r,. and ¢ for a fixed value of the
parameter, ¢. A parametric plot of ¢ as a function of r, is
shown in Fig. 6.

Equation (58) is derived from (51) by first substituting in
it the expressions for E, S and Q given in Egs. (35), (37),
and (38) with reinstatement of the gravitational constant,

G, for n = 4. We then use the relation G = 2’;,—132 However,

we make G dimensionless by dividing it by /* and scale Q
as % for the same reason as given in the previous section in

the context of Reissner-Nordstrom.

In order to study the phase structure, we use x, defined in
Eq. (49), as a parameter and carry out a parametric plot of
WEL against Q, the order parameter in the boundary theory.
The resulting phase structure [Fig. 7] shows a first-order
phase transition at some critical temperature, 7 = T,
which turns out to be exactly the same as that in Fig. 4.

To conclude, for the Reissner-Nordstrom black hole, we
are able to construct a candidate off-shell potential in terms
of the R-charge, Q, which, on-shell, gives all the stable
phases of N' = 4 super-Yang-Mills theory on S at finite
temperatures and finite nonzero chemical potentials. As for
Born-Infeld black holes, an analytic construction becomes
difficult. Via a semianalytic approach, we showed that our
construction leads to an effective potential with expected
behavior.

8 Again one expects the plots to go smoothly towards Q = 0,
which indeed is the case as can be checked from the free energy.
But again by the same argument given in the previous footnote,
this is not visible because of the choice of the plotting parameter.
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FIG. 7 (color online).

WEL is plotted against Q using x as a
parameter for n = 4. We have fixed ¢ = 0.2 and have plotted
for different values of temperature. The second line from the top
(the red line) is for T = T,. The lines below the critical line (the
blue and green lines) are for 7 > T, in an increasing order of
temperature, whereas the line above the critical line (the orange
line) is for T < T..

Now that we have a gauge theory effective potential, we
could perhaps explore the details of the transition from
the deconfining phase to the confining phase as we reduce
the temperature.
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APPENDIX: A NOTE ON SCALING

Our notion in this section is to consider the limit where
the boundary of AdS, ., is R" (flat) instead of R X §"!

PHYSICAL REVIEW D 82, 106008 (2010)

(elliptical). For Reissner-Nordstrom in an asymptotically
AdS space in (n + 1) dimensions, the metric ansatz is
similar to the Born-Infeld case, (6) and the solution thereof is

m q2 2

Mm=2 r2n—4 l2 ’

[6] where k is related to scalar curvature. For elliptical
horizon k = 1, whereas for k = 0, the horizon geometry
will be flat. This solution can, in fact, be obtained by taking
the B — oo limit of (13). Thus for k = 0,

V(r) =k — (A1)

ds? a2+ 7S ey A2
— —v(ar + 4T 2,
with
oom q°
V() =T~ st o (A3)

The limit in which one can go from the elliptic geometry of
the horizon to a flat horizon is termed as the ° infinite
volume limit, ” since the area of a flat horizon is infinite.
This limit can be obtained by introducing a dimensionless
parameter, A, with which we scale different relevant quan-
tities as [6]

r— /\1/”r, t— /\7(1/")1‘, m— Am,

(A4)
q— A(n—l)/nqy

and finally then taking A — oo. In fact, one can check this is
precisely the limit in which V(r) for k = 1 reduces to that
for k = 0. Furthermore, the (n — 1) volume has also to be
scaled as

n—1
PdO2_; — A" (dx;)?. (AS)
i=1
From (42), one can find the scaling for ¢,
¢ — A", (A6)

In the same spirit, one can scale thermodynamic quantities
too. Temperature, entropy, energy and thermodynamic po-

tential scale as [3]
T — AT, E— A/"E,

W — AVnw.

S—S,
(AT)

The on-shell temperature, (44), on rescaling and then taking
the A — oo limit, becomes

_nri = (n—2)*P¢?
Tl = dml’r, ’

(A8)

which is the same temperature as obtained directly by differ-
entiating (A3) with respect to r, and dividing by 47 (The
Hawking temperature of a black hole, Ty = 5%, where « is
the surface gravity given by k = — % a(fr” |,—, . The physical

reasoning behind this was discussed in Sec. III in the context

106008-11



SOUVIK BANERIJEE

of Born-Infeld black holes. One can repeat the same with the
V(r) defined in (A3) and come across the same expression
for temperature.)

For Reissner-Nordstrom black holes in grand canonical
ensemble, energy, entropy and the Bragg-Williams free
energy are given by

W, — rl
= 1677-Cl} (n— 1)[r+ 2(1 + p2c?) + l—;] (A9)
wn*lrﬁ_l
_ W1 2 20 4y,n-2
Qd’—%(ﬁ c*(n— Dri s, (A11)
WRN — @n-] (n—1D)r"2(1 — 2p?) — dmr~'T
BYW 167G * *
+ -] (A12)

With the scaling defined above and taking the limit A — o
thereafter, those become

— =1)/n @n-1 , w2420 %
E = \=V/ %(n 1)[r+ P +l—2], (A13)

n—1
S = \(n=D/n % (A14)
Wy, n—
Q¢ = At prein = Dy, (A15)

WRN — A(n*l)/n Wp—1 [ -1 ﬂ
BW el AR

(A16)
—(n— Dri2c2e? — 47Tr’jr_1Ti|.
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Thus on taking the A — oo limit, all those quantities di-
verge. This is quite expected as a result because, for a flat
horizon geometry, the horizon area is infinity. So, instead
of total energy, entropy and charge, one has to consider the
corresponding densities. From (A5), the (n — 1) volume
w,_; should also scale as w,_, — A~ ("=D/"¢g . Then
the energy density, entropy density and off-shell free-
energy density are given by

E 1 r
- =— (n—-1|m2 22+—+], Al7
i o=t (Sl Ll SR | SCNL
_ s (A18)
s (Un_l 4G ’
1
pod = ¢ =_——¢>cA(n— )ri?, (A19)
w,—1 87G
WRN 1 "
QRN — "BW _ [ —1)=
BW  w,., 167G (n ) I
—(n—1D)riicteg? — 4wr1_1T]. (A20)
aQRN

8r1iw = 0 gives the correct on-shell temperature, (A8).

Now following the discussion leading to Eq. (47) in
Sec. VI A, one can check that there is no real solution for
T, in this case. This is consistent with the infinite volume
limit taken, because as we arrive at the flat horizon geome-
try, there will be only the black hole phase and hence the
possibility of Hawking-Page phase transition from black
hole to AdS does not arise at all.
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