
Inflating baby-Skyrme branes in six dimensions

Yves Brihaye* and Térence Delsate†
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We consider a six-dimensional brane world model, where the brane is described by a localized solution

to the baby-Skyrme model extending in the extra dimensions. The branes have a cosmological constant

modeled by inflating four-dimensional slices, and we further consider a bulk cosmological constant. We

construct solutions numerically and present evidence that the solutions cease to exist for large values of

the brane cosmological constant in some particular case. Then we study the stability of the model by

considering perturbation of the gravitational part (resp. baby Skyrmion) with fixed matter fields (resp.

gravitational background). Our results indicate that the perturbation equations do not admit localized

solutions for certain type of perturbation. The stability analysis can be alternatively seen as leading to a

particle spectrum; we give mass estimations for the baby-Skyrme perturbation and for the graviton.
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I. INTRODUCTION

Theories with extra dimensions have been expected to
solve the hierarchy problem and cosmological constant
problem. Experimentally unobserved extra dimensions in-
dicate that the standard model particles and forces are
confined to a 3-brane [1–4]. Intensive study has been
performed for the Randall-Sundram (RS) brane model in
five space-time dimensions [3,4]. In this framework, the
exponential warp factor in the metric can generate a large
hierarchy of scales. This model, however, requires unstable
negative tension branes and the fine-tuning between brane
tensions and bulk cosmological constant.

There is hope that higher dimensional brane models
more than five dimensions could evade those problems
that appeared in five dimensions. In fact, brane theories
in six dimensions show a very distinct feature towards the
fine-tuning and negative tension brane problems. Warped
compactifications are possible in six space-time dimen-
sions in the model of topological objects such as defects
and solitons. In this context, Abelian strings [5–9] were
investigated, showing that they can realize localization of
gravity for negative cosmological constant. (For the posi-
tive case, solutions which localize gravity are lost [10].)
For the magnetic monopoles, similar compactification was
achieved for both positive and negative cosmological con-
stant [11]. Interestingly, if the brane is modeled in such a
field theory language, the fine-tuning between bulk and
brane parameters required in the case of deltalike branes
turns to a tuning of the model parameters [9].

It is well known that there are two main contexts in
which solitons appear in field theories. One is like the
strings and the magnetic monopoles in-Abelian and
non-Abelian gauge theories, and the others are kinds of
nonlinear type models, such as the Skyrmions, hopfions
[12,13]. The latter are particularly interesting and have
deep insight in their nontrivial topological structures. The
Skyrme model is known to possess soliton solutions called
baby Skyrmions in two-dimensional space [14–16]. The
warped compactification of the two-dimensional extra
space by such baby Skyrmions has already been studied
[17]. The authors found regular, static solutions with non-
trivial topology which realize warped compactification for
a negative bulk cosmological constant. Also, a somewhat
different model, namely, the Maxwell gauged CP1 type of
nonlinear � model, has been investigated in [18].
Many of previous studies were based on the assumption

that the cosmological constant inside the 3-branes is tenta-
tively set to be zero; the branes were assumed to be static
Minkowski, ‘‘flat 3-branes,’’ despite the fact that our
Universe has a small but positive-definite cosmological
constant. Thus, addressing the nonzero cosmological con-
stant inside the branes has been considered first by Cho and
Vilenkin in [19] and then extended for the case of the
strings [20] and the monopoles [21]. They have studied
both signs of the bulk cosmological constant. In this paper,
we introduce ‘‘inflation’’ on the baby-Skyrmion branes
with both signs of bulk cosmological constant.
Another aim of the present paper is to analyze linear

stability of our new solutions by fluctuating all fields.
Analysis for gravitating thick defects embedded in higher
dimensions are found in the literature, for five dimensions
[22–24] and for six dimensions [9,25–27]. (Note that the
model in [24] is constructed by gravitating multidefects in
five dimensions.) The studies for thick defects, however,
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are works in progress since the topological defects used in
the literature are complicated structures. In this paper, we
introduce a general form of perturbation of the metric and
the Skyrmion fields. Employing a simplified ansatz and
gauge conditions, we find that two independent equations
are sufficient to discuss the stability. We shall solve two of
them independently and present typical localized eigen-
states of the metric and the matter field fluctuations. We
shall finally give some speculations for the physics of our
Universe, i.e., SM particle spectra, a signature of the CMB
and others.

This paper is organized as follows. In the next section,
we describe the Einstein-Skyrme system in six dimensions
and derive coupled equations for the Skyrme and gravita-
tional fields. Several types of solutions are found in
Sec. III. Section IV is the analysis of the asymptotic
behavior of the solutions at the infinity. In Sec. V, we
present our numerical results. We then give a detailed
analysis for the gravity and the matter perturbations in
Sec. VI. Conclusion and discussion are given in Sec. VII.

II. THE GRAVITATING BABY-SKYRME
MODEL IN SIX DIMENSIONS

The total action for the gravitating baby-Skyrme model
is of the form S ¼ Sgrav þ Sbaby. The gravitational part,

Sgrav ¼
Z

d6x
ffiffiffiffiffiffiffi�g

p �
1

2�ð6Þ
R��ð6Þ

�
; (2.1)

is the generalized Einstein-Hilbert gravity action,
where �ð6Þ is the bulk cosmological constant and �ð6Þ ¼
8�Gð6Þ ¼ 8�=M4

ð6Þ.
On the other hand, the action for the baby-Skyrme model

Sbaby is given by

Sbaby ¼
Z

d6x
ffiffiffiffiffiffiffi�g

p �
�2

2
ð@MnÞ � ð@MnÞ��4

4
ð@Mn� @NnÞ2

��0VðnÞ
�
: (2.2)

We will use the convenient notation Sbaby �R
d6x

ffiffiffiffiffiffiffi�g
p

Lbaby. Here, n is a scalar triplet subject to the

nonlinear constraint n � n ¼ 1, and VðnÞ is the potential
term with no derivatives of n. The coefficients �2;4;0 in

Eq. (2.2) are the coupling constants in the gravitating baby-
Skyrme model.

A. The ansatz

Assuming axial symmetry for the extra dimensions, the
metric can be written in the following form

ds2 ¼ M2ð�Þgð4Þ��dx�dx� � d�2 � l2ð�Þd�2 (2.3)

where � 2 ½0;1Þ and � 2 ½0; 2�� are the coordinates
associated with the extra dimensions.

We further model a cosmological constant on the brane
by considering the following form of the four-dimensional

subspace [described by gð4Þ�� in Eq. (2.3)]

ds2ð4Þ ¼ gð4Þ��dx�dx� ¼ dt2 � 	ije
2HðtÞdxidxj (2.4)

where HðtÞ is a function of the time coordinate t.
The ansatz for the scalar triplet n is given by the hedge-

hog ansatz [14]:

n ¼ ðsinfð�Þ cosðn�Þ; sinfð�Þ sinðn�Þ; cosfð�ÞÞ: (2.5)

Let us note that there are some variations [28] for
choosing the potential term VðnÞ in the baby-Skyrme
model (2.2). Here, we use the so-called old baby-
Skyrmions potential, which reads

VðnÞ ¼ 1� n � nð1Þ ¼ 1þ cosfð�Þ; (2.6)

where nð1Þ ¼ lim�!1nð�; �Þ is the vacuum configuration

of the baby-Skyrme model.

B. Field equations of the model

In order to rewrite the system in terms of dimensionless
quantities, we define

r :¼
ffiffiffiffiffiffi
�2

�4

s
�; LðrÞ :¼

ffiffiffiffiffiffi
�2

�4

s
lðrÞ; H ðtÞ :¼

ffiffiffiffiffiffi
�4

�2

s
HðtÞ: (2.7)

We also introduce dimensionless parameters1 according
to


 :¼ �ð6Þ�2; � :¼ �ð6Þ�4=�
2
2; � :¼ �0�4=�

2
2:

(2.8)

Finally, we introduce

uðrÞ :¼ 1þ n2

L2ðrÞ sin
2fðrÞ; vðrÞ :¼ 1� n2

L2ðrÞ sin
2fðrÞ

for latter convenience and use the notation f0 :¼ @rfðrÞ.
After short computations, the baby-Skyrme equations

and Einstein equations reduce to

uf00 þ
�
4
M0

M
þ L0

L
þ u0

u

�
uf0 � ð1þ f02Þ n

2

L2
sinf cosf

þ� sinf ¼ 0; (2.9)

for the baby-Skyrme field and

3
M02

M2
þL00

L
þ3

M0L0

ML
þ3

M00

M
�3

H 2
;t

M2
¼
ð�0��Þ; (2.10)

3
M02

M2
þL00

L
þ3

M0L0

ML
þ3

M00

M
�2H ;t;tþ3H 2

;t

M2
¼
ð�0��Þ;

(2.11)

1The dimensions of the model parameters are: ½�ð6Þ� ¼ M6,
½�ð6Þ� ¼ M�4, ½�2� ¼ M4, ½�4� ¼ M2 ½�0� ¼ M6.
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6
M02

M2
þ 4

M0L0

ML
� 3

H ;t;t þ 2H 2
;t

M2
¼ 
ð�r � �Þ; (2.12)

4
M00

M
þ 6

M02

M2
� 3

H ;t;t þ 2H 2
;t

M2
¼ 
ð�� � �Þ; (2.13)

for the Einstein equation. We used the notation H ;t :¼
@tH ðtÞ and H ;t;t :¼ @2tH ðtÞ.

Let us note that Eqs. (2.10) and (2.11) are the four-
dimensional components of the Einstein equation,
while Eq. (2.12) and (2.13) are the extra-dimensional
components.

The components of the dimensionless energy-
momentum (EM) tensor in Eqs. (2.10), (2.11), (2.12), and
(2.13) are given by

�0 ¼ � 1

2
uf02 � 1

2

n2

L2
sin2f��ð1þ cosfÞ;

�r ¼ 1

2
uf02 � 1

2

n2

L2
sin2f��ð1þ cosfÞ;

�� ¼ � 1

2
vf02 þ 1

2

n2

L2
sin2f��ð1þ cosfÞ:

(2.14)

We supplement the system of Eqs. (2.9), (2.10), (2.11),
(2.12), and (2.13) by the following set of boundary
conditions:

fð0Þ ¼ �ðm� 1Þ�; fð1Þ ¼ �; (2.15)

where m, n 2 Z, for the baby-Skyrme field and

Lð0Þ ¼ 0; L0ð0Þ ¼ 1; Mð0Þ ¼ 1; M0ð0Þ ¼ 0;

(2.16)

for the metric fields.
The above boundary conditions are required for regular-

ity and finiteness of the energy.
Note that considering the hedgehog ansatz (2.5) under

the boundary condition (2.15), one can construct a topo-
logical charge (or winding number) defined as follows

N ¼ 1

4�

Z
n � ð@�n� @�nÞd�d�

¼ n

2
½1þ ð�1Þ1�m� 2 Z: (2.17)

C. Inflating four-dimensional slices

A solution for H ðtÞ is actually trivial. Combining
Eqs. (2.11) and (2.10) leads to H ;t;t ¼ 0, i.e. H ;t ¼
const � H 0. Thus, we obtain the simple solution given by

H ðtÞ ¼ H 0t (2.18)

where H 0 is a constant and where we neglected an inte-
gration constant. Note that the integration constant can be
absorbed by a global rescaling of the three-dimensional
spacial coordinates.

The result (2.18) follows from the Ansatz for the four-
dimensional metric (2.4) and the important assumption
under which the gravitational source Lbaby is a function

of the extra-dimensional coordinates only.
Therefore, we introduce a new dimensionless parameter

 :¼ H 2
0 �

�4

�2

H2
0 ; (2.19)

and we arrange the components of the Einstein equation in
terms of :

3
M02

M2
þL00

L
þ3

M0L0

ML
þ3

M00

M
�3



M2
¼
ð�0��Þ; (2.20)

6
M02

M2
þ 4

M0L0

ML
� 6



M2
¼ 
ð�r � �Þ; (2.21)

4
M00

M
þ 6

M02

M2
� 6

2

M2
¼ 
ð�� � �Þ: (2.22)

Note that it is possible to interpret  using the four-
dimensional effective theory following the lines of
Ref. [20].
Seen differently,  can be interpreted as a positive

cosmological constant in the four-dimensional subspace

of the full model, since in this case, gð4Þab is such that G
ð4Þ
ab ¼

3H2gð4Þab , where Gð4Þ
ab is the Einstein tensor computed with

gð4Þab . Note that replacing the four-dimensional subspace by

another Einstein space-time satisfying Gð4Þ
ab ¼ 3H2gð4Þab ,

such as the Schwarzschild-de Sitter space-time, leads to
the same equations.
Another useful quantity is the rescaled Ricci scalar

which will be used later and is given by

R ¼ 2L00

L
þ 8L0M0

LM
þ 8M00

M
þ 12ðM0Þ2

M2
� 12

M2
: (2.23)

III. SPECIAL SOLUTIONS FOR
TOPOLOGICALVACUUM

Let us for a moment consider the model with fðrÞ � �,
i.e. where the baby-Skyrme field is a topological vacuum
configuration.
It is known that the Einstein equations (2.20), (2.21), and

(2.22) for the topological vacuum have several special
solutions. Such solutions are classified according to the
model parameters, mainly� and . Before reviewing these
special vacuum solutions, we shall present a useful relation
derived in [20]. From Eqs. (2.21) and (2.22), we have

M00

M
¼ M0L0

ML
, LðrÞ ¼ CL

dMðrÞ
dr

(3.1)

where CL is an integration constant. The relation (3.1) is
quite general except in some special cases, e.g. for M ¼ 0
and M0 ¼ 0.
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A. Flat branes case: � ¼ 0

Special solutions for  ¼ 0 have been investigated by
many authors in Refs. [8,10,21]. We shortly summarize
them here. Let C1, C2, and r0 be constants of integrations;
for � ¼ 0, Eqs. (2.20), (2.21), and (2.22) admit two differ-
ent types of solutions: the string branch

M0
s ðrÞ ¼ C1; L0

sðrÞ ¼ C2ðr� r0Þ; (3.2)

and the Melvin branch

M0
mðrÞ ¼C1ðr� r0Þ2=5; L0

mðrÞ ¼C2ðr� r0Þ�3=5: (3.3)

For �> 0, Eqs. (2.20), (2.21), and (2.22) have a set of the
periodic solutions given by

M0
pðrÞ ¼ C1cos

2=5

ffiffiffiffiffiffiffiffiffiffi
5
�

8

s
ðr� r0Þ;

L0
pðrÞ ¼ C2

sin
ffiffiffiffiffiffiffi
5
�
8

q
ðr� r0Þ

cos3=5
ffiffiffiffiffiffiffi
5
�
8

q
ðr� r0Þ

:

(3.4)

For �< 0, Eqs. (2.20), (2.21), and (2.22) again admit two
different types of solutions; the warped solutions

M0
wðrÞ ¼ C1 exp

�
�

ffiffiffiffiffiffiffiffiffiffiffiffi
�
�

10

s
r

�
;

L0
wðrÞ ¼ C2 exp

�
�

ffiffiffiffiffiffiffiffiffiffiffiffi
�
�

10

s
r

�
;

(3.5)

and the divergent solutions

M0
dðrÞ ¼ C1sinh

2=5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�5
�

4

s
ðr� r0Þ;

L0
dðrÞ ¼ C2cosh

2=5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�5
�

4

s
ðr� r0Þ:

(3.6)

B. Inflating branes case: � � 0

From now on, we discuss the inflating branes case, i.e.
 � 0. We start with a differential equation derived from
Eqs. (2.20), (2.21), and (2.22), given by

M02 ¼ 2M3 � 
�
10 M

5 þ C

M3
(3.7)

where C is an integration constant.
Equation (3.7) admits two possibilities: M0 ¼ 0 and

M0 � 0.
a. The case of M0 ¼ 0. This case is equivalent to M ¼

const � MC. In this case, Eqs. (3.7) and (3.1) are not valid
anymore, and we have to consider the full set of Einstein
equations:

MðrÞ ¼
ffiffiffiffiffiffiffiffiffi
6H2

�

s
; LðrÞ ¼

ffiffiffiffi
2

�

s
sin

� ffiffiffiffi
�

2

s
r

�
: (3.8)

The solution (3.8) can be interpreted as follows: The four-
dimensional slice has a positive curvature. We add extra
dimension with positive curvature as well. The curvature of
the total space-time is still positive and related to the
positive cosmological constant. Note indeed that this solu-
tion is well defined only for positive bulk cosmological
constant.
b. The case of M0 � 0. From Eqs. (2.20), (2.21), and

(2.22), we find a solution of MðrÞ as a quadrature and a
solution of LðrÞ as follows [20]:

r� r0 ¼
Z

dM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M3

2M3 � 
�
10 M

5 þ C

vuut ;

LðrÞ ¼ CL

dM

dr
¼ CL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M3 � 
�

10 M
5 þ C

M3

s
:

(3.9)

Here, we limit the study to the case C ¼ 0, the case with
C � 0 involves elliptic functions. For � ¼ 0, we have a
cigartype set of solutions given by

McðrÞ ¼ ðr� r0Þ; LcðrÞ ¼ L0 � CL: (3.10)

For �> 0, we again have periodic solutions

MpðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
102


�

s
sin

� ffiffiffiffiffiffiffiffi

�

10

s
ðr� r0Þ

�
;

LpðrÞ ¼ L0 cos

� ffiffiffiffiffiffiffiffi

�

10

s
ðr� r0Þ

�
:

(3.11)

For �< 0, we have diverging solutions

MdðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
102

�
�

s
sinh

� ffiffiffiffiffiffiffiffiffiffiffiffi
�
�

10

s
ðr� r0Þ

�
;

LdðrÞ ¼ L0 cosh

� ffiffiffiffiffiffiffiffiffiffiffiffi
�
�

10

s
ðr� r0Þ

�
:

(3.12)

IV. ASYMPTOTIC SOLUTIONS

A. Near origin development

The near origin behavior of the functions f, L,M subject
to the boundary conditions (2.15) and (2.16) is given by

fðrÞ ¼ �ðm� 1Þ�þ fðnÞð0Þrn=n!þOðrÞnþ1 (4.1)

LðrÞ¼ rþ�2�
ð�þ��ð�1Þm�Þ
4

r3

3!
þOðrÞ4 (4.2)

MðrÞ ¼ 1þ2�
ð�þ��ð�1Þm�Þ
4

r2

2!
þOðrÞ3; (4.3)

where fðnÞ stands for nth derivative of f.
Note that higher-order corrections are straightforward to

compute.
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B. Large r limit

In this section, we give the leading asymptotic correc-
tion to the functions f, M, L. We focus on the case  � 0.
The asymptotic solution is then given by (3.10), (3.12), and
(3.11) according to the sign of �. Note however that we
could not find the subleading corrections in the case�> 0;
in this case, the metric functions are given to the leading
order in terms of trigonometric functions; it is not possible
to neglect such terms.

1. �< 0

Considering the topological vacuum solution plus a
fluctuation and suppressing subdominant terms in the
equations, we get

	f � f�1 e
�ðr=4Þð

ffiffiffiffiffiffiffiffiffiffiffiffi
�10
�

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�10
�þ16�

p
Þ

þ f�2 e
�ðr=4Þð

ffiffiffiffiffiffiffiffiffiffiffiffi
�10
�

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�10
�þ16�

p
Þ (4.4)

	M � M�
1 e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
�=10

p
r þM�

2 e
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�8
�=5

p
r; (4.5)

	L � L�
1 e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
�=10

p
r þ L�

2 e
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�8
�=5

p
r; (4.6)

where 	M and 	f denote the fluctuation around MðrÞ
and fðrÞ such that fðrÞ ¼ �ðm� 1Þ�þ 	fðrÞ, MðrÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�10=ð3
�Þp

sinhð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
�=10
p

rÞ þ 	MðrÞ; and where
f�1 , f

�
2 , M

�
1 , M

�
2 , L

�
1 , L

�
2 are arbitrary constants.

Clearly, we are looking for the modes withM�
1 ¼ f�2 ¼

L�
1 ¼ 0 such that 	f and 	M are indeed fluctuations.

2. � ¼ 0

Once again, we start from the topological vacuum plus a
fluctuation. Here, it is possible to solve for the fluctuations
without further assumptions:

	f ¼ f01x
�ð3=2ÞK3=2ðxÞ; (4.7)

	M ¼ M0
1 þ

M0
2

r2
; (4.8)

	L ¼ L0
1 þ

L0
2

r2
; (4.9)

where x ¼ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

L2
0

þ�

r
, KnðxÞ is the modified Bessel func-

tion of second kind and f01, M
0
1, M

0
2, L

0
1, L

0
2 are arbitrary

constants. In this case, we are interested in solutions with
L0
1 ¼ M0

1 ¼ 0.
Note that for large r, the function f decays as

e
�r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn2=L2

0
Þþ�

p
r2

.

V. NUMERICAL SOLUTIONS

We solved the system of ordinary differential equations
numerically with the solver Colsys [29] for many values of
the parameters. Because of the large number of parameters,

we decided to adopt the following approach: we keep fixed
the value of the gravitational coupling, the bulk cosmo-
logical constant and the winding numbers. Then, we vary
the Hubble factor for different values of the strength of the
potential. Note that the model without inflating 4D slices
has been studied [17]; the way we treat the problem allows
a direct visualization of the influence of the Hubble
parameter on the pattern of solutions.
Before discussing the case  � 0, we shortly remind the

solutions obtained in Ref. [17]. Essentially, two types of
solutions were found for any sign of the bulk cosmological
constant; for instance, in the case � ¼ 0, the branches of
solutions were discovered, with asymptotic corresponding,
respectively, to flat space (String branch) and one analogue
to the Melvin universe (Melvin branch). In the following,
we will present families of solutions for  � 0, extrapolat-
ing between these two sets.
In the analysis, we focused on the surface energy of the

Skyrmion E and its mean square radius (MSR) defined as

E ¼ 2�
Z 1

0
T0
0LðrÞdr;

MSR ¼
Z 1

0
r2f0ðrÞsin2fðrÞdr;

(5.1)

where T0
0 ¼ ��0, see (2.14). The mean square radius

allows to characterize the extension of the brane in the
transverse direction; the more MSR is small, the more the
brane is localized.
Our results are summarized in Fig. 1 and 2 for 
 ¼ 0:1,

� ¼ 0:1 and 
 ¼ 0:05, � ¼ 0:1, respectively, and

FIG. 1. The value of the energy and of the mean square
radius as a function of  for various values of � and for

 ¼ 0:1, � ¼ 0:1.

INFLATING BABY-SKYRME BRANES IN SIX DIMENSIONS PHYSICAL REVIEW D 82, 106002 (2010)

106002-5



m ¼ n ¼ 1. When the value of  increases for fixed 
, �,
�, the mean square radius decreases while the energy
decreases for small values of  and increases for larger
values. In some intermediate values of , the energy of
the Skyrmion passes through a minimum. The minimum
occurs at smaller values of  when the value of� is smaller.
Note also that increasing values of � leads to decreasing
values of the mean square radius and decreasing values of
the energy.

We present typical profiles of the solutions for m ¼ 2, 3
in Fig. 3 and 4, respectively, for nonvanishing values of the
parameters. These figures show that there are three pos-
sible geometries depending on the sign of the cosmological

constant (see Ref. [20]): opened (�> 0), flat (� ¼ 0), and
closed (�< 0); all three geometries with angular deficits.
This effect seems to be a generic feature of a model where
the four-dimensional branes are inflating.
Pushing the investigation forward, it appears that the

inflating baby Skyrmion exists up to a maximal value of
the parameter  (the Hubble parameter). A second branch
of solution exists as well for values of  lower than the
maximal value. The second branch is of the same type as
the first one and connects the two types of solutions avail-
able in the limit  ! 0. It should be mentioned that we
start with the string solution in the case � ¼ 0 and increase
the value of  until the second branch is reached, then we
decrease  along the second branch. Figures 5 and 6 shows
some relevant numerical parameters characterizing the
solution (resp. the energy and the square mean radius)
with  � 0 and � ¼ 0.
The case n ¼ 2 is however completely different. The

solution still exists up to a maximal value of , but then the

FIG. 2. The value of the energy and of the mean square radius
as a function of  for various values of � and for 
 ¼ 0:05,
� ¼ 0:1.

FIG. 3 (color online). The typical profiles of the solutions for
different signs of � for m ¼ 2. The function f tends quickly to
its asymptotic value, so it is not possible to distinguish the
different profiles for the function f.

FIG. 4 (color online). The typical profiles of the solutions for
different signs of � for m ¼ 3. Here again, it is not possible to
distinguish the different profiles for the function f.

FIG. 5 (color online). The value of the derivative at the origin
of the baby-Skyrme field, the coefficient L0 of the metric
function L in (3.10) for � ¼ 0.
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solution crashes; ,in the sense that the second derivative at
the origin diverges at the maximal value of  (recall that
the function f behaves like f��ðm� 1Þ�þ f2r

2 close
to the origin). This is shown in Fig. 7 where the asymptotic
value of L and the second derivative of f at the origin are
shown. We did not find a second branch in this case; if such
a branch exists, it seems unlikely that it will connect
smoothly to the branch we constructed.

Note that the cases n ¼ 1 and n ¼ 2 are also different
from the geometrical point of view: the scalar curvature
vanishes at the origin for n ¼ 2 while it goes to a non-
vanishing constant for n ¼ 1. This is illustrated on Fig. 8

and 9 for � ¼ 0, n ¼ 1 (resp n ¼ 2) where we show
the metric functions, the baby-Skyrme function, and the
scalar curvature; the picture is similar for nonvanishing
values of �.
The existence of an upper bound on  can be understood

as follows: first, recall that the energy of the baby-
Skyrmion is given by

E ¼ E2 þ E4 þ E0;

E2 ¼
Z

dDx
�2

2

�
f02 þ n2

l2
sin2f

�
;

E4 ¼
Z

dDx
�4

4

2n2

l2
sin2ff02;

E0 ¼
Z

dDx�0ð1þ cosfÞ:

(5.2)

FIG. 6 (color online). The value of the energy and of the square mean radius for the two branches with � ¼ 0, m ¼ 1, n ¼ 1.

FIG. 7 (color online). The asymptotic value of L and the
second derivative of f at the origin (in log scale) for � ¼ 0,
m ¼ 1, n ¼ 2. The second derivative f2 diverges at the maximal
value of . The window is a zoom if the region close to the
maximal value of  showing f2 (not in log scale).

FIG. 8 (color online). The typical profile of the metric func-
tions, the baby-Skyrme field and the reduced scalar curvature for
n ¼ 1, m ¼ 1.
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If one considers the scaling x ! x0 � �x, the energy
becomes

E ! �2�DE2 þ �4�DE4 þ ��DE0; (5.3)

since a solution should minimize the energy, the following
relation should hold for D ¼ 2:

dE

d�

��������D¼2
¼ 2�E4 � 2��3E0 ¼ 0; ∴ �¼

�
E0

E4

�
1=4

:

(5.4)

Recall that in our study, we use dimensionless quantities
defined in (2.7) and (2.8). Large values (or infinity) of 
then essentially correspond to:

(i) one is the case of [H0 ! 1 for fixed �2, �4];
(ii) the other is [�2 ! 0, �4: fixed], or [�2: fixed

�4 ! 1].
First, we consider the case of [�2 ! 0, �4: fixed]. For

fixed values of �, �0 ! 0 with the same rate than �2 [see
(2.8)]. In this case, the energy functional (5.3) seems to

have no stationary point; therefore, no nontrivial solution is
possible. Note also that if �2 ! 0, the gravitational con-
stant �ð6Þ goes to infinity for fixed 
 [see (2.8)], which

should spoil the solution. In terms of (2.7), the dimension-
less quantities r, L shift to smaller values. We have con-
firmed by our numerical results that the functions f, M
shift to lower r while L reduces in absolute value, along
with the above consideration.
In the second case, namely [�2: fixed, �4 ! 0], the

energy functional has no stationary point neither. Nothing
particular happens to the gravitational constant. On the
other hand, the asymptotic solution of the baby
Skyrmions for the flat space which has the form [15]

fðrÞ �
ffiffiffiffi
�

2

r �
�2

�0

�
1=4

r�1=2e�
ffiffiffiffiffiffiffiffiffiffiffiffi
ð�0=�2Þ

p
r;

which is clearly diverging in the limit of �0 ! 0 �2:
fixed. From this point of view, we expect an upper limit
of �4, i.e. .
Finally, for [H0 ! 1 for fixed �2, �4], it has been

previously noticed that, at least for the vacuum solution,
the function L ! 0 as H0 increases [20].
Putting everything together, it seems quite natural that

the solutions exhibit an upper limit on  for finding the
solutions of our system.

VI. STABILITY OF THE INFLATING
BABY-SKYRME BRANE

In this section, we consider a general perturbation hAB
around the background metric:

ds2 ¼ MðrÞ2ðdt2 � expð2HtÞd~x2Þ � dr2 � LðrÞ2d�2
þ hABðxAÞdxAdxB; (6.1)

and we choose the transverse traceless gauge rAh
AB ¼

hAA ¼ 0. Note that hAB ¼ gACgBDhCD, g being the back-
ground metric, and the inverse perturbed metric is given to
order one in h by gAB � hAB.
We will focus on the case � ¼ 0, already quite involved.
We parametrize the metric perturbation according to

hAB ¼ e�t�iN�

MðrÞ2H11ðrÞ H12ðrÞ . . . H15ðrÞ H16ðrÞ
H12ðrÞ MðrÞ2e2HtH22ðrÞ . . . H25ðrÞ ..

.

..

. ..
. . .

. ..
. ..

.

..

. ..
.

H55ðrÞ ..
.

H16ðrÞ . . . . . . . . . LðrÞ2H66ðrÞ

0
BBBBBBBBB@

1
CCCCCCCCCA
: (6.2)

The gauge conditions, rAh
AB ¼ hAA ¼ 0 reduce to

FIG. 9 (color online). The typical profile of the metric func-
tions, the baby-Skyrme field and the reduced scalar curvature for
n ¼ 2, m ¼ 1.
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H11 þH22 þH33 þH44 þH55 þH66 ¼ 0;

1

L2M4
ðLM2L0H5j þ L2ðMð4M0H5j þMH0

5jðrÞÞ � ð3H þ�ÞH1jÞ � iNMðrÞ2H6jÞ ¼ 0;

1

L2M2
ðLM2L0ðH66 �H55Þ þ L2ðMðM0H11 þM0H22 þM0H33 þM0H44 � 4M0H55 �MH0

55Þ
� ð3H þ�ÞH15Þ � iNM2H56Þ ¼ 0;

1

L2M3
ð�LML0H15 þ L2ðMðð3H þ�ÞH11 �H0

15 �HH22 �HH33 �HH44Þ � 4M0H15Þ þ iNMH61Þ ¼ 0;

(6.3)

where j ¼ 2, 3, 4, 6. From the imaginary part of the gauge
conditions, it follows thatH6A ¼ 0, A ¼ 1; . . . ; 6. It is then
possible to solve the gauge conditions for H55 and H0

5m,
m ¼ 1; . . . ; 5.

The matter field is parametrized as follows:

~n ¼ ðsinðfðrÞ þ 	Fðt; r; �ÞÞ sinn�; sinðfðrÞ
þ 	Fðt; r; �ÞÞ cosn�; cosðfðrÞ þ 	Fðt; r; �ÞÞÞ: (6.4)

We parametrize the time and angular dependence
according to

	Fðt; r; �Þ ¼ e�t�iN��ðrÞ: (6.5)

In this setting, the perturbed gravity equation in the
transverse traceless gauge are given by

� 1

2
ð�LÞABCDhCD

:¼ � 1

2
ðhgACgBD þ 2RABCDÞhCD

¼ 


�
	TAB þ 1

4
ð	TgAB þ ThAB ��hABÞ

�
; (6.6)

where T is the trace of the stress tensor, where 	TAB is the
first order variation of the stress tensor due to the variation
of the matter field and of the metric fields, and where we
restored dimensionless functions and parameters.

We first work out the gravity equations. The component
(2,2), (3,3), (4,4) of the equations (6.6) are formally the
same for H22 (resp. H33, H44), allowing to set H33 ¼
H44 ¼ H22. Furthermore, Eqs. (6.6) are compatible with

H12 ¼H13 ¼H14 ¼H23 ¼H24 ¼H25 ¼H34 ¼H35 ¼ 0;

(6.7)

by looking at the corresponding components of (6.6).
The surviving degrees of freedom are H11, H22, H51. It

turns out that it is possible to get a single equation out the
components (1,1), (2,2), (5,5), (5,1), (6,6) of (6.6) by solv-
ing these equations for H00

11, H
0
22, H

00
22, H51. In other words,

we eliminate H51, and it turns out that the equation for H22

and for H11 decouple. Note that solutions to (6.6) are not
pure gauge as long as the right-hand side does not vanish.

We will consider the equation for H11, given by

� h00ðrÞ þ V1ðrÞh0ðrÞ þ V2ðrÞhðrÞ
þ S1ðrÞ�ðrÞ þ S2ðrÞ�0ðrÞ ¼ 0; (6.8)

V1ðrÞ :¼ �L0

L
� 8

M0

M
; (6.9)

V2ðrÞ :¼ n2
f02sin2f
2L2

� 1

4

f02 � n2
sin2f

4L2
� 
� cosf

� 2L0M0

LM
þ N2

L2
� 2M00

M
� 12M02

M2
þ 3

ffiffiffiffi


p
!

M2

þ 2

M2
þ !2

M2
þ 
�

2
� 
�; (6.10)

where we use hðrÞ ¼ H11ðrÞ for shortness,! ¼
ffiffiffiffi
�4

�2

q
�, and

where S1, S2 are an involved combination of the back-
ground functions but are straightforward to compute.
The linearized equation for the matter fields is quite long

and can be obtained from the variation of the reduced
action, leading to an equation of the following form for
the matter field perturbation:

M2�00ðrÞ þ P1ðrÞ�0ðrÞ þ ðP2ðrÞ þm2Þ�ðrÞ
þ T1ðrÞhðrÞ ¼ 0; (6.11)

where

P1ðrÞ :¼ � M2

n2sin2fþ L2

�
ðN2 � 3Þn2f0 sin2f

þ L0

L
ðn2sin2f� L2Þ � 4

M0

M
ðn2sin2fþ L2Þ

�

P2ðrÞ :¼ � M2

n2sin2fþ L2

�
n2

L0

L
f0 sin2f

þ n2 cos2fððN2 � 3Þf02 þ N2 � 1Þ

� n2 sin2f

�
f00 þ 4f0

M0

M

�
��L2ðN2 � 1Þ cosf

�

(6.12)

T1ðrÞ :¼
Hð5 ffiffiffiffi


p þ 2!Þð2MðrÞ2 þ 1Þf0ðrÞ

2MðrÞ3M0ðrÞ ; (6.13)
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where we definedm2 :¼ �!ð3 ffiffiffiffi


p þ!Þ (see the following
discussion).

Note that the system (6.8) and (6.11) constitutes an
eigenvalue-like problem, the eigenvalue being essentially
given by !.

In fact, m2 appears as the (dimensionless) four-
dimensional masses of the scalar four-dimensional
harmonics c m:

r�r�c m ¼ ð@2t þ 3
ffiffiffiffi


p
@t �4Þc m ¼ �m2c m: (6.14)

Assuming the particular parametrization of the perturba-
tions (they do not depend on the four-dimensional spatial
coordinates), m2 indeed reduces to �!ð3 ffiffiffiffi


p þ!Þ.

In this case, we easily find the solution of (6.14):

c m � eð�ð3H=2Þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3H=2Þ2�m2

p
Þt: (6.15)

It follows that the relevant parameter for the stability ism2;
modes with m2 < 0 leads to tachyonic instabilities while
modes with m2 > 0 are stable.

A. Numerical analysis: The formal discussion

The most obvious boundary conditions are the condi-
tions at infinity, where all the perturbations should vanish:

�ð1Þ ¼ hð1Þ ¼ 0: (6.16)

In order not to spoil the topological properties of the baby
Skyrmion, we need to fix�ð0Þ ¼ 0. Close to the origin, the
function h should behave like h � rN (the detail of the
asymptotic equation is the same as in the next section).

In practice, we integrate Eqs. (6.8) and (6.11) in the
following way: first, we integrate the equations between
0 and some intermediate values, say rm, using a Runge-
Kutta algorithm at order 4, with the following boundary
conditions: �ð0Þ ¼ 0, �0ð0Þ ¼ 	1, h

0ð0Þ ¼ 0, hð0Þ ¼ h0
for some real values of 	0, h0. Then we integrate the
equations backwards from a large value of the radial
coordinates, say rl to rm, imposing the suitable decay of
the functions �, h and their derivatives, given later. We
generate two sets of two linearly independent solutions,
one between 0 and rm, say h1L, �

1
L and h2L, �

2
L, and the

second between rm and rl, say h1R, �
1
R and h1R, �

1
R. The

general solution is given by

hðrÞ ¼
�
ah1R þ bh2R; for r < rm;
ch1L þ dh2L; for r > rm;

(6.17)

�ðrÞ ¼
�
a�1

R þ b�2
R; for r < rm;

c�1
L þ d�2

L; for r > rm;
(6.18)

where a, b, c, d 2 R. The solution is smooth if the values
of the function and of their derivative match at the inter-
mediate value rm. The matching condition is expressed by

det

h1LðrmÞ h2LðrmÞ h1RðrmÞ h2RðrmÞ
�1

LðrmÞ �2
LðrmÞ �1

RðrmÞ �2
LðrmÞ

h1L
0ðrmÞ h2L

0ðrmÞ h1R
0ðrmÞ h2R

0ðrmÞ
�1

L
0ðrmÞ �2

L
0ðrmÞ �1

R
0ðrmÞ �2

R
0ðrmÞ

0
BBB@

1
CCCA ¼ 0:

(6.19)

We computed the decay of the functions h, � by solving
to the leading order the perturbation equations in the
asymptotic region. In the case � ¼ 0, we find

�� F1

1

r2
e�½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN2�1Þðð1=L2

0
Þþ�

p
Þ�r; h�H1

1

r4
e�ðN=L0Þr;

(6.20)

whereF1,H1 are normalization factor. (The detailed analy-
sis will be shown in next subsection.)
In principle, we are able to integrate Eqs. (6.8) and (6.11)

based on the method described above, and actually have
found some solutions. However, the numerical investiga-
tion was plagued by number of difficulties:
(i) The coefficients of the system of coupled differential

equations are given in terms of numerically com-
puted functions. These functions were however com-
puted with a relative precision of order 10�5.

(ii) Since we integrate the equations from 0 to some
maximal value of r, say rc, the boundary condition
imposed are not exact. We checked that the solution
follows the correct decay for larger values of r by
integrating the solution from rc to rc þ 	, 	 being a
real number. It turned out that close to rc, the decay
was good, but the error due to the cutoff showed up
further from rc. However, varying rc did not influ-
ence much the eigenvalues.

Thus we admit that our results are acceptable as pre-
liminary results which give us an initial guess of the true
eigenvalues. We will present more details in a further
publication and here, we will analyze in detail the stability
of the matter sector (resp. gravitational sector) in a fixed
gravitational (resp. matter field) background in terms of a
slightly different scheme.

B. Stability of the baby-Skyrmions with fixed
gravitational background

In this section, we shall solve the eigenequation (6.11)
where all the gravitational background fields remain un-
perturbed. This means that terms involving h are elimi-
nated from (6.11). The equation becomes decoupled from
h. Since the equation involves coefficients to be evaluated
numerically, we should of course solve it using numerical
methods. Before moving to the numerical resolution, we
might be able to get some intuitions about sign of the
eigenvalues, which would give indications on the stability
properties of the solutions.
We follow a scheme employed for the analysis of the

six-dimensional Abelian vortex [9]. Equation (6.11) can be
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rewritten in the form of a zero-eigenvalue mode
Schrödinger equation for the function

c ðrÞ :¼ exp

�
1

2

Z r P1ðsÞ
M2ðsÞds

�
�ðrÞ; (6.21)

namely,

� c 00 þ VðrÞc ¼ 0; (6.22)

where the potential is

VðrÞ ¼ WðrÞ0 þW2ðrÞ � P2 þm2

M2
; WðrÞ ¼ P1

2M2
:

(6.23)

Equation (6.22) can be understood in the context of
so-called supersymmetric quantum mechanics [30] where
the function WðrÞ is identified as the superpotential in the
supersymmetric quantum mechanics (SUSY QM). The
equation can be rewritten by using the operator

A ¼ d

dr
þWðrÞ; Ay ¼ � d

dr
þWðrÞ; (6.24)

namely, �
AAy � P2 þm2

M2

�
c ¼ 0: (6.25)

Formally, the lowest eigenvalue of the operator AAy equals
to the first excited state of the AyA, obtained by reversing
the order of the operator A, Ay. If the ground state of the
operator AyA is a zero mode, i.e.AyAc ¼ 0, one easily
sees that the eigenvalues of the operator AAy are positive-
definite. Note however that the potential in the AyA
contains deep negative well, so has many negative eigen-
values. Note also that strictly speaking, VM is not exactly a
supersymmetric potential, due to the presence of the addi-
tional ðP2 þm2Þ=M2 term.

Here, we plot the effective potential

VMðrÞ :¼ W 0ðrÞ þWðrÞ2 � P2ðrÞ
M2ðrÞ : (6.26)

In order that (6.22) exhibits a zero-eigenvalue solution, the
potential VM �m2=M2 should contain some negatives
regions. In Fig. 10, we plot the function VMðrÞ for the first
few of N with a typical gravitational background. The case
of m2 > 0 is trivial; by suitably adjusting values of m2,
we could get the solutions. Those are the eigenvalues
which might be observed at the LHC or some other probes.
On the other hand, for m2 < 0, the situation is more
complicated. If the potential is positive-definite, apparently
we have no solution of (6.22); thus, the possibility of
tachyonic mode is removed. From this point of view, the
solutions for N ¼ 0, 1 seem to have no tachyonic mode.
However, the potentials forN 	 2 have a negative pit at the
core of the brane, which seems to grow as N increases.
Thus, the tachyonic mode may occur especially for larger
N. For the case of N ¼ 2, the potential is shallow but still
has a negative well; the equation might have a tachyonic

mode. In order to go further, however, we have to rely on
the numerical study.
The eigen problem can be solved numerically by the

standard predictor-corrector method [31]. The detail of the
procedure is described in the Appendix. Here, we shall
examine information of limiting behavior of the fluctuation
�, but first, we will study the near origin and asymptotic
behavior of the fluctuation �.

1. Asymptotic behaviors

At the vicinity of the origin, the asymptotic form of
solution depends on the winding number n. By using the
asymptotic solution at the vicinity of the origin (4.1), (4.2),
and (4.3), one can find the linearized equation of (6.11) as

�00 þ p1

r
�0 þ p2

r2
� ¼ 0 (6.27)

which has a solution as the form

�ðrÞ ¼ cþr�þ þ c�r�� ;

�� ¼ 1

2
½ð1� p1Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� p1Þ2 � 4p2

q
�

(6.28)

where c� are arbitrary integration constants. For n ¼ 1, the
coefficients of the equation are

p1 ¼ � 1

1þ u2
ð2N2u2 � 5u2 � 1Þ; p2 ¼ N2 � 1

(6.29)

where u :¼ f0ð0Þ. After a slight examination, one finds
the regular solution only the case for N 	 2. Similarly,
for n ¼ 2

p1 ¼ 1; p2 ¼ �4ðN2 � 1Þ (6.30)

so one can easily see that for N 	 2, the solutions are
regular. As a conclusion, the solutions at the origin are
regular for N 	 2 but not for N < 2.

FIG. 10. The potential VM (6.26) for n ¼ 1 with the parameter

 ¼ 0:1, � ¼ �0:15,  ¼ 0:02, � ¼ 0:1.
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For large values of the radial coordinate, the behavior
of the function � essentially depends on the sign of
� :¼ �6�4=�

2
2. For �> 0, the metric solutions are peri-

odic. It is an unpleasant feature; the periodic behavior
seems to interrupt us to find the good asymptotics. Of
course, it does not necessarily indicate that the solution
is unstable, but, for the time being, we concentrate our
analysis on the case � 
 0.

Recall that for � ¼ 0, (3.10) and (4.9) leads to

f� �; M� r; L� L0 (6.31)

where L0 is a constant. So, sufficiently far from the origin,
Eq. (6.11) becomes

r2�00 þ 4r�0 þ
�
�ðN2 � 1Þ

�
�þ n2

L2
0

�
r2 þm2

2

�
� ¼ 0;

(6.32)

Since this equation is a kind of Bessel’s differential equa-
tion, the solutions can be written in terms of Bessel func-
tion with real/complex variables. The asymptotic solution
is of the form

�ðrÞ � 1

r2
exp

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN2 � 1Þ

�
n2

L2
0

þ�

�s
r

�
: (6.33)

Thus, we can find nonasymptotically diverging modes of
the function � for all value of N. (Note that because of the
condition at the origin, only N 	 2 is acceptable.)

For�< 0, from (3.12), (4.4), (4.5), and (4.6), the asymp-
totic behavior of the solutions is

f��; M�

�
sinh�r; L�L0 cosh�r; � :¼

ffiffiffiffiffiffiffiffiffiffiffiffi
�
�

10

s
:

(6.34)

Equation (6.11) in the asymptotic region reduces to

sinh2�r�00 þ �ðsinh�r cosh�rþ 4cosh2�rÞ�0

þ
�
�ðN2 � 1Þ

�
n2

L2
0

þ�cosh2�r

�
þ �2m2

2

�
� ¼ 0:

(6.35)

For sufficiently large r, the equation becomes

�00 þ 5��0 ��ðN2 � 1Þ� ¼ 0; (6.36)

and the localizing modes are thus

�ðrÞ � exp

��
� 5

2
��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
5

2
�

�
2 þ�ðN2 � 1Þ

s �
r

�
: (6.37)

For N 	 2, only the minus sign is available while for N ¼
0, both signs are acceptable.

2. The numerical results

For N ¼ 2, we have found a tower of positive, discrete
eigenvalues for both zero and negative �. In Fig. 11, we
plot some eigenfunctions � of Eq. (6.11) for n ¼ 1, 2 and
� ¼ 0 or �0:15. The corresponding eigenvalues are as-
sembled in Table I. For all cases, we have many localized
modes; there are essentially no notable differences for the
changes of � or n. On the other hand, for N 	 2, the
tachyonic modes may exist because of the deep negative
potential. In Fig. 12, we show the eigenvalues correspond-
ing to the eigenfunction with no-node for the parameter set:

 ¼ 0:1, � ¼ 0, �0:15,  ¼ 0:02, � ¼ 0:1. At least,
within this parameter set, we find that we unavoidably
get the tachyonic modes except for N ¼ 2, 3.
We also study the stability property of the second

(‘‘unstable’’) branch. The eigenvalues are assembled in

FIG. 11. A first few of the fluctuations �. We denote 2S; 2P; � � � which indicate N ¼ 2 and the number of nodes. The background
profiles are of the parameter 
 ¼ 0:1,  ¼ 0:02, � ¼ 0:1. The left is for ðm; nÞ ¼ ð1; 1Þ, � ¼ 0. The right is for ðm; nÞ ¼ ð1; 2Þ,
� ¼ �0:15.
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Table II. For the second branch solutions, we got the highly
localized eigenfunction for the fluctuation �; as a result,
the eigenvalues are quite higher than the first branches.
Note that our obtained eigenvalues are dimensionless ones.
In order to recover the dimensionful one, we need infor-
mation about the Skyrme parameters �2, �4. In Ref. [17],
we have estimated masses of fundamental fermions local-
ized on the warped baby-Skyrmion branes with negative
cosmological constant. In rough speculation, we can ex-

tract the value of parameter as
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�2=�4

p � 104 MeV. From
this, we find

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi��ð3H þ�Þp ¼
ffiffiffiffiffiffi
�2

�4

s
m� 13 TeV: the first branch

� 87 TeV: the second branch (6.38)

for the data of Table II. Apparently, the first branch is in the
TeV scales, but the second branch solution could not be
observed in an experimental facility.

C. Stability of the metrics with fixed
Skyrmion background

If the background Skyrmions remain unperturbed, the
Eq. (6.8) can easily be solved in terms of the method which
has been described in the case of the baby Skyrmions. This
corresponds to omit the terms�,�0. In this case, we define
the eigenvalue l2 :¼ �ð!þ ffiffiffiffi


p Þð!þ 2

ffiffiffiffi


p Þ.

1. Asymptotic behaviors

Similar to the matter field case, at first we examine the
asymptotic behaviors of the solutions. By using the asymp-
totic solution at the vicinity of the origin (4.1), (4.2), and
(4.3), one can find the linearized equation of (6.8) as

h00 þ 1

r
h0 � N2

r2
h ¼ 0 (6.39)

which has a solution as the form hðrÞ � rN . Thus, for N 	
1, we have regular solutions while N ¼ 0 are not adequate
for the regularity condition at the origin.
Sufficiently, far from the origin, one straightforwardly

finds the form of the linearized equation of (6.8) for � ¼ 0

r2h00 þ 8rh0 þ
�
12þ l2

M2
0

�
h� r2

N2

L2
0

h ¼ 0: (6.40)

The asymptotic solution is of the form

hðrÞ � 1

r4
exp

�
� N

L0

r

�
: (6.41)

Thus, we can find nonasymptotically diverging modes of
the function h for all value of N. (Note that because of the
condition at the origin, only N 	 1 is acceptable.)
For �< 0, we find the modes

hðrÞ � exp

��
� 9

2
!�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
17

4
!2 þ 
�

2

s �
r

�
: (6.42)

This solution decreases as r ! 1.

2. The numerical results

Contrary to the case of the baby Skyrmions, only for
N ¼ 2, we have found a tower of positive, discrete eigen-
values for both zero and negative �. For N ¼ 1, the
solution seems to be tachyonic.
In Fig. 13, we plot some eigenfunctions � of Eq. (6.8)

for n ¼ 1, 2 and � ¼ 0 or �0:15. The corresponding
eigenvalues are assembled in Table III. Similar to the

TABLE I. For the case of N ¼ 2, the eigenvalues m2 of Eq.
(6.11) for ðm; nÞ ¼ ð1; 1Þ, (1,2) with the parameter 
 ¼ 0:1,  ¼
0:02, � ¼ 0:1, � ¼ 0:0, �0:15.

n ¼ 1 n ¼ 2
� ¼ 0 �< 0 � ¼ 0 �< 0

S 0.4759 0.5264 1.4491 0.8249

P 1.5109 1.6485 8.8910 6.5876

D 2.1979 2.4023 16.657 11.885

F 2.9344 3.2142 24.377 15.899

G 3.7193 4.0860 31.362 19.390

FIG. 12. The lowest eigenvalues m2 (with no-node) for N ¼
2� 10 with the parameter 
 ¼ 0:1, � ¼ 0, �0:15,  ¼ 0:02,
� ¼ 0:1.

TABLE II. For the case of N ¼ 2, the eigenvalues m2 of the
first and the second branches for ðm; nÞ ¼ ð1; 1Þ with the pa-
rameter 
 ¼ 0:01,  ¼ 0:1, � ¼ 0:1, � ¼ 0:0, �0:1.

� ¼ 0 �< 0

1st 2nd 1st 2nd

1.7437 76.295 1.7475 76.293
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case of the Skyrmions, we plot the effective potential for
the gravity in Fig. 14

VGðrÞ :¼ W 0ðrÞ þWðrÞ2 � V2ðrÞ
M2ðrÞ : WðrÞ :¼ V1ðrÞ

2M2
:

(6.43)

For N ¼ 1, the potential has a subtle negatives, so it
produces the tachyonic mode. On the other hand, the
potential of N ¼ 2 is positive-definite, so the possibility
of tachyonic mode is excluded for the gravity perturbation
in this case.

VII. SUMMARYAND DISCUSSIONS

The aim of this paper was twofold: first, studying the
effect of a brane cosmological constant on the six-
dimensional baby-Skyrme brane model and second, study-
ing the stability of the corresponding solution. The brane
cosmological constant was modeled by inflating four-
dimensional slices, which is relevant in the context of an

inflationary scenario within braneworlds and also at the
level of the classical equations: the inflating slices indeed
model a four-dimensional positive cosmological constant.
Various types of solutions exist when a bulk cosmologi-

cal constant is supplemented in the model. However, the
inclusion of an additional brane cosmological constant has
the drastic effect of reducing the number of different types
of solutions to essentially three, according to the sign of the
bulk cosmological constant. The three solutions are char-
acterized by specific geometries of the space sustaining the
extra dimensions (namely opened, flat, or closed for a
negative, null, or positive bulk cosmological constant,
respectively).

FIG. 13. A first few of the fluctuations h. We denote 2S; 2P; � � � which indicate N ¼ 2 and the number of nodes. The background
profiles are of the parameter 
 ¼ 0:1,  ¼ 0:02, � ¼ 0:1. The left is for ðm; nÞ ¼ ð1; 1Þ, � ¼ 0. The right is for ðm; nÞ ¼ ð1; 2Þ,
� ¼ �0:15.

TABLE III. For the case of N ¼ 2, the eigenvalues l2 of
Eq. (6.8) for ðm; nÞ ¼ ð1; 1Þ, (1,2) with the parameter 
 ¼ 0:1,
 ¼ 0:02, � ¼ 0:1, � ¼ 0:0, �0:15.

n ¼ 1 n ¼ 2
� ¼ 0 �< 0 � ¼ 0 �< 0

S 0.7591 0.7664 5.2498 3.4840

P 1.2026 1.0747 8.0611 5.2452

D 1.7024 1.3397 12.049 6.9922

F 2.2566 1.7000 15.673 8.7698

G 2.8672 1.8033 19.465 10.583

FIG. 14. The potential VG estimated by (6.43) for n ¼ 1 with
the parameter 
 ¼ 0:1, � ¼ �0:15,  ¼ 0:02, � ¼ 0:1 and for
N ¼ 1, 2.
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The occurrence of these three geometries seems to be
indeed a generic feature since the same phenomenon oc-
curs for the different model considered in [20]. This idea
follows from the fact that these three peculiar solutions are
indeed vacuum solutions; they are further relevant for the
asymptotic form of the solutions in the presence of local-
ized matter fields.

More interestingly, the different types of solutions
available in the case of the vanishing brane cosmological
constant seems to be interconnected once the brane cos-
mological constant is turned on; the two types of solutions
available in absence of the brane cosmological constant are
recovered as limits of these two branches for specific
values of the parameters. These branches exist up to a
maximal value of the brane cosmological constant.

The second part of this paper deals with the stability of
the inflating baby-Skyrme branes constructed in the first
part. Although the unperturbed equations do not depend on
the details of the brane, the stability analysis might be
different for different four-dimensional Einstein spaces.

We established the equations for the stability of the
complete baby-Skyrme branes. Since these coupled equa-
tions are particularly involved, we examined in more de-
tails the stability issue in two particular simplified
situations: the one with fixed gravitational backgrounds
and perturbed baby-Skyrme field, the second with fixed
baby-Skyrme field and perturbed gravitational field.

Surprisingly, our results for the case of fixed gravita-
tional background show that bound states of the baby-
Skyrme excitation exist only for fluctuations winding
more than one time (say N times, recall that there is a
cylindrical symmetry in the extra dimensions) in the extra
dimensions. For N ¼ 2, we found no tachyonic instability
while tachyonic modes develop for higher values of the
winding. The perturbation of the baby-Skyrme field can be
alternatively seen as a particle bound on the brane; we
provide a rough estimation of the mass of such particles
and it turns out that they should be of the order of 10 TeV,
i.e. accessible in ongoing experiments.

The perturbation in the gravitational sector admits
bound states for N 	 1. We found a tachyonic instability
for N ¼ 1 while the latter disappears for N ¼ 2. This
suggests that the stability issue of the solution depends
crucially on the winding number of the fluctuation and on
the sector explored. We believe that the solutions to the
coupled problem will confirm the pattern guessed by these
preliminary results.

Let us finally mention some applications of our model:
in the context of inflationary models, the particle spectrum
provided by the stability analysis might have an interesting
phenomenological interpretation. As an example, one can
imagine that the particles emitted by the branes might have
a particular signature on the CMB. Also, for unstable
modes, one could imagine that the instability might turn
the inflating brane to noninflating brane, thus providing a

dynamical end to inflation. Let us note however that these
ideas are quite speculative and would deserve deep further
investigations.
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APPENDIX: NUMERICAL METHOD

First, we decompose the eigenequation (6.11) into
coupled first order equation for uðyÞ, vðyÞ :¼ �ðyÞ

dvðyÞ
dy

¼ uðyÞ (A1)

duðyÞ
dy

¼ uðyÞþ
�
p1ðyÞuðyÞvðyÞþp2ðyÞþp3ðyÞ

�
vðyÞ (A2)

where

p1ðyÞ :¼ y

n2sin2fþ L2

�
ðN2 � 3Þn2f0 sin2f

þ L0

L
ðn2sin2f� L2Þ � 4

M0

M
ðn2sin2fþ L2Þ

�

p2ðyÞ :¼ y2

n2sin2fþ L2

�
n2

L0

L
f0 sin2f

þ n2 cos2fððN2 � 3Þf02 þ N2 � 1Þ

� n2 sin2f

�
f00 þ 4f0

M0

M

�
��L2ðN2 � 1Þ cosf

�

(A3)

p3ðyÞ :¼ � m2

M2
y2: (A4)

Rescaling the coordinate r according to r: ¼ ey�y0 (y0 is a
constant) makes the mesh point finer at the vicinity of the
origin. Essentially, the method is similar to former de-
scribed integration method in Sec. VIA. The main differ-
ence in this case is the matching procedure. We evaluate
the matching point ym by the following condition:

p1ðymÞuðymÞ þ ðp2ðymÞ þ p3ðymÞÞvðymÞ ¼ 0: (A5)

We solve the equation both from the origin and the infinity.
In order to match vðyÞ at y ¼ ym, we multiply a constant
to the outer solution vðyÞ. Instead of using the Wronski
determinant (6.19), we introduce an arbitrary 	-functional
potential at an intermediate value ym:

V	ðyÞ :¼ �½v0ðymÞ�ymþ0
ym�0

vðymÞ 	ðy� ymÞ: (A6)

Because, if the 	-functional potential exists, the eigenfunc-
tion is continuous at the matching point, but its derivative
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is not. Therefore, the correction in terms of the first order
perturbation

�E ¼
Z

v�ðyÞV	ðyÞvðyÞ ¼ �½v0ðymÞ�ymþ0
ym�0vðymÞ (A7)

efficiently improves the eigenvalue, i.e., the eigenfunction.
If the analysis reaches the correct eigenfunction, it no
longer has discontinuity at all and the computation is
successfully terminated.
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