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The characterization of the transverse structure of the QCD string is discussed. We formulate a

conjecture as to how the stress-energy tensor of the underlying gauge theory couples to the string degrees

of freedom. A consequence of the conjecture is that the energy density and the longitudinal-stress

operators measure the distribution of the transverse position of the string, to leading order in the string

fluctuations, whereas the transverse-stress operator does not. We interpret recent numerical measurements

of the transverse size of the confining string and show that the difference of the energy and longitudinal-

stress operators is a particularly natural probe at next-to-leading order. Second, we derive the constraints

imposed by open-closed string duality on the transverse structure of the string. We show that a total of

three independent ‘‘gravitational’’ form factors characterize the transverse profile of the closed string, and

obtain the interpretation of recent effective string theory calculations: the square radius of a closed string

of length � defined from the slope of its gravitational form factor, is given by d�1
2�� log �

4r0
in d space

dimensions. This is to be compared with the well-known result that the width of the open string at

midpoint grows as d�1
2�� log r

r0
. We also obtain predictions for transition form factors among closed-string

states.
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I. INTRODUCTION

The area law of Wilson loops in lattice gauge theories
[1] has long been interpreted in terms of a string formation
by the flux lines. In SUð3Þ gauge theory the area law,
hWi � e��A, signals the linear confinement of heavy
quarks Q and �Q: the static potential takes the form VðrÞ �
�r, where � is identified with the string tension. Once the
quark interdistance r is significantly larger than the con-
finement scale

ffiffiffiffi
�

p
, it was realized a long time ago that the

corrections to the static potential, as well as the low-energy
excitations of the Q �Q system, could be described by an
effective two-dimensional theory [2]. This ‘‘world sheet’’
theory of the d� 1 [3] massless degrees of freedom h,
namely, the transverse fluctuations of the string, led to two
important predictions: first, the linear potential receives
1=r corrections, the Lüscher term [4], and its excitations
are spaced by �

r gaps. Second, the amplitude of the trans-

verse string fluctuations grows logarithmically with the
length of the string [5],

w2
lo � hh2i ¼ d� 1

2��
log

r

r0
: (1)

It is this second aspect of the low-energy string dynamics
that is the focus of this paper.

Recently, highly accurate numerical results have been
obtained in the d ¼ 2 SUð2Þ gauge theory for the expec-
tation value of local operators in the presence of a static
Q �Q pair [6]. Measured as a function of the distance jyj
from the Q �Q axis, it defines a distribution whose second
moment was successfully compared to the effective-theory
prediction (1). In view of these results and of the prospect
of pushing the comparison to next-to-leading order (NLO),

the first issue we wish to address is the precise connection
between the profile probed by a local gauge-theory opera-
tor and the world sheet expectation value of h2.

II. COUPLING OF THE STRESS-ENERGY TENSOR
TO THE CONFINING STRING

With the classical picture of a fluctuating ‘‘thin’’ string
in mind, the stress and energy stored in the flux lines is
entirely carried by the string. If only the transverse com-
ponent of a string element’s motion contributes to the
string energy, then the Hamiltonian is H ¼ R

dmffiffiffiffiffiffiffiffiffiffi
1�v2

?
p ,

where dm is the rest mass of an element of the string.
For the Nambu-Goto string, dm ¼ �ds, where ds is the
length of the string element, but more sophisticated possi-
bilities, such as a curvature term, should be kept in mind
[7,8]. Retaining only the simplest rest mass contribution,
the expression for the string energy density in Minkowski
space reads, in the static gauge,

T00ðt; y1; yÞ

¼ �
1þ ð@1hÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ð@1hÞ2 � ð@thÞ2 � ð@thÞ2ð@1hÞ2 þ ð@th � @1hÞ2
p

� �d�1ðy� hðt; y1ÞÞ: (2)

Here h is the world sheet field; it has d� 1 components.
The world sheet is parametrized by t and y1, the coordinate
that runs along the Q �Q axis, and y contains the d� 1
coordinates transverse to the string. The world sheet in-
dices are denoted generically by a; b; . . . We thus expect
the energy-density operator of the underlying gauge theory
to couple to the world sheet operator appearing in this
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expression, understood as an expansion in @ah. At zeroth
order, we have simply T00ðt; y1; yÞ ¼ ��d�1ðy� hðt; y1ÞÞ,
which means that the distribution measured by the energy
density operator coincides with the distribution in h. In
particular, the second moments in y of the transverse
distribution obtained from T00 is expected to match the
expression for hh2i calculated in the world sheet theory.
Expanding Eq. (2), we obtain

T00 ¼ ��ðy� hÞ½1þ 1
2ðð@thÞ2 þ ð@1hÞ2Þ � 1

8½ð@1hÞ2�2
þ 3

8½ð@thÞ2�2 þ 1
4ð@1hÞ2ð@thÞ2 � 1

2ð@th � @1hÞ2�:
(3)

This expression suggests that at leading order in the fluc-
tuations,

R
dd�1yy2T00ðt; y1; yÞ measures the world sheet

expectation value of the operator

h 2ð1þ 1
2ð@thÞ2 þ 1

2ð@1hÞ2Þ: (4)

Thus, when comparing Monte Carlo data forR
dd�1yy2T00ðt; y1; yÞ with the effective theory, the world

sheet expectation value of h2 needs to computed to NLO, a
tour de force achieved very recently [9], but also the
leading-order expectation value of the tensor operator
h2 1

2 ðð@thÞ2 þ ð@1hÞ2Þ needs to be calculated. It is probably
simpler to work with the operator T00 � T11, for which we
will see that the undesirable contribution of the quadratic
fluctuations cancels out [Eq. (12)]. We note that the effect
of generalizing the operator h to hþ �hh was taken into
account in [9], where � is a free ‘‘low-energy’’ parameter,
but the expectation value of its square turn out to be
independent of �.

It is instructive to note that the energy-density expres-
sion (2) derived from geometric considerations coincides
with the form of the canonical energy density derived from
the Lüscher-Weisz world sheet action with the standard
Noether procedure. Indeed the NLO Lagrangian reads

Lws ¼ 1
2@ch � @chþ c2ð@ah � @ahÞð@bh � @bhÞ
þ c3ð@ah � @bhÞð@ah � @bhÞ þ . . . (5)

with a priori free coefficients c2 and c3, and the stress-
energy tensor

Tws
ab ¼ @ah � @bhþ 4c2ð@ch � @chÞð@ah � @bhÞ

þ 4c3ð@ah � @chÞð@bh � @chÞ � gabLws; (6)

with in particular

Tws
00 ðt; y1Þ ¼ 1

2ðð@thÞ2 þ ð@1hÞ2Þ þ ðc2 þ c3Þð½ð@1hÞ2�2
� 3½ð@thÞ2�2Þ þ 2c2ð@thÞ2ð@1hÞ2
þ 2c3ð@th � @1hÞ2: (7)

Expressions (7) and (2) are consistent for c2 ¼ 1
8 and c3 ¼

� 1
4 , which are the Nambu-Goto values [10]. This agree-

ment suggests that the n-point functions of the gauge-

theory stress-energy tensor in the presence of the confining
string are generically mapped onto those of the world sheet
stress-energy tensor. The unit operator appearing in Eq. (3)
must be included in the diagonal components; obviously
this term does not affect the conservation equations of the
world sheet stress-energy tensor.
In d ¼ 2 space dimensions, it was shown in [11] that the

Nambu-Goto values for the ’low-energy constants’’ c2 and
c3 are the only ones compatible with open-closed string
duality. It was subsequently shown that this requirement is
also equivalent to requiring that closed string have a rela-
tivistic dispersion relation, in other words requiring
Poincaré invariance [12]. If one requires that the effective
string theory also describes a situation where the world
sheet itself is a torus in a way that is consistent with the
open- and closed-string spectral representations, then these
values are the only ones possible in any dimension [13]. In
view of the geometric interpretation of the energy-density
operator, these results show that only a string that is
‘‘immaterial,’’ i.e. for which only transverse motion of an
element of the string contributes to the string energy, yields
a spectrum that is consistent with open-closed string dual-
ity. Were it not for this fact, the fraction in Eq. (2) would

have been replaced by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ@1h

2

1�ð@thÞ2
r

, which, in particular, does

not yield mixed term ð@th � @1hÞ2. In other words, numeri-
cal evidence that the open-string spectrum requires c2 and
c3 to take up their respective Nambu-Goto values really
confirms the ‘‘immaterial’’ nature of the confining
string.
It is also of interest to write out the expressions for the

longitudinal stress operator T11 explicitly [see Eq. (6)],

T11ðt; y1; yÞ ¼ ��ðy� hðt; y1ÞÞ½�1þ 1
2ðð@thÞ2 þ ð@1hÞ2Þ

þ ðc2 þ c3Þð3½ð@1hÞ2�2 � ½ð@thÞ2�2Þ
� 2c2ð@thÞ2ð@1hÞ2 � 2c3ð@th � @1hÞ2�:

(8)

This formula implies that the transverse string profiles
obtained with T00 and T11 differ at quadratic order in h.
There is a specific reason why T11 is an interesting probe of
the string profile. The transverse profile of the open string
depends in general at what point y1 along the string it is
measured. It is easy to see that if one uses T11, then the total
longitudinal stress inside a transverse spatial slice,R
dd�1yT11ðy1; yÞ, does not depend on the position y1 of

the slice along the string. This is simply because from the
closed-string point of view, T11 plays the role of the
energy-density operator, and therefore its forward matrix
elements are diagonal in an energy-eigenstate basis.
Evaluated on the ground state, this integrated longitudinal
stress yields the static force,

Z
dd�1yhT11ðy1; yÞiQ �Q ¼ � @E0ðrÞ

@r
; ð8 y1Þ: (9)
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Because of this distinguishing property, the integrated
longitudinal stress is conserved along the open string,
and it is natural to ask how the transverse distribution of
longitudinal stress changes as one moves along the string.

It is however not true that any operator tracks the move-
ment of the string at leading order. Take for instance the
transverse operator T22. There is no corresponding operator
on the world sheet, since it is a two-dimensional field
theory. One can show that

Z
dy1

Z
dd�1yhT22ðy1; yÞiQ �Q ¼ 0; (10)

when correlated with the pair of Polyakov loops. The
physical reason why the three-point function of T22

vanishes is that the string does not, on average, exert any
stress along the transverse directions. Because the sum rule
of this operator does not yield a term proportional to the
length of the string, this operator is not measuring, to
leading order in the fluctuations h, the position of the
string. Therefore one cannot define a transverse distribu-
tion of the string with a probabilistic interpretation based
on this operator. Instead this operator is sensitive in leading
order to the expectation value of higher-derivative world
sheet operators.

We have followed the approach of Lüscher and Weisz
[11] and worked in the static gauge. The point of view
adopted by Polchinski and Strominger [14] puts more
emphasis on the conformal symmetry of the world sheet
theory, which severely constrains the class of actions they
consider. It is therefore worthwhile to investigate the fate
of conformal symmetry in the static gauge as well. This
issue is left for a future study. We simply note that the trace
of the canonical energy-momentum tensor

Tws;a
a ¼ 2c2ð@ah �@ahÞ2þ2c3ð@ah �@bhÞð@ah �@bhÞþ . . .

¼ 2Lð4Þ þ . . . (11)

no longer vanishes at the quartic order. However it is well-
known that the canonical energy-momentum tensor is in
general not traceless even when the field theory is con-
formally invariant. It can however be improved [15] in the
sense that terms �ab that satisfy @a�ab ¼ 0 and do not
modify the conserved charges can be added in such a way
that Tab is traceless when the theory is conformal. See [16]
for a discussion in two-dimensional field theory. It would
be interesting to see whether the line of low-energy con-
stants c3 ¼ �2c2 [11] plays a special role in this respect.

An observation of ‘‘practical’’ importance is that the
linear combination

ðT00 � T11Þðt; y1; yÞ ¼ 2��ðy� hðt; y1ÞÞð1þ Oð@hÞ4Þ
(12)

is a scalar from the world sheet point of view, which makes
it an adequate operator to measure the mean square ampli-
tude of string fluctuations at next-to-leading order [9].

The rest of this paper is structured as follows: We start
by studying the structure of the confining string as seen by
the energy-momentum tensor in Sec. III. We then work out
the constraints on three-point correlation functions im-
posed by the open-closed string duality in Sec. IV. The
leading-order string formula (1), generalized to contain the
contributions of excited states in the three-point function,
turns out to be consistent with the functional form in r
imposed by the closed-string spectral representation, and
we thereby identify the effective theory prediction for the
form factors of the closed strings. In particular, we find that
the square radius of the ground state closed string, defined
in the standard way from the slope of its form factors at
the origin, grows logarithmically with the length of the
string �. In Sec. V we give the explicit form of the energy-
momentum tensor on the lattice in dþ 1 dimensions. This
allows us to interpret a recent high-accuracy calculation of
the string width in numerical lattice gauge theory in terms
of matrix elements of the energy-momentum tensor. In the
rest of this paper, we work in Euclidean space, and our sign
conventions are as follows. In Minkowski space, the ther-
mal expectation values of the diagonal components are
hT00i ¼ e and hT11i ¼ p (respectively the energy density
and pressure), while in Euclidean space hT00i ¼ e and
hT11i ¼ �p.

III. GRAVITATIONAL FORM FACTORS
OF CLOSED STRINGS

In this section, we analyze how the transverse size of
closed strings can be characterized. In the pure SUðNÞ
gauge theory, the only conserved charges are energy and
momentum. Therefore, it is natural to measure the width of
the string in terms of the distribution of these charges.
While for the open string, the width can be probed directly
in x space, it has to be defined initially in momentum space
through a form factor for the closed string: the form factors
with respect to the energy-momentum tensor T�� are the

Fourier transforms of the energy and distributions. This
simple relation between form factors and charge distribu-
tion applies because of the nonrelativistic kinematics of the
closed string, by which we mean that their transverse size
is parametrically larger than their inverse mass. By con-
trast, the electromagnetic form factors of the proton only
correspond to the Fourier transform of charge and magne-
tization in the infinite-momentum frame [17].
Here we will restrict ourselves to studying the form

factors of states that contribute to the Polyakov loop two-
point function. These states are translationally invariant in
the longitudinal direction, therefore we restrict the momen-
tum transfer to the transverse directions. Furthermore, the
closed-string states are rotationally invariant, hence they
have spin zero in (d� 1)-dimensional space.
In order to exhaustively list the relevant form factors,

we decompose the full (dþ 1)-dimensional energy-
momentum tensor into irreducible representations of
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d-dimensional space. The closed strings are stretched
around a cycle of length � in a spatial direction labeled
z, while the other spatial directions are labeled by k, l ¼
1; . . . , (d� 1). Schematically, the decomposition takes the
form

T00 T0k T0z

Tk0 Tkl Tkz

Tz0 Tzk Tzz

0
@

1
A: (13)

In the following, we choose the normalization of states
such that

hc ; P0jc ; Pi ¼ ð2�Þd�1�d�1ðP0 � PÞ � � � 2Ep: (14)

The operator Tzz, which measures the stress in the z direc-
tion, is a scalar operator from the point of view of physics
within an z ¼ constant slice. Therefore, its matrix ele-
ments can be parametrized as

hc 0; P0jTzzð0Þjc ; Pi ¼ 2MM0f3ðc 0; c ; q2Þ: (15)

We use the standard notation q ¼ P0 � P, �P ¼ 1
2 ðPþ P0Þ,

and have accounted for the possibility that the mass of the
final state M0 differs from the mass of the initial state M.

Second, we note that (T0z, Tkz) is a conserved vector
from the point of view of a z ¼ constant slice, if one
restricts oneself to matrix elements between states that
are translationally invariant in the z direction:

@0T0z þ @kTkz þ @zTzz|ffl{zffl}
¼0

¼ 0: (16)

We are thus dealing with the vector form factor of a scalar
object, hence (by analogy with the pion electromagnetic
form factor),

hc 0;P0jT�zð0Þjc ;Pi¼M �P�fðc 0;c ;q2Þ; �� z: (17)

However, T�z is odd under the reflection z ! �z. For

matrix elements with Pz ¼ P0
z ¼ 0, this implies that f

must vanish identically [18].
Finally, the components of T�� not containing the index

‘z’ form a tensor with respect to the SOðdÞ group. Taking
again into account the fact that these components form a
conserved tensor in the subspace of states invariant under
translations along the y direction, one finds that the general
form of the matrix elements of T�� is

hc 0; P0jT��ð0Þjc ; Pi ¼ �2 �P�
�P�f1ðc 0; c ; q2Þ

þ 2ðq�q� � q2���Þf2ðc 0; c ; q2Þ;
�; � � z: (18)

Thus the transverse structure of the ground state of the
string is characterized by a total of three form factors
ffig3i¼1. The matrix elements

hc ; PjT��ð0Þjc ; Pi ¼ �2P�P�; (19)

hc ; PjTzzð0Þjc ; Pi ¼ �
@E2

p

@�
; (20)

determine the forward, diagonal matrix elements of f1
and f3,

f1ðc ; c ; 0Þ ¼ 1; f3ðc ; c ; 0Þ ¼ �

2M2

@E2
pð�Þ
@�

: (21)

The interpretation of these form factors is that f3 measures
the transverse distribution of longitudinal stress in the
string, while f1 measures the transverse distribution of
energy. The form factor f2 is somewhat less obvious to
interpret. For two states with momenta equal and opposite

aligned along the direction 1̂ (Breit frame), it describes the
ability of T22 to induce a transition between these states per
unit ðmomemtum transferÞ2 (this interpretation requires
d � 3). Indeed, in this kinematic configuration, f1 does
not contribute to the matrix element (18).

IV. TRANSVERSE STRUCTURE OF OPEN
AND CLOSED STRINGS

The goal of this section is to derive the spectral repre-
sentation of a three-point function where a local operator is
used to probe the structure of the confining string. We
begin by recalling the spectral representation of the
Polyakov loop two-point function. The geometry of the
Polyakov correlator is illustrated in Fig. 1.
The open-string representation of the Polyakov loop

two-point function reads, setting r2 � x21 þ x2 and with
wn integer weights,

hP0ðx1; xÞP�
0ð0; 0Þi ¼

X
n

wne
�VnðrÞL: (22)

Upon introducing the matrix elements [19]

bn � hvacjP0ð0; 0Þjn;pi; (23)

the closed-string representation of the same correlation
function reads

1

0 xy

y1 1

O

x − y1

FIG. 1 (color online). The geometry of the three-point
function.
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hP0ðx1; xÞP�
0ð0; 0Þi ¼

1

�

X
n

jbnj2
Z dd�1p

ð2�Þd�1
eip�x

e�EnðpÞx1

2EnðpÞ ;

(24)

¼ X
n

jbnj2 r

�Mn

�
Mn

2�r

�ðd=2Þ
Kðð1=2Þðd�2ÞÞðMnrÞ; (25)

�X
n

jbnj2
2�Mn

�
Mn

2�r

�ððd�1Þ=2Þ
e�Mnr: (26)

In the last line we have used the asymptotic form of the

modified Bessel function, K�ðxÞ � e�x
ffiffiffiffi
�
2x

p
; the result is

equivalent to using nonrelativistic kinematics to begin
with. This expression dictates the functional dependence
on r of the Polyakov loop correlator. As usual in deriving
relations between open and closed strings, the correlation
function cannot be simultaneously dominated by a single
open-string state and a single closed-string state. Let � be
the length of the closed strings. For � 	 r, a single open-
string state dominates, but Oð�=rÞ closed-string states
contribute in Eq. (26).

Consider now the connected correlation function of a

pair of Polyakov loops in the direction 0̂ and a local
operator O. Figure 1 illustrates the geometry of the corre-
lator. Its spectral interpretation in terms of open-string

states reads, for � 	 ��ð1=2Þ,

hP0ðx1; xÞOðy0; y1; yÞP�
0ð0; 0Þi ¼

X
n

e�VnðrÞ�hOðy1; yÞin:

(27)

In terms of closed-string states it can also be written as

hP0ðx1; xÞOðy0; y1; yÞP�
0ð0; 0Þi

¼
Z dd�1p0

ð2�Þd�1
e�ip0�x Z dd�1q

ð2�Þd�1
e�iq�yfðp0; q; x1; y1Þ;

(28)

where

fðp0; q; x1; y1Þ ¼
Z

dd�1xeip
0�x

�
Z

dd�1yeiq�yhP0ðx1; xÞOðy0; y1; yÞP�
0ð0; 0Þi (29)

is the correlation function in momentum space, which has a
more natural interpretation from the closed-string point of
view. Here p and q have d� 1 components. Because of the

translation invariance of the Polyakov loops along the 0̂
direction, f has no dependence on y0, which we therefore
choose to be zero.

With the normalization of states given by Eq. (14), we
parametrize the matrix elements by

hm;p0jOjn;pi ¼ 2MmMnF
m;nð �p; qÞ; (30)

p ¼ p0 � q; �p ¼ p0 � 1
2q ¼ 1

2ðpþ p0Þ: (31)

This parametrization is designed for dimension (dþ 1)
operators, for which Fm;n is dimensionless. We can now
write the spectral representation of f,

fðp0; q; x1; y1Þ ¼
X
n;m

bm
e�Emðp0Þðx1�y1Þ

2Emðp0Þ� 2MmMnF
m;nð �p; qÞ

� e�EnðpÞy1

2EnðpÞ�b�n; ðp ¼ p0 � qÞ: (32)

Next we specialize to the case of a scalar operator with
respect to the symmetry group SOðdÞ of a time slice.
Examples thereof are T00 or T��. We will return to the

case of an operator with a more general tensor structure in
Sec. IVD. Thus, F is a function of q2 alone, hence

hP0ðx1;xÞOðy0;y1;yÞP�
0ð0;0Þi¼

X
m;n

bmb
�
n

�2

�
Z dd�1q

ð2�Þd�1
e�iq�y2MmMnF

m;nðq2ÞImnðy1;x1�y1;x;qÞ;

Imnðy1;y2;x;qÞ¼
Z dd�1p0

ð2�Þd�1

e�ip0�x�Emðp0Þy2�Enðp0�qÞy1

2Emðp0Þ2Enðp0 �qÞ :

(33)

We choose without loss of generality x ¼ 0. The quantity
I is a massive one-loop integral,

Iðy1; y2; 0; qÞ ¼
Z d!

2�
ei!y1

Z d!0

2�
ei!

0y2
Z dd�1p

ð2�Þd�1

� 1

!2 þ ðp� qÞ2 þM2
n

1

!02 þ p2 þM2
m

: (34)

This integral can be treated by standard techniques of
quantum field theory, see for instance [20] p. 327.
However we anticipate that nonrelativistic kinematics is
sufficient to study the long-distance behavior of the corre-
lators (in the effective string theory, this will be guaranteed
as long as ��y1 	 1),

I mnðy1; y2; 0; qÞ �
�

MmMn

y2Mn þ y1Mm

�ðð1=2Þðd�1ÞÞ

� exp�ðMmy2 þMny1 þ q2

2
y1y2

Mmy1þMny2
Þ

ð2�Þðð1=2Þðd�1ÞÞ2Mm � 2Mn

: (35)

Therefore, with y2 ¼: x1 � y1,

hP0ðx1; 0ÞOðy0; y1; yÞP�
0ð0; 0Þi

�X
m;n

bmb
�
n

�2

�
MmMn

y2Mn þ y1Mm

�ððd�1Þ=2Þ e�ðy2Mmþy1MnÞ

2ð2�Þðð1=2Þðd�1ÞÞ �

�
Z dd�1q

ð2�Þd�1
e�iq�yFm;nðq2Þe�ðq2=2Þððy1y2Þ=ðMmy1þMny2ÞÞ:

(36)

This expression dictates the leading-order functional de-
pendence on x1 and y1 of the three-point function that the
effective string theory must respect.
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Expression (36) can be viewed as a distribution in y. The
quantity we will confront with a prediction from the effec-
tive string theory is its second moment at x1 ¼: r,

w2ðr; �; y1Þ �
R
dd�1yy2hP0ðr; 0ÞOðy0; y1; yÞP�

0ð0; 0ÞiR
dd�1yhP0ðr; 0ÞOðy0; y1; yÞP�

0ð0; 0Þi
:

(37)

Based on (36), we obtain

w2ðr; �; y1Þ ¼ �2ðd� 1Þ d

dq2

� log

�X
m;n

bmb
�
n

�
MmMn

y2Mn þ y1Mm

�ððd�1Þ=2Þ

� exp�
�
y2Mm þ y1Mn þ q 2

2

y1y2
Mmy1 þMny2

�

� Fm;nðq2Þ
�
q¼0

; (38)

where y2 ¼: r� y1. At y1 ¼ y2 ¼ r
2 , the expression

simplifies slightly,

w2

�
r; �;

r

2

�
¼ �2ðd� 1Þ d

dq2

� log

�X
m;n

bmb
�
n�

ð1=2Þðd�1Þ
mn

� exp� r

2

�
Mm þMn þ 1

2

q 2

Mm þMn

�

� Fm;nðq2Þ
�
q¼0

; (39)

where �mn is the reduced mass of Mm and Mn defined by
��1

mn ¼ M�1
m þM�1

n .

A. Effective string theory prediction

On the other hand, Allais and Caselle [21] (see also the
recent two-loop result [9]) obtained within the effective
bosonic string theory the leading-order result, for x1 ¼
2y1 ¼ r,

w2
lo

�
r; �;

r

2

�
¼ d� 1

2��
log

r

r0
þ 1

��
log

Z2
0ð�; rÞ

Z0ð2�; rÞ : (40)

Written in this form, it is clear that the second term can be
interpreted as a difference of free energies.

B. Transverse structure of the ground
state of the closed string

The limit y1 	 � is most transparent from the closed-
string point of view, since the correlation function is then
dominated by the closed-string ground state. Equation (38)
yields in that limit

w2ðr; �; y1Þ ¼ �2ðd� 1Þ
�
� y1ðr� y1Þ

2��r
þ ðF0;0Þ0

F0;0

�

� ¼y1¼r=2�2ðd� 1Þ
�
� r

8��
þ ðF0;0Þ0

F0;0

�
;

(41)

where we have used the leading-order relation Mn ¼ �L.
The form factors are now evaluated at q2 ¼ 0, and the
prime denotes differentiation with respect to q2. In the
regime y1 	 �, the effective string expression (40)
behaves as

w2
lo

�
r; �;

r

2

�
¼ d� 1

2��
log

�

4r0
þ d� 1

4��
rþ Oðe�2�r=�Þ:

(42)

It is consistent with the general expression (41) derived
from the spectral representation of the correlator. The
linear term turns out to agree automatically between the
two expressions. From the closed-string point of view, this
term is essentially a kinematic effect; we will return to its
significance in the open-string interpretation of the three-
point function.
The rms radius of the closed string, defined in the

standard way from the derivative of the form factor at the
origin, can be identified with the r-independent term,

hr2iclosed � � 2ðd� 1Þ
F0;0ð0Þ

dF0;0ðq2Þ
dq2

								q¼0
¼ d� 1

2��
log

�

4r0
:

(43)

This term thus measures the logarithmic broadening of the
closed string with its length �. The prefactor is the same as
for the open string, but the UV length scale appearing
inside the logarithm is 4 times larger than in the open-
string case.
When r 	 �, the open-string ensemble is at finite tem-

perature 1=�. The local operator then probes the profile of
the open-string states, averaged over with the Boltzmann
weight. Equation (41) shows that the profile at mid string
grows linearly with the length of the open string [21]. This
linear rise is likely due to the fact that Oðr=�Þ open-string
states contribute to the correlation function when r 	 �,
and the width results from a stochastic superposition of
these contributions. A linear increase is in fact nothing
exotic, since for a screened potential VðrÞ � e�mr, the

profile goes like e�m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr=2Þ2þy2

p
, and hence the mean square

radius is given by ðd� 1Þ r
2m for large r.

C. Interpretation of excited closed-string contributions

Both the general expression (39) and the bosonic string
formula (40) can be expanded in a series of exponentials
that fall off increasingly fast. We require that the coeffi-
cients of these exponentials match.
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In the following, we use the leading-order relation be-
tween the matrix elements bn and the multiplicity (integer)
factors wn, 								bnb0

								
2¼l:o: wn

w0

; (44)

we choose them to be real and use the fact that w0 ¼ 1. We
recall the values w1 ¼ d� 1 and w2 ¼ 1þ ðd� 1Þ þ 1

2 �ðdþ 1Þðd� 2Þ [11], and also define �Mn � Mn �M0.
We start by analyzing the leading correction to (42), which
comes solely from Z0ð2�Þ,

w2
lo

�
r; �;

r

2

�

 � w1

��
e�ðð�M1rÞ=2Þ: (45)

Expanding (36), one finds that the OðrÞ term cancels out
automatically. From the Oðr0Þ term, we obtain the consis-
tency condition

2ðd� 1Þ d

dq2

�
ReF1;0ðq2Þ
F0;0ðq2Þ

�
q¼0

¼
ffiffiffiffiffiffi
w1

p
2��

; (46)

which dictates the strength of the off-diagonal matrix
element between the lightest two string states at small
momentum transfer.

We now turn to the term of order e��M1r, which is of

precisely the same order as e�ð1=2Þ�M2r for the leading-
order spectrum. This time, both Z0ð2�Þ and Z2

0ð�Þ contri-
bute, and we find

w2
lo

�
r; �;

r

2

�

 2w1 � w2 þ 1

2w
2
1

��
e��M1r; (47)

while from the general expression, we extract

w2

�
�; r;

r

2

�

 �2ðd� 1Þe��M1r

d

dq2

�
w1

F1;1

F0;0

þ 2
ffiffiffiffiffiffi
w2

p ReF2;0

F0;0
� 2w1

�
ReF1;0

F0;0

�
2
�
q¼0

:

(48)

The comparison of Eqs. (47) and (48) yields predictions for
the form factor at small momentum transfer. By general-
izing w2 to values of y1 � y2, one could disentangle F2;0

from F1;1 and obtain separate predictions for these form
factors. In this way, a sequence of predictions are obtained
for the form factors between low-lying states.

D. Three-point function with a
nonscalar probe operator

We now come back to (32) in the case of an operator
with a more complicated tensor structure. Consider the
case of O ¼ T11. Recall that direction ‘‘1’’ plays the role
of time from the point of view of the closed strings. Then
we replace Eq. (30) by [see Eq. (18)]

hm;p0jOjn;pi¼ 1
2½Emðp0ÞþEnðpÞ�2fm;n

1 ðq2Þ�2q2fm;n
2 ðq2Þ:

(49)

In this case we can write

hP0ðx1;xÞOðy0;y1;yÞP�
0ð0;0Þi¼

X
m;n

bmb
�
n

�2

Z dd�1q

ð2�Þd�1
e�iq�y�

�
�
1

2
fm;n
1 ðq2Þ

�
@

@y1
þ @

@y2

�
2�2q2fm;n

2 ðq2Þ
�
Imnðy1;y2;x;qÞ;

(50)

where y2 is set to x1 � y1 at the end. We now note that at
leading order for large r ¼ 2y1 ¼ 2y2,�

@

@y1
þ @

@y2

�
2
Imnðy1; y2; 0; qÞ

� ðMm þMnÞ2Imn

�
r

2
;
r

2
; 0; q

�
: (51)

Hence to leading order the preceding analysis still applies,
with the substitution

Fm;nðq2Þ ! fm;n
1 ðq2Þ � q2

MmMn

fm;n
2 ðq2Þ: (52)

A special feature of the operator T11 is that

fm;n
1 ð0Þ ¼ �mn; (53)

since the states jn;pi are energy eigenstates. In particular,
Eq. (46) simplifies slightly to

� 2ðd� 1ÞReðf1;01 Þ0ð0Þ ¼
ffiffiffiffiffiffi
w1

p
2��

: (54)

It is interesting that, with our normalization of states (14),
the transition form factor is independent of �.

V. LATTICE DEFINITION OF THE ENERGY-
MOMENTUM TENSOR IN (dþ 1) DIMENSIONS

In this section, we derive the lattice form of the energy-
momentum tensor in (dþ 1)-dimensional SUðNÞ gauge
theory. Our main motivation is that these operators have
been mostly studied in the d ¼ 3 case, but recently
there has been extensive work on strings in d ¼ 2 SUðNÞ
gauge theories [6,22]. This preparatory work will help us
interpret those results.
We will follow the treatment [23] and generalize it to d

dimensions. The idea is to identify the operators whose
expectation value yield the thermodynamic energy density
and pressure. We start from the Wilson action [1] on an
anisotropic lattice [24],

Sg ¼
X
x

��S�ðxÞ þ ��S�ðxÞ: (55)

The action has two bare parameters, �� and ��, and there
are two ‘‘renormalized’’ parameters, the spatial lattice
spacing a� and the renormalized anisotropy 	 ¼ a�=a�.
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At the isotropic point, �� ¼ �� ¼ � (not to be confused
with the symbol used for the closed-string length in the
previous sections). The function S� and S� of the link
variables U�ðxÞ contain exclusively spatial and temporal

Wilson loops, respectively. The partition function Z de-
pends on ��, �� and the lattice dimensions, N� � Nd

�. The
latter are related to its physical size by L ¼ N�a�, L0 ¼
1=T ¼ N�a�. We define the renormalized quantity �Z by

log �Zð��;��; N�; N�Þ ¼ logZð��;��; N�; N�Þ
� N�

Nref
�

logZð��;��; N�;N
ref
� Þ: (56)

The conditions that �Z does not depend on a� or on the
anisotropy 	 translate, respectively, into

L@ log �Z

@L
þ L0@ log �Z

@L0

¼ �X
x

@��

@ loga�
hS�i þ @��

@ loga�
hS�i;

(57)

L0@ log �Z

@L0

¼ X
x

��

@ log	
hS�i þ @��

@ log	
hS�i; (58)

where it is understood that the expectation values of S� and
S� on theN

ref
� � Nd

� lattice are subtracted. We then recall the
thermodynamic definitions of energy density and pressure,

e ¼ � 1

L0L
d

L0@ log �Z

@L0

; p ¼ 1

dL0L
d

L@ log �Z

@L
: (59)

With these definitions, we obtain at the isotropic point
	 ¼ 1,

adþ1ðe� dpÞ ¼ @��

@ loga�
hS�i þ @��

@ loga�
hS�i; (60)

d

dþ 1
adþ1ðeþ pÞ ¼ �

�
@��

@ log	
þ 1

dþ 1

@��

@ loga�

�
hS�i

�
�
@��

@ log	
þ 1

dþ 1

@��

@ loga�

�
hS�i:
(61)

On the other hand, from the definition of the stress-
energy tensor, we expect that

h
i � hT��i ¼ e� dp; hT00i ¼ e: (62)

We also define


�� ¼ T�� � 1

dþ 1
���
; (63)

so that in particular

h
00i ¼ d

dþ 1
ðeþ pÞ: (64)

Since Eqs. (60) and (61) hold at every temperature, we
infer that

adþ1
 ¼ @��

@ loga�
S� þ @��

@ loga�
S�; (65)

adþ1
00 ¼ �
�
@��

@ log	
þ 1

dþ 1

@��

@ loga�

�
S�

�
�
@��

@ log	
þ 1

dþ 1

@��

@ loga�

�
S�: (66)

Recall that the magnetic field has dðd�1Þ
2 components,

while the electric field has d components. The lattice action
can be expressed in terms of these fields,

S� ¼ a4�
Nc

TrfB2g; S� ¼ a2�a
2
�

Nc

TrfE2g: (67)

An important observation is now that at the isotropic point
	 ¼ 1, the operators

S� � 2

d� 1
S� and S� þ S� (68)

belong to irreducible representations of the cubic group in
(dþ 1) dimensions [25]. Since in both cases there is no
other gauge-invariant operator of dimension (dþ 1) in
the same representation, both of them renormalize
multiplicatively.

A. The case d ¼ 2

Since the d ¼ 3 case is well known [23,24], we focus
here on the d ¼ 2 case. The d ¼ 2 theory is super-
renormalizable, which leads to considerable simplifica-
tions. At tree level on the anisotropic lattice, we have the
following expressions for the bare parameters in terms of
the renormalized ones,

�� ¼ 2Nc

g2a�

1

	
; �� ¼ 2Nc

g2a�
	 ðtree levelÞ: (69)

Hence,

@��

@ loga�
’ ���;

@��

@ loga�
’ ���; (70)

@��

@ log	
’ ���;

@��

@ log	
’ ��: (71)

Inserting these expressions into Eq. (66), we get the
following tree level expressions at the isotropic point,

a3
 ¼ ��ðS� þ S�Þ; (72)

a3
00 ¼ 2
3�ð2S� � S�Þ: (73)

Since we already know that these linear combinations
renormalize multiplicatively (see the remarks at the end
of the last section), the full expressions for 
 and 
00 read


 ¼ d�

d loga
ðS� þ S�Þ; (74)
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00 ¼ 2
3�Zð�Þð2S� � S�Þ; (75)

with Z of the form Zð�Þ ¼ 1þ Oð��1Þ and d�
d loga ¼

��ð1þ Oð��1ÞÞ. Now comparing these expressions
with Eqs. (65) and (66), we obtain at 	 ¼ 1 the relations

� @ð�� þ 2��Þ
@ log	

¼ d�

d loga
; (76)

@ð�� � ��Þ
@ log	

¼ 2�Zð�Þ: (77)

Combining (74) and (75),

a3T00 ¼ S�

�
4

3
�Zð�Þ þ 1

3

@�

@ loga

�

þ S�

�
� 2

3
�Zð�Þ þ 1

3

@�

@ loga

�
: (78)

By Euclidean symmetry, one then obtains also the expres-
sion for the diagonal stress operator,

Txx ¼ S0y

�
4

3
�Zð�Þ þ 1

3

@�

@ loga

�
þ ðS0x þ SxyÞ

�
�
� 2

3
�Zð�Þ þ 1

3

@�

@ loga

�
; (79)

and similarly for Tyy.

In summary, we have derived the lattice expressions for
the renormalized diagonal components of the energy-
momentum tensor. A simplification of the d ¼ 2 case
over the usual d ¼ 3 case is that the one-loop quantum

corrections to Z and d�
d loga amount to OðaÞ effects, and the

two-loop effects would amount to Oða2Þ corrections. The
latter are parametrically of the same order as the usual
Oða2Þ cutoff effects that are expected to occur in lattice
gauge theory. For that reason, a one-loop computation is
sufficient to yield a fully renormalized energy-momentum
tensor.

1. Application: Width of the confining string

In [6], the width of the string, stretched between two
static charges separated by a distance r along the x direc-
tion, was extracted from the measurement of the P0x ¼
�S0x þ cst plaquette expectation value at the midpoint
x ¼ r=2 (we now specialize to the case of the Wilson
action; the additive constant drops out when subtracting
the vacuum expectation value of the plaquette). We now
interpret this result in terms of the energy-momentum
tensor derived above.

Working at tree level,

T00

Txx

Tyy

0
B@

1
CA ¼ �

a3

þ1 �1 �1
�1 �1 þ1
�1 þ1 �1

0
@

1
A Sxy

S0x
S0y

0
B@

1
CA: (80)

Inverting the matrix, one finds that

Sxy ¼ � a3

2�
ðTxx þ TyyÞ; (81)

S0x ¼ � a3

2�
ðT00 þ TxxÞ; (82)

S0y ¼ � a3

2�
ðT00 þ TyyÞ: (83)

Now we use the general sum rules

hc jR ddxT00ðxÞjc i
hc jc i ¼ E; (84)

hc jR ddxTxxðxÞjc i
hc jc i ¼ Lx

@E

@Lx

: (85)

Here Lx represents an external parameter that E depends
on. Thus, for a string of length r along the x direction,

�
hc j�P

x
SxyðxÞjc i

hc jc i ¼ 1

2
ar

@E

@r
; (86)

�
hc j�P

x
S0xðxÞjc i

hc jc i ¼ 1

2
a

�
Eþ r

@E

@r

�
; (87)

�
hc j�P

x
S0yðxÞjc i

hc jc i ¼ 1

2
aE: (88)

These can be viewed as the d ¼ 2 version of the Michael
sum rules [26]. For a long string, where E / r, we expect
the various plaquettes (summed over a time slice) to come
in the fractions

hSxyi: hS0xi: hS0yi ¼ 1
2: 1: 1

2: (89)

We finish with a numerical application of Eq. (87) based
on the data of [6]. For the rest of this section, we set the
lattice spacing to unity. The profile obtained in [6] from the
S0x operator is to a good approximation Gaussian, with

Z 1

�1
dyA exp

�
� 1

2
y2=R2

�
¼ ffiffiffiffiffiffiffi

2�
p � A � R: (90)

From Fig. (2) of [6], one reads off R � ffiffiffiffiffiffiffiffiffi
12:1

p
, and from

Fig. 1, A � 0:000 38. Thus, the left-hand side (LHS) of
Eq. (87) roughly amounts toffiffiffiffiffiffiffi

2�
p

�ARr: (91)

If we neglect the quark self-energies and the string correc-
tions, E � �r and the right-hand side (RHS) amount to

�r: (92)

Numerically [6], after simplifying the common factor r, we
have LHS � 0:030 and RHS � 0:026. Given the approxi-
mations we have made, in particular, the neglect of the
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quark self-energies and the use of the tree level renor-
malization factors for the plaquette, the agreement is
satisfactory.

Based on the remarks of Sec. II, we expect all three
plaquettes to yield the same string profile, to leading order
in the string fluctuations: each of them contains a piece of
either the energy density T00 or the longitudinal stress Txx.
This is indeed what the authors of [6] observed. We would
however expect Tyy, whose expressions in terms of

plaquettes can be read off Eq. (80), to yield a different
profile.

B. The case d ¼ 3

It was numerically observed a long time ago [27] in
d ¼ 3 dimensions and for the gauge group SUð2Þ that the
trace anomaly operator T�� yields a large string width that

grows with r in the observable (37). The linear combina-
tion 3T00 � T11 � ðT22 þ T33Þwas found to yield a smaller
value, and no clear evidence for a growing width could be
seen. According to our conjecture for the coupling of the
stress-energy tensor to the string, this operator should
measure the same width at leading order for a long enough
string, but in the range r

ffiffiffiffi
�

p
< 2 reached in the study the

corrections could be significant.
A few years later, a new numerical study was carried out

[28,29] in the same theory. The authors considered the
operators T�� and ðT00 þ T11 � ðT22 þ T33ÞÞ, which yield

similar profiles, as expected from the leading terms in
Eq. (3) and (8). The operator that the authors call the
‘‘transverse energy’’ is proportional to T00 � T11, and there
is some evidence that the profile measured with this linear
combination is indeed different, as we would expect based
on the arguments of Sec. II. The reader is reminded that we
are using Euclidean conventions here, see the comment at
the end of Sec. II.

VI. CONCLUSION

In this paper we have analyzed the transverse structure
of the confining string in non-Abelian gauge theories. We
argued that the stress-energy tensor n-point functions in
the presence of the confining string are mapped onto the
corresponding n-point functions of the world sheet stress-
energy tensor, appropriately shifted by a multiple of the
unit operator. The latter term accounts for the stress-
energy of the string at rest. We then derived the closed-
string representation of the three-point function from
which the string profile can be extracted. For this purpose
we first enumerated the gravitational form factors that
characterize the string profile. The functional form of
the leading-order prediction for the string’s square width
is then found to be in agreement with the closed-string
spectral representation. Most importantly, we showed that
the square radius of the ground-state closed string, defined
from the slope of its form factor, grows logarithmically

with the length of the string, just as the square radius of
the open string does. We also obtained a prediction for the
transition form factor between the ground and the first
excited state.
More generally, one can ask how a generic local gauge-

invariant operator is represented in the effective string
theory. We expect that it is mapped onto a linear combi-
nation of world sheet operators sharing its symmetries,
with unknown low-energy coefficients. The operator T22,
for instance, is mapped onto �ðh� yÞð�@ah � @ahþ . . .Þ,
where � must be determined by a matching procedure.
Some open questions remain, e.g. it is not quite clear yet
what role the ambiguity in the form of the world sheet
energy-momentum tensor (canonical vs improved) plays
beyond the quadratic order.
Finally, we wish to comment on the prospects of fully

characterizing the QCD string’s structure. In the analysis
of hadron structure, Generalized Parton Distributions
have provided a powerful way to characterize the struc-
ture of a relativistic bound state such as the proton (see
[30] for a review of the subject). Their moments in the
longitudinal momentum fraction are given by the form
factors of twist-two operators and are thus computable
in the Euclidean theory [31]. These moments can be
interpreted as Fourier transforms of the transverse dis-
tribution of partons [17]. The higher the dimension of
the operator, the higher the longitudinal momentum
fraction of the partons that it is measuring the transverse
distribution of.
It is a fascinating program to think about an analogous

comprehensive way of characterizing the structure of the
confining string. Here there is no need to go to the infinite-
momentum frame, which leads to kinematic simplifica-
tions in the proton case, because the string is parametri-
cally heavy compared to its transverse width. This warrants
the interpretation of form factors as the Fourier transforms
of ‘‘parton’’ densities. By analogy with the analysis of
proton structure [32], a rationale for which tower of op-
erators to concentrate on may be provided by a ‘‘deeply
virtual graviton scattering’’ gedanken experiment. Higher-
dimensional operators will presumably correspond to prob-
ing the transverse distribution of ‘‘gravipartons’’ which
carry a higher fraction of the string’s energy. By the
well-known arguments, we would expect to find smaller
transverse radii for these operators.
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