
Setting the scale of the pp and p �p total cross sections using AdS/QCD

Sophia K. Domokos and Jeffrey A. Harvey

Enrico Fermi Institute and Department of Physics, University of Chicago, Chicago, Illinois 60637, USA

Nelia Mann

Enrico Fermi Institute and Department of Physics, University of Chicago, Chicago, Illinois 60637, USA
Reed College, 3203 SE Woodstock Boulevard, Portland, Oregon 97202, USA

(Received 3 September 2010; published 15 November 2010)

This paper is an addendum to earlier work where we computed the Pomeron contribution to pp and p �p

scattering in AdS/QCD. Our model for pp scattering in the Regge regime depends on four parameters: the

slope and intercept of the Pomeron trajectory �0
c, �cð0Þ, a mass scale Md, which determines a form factor

entering into matrix elements of the energy-momentum tensor, and a coupling �P between the lightest

spin-two glueball and the proton, which sets the overall scale of the total cross section. Here we perform a

more detailed computation of �P in the Sakai-Sugimoto model by using the construction of nucleons

as instantons of the dual 5D gauge theory and an effective 5D fermion description of these nucleons

which has been successfully used to compute a variety of nucleon-meson couplings. We find �P ;SS ’
6:38 GeV�1, which is in reasonable agreement with the value �P ;fit ¼ 8:28 GeV�1 determined by fitting

single Pomeron exchange to data.

DOI: 10.1103/PhysRevD.82.106007 PACS numbers: 11.25.Tq

I. INTRODUCTION

Many soft quantities in QCD can be successfully de-
scribed using the ideas of Regge theory, in which scattering
is dominated not by the exchange of single particles but
rather by infinite towers of resonances whose mass squared
and spin are linearly related as J ¼ �ð0Þ þ �0M2. This is
closely connected to the idea of a string dual of QCD at
large Nc. At very large energies total cross sections are
dominated by the exchange of the trajectory with the
largest intercept �ð0Þ, also known as the Pomeron. From
a modern point of view the Pomeron is the leading Regge
trajectory containing the lightest spin-two glueball. For an
overview of this perspective, our conventions, and a more
detailed list of references see [1]. Various connections
between the Pomeron, Regge theory, and AdS/QCD have
also been explored in [2–8].

The spin-two glueball field can be treated as a second-
rank symmetric traceless tensor q��. General arguments as

well as specific calculations indicate that this field should
couple predominantly to the QCD stress tensor T��:

Sint ¼ �P

Z
d4xq��T

��: (1)

The coupling �P sets the scale of the total cross section for
pp and p �p scattering. For example, in the model of [1] the
total cross section is given by

�tot ¼ c��2
P

�
�0
cs

2

�
�cð0Þ�1

; (2)

where c is a constant of order one and the Pomeron Regge
trajectory is J ¼ �cð0Þ þ �0

cM
2. Fits to data give a value

�P ;fit ’ 8:28 GeV�1 [9].

In [1] we assumed single Pomeron exchange and fit to
data to obtain �cð0Þ ’ 1:09. This behavior eventually vio-
lates the Froissart bound, although this does not happen
until values of s much above those that are currently
accessible. Other authors have argued that total cross sec-
tions are better fit by a log2ðsÞ behavior [10–13] at current
values of s. If this is the case, multiple Pomeron exchange
must already be important (corresponding to multiloop
diagrams in the dual string description) and explicit calcu-
lations will be much more difficult. However, it still seems
likely that the overall scale of the cross section will be set
by the coupling �P .
In [1] �P was calculated in a very simple approximation

in which the proton was treated as a Skyrmion con-
structed out of the pion field with the result that �P ;Skyrme ’
3:9 GeV�1, which is significantly smaller than the experi-
mental value. However, the description of the proton in the
dual model of [14] is known to be more complicated than
this. In particular, the towers of vector and axial-vector
mesons contribute significantly to the solution, a fact that
has played an important role in the determination of
nucleon-meson coupling constants [15–21]. In this paper
we perform a more detailed calculation of �P in the model
of [14] in the limit of large ’t Hooft coupling and obtain
�P ;SS ’ 6:38 GeV�1, which is within�23% of the experi-

mental value.
In Sec. II, we give a very brief review of the Sakai-

Sugimoto model and of the structure of baryons in this
model. In Sec. III, we describe the baryon as a Skyrmion,
and in Sec. IV we introduce the effective fermion descrip-
tion of baryons and compute the lowest baryon wave
functions. In Sec. V, we deduce the coupling of the glueball
to baryons and compute the leading contribution to �P at
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large ’t Hooft coupling. We end, in Sec. VI, by discussing
the limitations of this work due to the assumptions about
large ’t Hooft coupling.

II. REVIEW OF THE SAKAI-SUGIMOTO MODEL

In the Sakai-Sugimoto model [14] we start with the
dual of the pure glue sector of QCD constructed in [22].
Here, we have a stack of Nc D4-branes wrapping an
S1. Antiperiodic boundary conditions along this S1 are
imposed on the fermion fields to break supersymmetry.
The D4-branes source a metric given by

ds2 ¼
�
U

R

�
3=2ð���dx

�dx� þ fðUÞd�2Þ

þ
�
R

U

�
3=2
�
dU2

fðUÞ þU2d�2
4

�
; (3)

where, in terms of the string length ‘s, string coupling gs,
and number of colors Nc, R

3 ¼ �gsNc‘
3
s . The function

fðUÞ is given by

fðUÞ ¼ 1�U3
KK

U3
; (4)

where UKK is the minimal value of the radial coordinate
U 2 ½UKK;1�. The solution has topology R3;1 �D� S4

with ðU; �Þ coordinates on the disk D and � the (periodic)
angular coordinate on the disk with identification

�� �þ 2�

MKK

: (5)

MKK, which governs the mass scale of states in the theory,
is related to the parameters R and UKK appearing in the
metric via

MKK ¼ 3U1=2
KK

2R3=2
: (6)

The dilaton is given by

e�� ¼ 1

gs

�
R

U

�
3=4

; (7)

and in addition the Ramond-Ramond field F4 carries Nc

units of flux on the S4.
Quark degrees of freedom are included through the

addition of Nf D8-branes [14]. While different embed-

dings of the D8-branes, described by profiles �ðUÞ, are
possible, we choose the embedding of the D8-branes for
which the minimal value of U is U0 ¼ UKK, for which
�ðUÞ is constant. TheD8-branes are then flat inside the ten-
dimensional space. The induced metric on the D8-brane is

ds28þ1 ¼ ds24þ1 þ ds24; (8)

where

ds24þ1 ¼
�
U

R

�
3=2ð���dx

�dx�Þ þ
�
R

U

�
3=2 1

fðUÞdU
2 (9)

and

ds24 ¼
�
R

U

�
3=2

U2d�2
4; (10)

with d�2
4 the metric on the unit S4.

Define h4 to be the determinant of the S4 metric com-
ponents and h4þ1 the determinant of the 4þ 1 metric
components. We also define

V4 ¼
Z

d�4 � 8�2

3
(11)

and

Vol S4 ¼
Z ffiffiffiffiffi

h4
p

d�4 ¼ R3U� V4: (12)

A. Conformal coordinates and coordinate ranges

It is convenient to make a change of variables from U to
w so that the 4þ 1 metric is conformal to flat space. This
requires that �

R

U

�
3=2 1

fðUÞdU
2 ¼

�
U

R

�
3=2

dw2; (13)

which gives

wðUÞ ¼
Z U

UKK

R3=2dU0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U03 �U3

KK

q : (14)

Inverting this defines UðwÞ, and the induced metric on the
D8-brane is then

ds28þ1 ¼
�
UðwÞ
R

�
3=2ðdw2 þ ���dx

�dx�Þ þ R3=2U1=2d�2
4:

(15)

Now, the coordinate U only covers half the D8-brane, and
wðUÞ, as defined above, does the same. Therefore, we
extend the range to w 2 ½�wmax;þwmax� to cover the
whole D8-brane. Wave functions are either even or odd
in w, a fact directly related to the CP properties of the
corresponding four-dimensional meson states. Glueballs
arise as four-dimensional normalizable modes of the
higher-dimensional metric perturbations and the lowest
spin-two glueball has a wave function ~TðwÞ which is an
even function of w [23,24]. In what follows we write the
relevant 5D metric in terms of w as

ds24þ1 ¼ HðwÞðdw2 þ ���dx
�dx�Þ; (16)

with HðwÞ � ðUðwÞ=RÞ3=2.

B. Action for gauge fields

The Dirac-Born-Infeld action, expanded to quadratic
order in the gauge fields, leads to

SD8 ¼ �8ð2��0Þ2
4

Z
d9	e��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�Detgab
p

TrFabF
ab; (17)
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with a; b ¼ 0; 1; . . . 8. Using the conformal metric this
leads to

SD8 ¼ �8ð2��0Þ2R3V4

gs

�
Z

d4xdw
UðwÞ
4

�MN�PQ TrFMPFNQ; (18)

with M;N ¼ 0; 1; 2; 3; w. In [21] this is written as

SD8 ¼
Z

d4xdw
1

4e2ðwÞ�
MN�PQ TrFMPFNQ: (19)

If the generators are normalized as

TrTaTb ¼ 1
2


ab; (20)

this leads to a nonstandard definition of the coupling. With
the canonical factor of 1=4 in front of each component of
the gauge field action, the canonically defined coupling is

g5ðwÞ ¼
ffiffiffi
2

p
eðwÞ.

Using the previous definitions we can write

1

e2ðwÞ ¼ �NcMKKUðwÞ
108�3UKK

; (21)

which agrees with the result quoted in [17,18,21].
Introducing a dimensionless version of UðwÞ as uðwÞ ¼
UðwÞ=UKK,

1

e2ðwÞ ¼ �NcMKKuðwÞ
108�3

; (22)

which highlights the fact that all ‘s dependence drops out
of the leading gauge theory action once quantities are
expressed in terms of the defining parameters of the dual
field theory: �, MKK, and Nc.

III. DESCRIPTION OF THE SKYRMION/
INSTANTON/BARYON

The baryon is described by a charge-one instanton of the
SUð2Þ gauge field on the flavor branes, which spans the
ðx; y; x; wÞ directions. The exact solution of the equations
of motion is not known, but it is believed that one can take
the flat space instanton as a reasonable approximation to
the full solution. This solution has moduli consisting of
the SUð2Þ orientation, the location of the instanton in
ðx; y; z; wÞ, and the scale size �. The scale size of the
instanton is fixed by balancing the gauge action, which
makes it want to shrink, and the coupling of the baryon
current to the tower of ! mesons arising from the Chern-
Simons term, which makes it want to grow. It becomes a
spin-1=2 object after quantizing the collective coordinates,
as is familiar from the original Skyrmion literature. For
details see [15,17]. The location of the instanton in ðx; y; zÞ
is arbitrary as a consequence of 3D translational invari-
ance. The nontrivial metric dependence on w, on the other

hand, results in a w-dependent contribution to the energy
with the minimum occurring at w ¼ 0.
The baryon mass quoted in the literature is

mcl
B ¼ �Nc

27�
MKK

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � 35 � �2=5

p
�

þ � � �
�
: (23)

For very large �, mcl
B � MKK and the second term is

subleading. When the instanton is displaced from w ¼ 0,
one finds that to quadratic order

mBðwÞ ¼ mcl
Bð1þ 1

3ðwMKKÞ2 þ � � �Þ: (24)

While this will turn out to be the correct expression for
the 4D mass, it is important to distinguish it from the 5D
mass. The instanton or baryon is a gauge field configura-
tion depending on xi and w but independent of x0. It is
localized in xi and w and after integrating over these
coordinates the action becomes

S ¼
Z

mcl
Bdx

0; (25)

and the mass mcl
B is extracted from this expression [see e.g.

Eq. (3.18) in [15]]. However in 5D curved space the action
for a static particle of mass m5 is expressed in terms of the
proper time as

S ¼
Z

m5d�; (26)

which leads to

m5 ¼ mcl
Bffiffiffiffiffiffiffi
g00

p : (27)

For the metric we are using g00 ¼ ðU=RÞ3=2 and so the 5D
mass is actually

m5ðU=RÞ3=4 ¼ mcl
B: (28)

IV. EFFECTIVE FERMION DESCRIPTION
OF BARYONS

Following the treatment of [17–21], which we examine
in detail below, we describe the Skyrmion as an effective
fermion field living in the D8 world volume. The basic idea
is that the Skyrmion is an instanton constructed out of the
flavor gauge fields, with a size that is much smaller than
MKK at large ’t Hooft coupling �. Since the baryon has spin
1=2, it is reasonable to write its effective description in
terms of a 5D fermion field. To compute what we call �P ,
the coupling of the spin-two glueball to the proton, we will
need to work out the coupling of the 5D metric to the 5D
fermion and reduce this to a 4D coupling using mode
expansions for the 5D metric and the 5D fermion field
representing the baryon.
We saw above that the pure gauge part of this action can

be derived by starting from a general coordinate-invariant
action and reducing it using 5D conformal coordinates.
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We follow a similar procedure for the 5D fermions.
We begin with a general coordinate (and local Lorentz
invariant) action in 5D, to which we can add metric per-
turbations and thus extract the coupling to the glueball. Let
us start from a curved space action in 5D—unlike the flat,
4D effective action posited in [17–21]:

Sf½ �c ;c ; g� ¼�iN
Z

d5xe��ðwÞVolS4ðwÞ
ffiffiffiffiffiffiffiffiffiffi
h4þ1

p
�½ �c emâ �

âDmc þm5ðwÞ �c c �: (29)

Here m, n, and p are 5D world indices, â, b̂, and ĉ are 5D
tangent space indices, and the covariant derivative is
(ignoring the gauge fields which will not enter into the
rest of our calculation)

Dmc ¼
�
@m � i

4
!â b̂

m �â b̂

�
c (30)

with

�â b̂ ¼ i

2
½�â;�b̂�: (31)

The �â are tangent space gamma matrices obeying

f�â;�b̂g ¼ 2�â b̂: (32)

The factors of the dilaton and the volume of the S4 are as
we would expect them to emerge from the Sakai-Sugimoto
model after quantizing the collective coordinates of the
instanton to obtain a spin-1=2 object. Note that

e��VolS4
ffiffiffiffiffiffiffiffiffiffi
h4þ1

p ¼ V4

gs
UðwÞ4: (33)

Any normalization factors are included in the overall pre-
factorN , which will later be absorbed by a redefinition of
the fermion field. Other than the w-dependent prefactors
this is the standard curved space action for a spin-1=2
fermion.

We can now evaluate the action for the particular back-
ground metric given in (16). We choose

eâ ¼ HðwÞ1=2
â
mdx

m (34)

and find that the structure equation for the spin connection
is solved (modulo local Lorentz transformations and dif-
feomorphisms) by the spin connection

!�̂
�̂ ¼ 0; !�̂

ŵ ¼ 1
2@w lnðHðwÞÞdx�; (35)

with

Dwc ¼ @wc (36)

and

� i

4
!�

â b̂�â b̂ ¼
1

8
!�

â b̂½�â;�b̂� ¼
1

4
!�

�̂ ŵ½��̂;�ŵ�

¼ @wH

4HðwÞ��̂�ŵ: (37)

We can take ��̂ ¼ �� and �ŵ ¼ �5 where the flat space �

matrices are defined as

�0 ¼ 0 �1
1 0

� �
; �i ¼ 0 �i

�i 0

� �
; �5 ¼ 1 0

0 �1

� �
;

(38)

and find

S¼�iN
Z
dwd4xðVolS4ðwÞe�ðwÞ ffiffiffiffiffiffiffiffiffiffi

h4þ1

p ÞH�1=2

�
�
�c

�
��@�þ�5@wþ@wH

H
�5

�
c þm5ðwÞH1=2 �c c

�
:

(39)

We can now reabsorb w-dependent factors into the
fermion field c to obtain a simplified form for the action.
Taking

c ðx; wÞ � 1

HðwÞBðx; wÞ; (40)

the action becomes

S ¼ �iN
Z

dwd4xðVolS4ðwÞe�ðwÞ ffiffiffiffiffiffiffiffiffiffi
h4þ1

p
H�5=2Þ

� ð �B½��@� þ �5@w�Bþm5ðwÞH1=2 �BBÞ: (41)

The prefactor in round brackets is

ðVolS4ðwÞe�ðwÞ ffiffiffiffiffiffiffiffiffiffi
h4þ1

p
H�5=2Þ ¼ V4R

15=4

gs
U1=4ðwÞ: (42)

If we approximate this factor by its value at w ¼ 0, and
then absorb this constant as well as N into B, then we
reproduce the action posited in [17,21],

SB ¼ �i
Z

d4xdw½ �B�mDmBþmBðwÞ �BBþ � � ��

�
Z

d4xdw
1

4e2ðwÞ trFmnF
mn; (43)

with mcl
BðwÞ ¼ H1=2ðwÞm5ðwÞ. Note that the covariant

derivative above only involves the gauge fields

Dm ¼ @m � iAm (44)

and that we have omitted higher terms coupling the baryon
field to the gauge fields, though these are necessary for
reproducing various interactions as well as the long-range
tail of the Skyrmion configuration.

V. COUPLING OF THE FERMION TO THE
GLUEBALL METRIC PERTURBATION

The glueball is described by a symmetric, traceless
perturbation of the 3þ 1 part of the metric g�� ! g�� �
h��. The effect of this perturbation is equivalent to

writing

SOPHIA K. DOMOKOS, JEFFREY A. HARVEY, AND NELIA MANN PHYSICAL REVIEW D 82, 106007 (2010)

106007-4



�B��@�B¼ �B����
�@�B¼ �BH�1ðwÞg���

�@�B (45)

and replacing g�� ! g�� � h�� to obtain the coupling

H�1ðwÞh��B��@�B ¼ H�1ðwÞh��
1
2Bð��@� þ ��@�ÞB;

(46)

which is equal to

H�1ðwÞh��T
��
B ; (47)

where T��
B is the w-dependent fermion stress-energy

tensor.
We are now ready to compute �P starting with the

coupling we just derived:Z
dwd4xH�1ðwÞh��T

��
B : (48)

We write the metric perturbation h�� in terms of the

glueball wave function following the treatment in [23] to
obtain

h�� ¼
�
UðwÞ
R

�
3=2

~TðUðwÞÞq��; (49)

where q�� is a canonically normalized spin-two field in

four dimensions. The lightest mode of h��ðx; wÞ has 4D

mass eigenvalue mglue ¼ ð2=3ÞMKK

ffiffiffiffiffiffiffi
5:5

p ’ 1:47 GeV.

We also write the 5D baryon in terms of w-dependent
wave functions and 4D fermion fields. The 5D Dirac
equation which follows from the action (43) is

��@�Bþ �5@wBþmBðwÞB ¼ 0: (50)

To solve this we write Bðx; wÞ in terms of �5 eigenstates:

B ðx�; wÞ ¼ X
n

BðnÞ
þ ðxÞfðnÞþ ðwÞ

BðnÞ� ðxÞfðnÞ� ðwÞ

 !
: (51)

As was the case for the glueball, we are only interested in
the lowest (n ¼ 1) mode, which represents the physical
nucleon doublet. Dropping the ðnÞ superscript we then have
for the lowest eigenmode

f�ðwÞ ���@�B�ðxÞ þ @wfþðwÞBþðxÞ
þmBðwÞBþðxÞfþðwÞ ¼ 0;

fþðwÞ��@�BþðxÞ � @wf�ðwÞB�ðxÞ
þmBðwÞB�ðxÞf�ðwÞ ¼ 0: (52)

Comparing this to the equation for a massive 4D spinor
with mass mN we see that the eigenvalue equation is

ð@w þmBðwÞÞfþ ¼ mN f�;

ð�@w þmBðwÞÞf� ¼ mN fþ; (53)

and to get a standard 4D action the wave functions should
be normalized to Z

dwjf�ðwÞj2 ¼ 1: (54)

At large � the baryons become very heavy compared to
the scale MKK and the width of the wave functions scales

like 1=
ffiffiffiffi
�

p
. Thus at very large � we can approximate

jfþðwÞj2 ¼ jf�ðwÞj2 ¼ 
ðwÞ: (55)

In this approximation the interaction takes the form

�P

Z
d4xq��T

��
B ðxÞ; (56)

where

B ðxÞ ¼ BþðxÞ
B�ðxÞ

� �
(57)

is the 4D nucleon wave function and TBðxÞ is the 4D
energy-momentum tensor of the spin-1=2 object. The cou-
pling constant is simply

�P ¼ ~TðUð0ÞÞ: (58)

Evaluating this at w ¼ 0 gives

�P ¼ ~Tð1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
3

0:9�2

s
1

f�
¼ 6:38 GeV�1: (59)

VI. CONCLUSIONS AND FURTHER ISSUES

In this paper we have computed �P in the effective
fermion picture from [17–21]. We found good agreement
with the data; however, we must keep in mind the limita-
tions of this treatment of baryons in the Sakai-Sugimoto
model. The first two terms in the expansion of the baryon
mass in powers of 1=� are

mclassical
B ¼ �Nc

27�
MKK

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � 35 � �2=5

p
�

þ � � �
�
; (60)

which comes about from balancing the Coulomb and
‘‘Pontragin’’ contributions to the energy. These are the first
terms in an expansion in the inverse ’t Hooft coupling � ¼
g2YMNc. For very large �, mclassical

B � MKK.
However, the actual values of the parameters needed to

fit the � mass and f� in this model are MKK ¼ 0:94 GeV
and � ¼ 17. Note that the proton mass is 0.938 GeV, which
is almost exactly MKK. Using these values one finds

mclassical
B ¼ 0:6MKKð1þ 1:82þ � � �Þ: (61)

The first-order term is not a very accurate estimate of the
baryon mass, and the second term, which is supposed to be
subleading, is actually larger than the first. This 1=� ex-
pansion should thus be employed with some care.
On the other hand, the leading approximation in � to a

variety of meson-nucleon couplings in this model does
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agree quite well with experimental data [16–18,21]. From

the above calculation it seems that the same is true for the

coupling of the spin-two glueball to the proton, a quantity

which sets the scale of the total cross section for proton-

proton scattering.
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