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We compute 1-loop corrections to Lorentz-signature de Sitter-invariant 2-point functions defined by the

interacting Euclidean vacuum for massive scalar quantum fields with cubic and quartic interactions. Our

results apply to all masses for which the free Euclidean de Sitter vacuum is well-defined, including values

in both the complimentary and the principal series of SOðD; 1Þ. In dimensions where the interactions are

renormalizeable we provide absolutely convergent integral representations of the corrections. These

representations suffice to analytically extract the leading behavior of the 2-point functions at large

separations and may also be used for numerical computations. The interacting propagators decay at long

distances at least as fast as one would naively expect, suggesting that such interacting de Sitter invariant

vacuua are well-defined and are well-behaved in the IR. In fact, in some cases the interacting propagators

decay faster than any free propagator with any value of M2 > 0.
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I. INTRODUCTION

While free quantum fields in de Sitter space (dS) have
been well understood for some time (see [1] for scalar
fields), interacting de Sitter quantum field theory continues
to be a topic of much discussion. In particular, the literature
contains numerous suggestions of possible quantum field
theoretic instabilities (see e.g. [2–5]), many of which have
been argued to perhaps lead to decay of the effective
cosmological constant. Our goal here and in [6] is to
address the specific class of such concerns associated
with infrared (IR) divergences of the naive Lorentz-
signature de Sitter Feynman diagrams, or more generally
those concerns that can be addressed in the context of
minimally-coupled scalar fields with M2 > 0.

As we will review, IR divergences arise in generic scalar
field theories in Lorentz-signature perturbation theory
about the free Hadamard de Sitter-invariant vacuum.
(This vacuum is often called the free Euclidean vacuum
as it may be defined by analytic continuation from
Euclidean signature.) While such divergences can be
avoided at tree level when the fields are sufficiently heavy,
they nevertheless arise in loop diagrams. On the other
hand, since Euclidean de Sitter is just a sphere, it is clear
that there are no IR divergences in Euclidean signature.
Our goal is to demonstrate that no pathologies arise from
analytic continuation of interacting Euclidean vacuua to
Lorentz signature, where they define de Sitter-invariant
states. Specifically we show that, at least through 1-loop
order, the associated Lorentz-signature 2-point functions
for massive scalar fields with cubic and quartic interactions
are finite and decay at large separations at least as fast as
one would naively expect. This indicates that these
Lorentz-signature de Sitter invariant vacuua are both

well-defined and well-behaved in the IR. In particular, it
suggests that these vacuua are stable.
Our results apply to all masses for which the free

Euclidean de Sitter vacuum is well-defined, i.e. for all
M2 > 0, including values in both the complimentary series
and the principal series of SOðD; 1Þ. In dimensions where
the interactions are renormalizable, we provide absolutely
convergent integral representations of the corrections
which allow us to analytically extract the leading behavior
of the 2-point functions at large timelike separations. In
addition, the representations are amenable to numerical
calculations, demonstrating that our methods provide prac-
tical tools for calculating Lorentz-signature correlation
functions. We provide a number of checks on our results,
including consistency with known flat-space limits. The
complications associated with both higher loops and higher
n-point functions will be addressed in [6], with similar
conclusions. Such results are in qualitative agreement
with those obtained using stochastic inflation techniques
[7], which are expected to be valid in the limit M‘ � 1,
where ‘ is the de Sitter length scale.
We begin by briefly reviewing de Sitter field theory in

Sec. II, and by reviewing some useful tools for analytic
continuation in Sec. III. We then compute perturbative
corrections to propagators in Sec. IV and establish their
IR properties, though some details are relegated to the
appendices. An interesting feature is the fact that, in
some cases, the corrections enhance the falloff of the
propagator at large times by opening what is effectively a
decay channel, even when the daughter particles are heav-
ier than the field under consideration. This corresponds to
the fact that particles in de Sitter space can decay to
heavier particles (see e.g. [8–11]) due to the lack of a
globally timelike Killing vector field (so that there no
conserved notion of energy that is positive definite).
When this occurs, the falloff of the corrected propagator
can be faster than that of any free field with M2 > 0.
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Section V then closes with a summary and discussion of
general stability issues for de Sitter space.

II. FIELD THEORY IN DE SITTER SPACE

The following brief review of de Sitter scalar field theory
provides an opportunity to fix conventions and to discuss
the IR divergences of naive de Sitter Feynman diagrams.
Consider the D-dimensional de Sitter space dSD for which
the metric in global coordinates is

ds2 ¼ ‘2½�dt2 þ ðcoshtÞ2d�2
d�; (1)

where d�2
d is the metric on the unit d ¼ D� 1 dimen-

sional sphere Sd. Free scalar fields obey the Klein-Gordon
equation

hx�ðxÞ ¼ M2�ðxÞ; (2)

and define representations of the (connected) de Sitter
group SO0ðD; 1Þ. It is useful to define the dimensionless
mass parameter � by ��ð�þ dÞ :¼ M2‘2. Throughout
most of our work, the ambiguity � ! �ð�þ dÞ will be a
redundancy of our description, and symmetry � !
�ð�þ dÞ will provide a useful check on our calculations.
However, for the moment choosing the branch

� :¼ �d

2
þ

�
d2

4
�M2‘2

�
1=2

; (3)

the standard de Sitter representations may be classified as
follows [12]:

(1) complementary series: �d=2<�< 0,
(2) principal series: � ¼ �d=2þ i�, � 2 R, � � 0,
(3) discrete series: � ¼ 0; 1; 2; . . . .

We denote the line Re� ¼ �d=2 on which the principal
series fields live by �P below.

Fields with M2 > 0 correspond to representations in the
complementary and principal series (see Fig. 1). In par-
ticular, sufficiently light fields belong to the complemen-
tary series while heavier fields belong to the principal
series. In either case, a de Sitter-invariant Green’s function
��

xy (with arguments x, y) may be defined by analytic

continuation from Euclidean signature (i.e., from SD).
We summarize this construction in Sec. III below, but for
now we merely state that in the principal and complimen-
tary series the propagator �� contains terms that fall off

like e�jtj, e�ð�þdÞjtj when one argument is held fixed and
the other is taken to large values of jtj. It is important to
note that the fastest such decay occurs in the principal
series where Re� ¼ Re½�ð�þ dÞ� ¼ �d=2. We will not
consider massless or tachyonic scalars further, as the cor-
responding free theories do not admit de Sitter-invariant
Green’s functions [1].
Let us now briefly review the IR diverges that arise in

calculating naive Lorentz-signature Feynman diagrams.
Before beginning, we emphasize that we discuss
Feynman diagrams for correlation functions. In particular,
following the general point of view common in curved
spacetime quantum field theory (see e.g. [13]), we view
the theory as being defined by its gauge-invariant correla-
tors, with the possible existence of a de Sitter S-matrix
being a secondary issue to be investigated at a later stage.
Feynman diagrams in Lorentz signature involve inte-

grating products of propagators over the relevant space-
time, here dSD. Despite the above exponential decay of de
Sitter propagators, this leads to IR divergences due to the
exponential growth of the de Sitter volume element
�ðcoshtÞd. For complimentary series fields with � near
zero, even the product of 3 or more propagators decays
only very slowly so that the most familiar tree-level dia-
grams (shown in Fig. 2) diverge.
Furthermore, even in the principal series, IR divergences

arise in generic loop diagrams. Consider for simplicity a
correction to the propagator; i.e., a diagram with two
external lines. Let us work in position space and fix the
spacetime points x1, x2 associated with each external line.
Then all vertices must be integrated over dSD. Consider, in
particular, the integral over the far future region with the
relative positions of the vertices held fixed. Then the
measure contributes a factor of the de Sitter volume edt

but, since the relative positions of the vertices are held
fixed, the integrand is suppressed only by the propagators

FIG. 2. Even the above tree-level diagrams diverge for com-
plimentary series fields with � close enough to zero.

FIG. 1. On-shell values of � in the complex plane for massive
scalar fields. The solid line denotes the path of � for increasing
M2 starting from at � ¼ 0 forM2 ¼ 0. The dotted line shows the
path of �ð�þ dÞ for increasing M2 starting from �ð�þ dÞ ¼
�d for M2 ¼ 0. Relatively light fields with 0<M2‘2 < d2=4
correspond to values of � and�ð�þ dÞ on the negative real axis
and belong to the complementary series. Heavier fields with
M2‘2 � d2=4 correspond to complex values of � and �ð�þ dÞ
on the line �P and belong to the principal series.
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corresponding to external lines. From the behaviors
quoted above, we see that each contributes a factor of at

best e�dt=2. As a result, the integral diverges at least asR
dt� t. In particular, so long as both external lines de-

scribe fields of the same mass, the integrand contains terms
that do not oscillate at large t.

It is interesting to note that the above argument applies
even to tree-level corrections to propagators; i.e., to any
quadratic terms in the Lagrangian (mass terms or kinetic
energy terms) which we choose to treat via perturbation
theory. In this context, the above divergences are related to
what was termed a failure of the composition principle by
Polyakov in [4]—see also [14]. Of course, despite the
divergence of the naive Feynman diagrams, corrections
of this form can always be dealt with by simply diagonal-
izing the quadratic part of the Lagrangian and writing
down the resulting free propagators. At least in this par-
ticular case it is clear that there is no problem with the
theory itself, but merely with the method of calculation.1

There is some rough similarity here to the familiar problem
of secular divergences in classical mechanics, where an
infrared effect appears to be large due to not properly
accounting for finite shifts in frequency.2 The relevant
question is whether another method of calculation can
remove all IR divergences and define a useful de Sitter-
invariant vacuum for the interacting quantum fields. A
natural candidate based on analytic continuation from
Euclidean signature is discussed in Sec. III below.

III. ANALYTIC CONTINUATIONS
IN DE SITTER FIELD THEORY

It is well known that the Euclidean sphere SD is related
to dSD by analytic continuation. In particular, the standard
metric

d�2
D ¼ ‘2½d�2 þ ðsin�Þ2d�2

d�; (4)

on SD (1) can be obtained via the Wick rotation � ! t
given by

t ¼ i

�
�� �

2

�
; � ¼ �

2
� it: (5)

Because SD is compact, no IR divergences can arise through
integrals over SD. As a result, so long as the linearized field

theory admits an SOðDþ 1Þ propagator (i.e., so long as
there are no massless scalar fields), the familiar Euclidean-
signature Feynman diagrams will converge to define an
interacting SOðDþ 1Þ-invariant state on the sphere. By
this we mean that, at each order in perturbation theory, the
correlators computed on the sphere will be invariant under
SOðDþ 1Þ and will satisfy the (Euclidean) Schwinger-
Dyson equations. See e.g. [17] for other work involving
interacting quantum field theory on SD.
It is therefore natural to attempt to define

SOðD; 1Þ-invariant states in the Lorentz-signature quantum
field theory by analytic continuation from Euclidean sig-
nature. Recall that a state in quantum field theory can be
defined by its correlation functions, so it is the correlators
upon which the analytic continuation must in fact be
performed. Any set of correlators which satisfies the
Schwinger-Dyson equations and appropriate positivity
conditions may be considered a valid state of the field
theory. But by the usual arguments the Lorentz-signature
Schwinger-Dyson equations are just the analytic continu-
ation of those in Euclidean signature, so the Schwinger-
Dyson condition is automatically fulfilled by correlators
continued from Euclidean signature. Similarly, the result-
ing Lorentz-signature correlators will be invariant under
SOðD; 1Þ. Furthermore, in the limit of small couplings,
positivity conditions satisfied for free fields cannot be
violated by adding perturbative corrections. In addition,
the analogue [18] for de Sitter of the Osterwalder-Schräder
reconstruction theorem (see e.g. [19]) states that this
positivity is guaranteed by reflection-positivity of the
Euclidean correlators, which holds at least formally when
the potential is bounded below (and which holds rigorously
for polynomial potentials bounded below if D ¼ 2) [20].
In order to gain more intuition for this procedure, it is

useful to describe an alternate (though computationally
more difficult) construction of our state. Because our
Lorentz-signature correlators satisfy the Lorentz-signature
Schwinger-Dyson equations, they may be thought of as the
result of time-evolving initial data from t ¼ 0. But at t ¼ 0
no analytic continuation is required; the Lorentz-signature
correlators are precisely the same as that Euclidean corre-
lators up to factors of i associated with explicit time
derivatives. So our Wick-rotated state is identical to what
one might call the de Sitter Hartle-Hawking vacuum [21]
defined by using the Euclidean path integral to compute the
state on the S3 at t ¼ 0 and then evolving away from t ¼ 0
using the equations of motion.
The existence of perturbative de Sitter-invariant vacuua

for interacting (massive) scalar field theories is therefore
clear at an abstract level. In Sec. IV below, we demonstrate
that there are no hidden subtleties by computing tree and 1-
loop corrections to propagators in precisely this way.
Somewhat less trivially, we also explore the large t behav-
ior of the results in order to probe the stability and other IR
properties of the resulting de Sitter-invariant states. Most

1As emphasized in [4] and further explored in [15], the failure
of naive Lorentz-signature perturbation theory is associated with
the fact that there is no adiabatic theorem in de Sitter space. Even
a slow change of coupling constants in the distant past typically
has finite effects at finite times. This phenomenon is in turn due
to what is effectively a diverging blueshift due to the rapid
contraction of de Sitter space in the distant past or, what is
equivalent, to the spacelike nature of the past de Sitter boundary
I� (so that geodesics enter the future light cone of a given point
on I� only at finite times).

2As noted in [16], secular divergences are associated even
more closely with issues that arise for the special case M2 ¼ 0
which we do not consider here.
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of our effort will be associated with writing the results in a
form appropriate for controlling the analytic continuations
at large timelike separations. The final output will be an
integral over functions on dSD which allows us to read off
the large t asymptotics of the Lorentz-signature correlators.
Since the integral converges absolutely, it provides a basis
for practical numerical calculations even when it cannot be
evaluated exactly. In the remainder of this section we
review two tools that will prove useful in performing the
desired analytic continuations.

A. A tool in position space: Embedding distance

Our focus in this work is on loop-corrected 2-point
functions. Since the vacuum on SD is invariant under the
action of the isometry group SOðDþ 1Þ, Euclidean 2-point
functions h�iðx1Þ�jðx2Þimay be written as functions of the

geodesic distance between x1 and x2. It turns out to be even
more convenient to parametrize this separation by the
embedding distance, i.e. the length of the chord between
x1 and x2 in an ambient space RDþ1. This embedding
distance may be written in terms of coordinates on the
sphere as

Z12 :¼ Zðx1; x2Þ ¼ cos�1 cos�2 þ sin�1 sin�2ð ~x1 � ~x2Þ;
(6)

where ~x1 and ~x2 are unit vectors on the subsphere SD�1.
The distance Z is confined to the range ½�1; 1� with 1ð�1Þ
the podal (antipodal) point.

Under the analytic continuation (5) the spherical embed-
ding distance (6) becomes the SOðD; 1Þ-invariant de Sitter
embedding distance

Z12 ¼ � sinht1 sinht2 þ cosht1 cosht2ð ~x1 � ~x2Þ; (7)

where the embedding space is in this case MD;1. On
dSD, the values of Z12 range over all of R; in particular,
the embedding distance satisfies (i) Z12 2 ½�1; 1Þ
for spacelike separations, (ii) Z12 ¼ 1 at coincident
points, and (iii) jZ12j> 1 for timelike separations. As a
result, a Euclidean correlation function h�iðx1Þ�jðx2Þi ¼
h�i�jðZ12Þi may be continued to the Lorentzian correlator

h�iðx1Þ�jðx2ÞiL ¼ h�i�jðZ12ÞiL (or its time-ordered

counterpart) simply by continuing Z12 from ½�1; 1� to R.
Of course, one must deal appropriately with branch cuts

and singularities for the result to have the desired physical
properties. As may be inferred from the flat-space limit, the
correct definition is

hT�ðx1Þ�ðx2ÞiL :¼ h�i�jð �Z12Þi; (8)

where

�Z 12 :¼ Z12 þ i�: (9)

Similarly, one may define the Lorentz-signature Wightman
2-point function by

h�ðx1Þ�ðx2ÞiL :¼ h�i�jð~Z12Þi; (10)

where

~Z 12 ¼ Z12 þ
�þi� if x1 is in the future of x2
�i� if x1 is in the past of x2

: (11)

B. A tool in momentum space:
Watson-Sommerfeld transformations

As in flat space, de Sitter calculations are typically
easiest to perform in what is effectively a momentum space
representation. Now, it is well known that there are various
subtleties regarding the definition of de Sitter momentum
space in Lorentz signature. For example, the spectrum of
the wave operator on L2ðdSDÞ has both continuous and
discrete parts [12]. However, one may avoid all such issues
by simply calculating Feynman diagrams in Euclidean
signature and using the basis of L2ðSDÞ given by the
standard spherical harmonics Y ~L satisfying [22]

‘2r2
xY ~LðxÞ ¼ �LðLþ dÞY ~LðxÞ; (12)

where r2 is the standard scalar Laplacian on SD with

metric (4). Here ~L ¼ ðLD; LD�1; . . . ; L1Þ is the set of D
angular momenta; the Li are integers satisfying LD �
LD�1 � � � � � L2 � jL1j. We will refer to LD as the total
angular momentum. The harmonics satisfy the orthonor-
mality and completeness relationsX

~L

Y ~LðxÞY�
~L
ðyÞ ¼ ‘D ~�ðx; yÞ;

Z
x
Y ~LðxÞY�

~M
ðxÞ ¼ ‘D� ~L ~M: (13)

In addition, the harmonics satisfy the following very useful
relation [23]:

X
~j

YL~jðxÞY�
L~j
ðyÞ ¼ �ðd2Þð2Lþ dÞ

4�d=2þ1
Cd=2
L ðZxyÞ; (14)

where here ~L ¼ ðL; ~jÞ, C�
LðxÞ is a Gegenbauer polynomial

(see Appendix A 2), and Zxy ¼ Zðx; yÞ denotes (6) with

arguments x, y.
The usual operations readily express Feynman diagrams

on SD as sums over spherical harmonics or, equivalently,
over Gegenbauer polynomials using (14). One might try to
obtain useful expressions for de Sitter correlators by ana-
lytically continuing such sums over polynomials using (9).
However, the C�

LðxÞ are polynomials for integer L, so each
term in such a sum diverges at large Zxy. But this is

precisely the region we want to study, since we wish to
determine the behavior of correlators at large timelike
separations.
It is therefore useful to rewrite sums of Gegenbauer

polynomials C�
L as integrals of more general Gegenbauer

functions C�
�ðxÞ over an appropriate contour C in the

complex plane using a procedure that one might think of
as analytic continuation in momentum space. Specifically,
we use a Watson-Sommerfeld transformation (see e.g.
[24]): To express a general sum S ¼ P

LsðLÞ as a contour
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integral in the complex L plane, one first chooses any
function ~s such that (i) ~s agrees s at the values of L
appearing in the original sum and (ii) ~s is analytic in
some open neighborhood of the complex L-plane around
each such point. One then multiplies ~sðLÞ by a meromor-
phic kernel kðLÞ having unit-residue poles at the values of
L appearing in the original sum. One then need only
choose an appropriate contour C0 along which to integrate:

S ¼ X
L

sðLÞ ¼
I
C0

dL

2�i
kðLÞ~sðLÞ: (15)

Finally, one may attempt to deform the original contour C0

to another contour C over which one has more control.
In our applications, the summand sðLÞ contains a factor

of Cd=2
L ðxÞ. We therefore take ~sðLÞ to contain a similar

factor in which Cd=2
L ðxÞ is a Gegenbauer function (see

Appendix A 2 for conventions) for general complex L.
Recall that we wish to evaluate our Feynman diagrams at
large jZj. It is therefore useful to know that for general

complex L, Cd=2
L ðZÞ is a sum of two terms that behave for

large real Z like ZL and Z�ðLþdÞ (see Appendix A 2). As a
result, we achieve the most control if we can deform the
contour to the line �P associated with principal series
values of� (i.e., on whichReL ¼ �d=2) where both terms

decay at large jZj like jZj�d=2. Our basic goal3 is to express
all diagrams in terms of integrals over �P, and to carefully
study the extra terms that arise as one deforms the contour
from C0 to �P. If the integrand decays sufficiently rapidly
at large jLj, then there is no contribution from infinity. The
Lorentz-signature propagator will then decay at large val-
ues of jZj if all singularities encountered are sufficiently
close to �P.

It is useful to quickly illustrate this technique by com-
puting the free propagator. Recall that the free propagator
��

xy on the sphere is the unique solution to the inhomoge-

neous Klein-Gordon equation

� ðr2
x �M2Þ��

xy ¼ �ðr2
y �M2Þ��

xy ¼ �xy: (16)

From the above-mentioned properties of spherical harmon-
ics we immediately see that ��

xy may be written4

��
xy ¼ ‘2�D

X
~L

Y ~LðxÞY�
~L
ðyÞ

LðLþ dÞ þM2‘2

¼ ‘2�D
X
~L

1

	L�

Y ~LðxÞY�
~L
ðyÞ; (17)

where in the second equality we have defined

	L� :¼ LðLþ dÞ þM2‘2 ¼ ðL� �ÞðLþ �þ dÞ: (18)

The expression (17) provides a spectral representation of
��

xy on the space ðx; yÞ 2 SD � SD. Other representations

may be found by summing over the angular momenta.
First, by using (14) to sum over all but the total angular
momentum one obtains

��ðZÞ ¼ ‘2�D
�ðd2Þ

4�d=2þ1

X1
L¼0

ð2Lþ dÞ
	L�

Cd=2
L ðZÞ: (19)

This is a spectral representation on the interval Z 2
½�1; 1�. The fact that ��ðZÞ depends only on the invariant
distance Z is manifest. Note that in the form (19) one may
readily extend the definition of ��ðZÞ to arbitrary real
dimensions d, a procedure that will prove useful below
and for dimensional regularization of UV divergences.
One now wishes to perform the final sum in (24). To do

so, we take ~sðLÞ to be

~sðLÞ ¼ ð2Lþ dÞ
	L�

e�i�LCd=2
L ð�ZÞ; (20)

this is just the summand in (19) rewritten slightly by using
the Gegenbauer reflection formula (A9). We let

kðLÞ ¼ �ei�L

sinð�LÞ ¼ �ei�L�½�L; 1þ L�; (21)

which inserts poles of unit residue at all L 2 Z and write

��ðZÞ ¼ ‘2�D
�ðd2Þ

4�d=2þ1

ð�1Þ
�ðdÞ

I
C1

dL

2�i

ð2Lþ dÞ
	L�

�

� ½�L; Lþ d�2F1

�
�L; Lþ d;

dþ 1

2
;
1þ Z

2

�
:

(22)

Here 2F1ða; b; c; zÞ is the hypergeometric function and we
use a condensed notation for gamma functions presented in
Appendix A 1. Since the hypergeometric function is sin-
gular at Z ¼ 1, the above procedure should be performed
with Z < 1; we will later continue to jZj> 1.
The contour C1 is depicted in Fig. 3. The integrand has

poles at L ¼ 0; 1; 2; . . . , L ¼ �d;�ðdþ 1Þ;�ðdþ
2Þ; . . . , and at L ¼ �, �ð�þ dÞ. In fact, the integrand is
antisymmetric under the reflection L ! �ðLþ dÞ. Letting
jLj ! 1 in the neighborhood of the real axis the integrand
decays as a negative power of jLj—this is basically a result
of the fact that the original series (19) converges—but,
since the factors e	i�L in (20) and (21) cancel in (22), the
integrand decays exponentially away from the real axis, i.e.

at large jImLj 
 1 the integrand decays like e��jImLj.
Because of this, we may deform the contour of integration
at infinity. Consider deforming the contour C1 to the con-
tour C2 defined by a straight line at any angle to the real
axis passing through the reflection point L ¼ �d=2. In the

3As we will discuss in Sec. , one can obtain even more
information about the large jZj behavior by applying additional
tricks, but such embellishments are not needed for the most
central results.

4Dimensional analysis shows the length dimensions ½. . .� of
the following quantities: ½M2� ¼ �2, ½�� ¼ 2�D

2 , ½gn� ¼
nðD�2Þ

2 �D, where gn denotes the coupling constant of n-field
interactions. It follows that ½��� ¼ 2�D.
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process we deform the contour through exactly one of the
two poles at L ¼ � or L ¼ �ð�þ dÞ, picking up a residue
(see Fig. 3). The remaining line integral along C2 vanishes
due to the antisymmetry of the integrand under L !
�ðLþ dÞ. Thus we find that

��ðZÞ ¼ ‘2�D
�ðd2Þ

4�d=2þ1

1

�ðdÞ
� Res

�ð2Lþ dÞ
	L�

�½�L; Lþ d�2

� F1

�
�L; Lþ d;

dþ 1

2
;
1þ Z

2

��
L¼� or�ð�þdÞ

:(23)

The residues at L ¼ � and L ¼ �ð�þ dÞ are equal (again
because the integrand is antisymmetric under L ! �ðLþ
dÞ), so one readily obtains

��ðZÞ ¼ ‘2�D 1

4�d=2þ1
�

d
2 ;��;�þ d

d

" #

� 2F1

�
��;�þ d;

dþ 1

2
;
1þ Z

2

�
(24)

¼ �‘2�D
�ðd2Þ

4�d=2 sinð��ÞC
d=2
� ð�ZÞ; (25)

where the definition of the Gegenbauer function (A3) was
used in the final step. In this form, the propagator is readily
continued to all Z 2 R. In particular, the large jZj behavior
follows from (A5) which shows that �� is a sum of two

terms, respectively, proportional to Z� and Z�ð�þdÞ.

IV. PERTURBATIVE CORRECTIONS

We are now ready to compute perturbative corrections to
propagators. At tree level, such corrections can arise only
through interactions of the form Lint ¼ g�1ðxÞ�2ðxÞ,
where the fields need not be distinct and g has length units
½g� ¼ �2. This interaction can be thought of as resulting

from a nondiagonal mass matrix. At the level of the
Lagrangian one may of course use a field redefinition to
rewrite this theory in terms of free massive scalar fields,
after which one may compute the corrected propagator
exactly in either Euclidean or Lorentzian signature. It is
nevertheless useful to understand the perturbative treat-
ment of such terms, not least because they arise as counter-
terms needed for renormalization. We therefore briefly
discuss such corrections before turning to 1-loop correc-
tions in Sec. .
On the sphere one may readily compute the leading

correction [Fig. 4(a)]:

h�1ðx1Þ�2ðx2Þi ¼ �g
Z
y2SD

��1

1y�
�2

y2 þOðgÞ3

¼ g

M2
1 �M2

2

ð��1ðZ12Þ � ��2ðZ12ÞÞ

þOðgÞ3: (26)

The final equality follows from the equation of motion and
the fact that no surface terms arise upon integrating by
parts (the latter statement is not true in de Sitter). The
degenerate case M2

1 ¼ M2
2 (e.g., where �1 and �2

represent the same field) can be found by taking the limit
of (26); the right-hand side becomes�@M2��ðZ12ÞjM2¼M2

1
.

Explicit expressions for @�C
�
�ðZÞ for half-integer and in-

teger � may be found in [25] if desired. The result of
course agrees with what one finds by diagonalizing the
quadratic term in the action, computing the exact propa-
gator, and then expanding the result perturbatively in g.
However, it is useful to note that (26) can also be

obtained following the computational scheme outlined in
Sec. III B. One simply uses (17) and the orthogonality of
spherical harmonics to convert the integral over SD to a

sum over ~L, and then uses (14) to write the result as a sum
over Gegenbauer polynomials. Finally, one may use a
Watson-Sommerfeld transformation very similar to the
one described in Sec. III B to perform the final sum over
L and obtain (26). In the degenerate case the derivative
@��

�ðZ12Þ arises from evaluating a double pole.
No matter how (26) is obtained, the result is straightfor-

ward to continue to Lorentzian de Sitter using (9). Again,
the result agrees with the correction found by diagonaliz-
ing the quadratic term in the action, computing the exact
propagator, and then expanding the result perturbatively in
g. This makes it clear that any term of the form (26) is
precisely a correction to the scalar field mass matrix, and
that the corrected propagators will fall off at large Z in the
manner one would expect.

FIG. 3. An example of the contour prescription for computing
��ðZÞ. The contour C2 is an arbitrary straight line through the
reflection point L ¼ �d=2. Sample �-poles are drawn for the
principal series (boxes) and complementary series (circles).

FIG. 4. Tree-level contributions to (a) h�1ðx1Þ�2ðx2Þi and
(b) h�1ðx1Þ�1ðx2Þi.

DONALD MAROLF AND IAN A. MORRISON PHYSICAL REVIEW D 82, 105032 (2010)

105032-6



1-Loop contributions

We now analyze the possible effects of interactions at 1-
loop order. At this level, only three- and four-particle
interactions can contribute to 2-point functions. For 4-
particle interactions of the form g

4 ð�1ðxÞÞ2ð�2ðxÞÞ2 (with

�1 and �2 perhaps representing the same field), the rele-
vant diagrams are those of Fig. 5. Both of these diagrams
are of the form (26) discussed above. This is manifest for
diagram (b), while it becomes clear for diagram (a) by
writing

� g

2

Z
y2SD

��1

1y�
�2
yy�

�1

y2 ¼ �
�
g

2
��2ð1Þ

�Z
y2SD

��1

1y�
�1

y2 :

(27)

In other words, diagram (a) of Fig. 5 is just a constant
(given by the propagator at coincident points) times dia-
gram (a) for Fig. 4. After renormalizing the constant (by
using dimensional regularization and perhaps adding the
counterterm associated with diagram (b) of Fig. 5 for
the case m1 ¼ m2), the result just a (real) correction to
the mass of �1. Thus the corrected propagators again fall
off at large jZj as one would expect. One can in fact set the
mass corrections to zero by an appropriate choice of re-
normalization scheme. Interested readers may find detailed
results for the minimal subtraction (MS) scheme listed in
Appendix C for dimensions D ¼ 3, 4.

We therefore turn directly to the more interesting case of
3-particle interactions, which provide a more computation-
ally difficult example of quantum corrections to the 2-point
function. We consider a theory with three massive scalar
fields and interactions given by

Lint ¼ g�1ðxÞ�2ðxÞ�3ðxÞ

þX3
i¼1

�
� 1

2
�iðxÞ½ð��iÞr2

x � ð�M2
i Þ��iðxÞ

�
: (28)

As usual, the results for self-interacting fields can be
obtained at the end by taking degenerate limits where
one or more masses coincide.

The first term in (28) provides the 3-particle interaction
while the remaining terms are counterterms which arise
from the renormalization of the fields and bare masses. As
for 4-particle interactions, we can ignore renormalization
of the coupling g as it plays no part in the renormalization
of the 2-point function at this level. The coefficients in (28)
have length units ½g� ¼ D�6

2 , ½ð��iÞ� ¼ 0, ½ð�M2
i Þ� ¼ �2.

The interaction in (28) is relevant in spacetime dimension

D< 6 and marginal in D ¼ 6; we will therefore study this
theory in D ¼ 3, 4, 5, 6.
The lowest-order corrections to the scalar 2-point func-

tion h�1ðx1Þ�1ðx2Þi occur at Oðg2Þ; they are shown dia-
grammatically in Fig. 6. Using the notation of this figure
we write

h�1ðx1Þ�1ðx2Þið2Þ ¼ ðaÞ þ ðbÞ þ ðcÞ: (29)

Let us first compute diagram ðaÞ on the sphere:

ðaÞ ¼ g2
Z
y2SD

Z
y02SD

��1

1y�
�2

yy0�
�3

yy0�
�1

y02: (30)

To proceed, we expand the product of two � distributions
on SD in the basis given by spherical harmonics:

��1��2ðZ12Þ ¼ ‘4�2D
X
~L

��1�2
ðLÞY ~Lðx1ÞY�

~L
ðx2Þ (31)

¼ ‘4�2D �ð�Þ
2��þ1

X1
L¼0

ðLþ �Þ��1�2
ðLÞC�

LðZ12Þ: (32)

The spectral function ��1�2
ðLÞ defined by (31) will be

discussed shortly and is computed in Appendix B. As in
this appendix, it is convenient to keep track of the space-
time dimension through the quantity � :¼ d=2 ¼
ðD� 1Þ=2. Inserting (31) into (30) and using (17), (13),
and (14), we find

ðaÞ ¼ ‘8�2Dg2
�ð�Þ
2��þ1

X1
L¼0

ðLþ �Þ��2�3
ðLÞ

ð	L�1
Þ2 C�

LðZ12Þ:

(33)

The counterterms ðbÞ and ðcÞ are straightforward to com-
pute:

ðbÞ ¼ ð��1Þ
Z
y2SD

��1

1yhy�
�1

y2

¼ �‘2�D �ð�Þ
2��þ1

� X1
L¼0

ðLþ aÞð��iÞLðLþ 2�Þ
ð	L�1

Þ2 C�
LðZ12Þ; (34)

ðcÞ ¼ �ð�M2
1Þ
Z
y2SD

��1

1y�
�1

y2

¼ �‘4�D �ð�Þ
2��þ1

X1
L¼0

ðLþ �Þð�M2
1Þ

ð	L�1
Þ2 C�

LðZ12Þ: (35)

Combining our results we have the following expression

for h�1ðx1Þ�1ðx2Þið2Þ:
h�1ðx1Þ�1ðx2Þið2Þ ¼ ‘2�D �ð�Þ

2��þ1

� X1
L¼0

fðLÞðLþ �ÞC�
LðZ12Þ; (36)

where we have defined

fðLÞ :¼ g2‘6�D��2�3
ðLÞ � ‘2ð�M2

1Þ � LðLþ 2�Þð��1Þ
ð	L�1

Þ2 :

(37)
FIG. 5. OðgÞ contributions to h�1ðx1Þ�1ðx2Þi. Diagram (a) is
the 1-loop contribution while (b) is a possible counterterm.
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Let us now discuss the function ��1�2
ðLÞ defined by the

expansion (31). From the orthogonality of Gegenbauer
polynomials we may compute

��1�2
ðLÞ :¼ ‘2D�4 2��þ1

�ð�ÞðLþ �Þ
1

A�
L

�
Z þ1

�1
dZð1� Z2Þ��1=2C�

LðZÞ��1ðZÞ��2ðZÞ;
(38)

where A�
L is the Gegenbauer normalization (A8). The

function ��1�2
ðLÞ is clearly invariant under the actions

�1!�ð�1þ2�Þ; �2!�ð�2þ2�Þ; �1$�2:

(39)

Near Z ¼ 1 the distribution ��ðZÞ behaves like �ð1�
ZÞ1=2��, so we see that the integral in (38) converges for
0<�< 3=2. We compute ��1�2

ðLÞ for this range of � in

Appendix B; the result may be written

��1�2
ðLÞ ¼

�
1

16��

cosð��1Þ
sin�ð�1 þ �Þ

� �
2� 2�;��1; Lþ 1; 2þ L� �1 � �; L��1��2

2 ; L��1þ�2þ2�
2

1� �1 � �; Lþ �þ 1; Lþ 1� �1;
4þL��1��2�4�

2 ; 4þL��1þ�2�2�
2

2
4

3
5

��7V6

�
1þ L� �1 � �; 1� �; 1� �1 � 2�; 1þ L;

L� �1 � �2

2
;
L� �1 þ �2 þ 2�

2

�

þ ð�1 ! �ð�1 þ 2�ÞÞ
�
þ ð�1 $ �2Þ: (40)

Here 7V6ða; b; c; d; e; fÞ is a so-called very well-poised 7F6

hypergeometric function (see Appendix A 3). The series
defining the 7V6ða;b; c; d; e; fÞ in (40) is absolutely con-
vergent for all complex L, �, �1, and �2. We may define
��1�2

ðLÞ for complex � via the analytic continuation of
(40) beyond the interval 0<�< 3=2. As is discussed in
Appendix B 3, this extended ��1�2

ðLÞ has poles at � ¼
3=2; 5=2; . . . . We also show in this appendix that ��1�2

ðLÞ
has poles in the complex L-plane at

L ¼ �1 þ �2 � 2n; ��1 þ �2 � 2�� 2n;

�1 � �2 � 2�� 2n; ��1 � �2 � 4�� 2n
(41)

for n 2 N0. We will address the meaning of these poles
momentarily. An important property of ��1�2

ðLÞ defined in
(40) is that it obeys

��1�2
ðLÞ ¼ ��1�2

ð �LÞ ¼ ��1�2
ð �LÞ (42)

for ‘‘on-shell’’ masses�1 and�2. The first equality follows
from the fact ��1�2

ðLÞ can be written as an absolutely
convergent series of terms which may be expressed in
terms of Gamma functions, and the Gamma function itself
obeys ��ðxÞ ¼ �ð �xÞ. The second equality follows for on-
shell values of �1 and �2. ‘‘On-shell’’ values of � are
either (i) ��< �< 0, in which case � 2 R, or

(ii) � ¼ ��þ i
, 
 2 R, for which �� ¼ ��� i
 ¼
�ð�þ 2�Þ.
We can now discuss the renormalization coefficients in

(37). We use these coefficients to cancel any superficial
divergences in ��2�3

ðLÞ and render fðLÞ finite. For the

dimensions of interest, such superficial divergences occur
when � ¼ 3=2 and � ¼ 5=2 (D ¼ 4 and D ¼ 6). In the
neighborhood � ¼ ð3� �Þ=2, ��2�3

ðLÞ diverges as

��2�3
ðLÞj�¼ð3��Þ=2 ¼ 1

8��
þOð�0Þ: (43)

Following the MS scheme, this divergence is cancelled by
setting

ð�M2
i Þj�¼ð3��Þ=2 ¼ g2

8��
þOðg4Þ;

ð��iÞj�¼ð3��Þ=2 ¼ Oðg4Þ:
(44)

For � ¼ ð5� �Þ=2 we have

��2�3
ðLÞj�¼ð5��Þ=2

¼ �1

64�3�

�
LðLþ 5Þ

3
þM2

2‘
2 þM2

3‘
2 � 10

�
þOð�0Þ:

(45)

This divergence is cancelled by setting

FIG. 6. Oðg2Þ corrections to h�1ðx1Þ�1ðx2Þi. Diagram (a) is the 1-loop contribution, (b) the counterterm due to field renormalization,
and (c) the counterterm due to mass renormalization. The slash in diagram (b) denotes the action of r2.
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ð�M2
1Þj�¼ð5��Þ=2 ¼ �g2ðM2

2 þM2
3Þ

64�3�
þOðg4Þ;

ð��iÞj�¼ð5��Þ=2 ¼ � g2

192�3�
þOðg4Þ:

(46)

The expressions for ð�M2
2Þ and ð�M2

3Þ are given by the

obvious permutation of the masses. For D ¼ 3, 5 we set
ð�M2

i Þ ¼ ð��iÞ ¼ Oðg4Þ.
Let us now return to our expression (36) for

h�1ðx1Þ�1ðx2Þið2Þ. Our task is to rewrite this in a form
well-suited to analytic continuation to Lorentz signature.
We proceed in the same way we dealt with the free 2-point
function in (19), using a Sommerfeld-Watson transforma-
tion defined by the same kernel (21) and integrating along a
contour C enclosing the poles at L ¼ 0; 1; 2; . . . .

h�1ðx1Þ�1ðx2Þið2Þ ¼�2
I
C

dL

2�i
fðLÞðLþ�Þ�LðZ12Þ; (47)

where we have used (24) to replace Gegenbauer functions
by � distributions for general real � ¼ d=2.

The integrand decays exponentially away from the

imaginary axis like e��jImLj; we can therefore deform the
integration contour away from C. We would like to deform
the integration contour to the contour � along the straight
line �P defined by ReðLÞ ¼ �� [see Fig. 7]. By conven-
tion, we take � to pass on the left side of any poles that lie
precisely on �P.

As we deform the contour, we will pick up residues from
any poles we encounter. The integrand in (47) has many
poles in the L-plane. The distribution �LðZÞ has simple
poles at

L ¼ n; L ¼ �ðnþ 2�Þ; for n 2 N0: (48)

The function fðLÞ has the simple poles in ��2�3
ðLÞ listed in

(41); in addition, the ð	L�1
Þ2 in the denominator of fðLÞ

has double-poles at5

L ¼ �1; L ¼ �ð�1 þ 2�Þ: (49)

Despite all these poles, only a very few poles are encoun-
tered as we move the integration contour from C to �.
When �1ðxÞ is in the complementary series then ��<
�1 < 0 and the pole at L ¼ �1 is on the right-hand side of
�. When �1ðxÞ is in the principal series both the poles at
both L ¼ �1 and L ¼ �ð�1 þ 2�Þ lie on the line �P.
Additionally, if both �2ðxÞ and �3ðxÞ are in the comple-
mentary series itmay be that�� � �2 þ �3 < 0 and even
possibly �� � �2 þ �3 � 2< 0; in these cases the poles
at L ¼ �2 þ �3 and L ¼ �2 þ �3 ¼ 2 lie to the right-
hand side of �. We conclude that

h�1ðx1Þ�1ðx2Þið2Þ ¼ 2ResffðLÞðLþ �Þ
� �LðZ12ÞgL¼�1;�ð�1þ2�Þ�;ð�2þ�3Þ�;ð�2þ�3�2Þ�

þ 2
Z
�

dL

2�i
fðLÞðLþ �Þ�LðZ12Þ: (50)

Here an asterisk notes that the residue should only be
considered if the pole location has ReðLÞ � ��. See
Fig. 7 for examples.
Let us first consider the case when �1ðxÞ is a comple-

mentary series field. In this case ��< �1 < 0. It is
straightforward to evaluate the residue at L ¼ �1, which
may be written in the useful form

R1 :¼ 2ResffðLÞðLþ �Þ�LðZ12ÞgL¼�1

¼ � @

@ðM2Þ f½g
2 Ref‘4�D��2�3

ð�ðM2ÞÞg � ð�M2
1Þ

þM2ð��1Þ���ðM2ÞðZ12ÞgjM2¼M2
1
: (51)

Next we examine the integral over �. Inserting L ¼ ��þ
i
 we have

I :¼ 2
Z
�P

dL

2�i
ðLþ �ÞfðLÞ�LðZ12Þ

¼ i

�

Z 1

0
d

½fð��þ i
Þ���þi
ðZ12Þ � fð��� i
Þ����i
ðZ12Þ�

¼ ig2‘6�D

�

Z 1

0
d



½��2�3
ð��þ i
Þ � ��2�3

ð��� i
Þ�
ð	��þi
;�1

Þ2 ���þi
ðZ12Þ

¼ � 2g2‘2�D

�

Z 1

0
d



 Imf��2�3
ð��þ i
Þg

ðM2
1 �M2��þi
Þ2

���þi
ðZ12Þ: (52)

The first equality merely uses the symmetry of the contour
under complex conjugation to write the expression as the
integral of a quantity that is manifestly real (for real Z12).

The second equality then follows by using the relations
	���i
;�1

¼ 	��þi
;�1
and ����i
ðZÞ ¼ ��aþi
ðZÞ, the

definition of fðLÞ, and the property (42).

5Furthermore, there are the special cases where �1 ¼ �ð�1 þ 2�Þ ¼ ��; in this case, due to the (Lþ �) in the numerator of the
integrand, there is a third-order pole at this point. There is also the possibility that �1 ¼ �2 þ �3, in which case a double-pole exists at
this point. Both of these special cases can be found as limiting cases of the more general case so we will not treat them explicitly.
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Let us now consider the case when �1ðxÞ is in the
principal series. In this case �1 ¼ ��þ i
1, 
1 2 R, so
both the poles at L ¼ �1 and L ¼ �ð�1 þ 2aÞ lie along
the line �P. The final result is almost identical to the result
for the case of complementary �1ðxÞ. Recall that the con-
tour � is indented as shown in Fig. 7(b). Thus we have two
poles whose residues combine to give the twice the ex-
pression on the right-hand side of (51). Furthermore,
the integral over � is of the same form as I (52), but with
the contour deformed slightly to the left. It is convenient to
remove the indentations in the contour by instead writing
the result as the principal part of I added to (51), where the
deformation of � back to �P precisely compensates for the
extra factor of 2 noted above.

Finally, we must consider the case where both�2ðxÞ and
�3ðxÞ are complementary series fields with sufficiently
light masses such that ��<�2 þ �3 < 0 and possibly
��<�2 þ �3 � 2< 0. In these cases we encounter pole
(s) at L ¼ �2 þ �3 (and L ¼ �2 þ �3 � 2) as we move
the contour. These residues are easily evaluated using
(B26):

R2 :¼ 2ResffðLÞðLþ �Þ�LðZ12ÞgL¼�2þ�3

¼ g2‘6�D

4��þ1

1

ð	�2þ�3;�1
Þ2

� �
��2; �2 þ �;��3; �3 þ �

��2 � �3; �2 þ �3 þ �

" #
��2þ�3ðZ12Þ;

(53)

R3 :¼ 2ResffðLÞðLþ �Þ�LðZ12ÞgL¼�2þ�3�2

¼ g2‘6�D

��þ1

1

ð	�2þ�3�2;�1
Þ2

�ð�2 þ �3 þ 2�� 2Þ
ð�2 þ �3 þ �� 1Þ

� �
1� �2; �2 þ �� 1; 1� �3; �3 þ �� 1

2� �2 � �3; �2 þ �3 þ �� 2

" #
:

(54)

Assembling our results we have the final expression

h�1ðx1Þ�1ðx2Þið2Þ ¼ R1 þ PðIÞ þ R2 þ R3; (55)

where R1, I, R2, R3 are given, respectively, in (51)–(54). In
(55) the R2 term should be included only when ��<
�2 þ �3 and likewise the R3 term should only be included
when ��< �2 þ �3 � 2. The P in (55) is a reminder to
take the principal part in integrating through any pole terms
on the axis in the integral I. This result is manifestly real
for on-shell masses as it should be. Earlier we noted in a
footnote that there are two degenerate cases in which the
computation above requires modification, namely, when
�1 ¼ �� and when �1 ¼ �2 þ �3. One can find the
correct result for these cases by taking the appropriate
limits of (55). Finally, the Lorentz-signature correlator

hT�1ðx1Þ�1ðx2Þið2ÞL is defined as (55) with Z12 ! ~Z12; like-

wise, we define h�1ðx1Þ�1ðx2Þið2ÞL as (55) with Z12 ! �Z12.
Our final expression (55) is rather complicated.

However, it has two very useful features. The first is that
the remaining integral I converges absolutely for arbitrary
jZ12j> 1 so long as the contour has been deformed away
from any poles in the appropriate manner to compute the
principal part. As such, the result is amenable to numerical
calculations and gives a practical tool for extracting de-
tailed physics. The second is that it allows us to extract the
large jZ12j 
 1 behavior and so to study the corrected
propagator in the deep IR. At large jZ12j 
 1 the first
three terms in (55) have leading behavior, in order,

jZ12j�1 logZ12; jZ12j��	i
; jZ12j�2þ�3 : (56)

The term with the slowest decay provides the leading
behavior at large timelike separation.
As a slight aside we mention that our final expression

(55) can easily be brought into the Lehmann-Källén form
of the 2-point function [26]

h�1ðx1Þ�1ðx2Þið2ÞL ¼
Z 1

0
dM2�ðM2Þ�M2ðZ12Þ; (57)

FIG. 7. Two examples of the complex L-plane. Poles at �1 and �ð�1 þ 2�Þ are marked by h’s, while the pole at (�2 þ �3) is
marked by an �. In example (a) �1ðxÞ and �2ðxÞ are in the complementary series while �3ðxÞ is in the principal series. Here � ¼ �P.
In example (b) �2ðxÞ and �3ðxÞ are in the complementary series while �1ðxÞ is in the principal series. Here � differs from �P since we
take � to pass to the left of poles with ReL ¼ ��.
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where �ðM2Þ (which should not be confused with
��1�2

ðLÞ) is the spectral density, and the integral is over

positive realM2 > 0. The integral I in (52) is already in the
form of an integral over the principal series masses, so one
need only incorporate the poles R1 (and possibly R2 and
R3) into the integral overM

2 by using delta functions in the
obvious manner.

It is useful to check our results by taking the flat-space

limit of hT�1ðx1Þ�1ðx2Þið2ÞL . For convenience, let us sup-
pose that no massless fields arise in this limit. Thus all
three fields must be in the principal series. For principal
series fields we have only the terms R1 þ PðIÞ. Now, since
��ð~Z12Þ reduces in this limit to the flat-space propagator

DM2ðx1 � x2Þ, we must have

‘4�D��2�3
ðLÞ ! �flat

M2
2
M2

3

ðk2Þ; (58)

where L2=‘2 ! k2 and �flat
M2

2
M2

3

ðk2Þ is the analogous spectral
function of the product of two Minkowski propagators
defined by

DM2
2
ðx1 � x2ÞDM2

3
ðx1 � x2Þ

¼
Z dDk

ð2�ÞD �flat
M2

2
M2

3

ðk2Þeikðx1�x2Þ: (59)

One may explicitly check this result for � ¼ 1 and � ¼ 2
where we have simplified expressions for ��2�3

ðLÞ. (We

have also explicitly verified that the singular Oð1=�Þ terms
are equivalent for � ¼ 3=2 and � ¼ 5=2.) After changing
the integration variable in I to m2 ¼ 
2=‘2, one may take
the limit ‘ ! 1 holding fixed g, M2

i , ð�M2
1Þ, and ð��1Þ.

Noting that Imf�flat
M2

2
M2

3

ð�m2Þg ¼ 0 for m2 < ðM2 þM3Þ2,
one finds that the answer agrees with the known flat-space
result [26,27].

We conclude this section with a brief discussion of
correlator given by the sum of single particle-irreducible
(1PI) Feynman diagrams. This 1PI correlator may be
written6

h�1�1ðZ12Þi1PI ¼ ‘2�D �ð�Þ
2��þ1

� X1
L¼0

ðLþ �Þ
	L�1

��ðLÞC
�
LðZ12Þ; (60)

where for the diagrams of Fig. 7 the dimensionless self-
energy is

�ðLÞ :¼ g2‘6�2D��2�3
ðLÞ � ‘2ð�M2

1Þ
� LðLþ 2�Þð��1Þ: (61)

This correlator may be analytically continued to de Sitter
in essentially the same way as the Oðg2Þ correlator above.

An interesting feature we wish to point out is that when�1

belongs to the principal series and Reð�2 þ �3Þ<��, the
Lorentz-signature (time-ordered or Wightman) 1PI corre-
lator decays at large jZ12j 
 1 more rapidly than any free
2-point function.
To see this it is convenient to rearrange the summand of

(60) slightly before performing the Watson-Sommerfeld
transformation. We use the Gegenbauer recursion relation
(A6) to write

h�1�1ðZ12Þi1PI ¼ ‘2�D �ð�Þ
2��þ1

� X1
L¼0

�
1

	L�1
��ðLÞ �

1

	Lþ2;�1
��ðLþ 2Þ

�

� C�þ1
L ðZ12Þ; (62)

where we also use the fact that C�
�2ðZÞ ¼ C�

�1ðZÞ ¼ 0 for
the values of � of interest. Using our standard Watson-
Sommerfeld kernel we may write the sum (62) as

h�1�1ðZ12Þi1PI ¼ �‘2�D �ð�Þ
2��

�
Z
�

dL

2�i

�
1

	L�1
��ðLÞ �

1

	Lþ2;�1
��ðLþ 2Þ

�

� C�þ1
L ð�Z12Þ
sin�L

; (63)

where � is a contour parallel to and slightly to the left of
the imaginary axis. Note that at large jZ12j 
 1 the
Gegenbauer function C�þ1

L ðZ12Þ behaves like ðZ12ÞL and
ðZ12Þ�L�2��2 as compared to C�

LðZ12Þ which behaves like
ðZ12ÞL and ðZ12Þ�L�2�. The advantage of changing the
underlying Gegenbauer function from C�

LðZ12Þ to
C�þ1
L ðZ12Þ is that we can shift the contour � as far to the

left as ReL ¼ �ð�þ 1Þ while still increasing the decay of
the integrand at large jZ12j.
To determine the behavior of the Lorentz-signature cor-

relator at large jZ12j 
 1 it is sufficient to determine the
first pole encountered as we shift the integration contour �
to the left. For the case of interest the first poles encoun-
tered arise from the first term in brackets and are located
near the on-shell poles L 
 �1 and L 
 ��1 � 2�.
Letting �1 ¼ ��þ i
 with 
 � 0 we may write the on-
shell poles in the free theory as L	 :¼ ��	 i
. The
location of the on-shell poles in the interacting theory is
given by solving for the zeros of the denominator

	L� ��ðLÞ ¼ LðLþ 2�Þ þM2
1‘

2 ��ðLÞ ¼ 0: (64)

Having computed �ðLÞ to Oðg2Þ we may easily solve for
the Oðg2Þ corrections to L	; the result is

L	 ¼ ��þ Im�ð��þ i
Þ
2


	 i

�

� Re�ð��þ i
Þ

2


�
;

(65)

(recall that �ðLÞ is Oðg2Þ). In writing this expression
we have made use of the fact, introduced above, that

6Implicit in the sum over 1PI diagrams is the assumption that
j�ðLÞ=M2

1j< 1.
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��2�3
ðLÞ ¼ ��2�3

ð �LÞ. These poles contribute residues to

the 1PI correlator proportional to C�þ1
L	 ð�Z12Þ; as a result,

the leading behavior of the Lorentz-signature correlators is
given by

jZ12j��þImð��þi
Þ=2
	i! (66)

with ! ¼ 
� RePið��þ i
Þ=2
.
The interesting feature of this result is that when

Im�ð��þ i
Þ< 0 the Lorentz-signature correlator de-
cays faster than jZ12j��, i.e. faster than any free 2-point
function. The only term in �ð��þ i
Þ that can become
imaginary is the function ��2�3

ð��þ i
Þ. For the cases of
� ¼ 1 and� ¼ 2 (spacetime dimensionD ¼ 3 andD ¼ 5)
one may explicitly examine the imaginary part of
��2�3

ð��þ i
Þ using the formulas (B22) and (B23) and

find that Imð��2�3
ð��þ i
ÞÞ< 0. Furthermore, in the flat-

space limit (large�1,�2,�3 up to an overall scaling of� to
this order) it is known that Im� � 0 [26,27]. For � ¼ 3=2
and � ¼ 5=2 (D ¼ 4 and D ¼ 6) with small �iza we
have performed only a small numerical sampling of
Imð��2�3

ð��þ i
ÞÞ, but in all cases have likewise found

that Imð��2�3
ð��þ i
ÞÞ< 0.

We interpret this result as the appearance of a decay
channel that occurs when Reð�2 þ �3Þ<�� and �1 is
in the principal series. Note that the requirement
Reð�2 þ �3Þ<�� does not in general fix the relative
size of M2

2 þM3
3 and M2

1. Indeed the appearance of this

decay channel is quite generic for any principal series field
�1; only when the intermediate states are very light, i.e.
satisfying ��< �2 þ �3 < 0, does the behavior of the
1PI correlator differ from (66). The ability of particles to
decay into daughter particles with lighter or heavier masses
is a natural phenomena in de Sitter space [8–11]. Because
of the lack of a globally timelike Killing vector field, there
is no positive definite conserved energy which would
preclude such a process.

V. DISCUSSION

We have computed loop corrections to Lorentz-
signature propagators for de Sitter-invariant vacuua in
scalar field theories by analytically continuing results
from Euclidean signature. Our results apply to all masses
for which the free Euclidean vacuum is well-defined, in-
cluding values in both the complimentary series and the
principal series of SOðD; 1Þ. We have provided expli-
cit results in dimensions D � 3 for which the above
interactions are renormalizeable. Our results generally
take the form of absolutely convergent integral representa-
tions sufficient to extract the leading behavior of the
Lorentz-signature 2-point functions at large separations.
The absolute convergence implies that such representa-
tions are amenable to numerical calculations, demonstrat-
ing that our methods provide practical tools for calculating
Lorentz-signature correlation functions. We have provided

a number of checks on our results, including consistency
with known flat-space limits. Our basic methods appear to
apply to higher loops as well.
Of course, our use of perturbation theory requires small

couplings. As described recently in [28], perturbative
corrections in de Sitter space are controlled by a combi-
nation of the coupling and the particle masses which
diverges in the limit M‘ ! 0. In this limit (taking all
masses equal), we indeed find that the contributions
from the 1-loop diagrams are proportional to g4=ðM4‘DÞ
or g23=ðM6‘DÞ, where g3;4 are the 3- and 4-point coupling

in the Lagrangian. Our results for the 4-particle interac-
tion agree with those of [28] before the application of
dynamical renormalization group (DRG) techniques,
though it was shown in [28] that DRG resummation can
ameliorate the M ! 0 growth to some extent. It would be
interesting to combine DRG techniques with our
Euclidean approach.
With this caveat, we find that the corrected propagators

fall off at large separations at least as fast as one would
naively expect. Such results are in qualitative agreement
with those obtained using stochastic inflation techniques
[7], which are expected to be valid in the limit M‘ � 1,
where ‘ is the de Sitter length scale. Interestingly, for one-
loop corrections from 3-particle interactions we found that,
in some cases, the corrected (1PI-summed) propagator
decays faster than any free propagator with M2 > 0. This
indicates that the vacuum state constructed by analytic
continuation of all Euclidean correlators is well-behaved
in the IR. In particular, similar falloff of higher n-point
connected correlators would indicate that this state is stable
in the following sense: Consider a state jmi constructed by
acting on the vacuum with (integrals of) m field operators
�iðxÞ at or near some initial time t ¼ 0. Then the n-point
functions of jmi are just (integrals of) 2mþ n-point func-
tions in our vacuum. Let us now consider a limit in which
the arguments of such an n-point function retain fixed
relative separations, but in which each argument is taken
to some large time in the future; i.e., so that the n-points are
far from the m operators originally used to construct the
state jmi (which remain near t ¼ 0). Decay of connected
correlators means precisely that correlators factorize at
large separation. Thus, at large times t any n-point function
of jmi would approach the product of hmjmi with the
corresponding n-point function in the vacuum. One might
say that, when viewed as a functional on local products of
quantum fields, the large time limit of any above state
coincides with our vacuum state. It is natural to refer to
any such vacuum as being stable. More specifically, when
all correlators in a given state factorize in the above limit
we will say that the state is an attractor state for local
correlators.
Strictly speaking, a 3-point function or higher is needed

to test this notion of stability, while we have computed only
propagators here. We will provide a detailed discussion of
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higher n-point functions elsewhere [6], but for now we
merely note that our propagator calculations suggest that
the perturbative vacuum theory is well-behaved in the IR.

Supposing that the higher 2mþ n-point functions con-
tinue to indicate stability of de Sitter-invariant vacuua for
(massive) scalar field theories, one may be tempted to ask
why such vacuua should be stable. For familiar vacuua in
flat Minkowski space there is a simple physical answer:
each such vacuum minimizes a positive-definite energy.
But de Sitter space has no positive-definite conserved
energy due to its lack of a globally-defined timelike
Killing field, so we must search elsewhere for an explana-
tion. The best answer is probably that de Sitter space does
admit Killing fields that are timelike in a globally hyper-
bolic domain known as the ‘‘static patch’’ associated with
that Killing field. Such domains may be treated as space-
times in their own right, with no need to impose extra
boundary conditions. For positive potentials, the associated
Hamiltonian is bounded below in this restricted spacetime.
As a result, positivity and conservation of this energy
forbids instabilities of scalar quantum field theories (with
positive potentials) in any static patch. Any possible insta-
bility of de Sitter space must therefore be a more subtle
sort, and would not be directly visible to single any freely
falling observer.

In any discussion of de Sitter space, it is tempting to ask
about quantum gravity effects. Although gravitons are
massless, they admit a free Euclidean vacuum state [29].
It is therefore plausible that our results may generalize to
graviton n-point functions (though there is a certain tension
with the results of [30–33]). Such a result would again
preclude perturbative instabilities in this context—at least
in cases where they are not already present at the classical
level. However, even in this case there may still be room
for more subtle quantum gravity effects associated with
large regions of de Sitter space (see e.g. [33–37]) which are
not instabilities per se, and which remain to be investigated
in more detail. In addition, there are clearly interesting
quantum effects involving gravity coupled to scalars with
very flat potentials. This exception is allowed due to the
fact that free massless scalars are already marginally un-
stable (at both the quantum and classical levels). The
prime example of such an interesting quantum effect is
of course eternal inflation, which will occur barring the
discovery of further novel phenomena, and which may
have further implications for understanding quantum de
Sitter space [35].
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APPENDIX A: NOTATION AND CONVENTIONS

1. The Gamma and related function

We use the following notation in the main text. The
Euler Gamma function is denoted �ðzÞ, and we use the
condensed notation

�
a1; a2; . . . ; aj
b1; b2; . . . ; bk

� �
:¼ �ða1Þ�ða2Þ � � ��ðajÞ

�ðb1Þ�ðb2Þ � � ��ðbkÞ : (A1)

We also define the Pochhammer symbol for complex a and
n 2 N0

ðaÞn :¼ �
aþ n
a

� �
¼ ðaÞðaþ 1Þ � � � ðaþ n� 1Þ; (A2)

thus, ðaÞn is simply a polynomial of a of order n. The
digamma function c ðzÞ is the logarithmic derivative of the

Gamma function c ðzÞ :¼ �0ðzÞ
�ðzÞ .

2. Gegenbauer functions and polynomials

The Gegenbauer function of the first kind may be de-
fined via the hypergeometric function

C�
	 ðzÞ :¼ �

2�þ 	

1þ 	; 2�

" #

� 2F1

�
�	; 	þ 2�;�þ 1

2
;
1� z

2

�
: (A3)

Here �, 	, and z are arbitrary complex numbers. Important
features of this function, including its analytic properties,
recursion relations, asymptotic forms, etc., are presented in
[38]. The function’s relation to representations of SOðnÞ
and related groups is nicely described in [12]. Here we
present only information used in the text. For jzj> 1 the
Gegenbauer function may be usefully rewritten [38]

C�
	 ðzÞ ¼ �½	þ 2�;�ð	þ �Þ

�;�	; 	þ 1
�ð2zÞ�ð	þ2�Þ

2

� F1½	þ 2�

2
;
1þ 	þ 2�

2
;	þ �þ 1; z�2�

þ �
	þ �

�; 	þ 1

" #
ð2zÞ	2

� F1

�
�	

2
;
1� 	

2
;�	� �þ 1; z�2

�
: (A4)

From this we see that at large jzj 
 1 the Gegenbauer
functions have two asymptotic branches, namely,
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C�
	 ðzÞ ¼ �

	þ 2�;�ð	þ �Þ
�;�	; 	þ 1

" #
ð2zÞ�ð	þ2�Þ½1þOðz�2Þ�

þ �
	þ �

�; 	þ 1

" #
ð2zÞ	½1þOðz�2Þ�: (A5)

Gegenbauer functions satisfy many recurrence relations;
some that we will make use of are

ð	þ �ÞC�
	 ðzÞ ¼ �½C�þ1

	 ðzÞ � C�þ1
	�2 ðzÞ�; (A6)

dn

dzn
C�
	 ðzÞ ¼ 2nð�ÞnC�þn

	�n ðzÞ: (A7)

When 	 ¼ L 2 N0 the hypergeometric series termi-
nates and Gegenbauer functions reduce to the
Gegenbauer polynomials. The Gegenbauer polynomials
C�
LðzÞ form a complete orthogonal basis on the interval z 2

½�1; 1� with respect to the measure ð1� z2Þ��1=2. They
have normalization

A�
L
:¼

Z þ1

�1
dzð1� z2Þ��1=2C�

LðzÞC�
MðzÞ

¼ �21�2�

ðLþ �Þ�
Lþ 2�

Lþ 1; �; �

" #
�LM: (A8)

Gegenbauer polynomials obey the reflection formula

C�
LðzÞ ¼ ð�1ÞLC�

Lð�zÞ: (A9)

The integral of three Gegenbauer polynomials with com-
mon degree � is [12]:

Dð�;L;M;NÞ
:¼

Z þ1

�1
dzð1� z2Þ��1=2C�

LðzÞC�
MðzÞC�

NðzÞ

¼ 21�2��

�4ð�Þ �
Jþ2�;J�Lþ�;J�Mþ�;J�Nþ�

Jþ�þ1;J�Lþ1;J�Mþ1;J�Nþ1

" #
;

(A10)

when J :¼ ðLþMþ NÞ=2 2 N0, and L,M, andN satisfy
the triangle inequalities; otherwise Dð�;L;M;NÞ ¼ 0.

3. The function 7V6ða;b; c; d; e; fÞ
The function 7V6ða;b; c; d; e; fÞ is an 7F6 hypergeomet-

ric function with unit argument and a special form of the
parameters [39]:

7V6ða; b; c; d; e; fÞ :¼ 7F6

a; 1þ a
2 ; b; c; d; e; f;

; 1
a
2 ; 1þ a� b; 1þ a� c; 1þ a� d; 1þ a� e; 1þ a� f;

2
64

3
75:

(A11)

The series defining (A11) converges when its parametric
‘‘excess’’ s ¼ 4þ 4a� 2ðbþ cþ dþ eþ fÞ has a real
part that is greater than zero. The series terminates when
one of the parameters is a negative integer. When the
series terminates because one of b, c, d, e, f is a negative
integer and the excess takes the value s ¼ 2 the series
may be summed and the result is known as Dougall’s
formula:

7V6ða;b;c;d;e;�nÞ

¼ð1þaÞnð1þa�b�cÞnð1þa�c�dÞnð1þa�b�dÞn
ð1þa�bÞnð1þa�cÞnð1þa�dÞnð1þa�b�c�dÞn

(A12)

with e ¼ 1þ 2a� b� c� dþ n and n 2 N0.
There exist a large number of relations between func-

tions of the form 7V6ða;b; c; d; e; fÞ with different parame-

ters. One such relation of which we will make use is

7V6ða;b; c; d; e; fÞ ¼ �
1þ a� e; 1þ a� f; 2þ 2a� b� c� d; 2þ 2a� b� c� d� e� f

1þ a; 1þ a� e� f; 2þ 2a� b� c� d� e; 2þ 2a� b� c� d� f

" #

� 7V6ð1þ 2a� b� c� d; 1þ a� c� d; 1þ a� b� d; 1þ a� b� c; e; fÞ: (A13)

This equality is valid so long as the series on both sides converge, i.e. that the excess of both series is greater than zero.
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It is convenient to define the regularized function

7
�V6ða;b;c;d;e;fÞ

:¼ 7V6ða;b;c;d;e;fÞ
�½a2 ;1þa�b;1þa�c;1þa�d;1þa�e;1þa�f�

(A14)

¼ X1
n¼0

ðaÞnð1þa=2ÞnðbÞnðcÞnðdÞnðeÞnðfÞn
�½1þn;a=2þn;1þa�bþn; . . . ;1þa�fþn� :

(A15)

This series defines an entire function in all of its parame-
ters. Like 7V6ða;b; c; d; e; fÞ the series terminates when
one of the parameters is a negative integer. When �a 2
N0, i.e. when a ¼ 0;�1;�2; . . . , the series is zero.

APPENDIX B: CALCULATION OF ��1��2ðZÞ
In this appendix we compute the spectral representation

(31) of the product of two free Euclidean 2-point functions
on the sphere SD. As discussed in the main text, this
amounts to computing (38), where � :¼ d=2. Using the
definition of the constant A�

L from (A8), one may check
that ��1�2

ðLÞ ¼ ���1�2
ð�L� 2�Þ for L 2 N0, �1,

�2 2 C. In this appendix we consider only such positive
integer L unless otherwise noted.
From (38) it is clear that ��1�2

ðLÞ will not in general be

finite. Recall that near Z ¼ 1 the 2-point function diverges

as ��ðZÞ � ð1� ZÞ1=2��, so the integrand (38) diverges
near the boundary Z ! 1 for � � 3=2. We handle this
divergence using dimensional regularization; i.e., we con-
sider ��1�2

ðLÞ as a function of the real parameter �,

evaluate ��1�2
ðLÞ for �< 3=2 for which the integral (38)

converges, and then define ��1�2
ðLÞ for � � 3=2 via ana-

lytic continuation of our final expression. The remainder of
this appendix is concerned with computing ��1�2

ðLÞ and
then presenting a number of checks of our work.
We now turn to evaluating (38) for ��1�2

ðLÞ. We begin

by defining

�L� :¼ 2ðLþ �Þ
	L�

¼ 2ðLþ �Þ
ðL� �ÞðLþ �þ 2�Þ

¼ 1

L� �
þ 1

Lþ �þ 2�
(B1)

and inserting (19) twice into (38). We find

��1�2
ðLÞ ¼ 2��þ1

�ð�ÞðLþ �Þ
1

A�
L

�2ð�Þ
ð4��þ1Þ2

X1
M¼0

X1
N¼0

�M�1
�N�2

Z þ1

�1
dZð1� Z2Þ��1=2Ca

LðZÞC�
MðZÞC�

NðZÞ

¼ �ð�Þ
8��þ1ðLþ �Þ

1

A�
L

X1
M¼0

X1
N¼0

�M�1
�N�2

Dð�;L;M;NÞ ¼:
1

8��þ1
�

Lþ 1

�;Lþ 2�

" #
S�1�2

ðLÞ: (B2)

To get to the second line we perform the integral using
(A10), and in the third line we have defined

S�1�2
ðLÞ :¼ X0

M;N

�M�1
�N�2

� �
J þ 2�; J � Lþ �; J �Mþ �; J � N þ �

J þ �þ 1; J � Lþ 1; J �Mþ 1; J � N þ 1

" #
;

(B3)

where, as in (A10), the sum is over allM and N is such that

J :¼ LþMþ N

2
2 N0;

jL�Mj � N � LþM;

jL� Nj � M � Lþ N: (B4)

We can incorporate these restrictions by a change of
variables:

G :¼ �LþMþ N

2
¼ J � L;

K :¼ LþM� N

2
¼ J � N;

(B5)

such that

M ¼ Gþ K; N ¼ Gþ L� K; J ¼ Gþ L:

(B6)

In terms of these variables S�1�2
ðLÞ becomes

S�1�2
ðLÞ ¼ X1

G¼0

XL
K¼0

�GþK;�1
�GþL�K;�2

��
Kþ�;L�Kþ�;Gþ�;GþLþ 2�

Kþ 1;L�Kþ 1;Gþ 1;GþLþ�þ 1

" #
: (B7)

In the next two sections we sum over first K and then G.

1. The K-sum

Let us perform the sum

HðL;GÞ :¼ XL
K¼0

�GþK;�1
�GþL�K;�2

� �
K þ �; L� K þ �

K þ 1; L� K þ �

" #
(B8)

by recasting it as a contour integral in the complex
K-plane. We do so by multiplying the summand by
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� cotð�KÞ ¼ � cosð�KÞ�½�K;K þ 1�: (B9)

This function has poles with unit residue at K ¼
0; 1; . . . ; L. Consider then the contour integral

I :¼ ð�1Þ
I
1
dK

2�i
cosð�KÞ�GþK;�1

��GþL�K;�2

�½K þ �;L� K þ ��
ð�KÞLþ1

¼ 0: (B10)

The contour is chosen to be an arc near infinity; because the
integrand behaves at large jKj 
 1 like �jKj2��4 the
integral vanishes for �< 3=2. By Cauchy’s formula it
follows that the sum of the residues of the poles enclosed
in C must likewise sum to zero. The integrand has the
following simple poles:

(1) K ¼ 0; 1; . . . ; L� 1; L, due to ð�KÞLþ1 in the
denominator,

(2) K ¼ ��� n, n 2 N0, due to �ðK þ �Þ in the
numerator,

(3) K ¼ Lþ �þ n, n 2 N0, due to �ðL� K þ �Þ in
the numerator,

(4) K ¼ �Gþ �1, K ¼ �G� �1 � 2�, due to
�GþK;�1

,

(5) K ¼ Gþ L� �2, K ¼ Gþ Lþ �2 þ 2�, due to
�GþL�K;�2

.

We assume for simplicity that �i � ��þ Z such that
none of the above-mentioned poles overlap. There is noth-
ing peculiar about these configurations and we will see that
our final result is perfectly regular at these values of the �i.

Let us now turn to evaluating the residues of these poles.
(1) Poles at K ¼ 0; 1; . . . ; L� 1; L: By construction the

residue of these poles sum to �HðL;GÞ.
(2) Poles at K ¼ ��� n: These poles sum to the infi-

nite series

cosð��Þ X1
n¼0

�G�n��;�1
�GþnþLþ�;�2

� �
nþ �; nþ Lþ 2�

nþ 1; nþ Lþ �þ 1

" #
: (B11)

(3) Poles at K ¼ Lþ �þ n: These poles sum to the
infinite series

cosð��Þ X1
n¼0

�GþnþLþ�;�1
�G�n��;�2

� �
nþ �; nþ Lþ 2�

nþ 1; nþ Lþ �þ 1

" #
: (B12)

(4) Poles at K ¼ �Gþ �1, K ¼ �G� �1 � 2�:
These give two terms,

� cos��1

sin�ð�1 þ �Þ�2GþL��1;�2

� �
G� �1; Gþ L� �1 þ �

Gþ Lþ 1� �1; Gþ 1� �1 � �

" #

þ ð�1 ! �ð�1 þ 2�ÞÞ: (B13)

(5) Poles at K ¼ Gþ L� �2, K ¼ Gþ Lþ �2 þ
2�: These give two terms,

� cos��2

sin�ð�2 þ �Þ�2GþL��2;�1

� �
G� �2; Gþ L� �2 þ �

Gþ Lþ 1� �2; Gþ 1� �2 � �

" #

þ ð�2 ! �ð�2 þ 2�ÞÞ: (B14)

These two terms are just the two terms in (B13) with
�1 $ �2.

Combining our results we have that

HðL;GÞ ¼
�

� cos��1

sin�ð�1 þ �Þ�2GþL��1;�2
�

G� �1; Gþ L� �1 þ �

Gþ Lþ 1� �1; Gþ 1� �1 � �

" #
þ 3 sym

�

þ cosð��Þ X1
n¼0

�
ð�G�n��;�1

�GþnþLþ�;�2
þ�GþnþLþ�;�1

�G�n��;�2
Þ

� �
nþ �; nþ Lþ 2�

nþ 1; nþ Lþ �þ 1

" #�
: (B15)

Here 3 sym refers to the three terms obtained by letting �1 ! �ð�1 þ 2�Þ, �1 $ �2, and �1 ! �ð�2 þ 2�Þ, �2 ! �1.

2. The G-sum

Having computed the sum over K we have

S�1�2
ðLÞ :¼ X1

G¼0

�
Gþ �;Gþ Lþ 2�

Gþ 1; Gþ Lþ �þ 1

� �
HðL;GÞ (B16)
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with HðL;GÞ given in (B15). First let us note that the infinite series in HðL;GÞ (see (B15)) gives a vanishing contribution
when summed over G. The infinite series in HðL;GÞ contributes a term proportional to

X1
G¼0

X1
n¼0

�
ð�G�n��;�1

�GþnþLþ�;�2
þ�GþnþLþ�;�1

�G�n��;�2
Þ� Gþ�;GþLþ2�;nþ�;nþLþ2�

Gþ1;GþLþ�þ1;nþ1;nþLþ�þ1

" #�
: (B17)

Consider the change of variablesG $ n; under this action the gamma functions are invariant, as is�GþnþLþ�;�i
. However,

�G�n��;� ¼ ��n�G��;�, so in total the summand picks up a (� 1) under the operation. As a result the double sum
vanishes. This statement is true for all � 2 R and �i 2 C. So we have that

S�1�2
ðLÞ ¼ � cosð��1Þ

sin�ð�1 þ �Þ
X1
G¼0

�
�2GþL��1;�2

�
Gþ �;Gþ Lþ 2�;G� �1; Gþ L� �1 þ �

Gþ 1; Gþ Lþ �þ 1; Gþ Lþ 1� �1; Gþ 1� �1 � �

" #�

þ 3 sym: (B18)

We can now write S�1�2
ðLÞ in terms of four so-called ‘‘very well-poised’’ hypergeometric series (see A 3):

S�1�2
ðLÞ ¼ � cosð��1Þ

sin�ð�1 þ �Þ�
�;��1; Lþ 2�;L� �1 þ �

Lþ �þ 1; Lþ 1� �1; 1� �1 � �

" #

��L��1;�2
V6

�
L� �1 þ �;�;��1; Lþ 2�;

L� �1 � �2

2
;
L� �1 þ �2 þ 2�

2

�
þ 3 sym: (B19)

These hypergeometric series have an excess of s ¼ 4� 4�, so are only absolutely convergent for � � 1. Assuming this,
we may rewrite the hypergeometric series using the transformation (A13). The result is

S�1�2
ðLÞ ¼ � cosð��1Þ

2 sin�ð�1 þ �Þ�
�; 2� 2�;��1; Lþ 2�; 2þ L� �1 � �; L��1��2

2 ; L��1þ�2þ2�
2

1� �1 � �; Lþ �þ 1; Lþ 1� �1;
4þL��1��2�4�

2 ; 4þL��1þ�2�2�
2

2
4

3
5

� 7V6½1þ L� �1 � �; 1� �; 1� �1 � 2�; 1þ L;
L� �1 � �2

2
;
L� �1 þ �2 þ 2�

2

�
þ 3 sym: (B20)

3. Final result and checks

In the previous section we computed the sum S�1�2
ðLÞ; inserting this into (B2) yields (40). Let us examine the poles in

��1�2
ðLÞ as a function of �, �i, and L. To do so it is useful to write this expression in terms of the regularized series

7
�V6ða;b; c; d; e; fÞ defined in (A14):

��1�2
ðLÞ ¼ 1

8��

cosð��1Þ
sin�ð�1 þ �Þ�

�
2� 2�;��1; Lþ 1; 1þ L� �1 � �;

L� �1 � �2

2
;
L� �1 þ �2 þ 2�

2

�

��7
�V6

�
1þ L� �1 � �; 1� �; 1� �1 � 2�; 1þ L;

L� �1 � �2

2
;
L� �1 þ �2 þ 2�

2

�
þ 3 sym: (B21)

The function 7
�V6ða; b; c; d; e; fÞ is entire in all its argu-

ments, so the only possible poles arise from the gamma and
trigonometric functions.

In (B21) it appears that each of the four terms in
��1�2

ðLÞ has poles when � ¼ 1=2; 1; 3=2; . . . . Upon in-

spection however one finds that the ��1�2
ðLÞ is regular

when � is a positive integer, and in these cases we may
simplify our expression considerably. We record here the
cases of � ¼ 1, 2:

��1�2
ðLÞj�¼1 ¼ 1

16�ðLþ 1Þ
�

��
sin�ð�1 þ �2Þ
sin��1 sin��2

c

�
L� �1 � �2

2

�

þ ð� symsÞ
�
þ 2�

�
; (B22)
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��1�2
ðLÞj�¼2 ¼ �1

64�2
�

Lþ 1

Lþ 4

" #

�
�
1

4
ðL� �1 � �2 � 2ÞðL� �1 þ �2 þ 2ÞðLþ �1 � �2 þ 2ÞðLþ �1 þ �2 þ 6Þ

�
��

sin�ð�1 þ �2Þ
sin��1 sin��2

c

�
L� �1 � �2

2

�
þ ð� symsÞ

�
þ 2�

�

þ ½ðcot��1Þð�1 þ 2ÞðLþ 3Þ½LðLþ 2Þ þ �1ð�1 þ 4Þ � �2ð�2 þ 4Þ� þ ð�1 $ �2Þ�
�
: (B23)

For � ¼ 1=2 the expression (B21) is also finite. However, for � ¼ 3=2; 5=2; . . . the expression diverges. The divergences
near � ¼ 3=2 and � ¼ 5=2 are given in (43) and (45).

Next let us examine the pole structure of ��1�2
ðLÞ as a function of the mass parameters �i. We restrict the �i to be

‘‘on-shell,’’ i.e. to have values corresponding to positive mass-squared (see Sec. II). Under this restriction the only
possible poles in (B21) are due to factor 1= sin½�ð�i þ �Þ� and occur when �i ¼ ��þ n, n 2 N0. However, in
the limit where �i takes these values one finds that ��1�2

ðLÞ is regular. Thus, there are no poles in ��1�2
ðLÞ as a function

of �i.
Finally, let us examine the pole structure of ��1�2

ðLÞ as a function of L. Recall that ��1�2
ðLÞ has been defined

only for L 2 N0. For these values its clear that ��1�2
ðLÞ is regular. However, we may use (B21) to extend the definition

of ��1�2
ðLÞ to L 2 C. In the complex L plane this expression has several possible poles arising from the Gamma

functions

�

�
Lþ1;1þL��1��;

L��1��2

2
;
L��1þ�2þ2�

2

�
(B24)

and �i permutations. For the poles at L ¼ �1;�2; . . . one may explicitly compute the residues using Dougall’s formula
(A12); the residues of the four terms in (B21) cancel, so in fact ��1�2

ðLÞ is regular for these values of L. Likewise, the
Gamma functions �ð1þ L� �1 � �Þ and permutations do not yield poles because their poles coincide with the zero of
the series 7

�V6ða; b; c; d; e; fÞ that occur when a is a negative integer. The remaining Gamma functions do indeed yield
poles in ��1�2

ðLÞ. We conclude that the expression (B21) has poles in the complex L plane at

L ¼ �1 þ �2 � 2n; ��1 þ �2 � 2�� 2n; �1 � �2 � 2�� 2n; ��1 � �2 � 4�� 2n: (B25)

We may use Dougall’s formula (A12) to compute the residue at these poles:

Resf��1�2
ðLÞgL¼�1þ�2�2n ¼ �1

8���ð�Þ
sin½�ð�1 þ �2 þ �Þ�

sin�ð�1 þ �Þ sin�ð�2 þ �Þ

� �
1� �1 � �2 � 2�þ 2n; nþ �; n� �1; n� �2; n� �1 � �2 � �

��1 � �2 þ 2n; 1þ n; 1þ n� �� �1; 1þ n� �� �2; 1þ n� �1 � �2 � 2�

" #
:

(B26)

It is important to realize that (40) is not the unique exten-
sion of ��1�2

ðLÞ to complex values of L. For example,
under the assumption that L 2 N0 one may perform sev-
eral hypergeometric transformations on (40) to derive an
alternate expression for ��1�2

ðLÞ which agrees with (40)
for L 2 N0 but has a different pole structure in the com-
plex L plane.

APPENDIX C: D ¼ 3, 4 1-LOOP CORRECTIONS
FROM 4-PARTICLE INTERACTIONS

Here we simply list the results of the calculations out-
lined in Sec. for diagrams shown in Fig. 5 for dimensions

D ¼ 3, 4. The key point is that the constant��2ð1Þ is given
formally by setting Z ¼ 1 in (24):

��ð1Þ ¼ ‘2�D
cos�ð�þ d

2Þ
2dþ1�ðdþ3Þ=2 �

�
��;�þ d;

1� d

2

�
: (C1)

This expression diverges for d ¼ 1; 3; 5; . . . due to the
factor �ð1� d=2Þ. In these dimensions the divergence
may be cancelled by the counterterm.
For D ¼ 3 the expression (C1) is finite. As a result,

following the minimal subtraction scheme (MS) we set
the counterterms to zero and compute the self-energy
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correction �1jD¼3 ¼ gð1þ �Þ cot��=ð8�‘Þ, which rep-
resents a shift of particle 1’s mass M2

1 ! M2
1 þ�1.

For D ¼ 4� � we have the divergent expression

��ð1ÞjD¼4�� ¼ ð1þ �Þð2þ �Þ
8�2‘2

1

�
� ð1þ �Þð2þ �Þ

16�2‘2

� ½�1þ �þ � cot��� lnð4�Þ þ 2c ð3þ �Þ�
þOð�Þ; (C2)

where � is the Euler constant and c ðxÞ the digamma
function. Defining the counterterms

ð�M2
1ÞjD¼4�� ¼ �g

2

ð1þ �2Þð2þ �2Þ
8�2‘2

1

�
;

ð�M2
2ÞjD¼4�� ¼ �g

2

ð1þ �1Þð2þ �1Þ
8�2‘2

1

�
(C3)

leads to the self-energy correction

�jD¼4�� ¼ � gM2
2

32�2

�
�1þ �þ log

�
M2

2

4�

��
þOð�Þ

(C4)

to the M2
1. As noted in Sec. , these mass shifts encode the

full context of the 4-particle 1-loop corrections. Both of
these expressions agree with the flat-space result

�jflat ¼ g

2ð4�ÞD=2

�ð1� D
2Þ

ðM2Þ2�D
: (C5)
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