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The equations of motion of multiple M0-brane (multiple M-wave or mM0) systems in an arbitrary

D ¼ 11 supergravity superspace, which generalize the matrix model equations for the case of interaction

with a generic 11-dimensional supergravity background, are obtained in the frame of the superembedding

approach. We also derive the Bogomol’nyi-Prasad-Sommerfeld (BPS) equations for supersymmetric

bosonic solutions of these mM0 equations and show that the set of 1=2 BPS solutions contain a fuzzy

sphere modeling M2 brane as well as that the Nahm equation appears as a particular case of the 1=4 BPS

equations.
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I. INTRODUCTION

More than 15 years ago the concept of M-theory,
a hypothetical underlying theory unifying five consis-
tent string models and 11-dimensional supergravity, ap-
peared [1]. Since that time many interesting and important
results have been obtained, including the unexpected ap-
plications of the ideas and methods of string/M-theory,
first, to studying quantum gauge field theories [2], includ-
ing calculating the viscosity of quark-gluon plasma [3],
and, then, to condensed matter physics, superfluidity, and
superconductivity [4].

However, the question on the fundamental degrees of
freedom of M-theory still remains open. On several occa-
sions the opinion (see e.g., [5]) has been expressed that the
present indirect description of M-theory is the best descrip-
tion possible. This is done in terms of its perturbative and
low energy limits, given, respectively, by the five consis-
tent ten-dimensional string theories and 11-dimensional
supergravity, by a chain of dualities relating these and
by the set of supersymmetric extended objects,
super-p-branes or, shorter, p-branes (strings for p ¼ 1,
membranes for p ¼ 2, etc.; p ¼ 0 corresponds to parti-
cles). From the M-theoretical perspective the most inter-
esting are ten-dimensional fundamental strings (also called
F1-branes) and Dirichlet p-branes (Dp-branes) and 11-
dimensional M-branes, i.e., Mp-branes with p ¼ 0, 2, 5
(see, however, [6] for recent interest in lower-dimensional
branes). These can be described by the supersymmetric
solutions of D ¼ 10 and D ¼ 11 supergravity [7], by the
action functionals given by the integrals over their (pþ 1)-
dimensional worldvolumes Wpþ1 (worldvolume actions)
[8–11] and also in the frame of the superembedding ap-
proach [12–16]. This, following the so-called Sorokin-
Tkach-Volkov approach to superparticles and superstrings
[17,18],1 describes p-branes in terms of embedding of its

worldvolume superspace (W ðpþ1j16Þ for D ¼ 11 and

type II D ¼ 10 p-branes) into the target superspace

(�ðDj32Þ for D ¼ 10 type II and D ¼ 11 p-branes).2

As far as an effective description of multiple brane
systems is concerned, it was quickly appreciated that at
very low energy the system of N nearly coincident
Dp-branes (multiple Dp-brane or mDp system) is de-
scribed by the maximally supersymmetric d ¼
ðpþ 1Þ-dimensional UðNÞ Yang-Mills model (SYM
model) [20]. However, in the problem of constructing a
complete (more complete) nonlinear supersymmetric ac-
tion for multiple Dp-branes, posed in ninetieth [21], only a
particular progress could be witnessed (see [22–24] for
lower-dimensional and lower-codimensional branes as
well as [25–27] discussed below).
The so-called ‘‘dielectric brane action’’ proposed by

Myers [28], although widely accepted, is purely bosonic,
is not Lorentz invariant, and resisted the attempts of its
straightforward Lorentz covariant and supersymmetric
generalization all these years.3 Recently developed by
Howe, Lindström, and Wulff, the boundary fermion ap-
proach [25,26] provides a supersymmetric and covariant
description of Dirichlet branes, but on the ‘‘pure classical’’
(or ‘‘minus one quantization’’) level in the sense that, to
arrive at the description of multiple D-brane system in
terms of the variables similar to the ones in the standard
action for a singleDp-brane [9,10] (usually considered as a
classical or quasiclassical action), one has to perform a
quantization of the boundary fermion sector. The complete
quantization of the model [25,26] should produce not only
worldvolume fields of the multiple Dp-brane system but

1See [15] for more references and [19] for related studies.

2Thirty-two (32) in the notation �ð11j32Þ for the 11-dimensional
target (or bulk) superspace is the number of components of the
SOð1; 10Þ spinor and 16 in the notationW ðpþ1j16Þ above appears
as just 32=2.

3This does not look so surprising if we recall that it was
derived in [28] by a chain of dualities starting from the ten-
dimensional non-Abelian Dirac-Born-Infeld action with a sym-
metric trace prescription [21], the supersymmetric generalization
of which is also unknown.
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also bulk supergravity and higher stringy modes. The
partial quantization of only the boundary fermion sector
(applying the original prescription [29] of replacing the
boundary fermion variables by gamma matrices of corre-
sponding internal symmetry group) allowed Howe,
Lindström, and Wulff to reproduce the purely bosonic
Myers action [28], but the Lorentz invariance was lost on
that way. See [27,30] and the recent work in [31] for further
discussion on the present status of the boundary fermion
approach. Finally, a (possibly approximate but going
beyond UðNÞ SYM) superembedding description of
mDp-brane system was proposed and developed for mD0
in [27].

The situation with the description of multiple M-brane
systems was even more complicated: for many years it was
even unclear what model provides the description of the
multiple M2 (mM2) system at very low energy. The ex-
pected properties of such a model, playing for mM2 the
same rôle as UðNÞ SYM for mDp, were described in [32]
where also problems hampering the way to its construction
were analyzed. In the search for a solution to these prob-
lem, a new N ¼ 8 supersymmetric d ¼ 3 Chern-Simons
plus matter model based on Filippov 3 algebra [33] instead
of Lie algebra (Bagger-Lambert-Gustavsson model) was
constructed in [34]. However, presently the commonly
accepted candidate for the low energy description of the
mM2 system is a more conventional SUðNÞ � SUðNÞ
invariant Aharony-Bergman-Jafferis-Maldacena model
[35], although this possesses only N ¼ 6 manifest
d ¼ 3 supersymmetries. The search for a nonlinear gen-
eralization of the Bagger-Lambert-Gustavsson model re-
sulted in a purely bosonic and Lorentz noncovariant action
[36] generalizing the Myers proposition for a multiple
bosonic membrane case. The counterpart of the Myers
action for the purely bosonic limit of the multiple
M0-brane system (also called multiple M-waves, mM0,
or multiple gravitons) was constructed in [37].

The superembedding approach to themultiple M0-brane
(mM0) system was proposed in [30]. In it the relative
motion of mM0 constituents is described by the maximally

supersymmetric SUðNÞ gauge theory on W ð1j16Þ super-
space with one bosonic and 16 fermionic directions, the
embedding of which into the target 11-dimensional super-

space �ð11j32Þ is specified by the superembedding equation
[see Eq. (3.3) below]. The latter produces, as its self-
consistency conditions, the dynamical equations of motion
for the mM0 center of energy degrees of freedom.

This superembedding approach to the mM0 system pro-
vides a covariant generalization of the matrix model equa-
tions with manifest 11-dimensional Lorentz invariance. In
light of that a single M0-brane is dual to the single D0-
brane [10], the superembedding description of the multiple
M0 system, constructed and checked for consistency for
the case of the flat target 11-dimensional superspace in
[30], provides the restoration of 11-dimensional Lorentz

invariance in the (originally ten dimensional) multiple D0
brane system as was described by the superembedding
approach of [27].
The aim of the present paper is to derive the equations

of motion for a multiple M0 system in a generic curved
supergravity superspace in the framework of the super-
embedding approach of [30]. These equations describe
the multiple M0 interaction with the 11-dimensional su-
pergravity fluxes and provide the covariant generalization
of the matrix model [38] for the case of the arbitrary
supergravity background. The form of these equations
has been briefly reported in [39], where the universality
of their structure was emphasized: when written with
indefinite coefficients, these equations can be reproduced
(up to vanishing of a few of the above coefficients) from
the requirement of SOð1; 1Þ � SOð9Þ invariance and very
few data on the basic fields describing the relative motion
of mM0 constituents and on the fluxes which do interact
with them.
Here we give the details of the derivation of the mM0

equations and perform a complete study of the consistency
conditions for the superembedding approach. We show that
these consistency conditions are obeyed due to the pull-
back of the supergravity equations of motion, namely, of
the specific projections of the pullbacks of the Rarita-

Schwinger and the Einstein equations to W ð1j16Þ. This
provides a counterpart of the known fact that the D ¼ 11
and D ¼ 10 supergravity superspace constraints, and
hence the supergravity equations of motion, can be derived
from the requirement of the � symmetry of the worldvo-
lume action for a single M-brane and D-brane or funda-
mental string, respectively.
We also use the superembedding approach to derive the

Bogomol’nyi-Prasad-Sommerfeld (BPS) conditions for
the supersymmetric pure bosonic solutions of the equations
of motion. In particular, we present the explicit form of
the 1=2 BPS conditions and show that it has a fuzzy two-
sphere solution describing the M2-brane as a 1=2 BPS
configuration of the multiple M0 system. We also show
that the famous Nahm equation, which also has a fuzzy
two-sphere-related (fuzzy funnel) solution, appears as a
particular case of the 1=4 BPS equation with vanishing
4-form flux.
The paper is organized as follows. In Sec. II we present

the necessary details on the superspace formulation of
D ¼ 11 supergravity [40,41] in the notation close to
[42]. Section III contains a brief review of the superembed-
ding approach in its application to a single M0 brane, the
equations of motion for this supersymmetric object and
the description of the intrinsic and extrinsic geometry of

the worldline superspace W ð1j16Þ embedded in the curved

supergravity superspace �ð11j32Þ. Particularly, in Sec. III E
we present some properties of the relevant projections
of the pullbacks of target superspace ‘‘fluxes’’ (which are
4-form field strength superfield Fabcd ¼ F½abcd�ðZÞ,
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gravitino field strength superfield Tab
� ¼ T½ab�

�ðZÞ and

Riemann tensor superfield Rcd
ab ¼ R½ab

½cd�ðZÞ) to the world-
volume superspace, including the relation between them
which follows from the Rarita-Schwinger and Einstein
equations of the D ¼ 11 supergravity. In Sec. IV we for-
mulate our proposal for the description of the mM0 system
by the SUðNÞ connection on the d ¼ 1N ¼ 16worldline

superspace W ð1j16Þ. This superspace, the embedding of

which to �ð11j32Þ is restricted by the superembedding equa-
tion, describes the center of energy motion of the mM0
system, which we discuss in Sec. IVA. In Sec. IVB we
present the constraints on the d ¼ 1 N ¼ 16 SUðNÞ
connection (1d 16N SYM supermultiplet) and, in
Sec. IVC, derive the dynamical equations of the relative
motion of mM0 constituents which follow from these
constraints. The BPS equations for supersymmetric bo-
sonic solutions of the mM0 equations of motion are pre-
sented in Sec. V where we also describe the 1=2 BPS fuzzy
sphere solution modeling M2 brane by a configuration of
the mM0 system with N constituents, and the appearance
of the Nahm equation from the 1=4 BPS equation of mM0.
Some useful technical details are presented in the
Appendices.

II. SUPERSPACE OF D ¼ 11 SUPERGRAVITY

M-branes or M-theory super-p-branes are extended ob-
jects propagating in D ¼ 11 supergravity superspace

�ð11j32Þ. We denote local coordinates of �ð11j32Þ by ZM ¼
ðxm; � ��Þ ( �� ¼ 1; . . . ; 32,m ¼ 0; 1; . . . ; 9; 10), with bosonic
x� and fermionic � ��,

x�x� ¼ x�x�; x�� �� ¼ � ��x�; � ���
�� ¼ ��

��� ��:

The supergravity is described by the set of supervielbein
1-forms

EA :¼ dZMEM
AðZÞ ¼ ðEa; E�Þ; (2.1)

including bosonic vectorial form Ea (a ¼ 0; 1; . . . ; 9; 10)
and fermionic spinorial form E� (� ¼ 1; . . . ; 32), which
satisfy the set of superspace constraints [40,41]. The most
important of these constraints determine the bosonic tor-

sion 2-form of �ð11j32Þ. This reads

Ta :¼ DEa ¼ �iE� ^ E��a
��; (2.2)

where �a
�� ¼ �a

�� are 11-dimensional Dirac matrices (see

Appendix A), ^ denotes the exterior product of differential
forms,

Eb ^ Ea ¼ �Ea ^ Eb; Eb ^ E� ¼ �E� ^ Eb;

E� ^ E� ¼ E� ^ E�;

and D denotes the covariant derivative, DEa ¼ dEa�
Eb ^ wb

a, where wba ¼ dZMwba
M ðZÞ ¼ �wab is the super-

space SOð1; 10Þ connection 1-form (11-dimensional spin
connection).

After imposing a set of conventional constraints, the
study of Bianchi identities (see [40,41] and, e.g., [42]
and references therein) fixes the form of the fermionic
torsion to be

T� :¼ DE� ¼ �Ea ^ E�ta�
� þ 1

2E
a ^ EbTba

�ðZÞ;
(2.3)

where

ta�
� :¼ i

18

�
Fabcd�

bcd
�
� þ 1

8
Fbcde�abcde�

�

�
(2.4)

is expressed in terms of the fourth rank antisymmetric
tensor superfield Fabcd ¼ F½abcd�ðZÞ (‘‘4-form flux’’)

which obeys

D½aFbcde� ¼ 0: (2.5)

This indicates that the leading component (� ¼ 0 value) of
Fabcd can be identified with the field strength of the 3-form
gauge field of the 11-dimensional supergravity.
Furthermore, the supergravity Bianchi identities also

express the superspace Riemann tensor 2-form

Rab :¼ ðd!�! ^!Þab ¼ E� ^ E�

�
�
� 1

3
Fabc1c2�c1c2 þ

i

3 � 5! ð�FÞ
abc1...c5�c1...c5

�
��

þ Ec ^ E�

�
�iTab��c�� þ 2iTc

½a��b�
��Þ

þ 1

2
Ed ^ EcRcd

abðZÞ (2.6)

in terms of the same antisymmetric tensor superfield
FabcdðZÞ, the superspace generalization of the gravitino
field strength Tab

�ðZÞ [‘‘fermionic flux’’ defined in

Eq. (2.3)] and Riemann tensor superfield Rab
cd ¼

Rab
cdðZÞ ¼ �Rba

cd ¼ �Rab
dc obeying

R½abc�
d ¼ 0: (2.7)

To be convinced that the supervielbein and Lorentz con-
nection obeying the above set of superspace constraints
describe just the supergravity multiplet and no other fields
are present, one notices that the supergravity Bianchi iden-
tities also express the fermionic covariant derivatives of
the antisymmetric tensor superfield Fabcd, of the fermionic
flux Tab

� and of the Riemann tensor superfield Rcda
bðZÞ

through the same set of superfields. In particular,

D�Fabcd ¼ �6T½ab
��cd���; (2.8)

D�Tab
� ¼ �1

4Rab
cd�cd�

� � 2ðD½atb� þ t½atb�Þ��; (2.9)

where ta�
� is expressed through FabcdðZÞ by Eq. (2.4).

Further study of Bianchi identities also shows that
the superspace constraints (2.2) are on shell, i.e., that the
supergravity equations of motion appear as their conse-
quences. Those include Einstein equations
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Rab ¼ �1
3Fac1c2c3F

c1c2c3
b þ 1

36�abFc1c2c3c4F
c1c2c3c4 ;

Rab :¼ Racb
c; �ab ¼ diagðþ;�; . . . ;�Þ (2.10)

and the Rarita-Schwinger equations Tbc
��abc

�� ¼ 0. It is

convenient to write the latter in the equivalent form of

Tab
��b

�� ¼ 0: (2.11)

III. SUPEREMBEDDING APPROACH
TO THE SINGLE M0-BRANE AND GEOMETRY
OF THE WORLDLINE SUPERSPACE W ðpþ1j16Þ

A. Superembedding equation

The standard formulation of Mp-branes deals with
the embedding of a purely bosonic worldvolume Wpþ1

(worldlineW1 for the case of the M0-brane) into the target

superspace �ð11j32Þ. The superembedding approach to
M-branes [12,14] describes their dynamics in terms of

the embedding of worldvolume superspace W ðpþ1j16Þ
with d ¼ pþ 1 bosonic and 16 fermionic directions into

�ð11j32Þ. This embedding can be described in terms of

coordinate functions ẐMð�Þ ¼ ðx̂mð�Þ; �̂ ��ð�ÞÞ, which are

superfields depending on the local coordinates �M of

W ðpþ1j16Þ,

W ðpþ1j16Þ 2 �ð11j32Þ: ZM ¼ ẐMð�N Þ: (3.1)

For p ¼ 0, these are �N ¼ ð	; � �qÞ, where � �q are 16
fermionic coordinates of the worldline superspace

W ð1j16Þ,

W ð1j16Þ 2 �ð11j32Þ: ZM ¼ ẐMð	; � �qÞ;
� �q� �p ¼ �� �p� �q; �q ¼ 1; . . . ; 16; (3.2)

and 	 is its bosonic coordinate generalizing the particle
proper time.

To describe a super p-brane, the coordinate functions

ẐMð�N Þ have to satisfy the superembedding equation

which states that the pullback Êa :¼ dẐMð�ÞEa
MðẐÞ of the

bosonic supervielbein form Ea :¼ dZMEa
MðZÞ to the

worldvolume superspace has no fermionic projection. In
the case of the M0-brane this superembedding equation
reads

Êþq
a :¼ DþqẐ

MEM
aðẐÞ ¼ 0; (3.3)

where Dþq is a fermionic covariant derivative of W ð1j16Þ,
q ¼ 1; . . . ; 16 is a spinor index of SOð9Þ, and þ denotes
the ‘‘charge’’ (weight) with respect to the local SOð1; 1Þ
group. In our notation the superscript plus index is equiva-
lent to the subscript minus, and vice versa, so that one can
equivalently write Dþq ¼ D�

q .

We denote the supervielbein of Wð1j16Þ by

eA ¼ d�MeM
Að�Þ ¼ ðe#; eþqÞ; (3.4)

and the only bosonic covariant derivative of W ð1j16Þ by
D# :¼ Dþþ so that D ¼ eADA with

DA ¼ ðD#; DþqÞ: (3.5)

B. Moving frame and spinor moving frame variables

To study the consequences of the superembedding equa-
tion, it is convenient to introduce the auxiliary moving
frame superfields u¼a , u#a, uib which obey

u¼a ua¼ ¼ 0; u#au
a# ¼ 0; u#au

a¼ ¼ 2;

u¼a uai ¼ 0; u#au
ai ¼ 0; uiau

aj ¼ �
ij: (3.6)

The above constraints imply that the 11� 11 matrix con-
structed from the columns u¼a , u#a and uib (moving frame

matrix) is Lorentz group valued,

UðaÞ
m ¼

�
u¼m þ u#m

2
; uim;

u#m � u¼m
2

�
2 SOð1; 10Þ: (3.7)

To clarify the way these moving frame variables appear
in the superembedding approach let us first notice that the
superembedding equation (3.3) can bewritten in the form of

Ê a :¼ dẐMð�ÞEM
aðẐð�ÞÞ ¼ 1

2e
#u¼a (3.8)

with some 11-vector superfield u¼a ¼ u¼a ð�Þ. The study of
consistency conditions shows that this vector must be
lightlike, u¼a ua¼ ¼ 0, which allows for its identification
with one of the lightlike components of the moving
frame (3.7).
More precisely, the integrability conditions for the

superembedding equation imply that


qpu
¼
a ¼ v��

q �a
��v

��
p ; (3.9)

where the set of 16 spinorial superfields v��
q appear as

coefficients for the W ð1j16Þ fermionic supervielbein forms
in the expressions for the pullbacks of the target superspace
fermionic supervielbein forms,

Ê � :¼ dẐMð�ÞEM
�ðẐð�ÞÞ ¼ eþqv��

q þ e#��q
# vþ�

q :

(3.10)

Then one can show that, as a consequence of (3.9), the
11-vector superfield u¼a is lightlike and finds that it can be
completed up the complete moving frame (3.7).
In a theory with SOð1; 1Þ � SOð9Þ symmetry, the varia-

bles v��
q obeying the constraints (3.9) parametrize the

celestial sphere S9 (9 ¼ D� 2 for D ¼ 11; see [43] for
D ¼ 4, 6, 10 and [44,45] for the D ¼ 11 superparticle
cases). They form a 32� 16 matrix which can be com-
pleted until the 32� 32 spinor moving frame matrix

Vð�Þ
� ¼ vþ�

q

v��
q

 !
2 Spin ð1; 10Þ: (3.11)

[Notice that vþ�
q has been already used in Eq. (3.10)]. This

spinor moving frame matrix is related to the moving frame
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matrix (3.7) by the constraints expressing the Lorentz
invariance of the Dirac matrices,

V�bV
T ¼ uðaÞb �ðaÞ; (3.12)

VT~�ðaÞV ¼ ~�buðaÞb ; (3.13)

and of the charge conjugation matrix,

VCVT ¼ C; VTC�1V ¼ C�1: (3.14)

The relation (3.9) appears as a 16� 16 block in the split-
ting of the 32� 32 matrix of constraint (3.12). The con-
straint (3.14) allows us to express the elements of

the inverse spinor moving frame matrix (Vð�Þ
� ¼

ðv�q
�; v�q

þÞ 2 Spinð1; 10Þ) in terms of the original mov-

ing frame variables (3.11)

v�q
� ¼ �iC��v

��
q ; v��

q ¼ �iC��v�q
�: (3.15)

[In our case of D ¼ 11 with our mostly plus notation the
charge conjugation matrix is imaginary, hence the appear-
ance of i in Eqs. (3.15)].

The moving frame and spinor moving frame variables
are also used to construct the SOð1; 1Þ and SOð9Þ connec-
tions on the worldvolume superspace W ð1j16Þ. The sim-
plest way to define this connection as induced by (super)
embedding is to write the SOð1; 10Þ � SOð1; 1Þ � SOð9Þ
covariant derivatives (3.5) of the moving frame and spinor
moving frame variables as follows:

Du¼m ¼ uim�
¼i; (3.16)

Du#m ¼ uim�
#i; (3.17)

Duim ¼ 1
2u

#
m�

¼i þ 1
2u

¼
m�

#i; (3.18)

Dv��
q ¼ �1

2�
¼i�i

qpv
þ�
p ; (3.19)

Dvþ�
q ¼ �1

2�
#i�i

qpv
��
p : (3.20)

Here�¼i and�#i generalize the SOð1;10Þ
SOð1;1Þ�SOð9Þ Cartan forms

for the case of curved target superspace.

Now the SOð1; 1Þ curvature, r ¼ d!ð0Þ, of the worldline
superspaceW ð1j16Þ and the SOð9Þ curvatures of the normal
bundle over it, Gij, can be defined through the Ricci
identities specified for the moving frame variables,

DDu#a ¼ 2d!ð0Þu#a þ R̂a
bu#b; (3.21)

DDu¼a ¼ �2d!ð0Þu¼a þ R̂a
bu¼b ; (3.22)

DDua
i ¼ ujaGji þ R̂a

bub
i: (3.23)

Here R̂a
b is the pullback of the target superspace Riemann

curvature two form (2.6) toW ð1j16Þ. Contracting Eq. (3.21)
with u¼a and Eq. (3.23) with uja, and denoting the

moving frame projections of the Riemann curvature pull-

back R̂a
b by

R̂¼# :¼ R̂abu¼a u#b; R̂ij :¼ R̂abuiaub
j;

R̂¼j :¼ R̂abu¼a ub
j; R̂#j :¼ R̂abu#aub

j;
(3.24)

one finds the following generalization of the Gauss and
Ricci equations of the classical surface theory (see [12] for
references):

d!ð0Þ ¼ 1
4R̂

¼# þ 1
4�

¼i ^�#i; (3.25)

G ij ¼ R̂ij ��¼½i ^�#j�: (3.26)

One can also use (3.21) and (3.22) to obtain, as integrability
conditions of Eqs. (3.16) and (3.17), the following general-
ization of the Peterson-Codazzi equations:

D�¼i ¼ R̂¼i; D�#i ¼ R̂#i: (3.27)

More details on moving frame variables and their role in
the superembedding approach can be found in Appendix B
as well as in [16,30] in the case of the M0-brane and in
[12,15,16] (and in references therein) in the general case.

C. Equations of motion of a single M0-brane
from the superembedding approach

The superembedding Eq. (3.3) is on shell in the sense
that it contains the M0-brane equations of motion among
its consequences. We refer to [30] for the details on the
derivation of these equations and just present the result.
The fermionic equations of motion state the vanishing of
the bosonic component of the pullback of the fermionic

supervielbein of W ð1j16Þ,

�#p
� :¼ Ê#

�v�p
� ¼ 0; (3.28)

so that on the mass shell Eq. (3.10) simplifies to

Ê � :¼ dẐMð�ÞEM
�ðẐð�ÞÞ ¼ eþqv��

q : (3.29)

The bosonic equation of motion for the M0-brane reads

�¼i
#

:¼ �D#u
¼aua

i ¼ �D#Ê#
aua

i ¼ 0: (3.30)

Equations (3.29) and (3.30) imply the differential form
equation

�¼i :¼ �Dua¼uai ¼ 0 (3.31)

stating vanishing of the 1-form in the right-hand sides
(r.h.s.’s) of Eqs. (3.16) and (3.19). Hence, the dynamical
equations of the M0-brane can be formulated as the
condition that the lightlike moving frame vector u¼a and
its square root [in the sense of Eq. (3.9)], the set of 16
constrained spinorial superfields v��

q , are covariantly

constants,

Du¼a ¼ 0; Dv��
a ¼ 0: (3.32)
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D. Geometry of the worldline superspace W ð1j16Þ
and of the SOð9Þ bundle over it

As far as the worldline superspace W ð1j16Þ, whose em-

bedding into the target 11-dimensional superspace �ð11j32Þ
will be used to describe the motion of the multiple M0
system, we will need some details on the geometry of

W ð1j16Þ and of the normal bundle over it.
Taking into account Eqs. (3.28) and (3.30), one finds

that, similarly to the case of flat superspace, the bosonic

torsion two form of W ð1j16Þ is given by

De# ¼ �2ieþq ^ eþq; (3.33)

and that the curvature of the SOð1; 1Þ connection onWð1j16Þ
vanishes

d!ð0Þ ¼ 0 (3.34)

[see Gauss equation (3.25)]. Nevertheless, the geometry

induced onWð1j16Þ by its embedding to �ð11j32Þ is not trivial
because the fermionic torsion 2-form is nonzero,

Deþq ¼ � 1
72e

# ^ eþpF̂#ijk�
ijk
pq: (3.35)

Here i, j, k ¼ 1; . . . ; 9, �ijk ¼ �½i�j�k� is the antisymmet-
ric product of the nine-dimensional Dirac matrices,
�i
qp ¼ �i

pq, obeying

�i�j þ �j�i ¼ 
ijI16�16; i; j ¼ 1; . . . ; 9 (3.36)

(some useful properties of these can be found in
Appendix A). Equation (3.35) expresses the fermionic
torsion in terms of the projection

F̂ #ijk :¼ FabcdðẐÞua¼ubiucjudk (3.37)

of the pullback to W ð1j16Þ of the 4-form flux (4-form field
strength superfield) FabcdðZÞ of the 11-dimensional super-
gravity. This flux projection enters as well in the expression

for the SOð9Þ curvature of normal bundle over W ð1j16Þ
determined by the Ricci equation (3.26),

Gij ¼ R̂ij

¼ eþq ^ eþp

�
2i

3
F̂#ijk�

k
qp þ i

18
F̂#klm�

ijklm
qp

�
� ie# ^ eþq�qp½iT̂#j�þp: (3.38)

The last term in (3.38) contains the projection

T̂ #iþq :¼ Tab
�ðẐÞv�

�qu
¼
a u

i
b (3.39)

of the pullback to Wð1j16Þ of the ‘‘fermionic flux’’ Tab
�ðZÞ

[superfield generalization of the gravitino field strength,
see Eq. (2.3)].

Here and below, to make the equations lighter, we
identify upper and lower case SOð9Þ vector indices;
although our 11-dimensional metric is ‘‘mostly minus,’’
�ab ¼ diagðþ;�; . . . ;�Þ, this should not create confusion
as far as we never use contractions of ‘‘internal’’ indices

with �ij ¼ �
ij. We also conventionally replace the

¼ superscript by the # subscript in the notation for the
contractions of the tensors with u¼a .
Notice that, with the M0 equations of motion written in

the form of Eq. (3.31), �¼i ¼ 0, the Peterson-Codazzi
Eq. (3.27) results in

R̂¼i :¼ R̂abu¼a ub
i ¼ 0:

Calculating the pullback of the Riemann curvature 2-form

(2.6) to W ð1j16Þ, one sees that this relation is satisfied
identically.
While �¼i ¼ 0 encodes the M0 equations of

motion, the second set of SOð1; 1Þ � SOð9Þ � SOð1; 10Þ
covariant 1-forms�#i determining the SOð1; 1Þ � SOð9Þ �
SOð1; 10Þ covariant derivatives of u#a and vþ�

q in

Eqs. (3.17) and (3.20), remains unspecified by the super-
embedding equations. This reflects theK9 gauge symmetry
of the massless superparticle dynamics; in our superem-
bedding approachK9 appears as a gauge symmetry leaving
invariant u¼a and v��

q while acting on the remaining

moving frame superfields by


u#a ¼2k#iuia; 
uia ¼ 2k#iu¼a ;


vþ�
q ¼ k#i�i

qpv
��
q : (3.40)

With respect to K9 the 1-form �#i is not covariant but
transforms as a connection; actually it can be considered as

a part of the connection of a normal bundle over W ð1j16Þ.
The structure group of this normal bundle is nonstandard,
SOð9Þð�K9 (rather than, say SOð10Þ) because the bosonic
body of W ð1j16Þ is a lightlike line in spacetime. However,
for our purposes here it is sufficient to account for the
SOð9Þ part of the curvature of this normal bundle and
to keep manifest only the SOð1; 1Þ � SOð9Þ � SOð1; 10Þ
gauge symmetry, thus leaving K9 symmetry hidden.

E. Pullback of the fluxes to W ð1j16Þ and the
supergravity equations of motion

Thus, the characteristics of the geometry of W ð1j16Þ,
induced by its embedding to �ð11j32Þ, and of the normal
bundle over it, involve only definite projections (3.37) and

(3.39) of the pullbacks to W ð1j16Þ of the covariant bosonic
and fermionic superfields (‘‘fluxes’’) of the 11-dimensional

supergravity. Then, if some model is defined onW ð1j16Þ, its
interaction with background supergravity will be described
by this projections of the fluxes and by their derivatives.
This poses the problem of calculating the worldline cova-
riant derivatives of superfields (3.37) and (3.39) which
might seem to be quite involved. Fortunately, the proper-

ties of W ð1j16Þ simplify these calculations essentially.
First, let us observe that Eqs. (3.37) and (3.39) involve

only u¼a , v�
�q and uia moving frame superfields. Then,

as was mentioned above, the equations of motion for the
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single M0-brane (which follow from superembedding
equation) can be expressed by the statement that
Dv�

�q ¼ 0 and Du¼a ¼ 0, Eq. (3.32). Furthermore, due to

the same equations which can be written in the form of
Eq. (3.31), the derivative of the uia superfield reads
Duia ¼ 1

2�
#iu¼a [see (3.18)]. It is important that Duia /

u¼a and, hence, do not contribute in the derivative of an
expression constructed from an antisymmetric tensor of
SOð1; 10Þ contracting one of its indices with uia and an-
other with u¼a . The projections (3.37) and (3.39) of the
bosonic and fermionic fluxes are just of this type so that the
calculation of their worldline superspace fermionic cova-
riant derivatives is basically reduced to the algebraic op-
eration with the expressions for the background superspace
spinorial derivatives of the corresponding superfields,
Eqs. (2.8) and (2.9).

After some algebra using the properties of moving frame
and spinor moving frame variables [Eqs. (B5) and (B6) in
Appendix B], we find that Eq. (2.8) implies

DþqF̂#ijk ¼ 3i�½ijjqpT̂#jk�p (3.41)

and Eq. (2.9) results in

DþpT̂#iþq ¼ 1

2
R̂#ij#�

j
pq þ 1

3
D#F̂#ijk

�

i½j�kl�

pq þ 1

6
�ijkl
pq

�
þ F̂#j1j2j3F̂#k1k2k3�

i;j1j2j3;k1k2k3
pq (3.42)

Here

R̂ #ij# :¼ RdcbaðẐÞud¼uciubjua¼ (3.43)

is the specific projection of Riemann tensor and the explicit
form of the last term reads

F̂ #j1j2j3F̂#k1k2k3�
i;j1j2j3;k1k2k3
pq ¼ � 1

12
�j
pq

�
F̂#ik1k2F̂#jk1k2 þ

1

9

ijðF̂#k1k2k3Þ2

�
þ 1

9
�j1j2j3
pq F̂#ij1kF̂#kj2j3

þ 1

72
�k1k2k3k4k5
pq ðF̂#ik1k2F̂#k3k4k5 þ 
i

½k1F̂#k2k3jjF̂#jjk4k5�Þ: (3.44)

Notice that the projection (3.43) of the Riemann tensor
is symmetric as far as

R̂ #½ij�# ¼ 3
2R̂½#ij�# ¼ 0 (3.45)

due to Eq. (2.7), R½abc�d ¼ 0. Furthermore, its trace (on
SOð9Þ vector indices) is expressed through the product of
the projections (3.37) of the 4-form fluxes by

R̂ #j#j þ 1
3ðF̂#ijkÞ2 ¼ 0; (3.46)

which is the u¼a u¼b projection of the pullback of the
supergravity Einstein Eq. (2.10) to W ð1j16Þ.

The contraction of the pullback to W ð1j16Þ of the super-
gravity Rarita-Schwinger Eqs. (2.11) with u��av��

q gives

�i
qpT̂#iþp ¼ 0: (3.47)

It should not be too surprising that the self-consistency
condition for this equation is satisfied identically when the
consequence (3.46) of the supergravity Einstein equation

(2.10) is taken into account, �i
qsDþpT̂#iþs ¼

� 1
2
qpðR̂#j#j þ 1

3 ðF̂#ijkÞ2Þ ¼ 0.

Now we have all necessary details on the geometry of

the worldline superspace W ð1j16Þ induced by its super-

embedding in �ð11j32Þ and are ready to study the super-
symmetric gauge theory on this superspace which we use
to describe the relative notion of the constituents of the
mM0 system.

IV. MULTIPLE M0 DESCRIPTION BY SUðNÞ
SYM ON W ð1j16Þ SUPERSPACE

The superembedding approach to multiple M0-brane
system implies, in particular, a superfield description of
the relative motion of M0 constituents. Our proposition
is to describe the relative motion of M0 constituents
by the maximally supersymmetric SUðNÞ Yang-Mills

gauge theory on W ð1j16Þ whose embedding into the target
11-dimensional superspace is specified by the superembed-
ding equation (3.3) [30]. To motivate such a choice, we first
notice that, as far as the M0-brane is dual to the type IIA
D0-brane [10], it is natural to expect that the multiple M0
system is dual to the multiple D0-brane one. Then, the
worldline superspace SUðNÞ SYM description of the rela-
tive motion in the multiple M0-system is suggested by the
superembedding description of the multiple D0’s [27]. The
suggestion to describe this by a d ¼ 1 N ¼ 16 SUðNÞ
SYMmodel on theW ð1j16Þ superspace comes from the fact
that at very low energy the gauge fixed description of the
dynamics of the multiple Dp-brane system in flat target
type II superspace can be provided by maximally super-
symmetric (pþ 1)-dimensional UðNÞ ( ¼ SUðNÞ �Uð1Þ)
SYM model, i.e., by dimensional reduction of the
correspondingD ¼ 10 SYMmodel withUðNÞ gauge sym-
metry [20].
Now we have to specify the embedding of the ‘‘center

of mass’’ (better to say, ‘‘center of energy’’) superspace

W ð1j16Þ of the multiple M0 system into the target super-

space �ð11j32Þ of 11-dimensional supergravity. The natural
proposition is to require this to be defined by the super-
embedding equation (3.3). The arguments in favor of such
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a choice include the universality of the superembedding
equation and the difficulty one meets in an attempt to
generalize it. Now we can also refer on that the approach

based on the use of the center energy superspace W ð1j16Þ
obeying the superembedding equation was checked on
consistency for the multiple M0 system in flat D ¼ 11
superspace [30]. However, it was clear from the very
beginning that this superembedding approach is able to
provide a covariant generalization of the matrix model
equation valid in any curved 11-dimensional supergravity
background. In this section we derive the explicit form of
such equations describing the multiple M0 interaction with
the 11-dimensional supergravity fluxes.

A. mM0 center of energy motion from
superembedding of W ð1j16Þ into �ð11j32Þ

Thus, the center of energy superspace of themM0 system

is chosen to be W ð1j16Þ, the counterpart of the worldline
superspace of single M0, the embedding of which into the
target superspace, an arbitrary 11-dimensional supergravity

superspace �ð11j32Þ, is restricted by the superembedding
equation (3.3). As far as the superembedding equation
specifies completely the geometry of the worldline super-
space, all the knowledge on the torsion forms and curvature

of W ð1j16Þ and normal bundle over it, Eqs. (3.33), (3.34),
(3.35), and (3.38), on its extrinsic geometry, Eq. (3.31), as

well as on the pullbacks of fluxes to W ð1j16Þ, Eqs. (3.37),
(3.39), (3.40), (3.41), (3.42), (3.43), (3.44), (3.45), (3.46),
and (3.47), are true for this center of energy superspace.
In particular, the pullbacks of the target space supervielbein

to W ð1j16Þ obey Eqs. (3.28) and (3.30), which encodes the
dynamical equations of motion for single M0-brane
[equivalent to Eqs. (3.32)],

Ê a ¼ e#ua¼=2; Dua¼ ¼ 0; ua¼u¼a ¼ 0; (4.1)

Ê �¼eþqv��
q ; Dv��

q ¼0; v�
q �

av�
p ¼
qpu

¼
a : (4.2)

The fact that the equations of motion for the center of
energy of the multiple p-brane system have the form of the
equations for the single brane looks natural, in particular,
when we are speaking about a system of particles.
However, one has to stress that for the mM0 system, as
far as the single M0 brane is a massless 11-dimensional
superparticle, the statement that the dynamics of the center
of energy is governed by a single M0 equations implies that
the mM0 center of energy moves on a lightlike geodesic

in the bosonic body of �ð11j32Þ. This fact, expressed by the

third equation in (4.1) [or, equivalently, by Êa
#Ê#a ¼ 0],

should not look surprising if we keep in mind the image of,
for instance, a beam of light, which moves as a whole in a
lightlike direction despite, say, gravitational interaction
among photons.

One may also find this property natural for a general-
ization of the matrix model. Indeed, making a dimensional

reduction of our mM0 system to ten dimensional, on the
way similar to passing from single M0 to single D0 in [10]
by generalized dimensional reduction, we will find a time-
like motion of the center of mass of the ten-dimensional
system, which would be the mD0 system in a type IIA
supergravity background. Actually such a system, but in a
simpler background, was the final ‘‘destination’’ of the
DLCQ (discrete light-cone quantization) approach in
[46,47]4

B. Basic superfields describing relative motion of mM0
constituents and basic constraints for them

Thus, our center of energy superspaceW ð1j16Þ is defined
by the superembedding equation (3.3) imposed on the

coordinate functions ẐMð�Þ ¼ ðx̂mð�Þ; �̂ ��ð�ÞÞ. This results
in dynamical equations which formally coincide with the
equations of motion of a single M0-brane, which implies,
in particular, that the center of energy motion is lightlike.
Our proposition is to describe the relative motion of the
mM0 constituents by the d ¼ 1, N ¼ 16 SUðNÞ SYM
model on this superspace. This is formulated in terms
of a 1-form gauge potential A ¼ e#A# þ eþqAþq the field

strength of which,

G2 ¼ dA� A ^ A

¼ 1=2eþq ^ eþpGþpþq þ e# ^ eþqGþq#; (4.3)

should be restricted by the set of constraints. The natural
choice for the these constraints is

Gþqþp ¼ i�i
qpX

i; (4.4)

where �i
qp ¼ �i

pq are nine-dimensional Dirac matrices

(3.36) and Xi ¼ �ðXiÞy is a nanoplet of N � N anti-
Hermitian matrix superfields. The leading component of
this, Xij�q¼0, provides a natural candidate for the field

describing the relative motion of the M0 constituents. As
was stressed in [39], it is important that this superfield has
the SOð1; 1Þ wait 2, the fact which we find convenient to
present in the form Xi ¼ Xi

#
:¼ Xiþþ [and which can be

seen from Eq. (4.4)].
Let us notice that the essential constraint in (4.4) is

Gþqþp�
ijkl
pq ¼ 0, while the vanishing of the SOð9Þ singlet

4Certainly we appreciate differences between our approach
and the DLQG reasonings of [46,47] which discusses the
M-theory compactification on a lightlike circle, considering
this as limit of spacial circle of radius Rs and restricting to the
sector of fixed momentum along the circle p ¼ N=Rs which is
argued to produce a theory of N D0 branes. The most evident
difference is that in DLCQ the number of D0-branes is defined
by the integer number characterizing the fixed value of the
momentum in the compact direction, p ¼ N=Rs, while in our
construction the number of D0’s in mD0 system is defined by the
number of mM0 constituents in the prototype 11-dimensional
system and the fixed momentum in compact (spacelike) dimen-
sion corresponds to the mass of the ten-dimensional mD0
system.
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part of this, Gþqþq ¼ 0, is the conventional constraint

which determines A# in terms of Aþq and its derivatives.

One can also think about a more complicated set of con-

straints Gþqþp ¼ i�i
qpX

i þ i�ijkl
qp Yijkl where Yijkl is con-

structed from Xi superfields and their covariant fermionic
(and bosonic) derivatives. For the case of flat target super-
space, this corresponds to a deformation of the D ¼ 10
SYM model reduced to d ¼ 1; such deformations do exist
and were the subject of studies in [48] and more recently in
[49]. Although the existence of their counterparts corre-
sponding to the curved target superspace seems to be a
reasonable conjecture, to our best knowledge no special
study of that has been carried out as of yet. Furthermore,
even if this conjecture were proven, so that it were natural
to expect the appearance of such type of deformations in a
multiple brane models, the study of such models would
promise to be very complicated (up to not being practical,
at least without the use of a computer programs like the one
applied in [48]). So in this paper we restrict ourself by
considering the model with the simplest constraints (4.4); if
the above mentioned deformation were found, our results
based on constraint (4.4) would provide at least a reason-
able (manageable) approximation to such a more complete
but much more complicated description.

Studying Bianchi identities DG2 ¼ 0 one finds that
the self-consistency of the constraints (4.4) requires the
matrix superfield Xi to obey the superembedding-like
equation [30]

DþqX
i ¼ 4i�i

qp�q; (4.5)

where the anti-Hermitian fermionic spinor superfield
�q :¼ �þþþq with SOð1; 1Þ weight 3 is related to the

Hermitian fermionic field strength in (4.3) by �q ¼
iGþqþþ.

As far as the SYM model is defined on the superspace

W ð1j16Þ obeying the superembedding Eq. (3.3), its geome-
try is characterized by Eqs. (3.35), (3.38), and (3.34). This
implies that

fDþq;DþpgXi ¼ 4iD#X
i�i

qp

� i½Xi;Xj��j
qp þ 4i

3
XjF̂#k1k2k3

�
�

i½k1�k2

pq
k3�j � 1

12
�
ijk1k2k3
pq

�
(4.6)

Using this anticommutation relation together with the
superembedding-like equation (4.5), we find

Dþp�q ¼ 1

2
�i
pqD#X

i þ 1

16
�ij
pq½Xi;Xj�

� 1

12
XiF̂#jkl

�

i½j�kl� þ 1

6
�ijkl

�
pq
: (4.7)

This equation shows that the set of physical fields of the
d ¼ 1,N ¼ 16 SYMmodel defined by constraints (4.4) is

exhausted by the leading component of the bosonic super-
field Xi, providing the non-Abelian, N � N matrix gener-
alization of the Goldstone field describing a single
M0-brane in static gauge, and by its superpartner, the
leading component of the fermionic superfield �q in

(4.5), providing the non-Abelian, N � N matrix general-
ization of the fermionic Goldstone fields describing a
single M0-brane. These can be extracted from the fermi-
onic coordinate functions of a single M0-brane by fixing
the gauge with respect to local fermionic � symmetry.
Notice that in our approach no non-Abelian counterpart
of the � symmetry is needed as far as the relative motion of
the mM0 constituents is described by matrix counterpart of
the physical Goldstone fields of a single brane rather then
of the coordinate functions.
This also explains a specific way of realizing the mani-

fest SOð1; 10Þ Lorentz symmetry in our model. The physi-
cal fields of a single brane model are usually extracted by
fixing a Lorentz noncovariant gauge (with respect to �
symmetry and reparametrization symmetry) and, as a re-
sult, carry the indices of a subgroup of the SOð1; 10Þ
Lorentz group, including SOð9Þ � SOð1; 1Þ in the M0
case. Then our matrix valued fields, being a counterpart
of these physical fields, carry the SOð9Þ indices and defi-
nite SOð1; 1Þ weights, while they are inert under the
SOð1; 10Þ Lorentz group which acts nontrivially on the
variables describing the center of energy motion only.

C. Equations of motion and polarization
of multiple M0 by flux

The next stage is to study the self-consistency condition
of Eq. (4.7). Using the fermionic covariant derivative alge-
bra we can present that in the form

fDþq; Dþpg�r ¼ 4iD#�r
qp � i½�r;X
j��j

qp þ i

3
F̂#ijk�s

�
�
�½i
qp�

jk�
sr þ 1

12
�ijkk1k2
pq �k1k2

sr

�
¼ Dþðq

�
�iD#X

i þ 1

8
�ij½Xi;Xj�

� 1

6
XiF̂#jkl

�

i½j�kl� þ 1

6
�ijkl

��
pÞr

:(4.8)

Then, using Eq. (3.41) and

½Dþp; D#�Xi ¼ i½Xi;�p� þ i

18
F#jklð�jkl�iÞpq�q

� iT̂#½ijþq�jj�qpXj; (4.9)

we find, after some algebra, that the pq-trace part of
Eq. (4.8) results in the interacting dynamical equation for
the 16-plet of fermionic matrix (super)fields

D#�q ¼ �1
4�

i
qp½Xi;�p� þ 1

24F̂#ijk�
ijk
qr �r � 1

4X
iT̂#iþq:

(4.10)
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We have simplified the final form of the fermionic
Eq. (4.10) using the consequence (3.47) of the supergravity
Rarita-Schwinger equation. Using this equation one can
also check that the other irreducible parts of the self-
consistency condition (4.8) are satisfied identically (the
fact which can be considered as a nontrivial consistency
check for our basic equations).

As usual in supersymmetric theories, the higher compo-
nents in decomposition of the superfield version of the
fermionic equations over the Grassmann coordinates of
superspace gives the bosonic equations of motion. In the
case of our multiple M0 system, using the commutation
relations

½Dþp; D#��q ¼ �if�q;�pg þ 1

72
F#ijk�

ijk
prDþr�q

� i

4
�s�

ij
sq�

j
prT̂#iþr; (4.11)

as well as Eqs. (4.9), (3.41), and (3.42), we find the Gauss
constraint

½Xi; D#X
i� ¼ 4if�q;�qg (4.12)

and the proper bosonic equation of motion

D#D#X
i ¼ 1

16½Xj; ½Xj;Xi�� þ i�i
qpf�q;�pg þ 1

4X
jR̂#j#i

þ 1
8F̂#ijk½Xj;Xk� � 2i�qT̂#iþq: (4.13)

Notice that the Gauss constraint comes from the
trace ( / 
qp) part of the equation DþpD#�q ¼
½Dþp; D#��q þD#ðDþp�qÞ written with the use of

Eqs. (4.7) and (4.10). The second order equations of motion
(4.10) is obtained from the / �i

qp irreducible part of that

equation, while the other irreducible parts ( / �ij
qp, / �ijk

qp

and / �ijkl
qp ) are satisfied identically when the consequence

(3.47) of the supergravity Rarita-Schwinger equation is
taken into account. This provides one more consistency
check of our approach.

The bosonic Eq. (4.13) has an interesting structure,
particularly in its part describing coupling to the generic
supergravity background. The fourth term in the r.h.s. of

this equation, F̂#ijk½Xj;Xk�, is typical for ‘‘dielectric cou-
pling’’ characteristic for the Emparan-Myers ‘‘dielectric
brane effect’’ [28,50]. It is essentially non-Abelian as far as
in the Abelian case this contribution vanishes. This is the
case also for the first and the second terms in the r.h.s. of
(4.13), which are also present in the case of flat background
without fluxes and in 1d-dimensional reduction of ten-
dimensional SYM (which is clearly not the case for the
other three terms describing interactions with fluxes of
11-dimensional supergravity).

The third term in the r.h.s. (4.13) is linear inXj and thus
gives rise to a mass term for this suðNÞ valued matrix
bosonic (super)field. The corresponding mass matrix is
induced by fluxes, namely, it is expressed through the
pullback of the specific projection of Riemann tensor,

R̂#ij# of Eq. (3.43). Notice that the latter is symmetric in

its SOð9Þ vector indices (3.45) which is important because
otherwise Eq. (4.13) would look non-Lagrangian. Notice
also that, due to the consequence (3.46) of the supergravity
Einstein equation, when the multiple M0 system interacts
nontrivially with the 4-form fluxes, the fieldXj, describing
the relative motion of the mM0 constituents, is always
massive as far as the trace of its mass matrix is
nonvanishing.

V. BPS EQUATIONS AND
SUPERSYMMETRIC BOSONIC SOLUTIONS

OF THE MULTIPLE M0 EQUATIONS

A. Supersymmetry preservation by single M0

The presence of M0-brane breaks 1=2 of the spacetime
supersymmetry. This can be easily seen from Eqs. (3.8) and
(3.29) describing the on-shell superembedding of the
M0 worldline superspace or of the center of energy

superspace of the mM0 system, W ð1j16Þ, into the target

11-dimensional superspace �ð11j32Þ. Indeed, in the super-
space formulation the local supersymmetry transforma-
tions of a supergravity model can be identified with
supertranslations in the fermionic directions,

"� ¼ 
ZME�
MðZÞ ¼: i
E

�: (5.1)

Then Eq. (3.29) implies that, if a 32-component spinor
parameter "� describes a supersymmetry preserved by

some M0-brane, its pullback "̂� to W ð1j16Þ is expressed
through 16 parameters


þq ¼ 
�Meþq
M ð�Þ ¼: i
e

þq (5.2)

of the local worldline supersymmetry,

"̂ � ¼ 
þqv��
q : (5.3)

Thus, in a completely supersymmetric background a
solution of M0-brane equations can preserve 16 or less of
32 target (super)space supersymmetries. If the supergravity
background preserves a part of supersymmetries, the situ-
ation becomes more complicated as the number of pre-
served supersymmetries may become dependent on details
of M0-brane motion (see the recent work in [51] for
the specific case of strings and branes in type IIA super-
space describing the 3=4 supersymmetric AdS4 � CP3

background).
The superembedding approach allows to make some

general statements about supersymmetry preservation by
M0-brane motion in a purely bosonic background. In
superspace such backgrounds are characterized by

Tab
�ðxÞ ¼ 0: (5.4)

Then the pullback of this fermionic field strength to the
worldvolume and its projections also vanish. Taking into
account that only the projection (3.39) enters the descrip-
tion of the M0 worldline superspace geometry and, through
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that, its dynamics, one sees that the part of worldline
supersymmetry (part of the 1=2 of the target space super-
symmetry) preserved by a certain M0 motion is character-
ized by parameters which obey


þpðDþpT̂#iþqÞj0 ¼ 0 (5.5)

with j0 :¼ j�p¼0.

In our approach this equation also determines the

W ð1j16Þ supersymmetry (a part of the 1=2 of the target
space supersymmetry) preserved by the center of energy
motion of the mM0 system. But in this case this is not the
end of story as the supersymmetry preserved by the center
of energy motion can be either preserved or broken by the
relative motion of the mM0 constituents.

B. Supersymmetry preservation
by multiple mM0 system

The supersymmetry transformation 
susyc qð	Þ of the

N � N matrix fermionic field c qð	Þ :¼ �qð	; 0Þ 	 �qj0
can be identified as 
susyc qð	Þ ¼ 
þpDþp�qj0. Then the

preservation of supersymmetry for bosonic solutions of
the equations describing relative motion of mM0 implies


þpðDþp�qÞj0 ¼ 0: (5.6)

Furthermore, using Eqs. (3.42), (3.44), and (4.7) one can
present the system of Eqs. (5.5) and (5.6) for the parameter
of supersymmetry preserved by the mM0 system in the
following form:


þpN ipq ¼ 0;

N ipq :¼ DþpT̂#iþq

¼ 1

2
�j
pq

�
R̂#ij# � 1

6
F̂#ik1k2F̂#jk1k2 �

1

54

ijðF̂#k1k2k3Þ2

�
þ 1

3
D#F̂#ijk

�

i½j�kl�

pq þ 1

6
�ijkl
pq

�
þ 1

9
�j1j2j3
pq F̂#ij1kF̂#kj2j3

þ 1

72
�k1k2k3k4k5
pq ðF̂#ik1k2F̂#k3k4k5 þ 
i

½k1F̂#k2k3jjF̂#jjk4k5�Þ; (5.7)


þpMpq ¼ 0;

Mpq :¼ Dþp�q

¼
�
�i
pqD#X

i þ 1

8
�ij
pq½Xi;Xj� � 1

6
XiF̂#jkl

�
�

i½j�kl� þ 1

6
�ijkl

�
pq

�
: (5.8)

Here and below we denote the leading component of
superfield by the same symbol as the whole superfield,
i.e., if treating equations in terms of superfield, we assume
j0 ( :¼ j�p¼0) symbol, but do not write this explicitly.

C. 1=2 BPS equations for single M0-brane

It is natural to begin with the study of 1=2 BPS equations
for the more conventional case of a single M0-brane. This
preserves 1=2 of the target space supersymmetry if
Eq. (5.7) is satisfied for the arbitrary SOð9Þ spinor 
þp.
Hence, the 1=2 BPS equations for the single M0-brane are
enclosed in the equation

N ipq ¼ 0; (5.9)

where N ipq is defined in (5.7). Decomposing this on the

irreducible parts, one finds the following set of the 1=2BPS
equations for single M0-brane:

R̂ #ij# þ 1
6F̂#iklF̂#klj þ 1

36

ijðF̂#k1k2k3Þ2 ¼ 0; (5.10)

D#F̂#ijk ¼ 0; (5.11)

F̂ #ij½k1F̂#k2k3�j ¼ 0; (5.12)

F̂ #j½k1k2F̂#k3k4�j ¼ 0; (5.13)

F̂ #i½k1k2F̂#k3k4k5� ¼ 0: (5.14)

Notice that Eq. (5.10) cannot be obtained from pullback of
the Einstein equation of supergravity, Eq. (2.10), but its
trace coincides with the consequence (3.46) of this Einstein
equation.
Equation (5.11) implies that the pullback of the 4-form

flux is essentially constant (independent of the proper time
coordinate; notice that one can fix the gauge A# ¼ 0). As
far as the algebraic Eqs. (5.12), (5.13), and (5.14) are
concerned, they are solved by

F̂ #ijk ¼ 3=4wi
Iw

j
Jw

k
K


IJK;

�
i ¼ 1; . . . ; 9
I ¼ 1; 2; 3

; (5.15)

where 
IJK ¼ 
½IJK� is the Levi-Civita symbol, 
123 ¼ 1,
and the 9� 3 matrices wi

I obey D#w
i
I ¼ 0.

Thus, a certain M0 motion can preserve 1=2 of 32 target
spacetime supersymmetries if the projection of the pull-
back of the target superspace flux to the M0 worldline
obeys (5.15).
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D. 1=2 BPS equations for multiple M0-brane system

In our approach, a certain configuration of multiple M0
system can preserve 1=2 of the complete supersymmetry if
the center of energy motion obeys Eq. (5.9) and the relative
motion of mM0 constituents preserves all the 16 super-

symmetries preserved by the center of energy motion.
Thus, we have to assume that (5.8) is obeyed for an
arbitrary 
þp so that the system of 1=2 BPS equations
for the multiple M0 system includes Eq. (5.9),

N ipq ¼ 1

2
�j
pq

�
R̂#ij# � 1

6
F̂#ik1k2F̂#jk1k2 �

1

54

ijðF̂#k1k2k3Þ2

�
þ 1

3
D#F̂#ijk

�

i½j�kl�

pq þ 1

6
�ijkl
pq

�
þ 1

9
�j1j2j3
pq F̂#ij1kF̂#kj2j3 þ

1

72
�k1k2k3k4k5
pq ðF̂#ik1k2F̂#k3k4k5 þ 
i

½k1F̂#k2k3jjF̂#jjk4k5�Þ ¼ 0; (5.16)

and

Mpq :¼ �i
pqD#X

i þ 1

8
�ij
pq

�
½Xi;Xj� � 4

3
F#ijkX

k

�
þ 1

36
XiF#jkl�

ijkl
pq ¼ 0: (5.17)

Furthermore, as the 1=2 BPS equations for the center of
energy motion (5.16) is equivalent to the set of Eqs. (5.10),
(5.11), and (5.15), one can search for 1=2 BPS solutions of
the multiple M0 system on the basis of Eq. (5.17) with
the projection of the pullback of the 4-form flux defined
by Eq. (5.15) with D#w

i
I ¼ 0.

Actually, it is instructive to take a step back and not use
(5.15) from the very beginning. Decomposing Eq. (5.17) on
the irreducible parts, we find

D#X
i ¼ 0; (5.18)

½Xi;Xj� ¼ 4
3F̂#ijkX

k; (5.19)

X ½iF̂#
jkl� ¼ 0: (5.20)

One-dimensional gauge connection is always trivial, and
so is the bosonic part e#A# of our d ¼ 1 N ¼ 16 super-
space connection A ¼ e#A# þ eþqAþq. Hence Eq. (5.18)

means that for the 1=2 BPS configuration of mM0 the
relative motion of the mM0 constituents is described by
essentially constant N � N matrices obeying Eqs. (5.19)
and (5.20). Now one notices that, as far as the pullback of
the flux is a number, while ourXi are N � N matrices, the
solutions of Eq. (5.20) have a nontrivial matrix structure

only if the flux has the form F̂#ijk ¼ 3=4wi
Iw

j
Jw

k
K


IJK, as in

Eq. (5.15) dictated by the supersymmetry preservation by
the center of energy motion. Equations (5.19) and (5.20)
with such a flux are solved by the following fuzzy 2-sphere
configuration:

X i ¼ wi
IT

I; ½TI; TJ� ¼ 
IJKTK: (5.21)

Here the triplet of N � N matrices TI provides an N � N
representation of the SUð2Þ generators. As in (5.15), wi

I are
9� 3 matrices (i ¼ 1; . . . ; 9, I ¼ 1, 2, 3) playing the rôle
of a bridge between representations of the SOð9Þ and
SOð3Þ ¼ SUð2Þ groups.

A simple particular case of the above 1=2 BPS solution
is the one with wi

I ¼ f
I
i , which occurs when the projec-

tion of the flux has only one nonvanishing basic component

F̂#123 and the relative positions of mM0 constituents are
described by the set of only three nonvanishing bosonic
N � N matrices Xi ¼ ðfT1; fT2; fT3; 0; 0; 0; 0; 0; 0Þ,

X i ¼ f
i
IT

I; ½TI; TJ� ¼ 
IJKTK: (5.22)

F̂ #IJK ¼ 3=4f3
IJK; F̂#ijk ¼ 0

for ði; j; kÞ � permutation of 123
(5.23)

As we have already stated, the configuration (5.22) is
called a fuzzy two-sphere [52]. Similar configuration was
shown to solve the purely bosonic equations for ’dielectric
D0-branes’ following from the p ¼ 0 Myers action for a
particular type IIA background [28]. In that case three
nonvanishing N � N matrices XI ¼ fTI define the set of

eight uðNÞ valued matrices Xî ¼ ðfTI; 0; 0; 0; 0; 0Þ de-
scribing both the relative motion and the motion of the
center of mass of the purely bosonic Myers D0-branes.
The issue of supersymmetry was not addressed in [28] as
far as the supersymmetric generalization of the Myers
action was not known.
In contrast, the fuzzy sphere solution of our multiple M0

equations is supersymmetric by construction and can be
considered as modeling the M2-brane. Moreover, our ap-
proach allows to see explicitly the origin of the SUð2Þ
structure constant in the 4-form flux, Eq. (5.23), and that
this form is essentially the only nonvanishing flux allowed
by the conditions of preservation of 1=2 of the target space
supersymmetry.

E. A particular class of 1=4 BPS states
and the Nahm equation

The set of 1=4 BPS states of the mM0 system is split on
different sectors. Indeed, for this case eight of 16 super-
symmetries which might be preserved by the embedding

of superspace W ð1j16Þ into �ð11j32Þ are broken and, in the
generic case, some number r of them are broken by
the center of mass motion and (8� r)—by the relative
motion of the M0 constituents (r 
 8 in the context of our
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1=4 BPS discussion). In other words, r of the 16 compo-
nents of SOð9Þ spinor 
p can be set to zero by Eq. (5.7),
corresponding to center of energy motion, and the remain-
ing part—(8� r)—by Eq. (5.8), characterizing the relative
motion of mM0 constituents. Here we will restrict our-
selves by considering one specific sector, with the 1=2
supersymmetric center of energy ‘‘motion’’ and additional
1=4 of supersymmetry broken by the relative motion of
mM0 constituents.

In the assumption that the center of mass ‘‘motion’’
obeys the 1=2 BPS condition (5.9), the BPS states preserv-
ing 1=4 of target space supersymmetry should obey

P prMrq ¼ 1
2ð1� ��ÞprMrq ¼ 0; (5.24)

where the 16� 16 matrices Mpq are defined in Eq. (5.8)

and P pq ¼ 1
2 ð1� ��Þpq is the rank 8 projector, PP ¼ P ,

constructed from the matrix ��pq which obeys

�� 2 ¼ I; trð ��Þ :¼ ��qq ¼ 0: (5.25)

We are going to show now that the famous Nahm
equation [53] appears as a particular SOð3Þ invariant case
of Eq. (5.24).

Let us set F̂#ijk ¼ 0, consider bosonic solutions with

only three nonvanishing N � N matrices of nine,

X i ¼ ðXI; 0; . . . ; 0|fflfflffl{zfflfflffl}
6

Þ ¼ ðX1;X2;X3; 0; 0; 0; 0; 0; 0Þ;

(5.26)

and identify �� ¼ i�123. Then ���IJ ¼ �i
IJK�K and
Eq. (5.25) reads

ðð1� ��Þ�IÞpq
�
D#X

I þ i

8

IJK½XJ;XK�

�
¼ 0: (5.27)

This implies the Nahm equation [53]

D#X
I þ i

8

IJK½XJ;XK� ¼ 0: (5.28)

The literal coincidence with the original form of the
Nahm equation appears when we fix the gauge A# ¼ 0
and set to zero the normal bundle connection, so that

D#X
I ¼ _XI :¼ @XI

@	 .

Thus, the famous Nahm equation, which has a fuzzy-
sphere-related fuzzy-funnel solution, appears as a particu-
lar case of a SOð3Þ symmetric 1=4 BPS equation for our
multiple M0 system in the background with vanishing
4-form flux. Hence, surprisingly enough, the origin of
the Levi-Civita symbol 
IJK in the Nahm equation for the
mM0 system is not the 11-dimensional supergravity flux,
as one might expect, but rather the requirement of the
SOð3Þ symmetry of the particular 1=4 BPS configurations
described by three nonvanishing components of Xi.

VI. CONCLUSION AND DISCUSSION

In this paper we have obtained equations of motion for
the system of multiple M0-branes in an arbitrary super-
gravity background. These equations are derived in the
frame of superembedding approach, defining 1d SYM
connection restricted by the set of constraints on the 1d

N ¼ 16 superspace W ð1j16Þ the embedding of which in
the generic 11-dimensional supergravity superspace

�ð11j32Þ is determined by the superembedding equation.
The same superembedding equation defines the embedding
of the worldvolume superspace of a single M0-brane,
which is the massless 11-dimensional superparticle, and
encodes its equations of motion which imply that the M0
worldline is light-like. In the case of mM0 the superem-

bedding equations for the superspaceW ð1j16Þ results in the
equations describing the center of energy motion of the
mM0 system, which is also characterized by a lightlike
geodesic.
The equations for the relative motion of mM0 constitu-

ents follow from the constraints imposed on the field

strength of the SYM connection on W ð1j16Þ. These, to-
gether with the center of energy equations of motion,
provide a generalization of the matrix model [38] for an
arbitrary supergravity background. Notice that the matrix
model has been known before only for a very few particular
backgrounds, including the maximally supersymmetric
pp-wave background [54]. Hence, the natural application
of the present approach is to use our general equations to
obtain the matrix model in physically interesting back-
grounds. In particular, the equations for the matrix model
in AdS4 � S7 and AdS7 � S4 backgrounds can be straight-
forwardly obtained in this manner.
This will be the subject of our subsequent study which

will also include the derivation of our mM0 equations in a
supersymmetric pp-wave background and a comparison of
the result with the BMN (Berenstein-Maldacena-Nastase)
matrix model [54]. In this respect we should mention that
there exist some conjectures [55] that the BMN model
actually provides the description of the matrix theory in
an arbitrary background. The only comment we would like
to make in this respect in the present paper is that, even if
such a conjecture were proved to be correct, it would be a
nontrivial problem to extract the information on a certain
system in definite non-pp-wave background from it5 so
that, in our view, it would be certainly useful anyway to
have an explicit form of the matrix model in an arbitrary
supergravity background.

5In particular, as argued in [56], even the AdS� S background
is completely determined by the two orthogonal Penrose limits:
’’Having only one limit does not determine the whole spacetime.
Thus, the two orthogonal Penrose limits form a sort of classical
holographic boundary for the background with D-2 commuting
Killing directions’’[56].
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We should also notice that all the terms with background
contributions to the r.h.s.’s of our mM0 equations are linear
in fluxes which is in disagreement with expectations based
on the study of the Myers-type actions [28,37]. Although
the Myers action is purely bosonic and resisted all
the attempts of its straightforward supersymmetric and
Lorentz covariant generalization for 11 years (except for
the cases of lower-dimensional and lower codimensional
Dp-branes [22–24]), taking into account particular
progress in this direction reached recently in the frame of
the boundary fermion approach [25] and also evidences
from the string amplitude calculations,6 we should not
exclude the possibility that the above mentioned discrep-
ancy implies that our approach gives only an approximate
description of the matrix model interaction with supergrav-
ity fluxes [but if so, it is Lorentz covariant, supersymmetric
and going beyond the UðNÞ SYM approximation].

If this is the case, a way to search for a more general
interaction lays through modification of the basic equations
of our superembedding approach, namely, the superembed-
ding equation, defining the embedding of the mM0 center

of energy superspace W ð1j16Þ into the target D ¼ 11 su-

pergravity superspace �ð11j32Þ, and the basic constraints
of the d ¼ 1, N ¼ 16 SYM model on the center of
energy superspace. (Notice that modification of the basic
superembedding-type equations in the boundary fermion
approach was suggested recently in [31]). The problem of
the deformation of the basic constraint determining the
equations for the relative motion of mM0 constituents is
the curved superspace generalization of the studies in
[31,48,49]. However, unfortunately, if we allow consistent
deformations of the basic equations of our superembedding
approach, although most probably these exist, they would
certainly make the equations very complicated up to being
unpractical.

Interestingly enough, if we do not deform the superem-
bedding equation, but allow for a deformation of the d ¼ 1,
N ¼ 16 SUðNÞ SYM constraints on the center of mass
superspace, the situation seems to be much more under
control due to the rigid structure of the mM0 equations

[39]. In this case the center of mass motion and supersym-
metry of the corresponding superspace is influenced only by
the projections (3.37), (3.39), and (3.43) of the supergravity
fluxes, so that it is reasonable to assume that only these
fluxes can enter the equations of relativemotion of themM0
constituents. Then, the requirement of SOð1; 1Þ � SOð9Þ
symmetry leaves very few possibilities to add the new terms
to the ones already present in the r.h.s.’s of the Eqs. (4.10),
(4.11), (4.12), and (4.13) [39]. In particular, the only
possible nonlinear term which might be added to the r.h.s.

of the bosonic Eqs. (4.13) is7 XjF̂#jklF̂#ikl describing the

contribution proportional to the second power of the 4-form
flux to the mass matrix of the suðNÞ-valued fields Xj.
In this paper we have also used our superembedding

approach to obtain BPS equations for supersymmetric
solutions of the mM0 equations. As an example we have
shown that the 1=2 BPS equations in the presence of
4-form flux have the fuzzy sphere solution modeling
M2-brane by a 1=2 supersymmetric configuration of mul-
tiple M0. We also found that the Nahm equation [53]
appears as a particular SOð3Þ invariant case of the 1=4
BPS equations in the absence of the four form flux.
The further study of our mM0 BPS equations and search

for new solutions of the mM0 equations of motion is an
interesting problem for future study. A particularly intrigu-
ing problem is to search for a description (better to say,
modeling) of the M5 brane and/or M2-M5 system in this
framework. The popular candidate for the description of
this latter is the Basu-Harvey equation [63]

D#X
~I ¼ 
5

~IJKLX5XJXKXL; ~I ¼ 1; . . . ; 4:

We have not succeed in deducing this from the BPS con-
ditions for supersymmetric solution of our mM0 equations,
so that this remains an interesting problem for future.
Notice that this problem is seen due to the manifest super-
symmetry of our approach: it has not been excluded yet
that the bosonic limit of our mM0 equations do have some
solutions modeling a five brane, but if so, this would not be
a model of M5 brane as far as this should be 1=2 super-
symmetric and thus should be a solution of the 1=2 BPS
equations. Probably the results of [37] on the necessity on
the nonlinear terms for ‘‘matching Abelian and non-
Abelian calculations’’ suggest to try to use modification
of our basic equations resulting in nonlinear flux contribu-
tions into the r.h.s. of the mM0 equations of motion in
search for solving this M5-brane problem.
It is also possible that the description of higher branes

requires to pass from the one-dimensional matrix model to
its higher-dimensional counterparts, beginning from the
matrix string [57] (see [58] for arguments in favor of
this). In this respect it is interesting to check a possibility
to extend our superembedding approach, as it is developed

6One should be careful with using the string amplitude calcu-
lations and T duality as final motivation of definite, not Lorentz
invariant interacting terms in the Myers action, as far as we do
not expect an explicit breaking of the Lorentz symmetry in string
theory (and spontaneous breaking by super-p-branes allows for
the existence of the Lorentz invariant actions producing the
Lorentz covariant equations, so that only the ground state
solution of these breaks partially the Lorentz symmetry). If
our present understanding of string theory is correct, if the
stringy amplitude calculations predict some term in an effective
action, then this should allow for a Lorentz invariant and super-
symmetric form. Notice that in [24], after giving a supersym-
metric but Lorentz noninvariant generalization of the Myers-type
action for multiple D0 in flat superspace, the authors notice that,
by omitting some terms, this action can be made Lorentz
covariant, still preserving some nonlinearities.

7One might also propose the term XiF̂#jklF̂#jkl 	 XiðF̂#jklÞ2,
but this reduces to XiR̂#j#j by Eq. (3.46).
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for mM0 and mD0, for the case of higher p multiple
p-brane systems beginning from type IIB multiple
D-strings or multiple ðp; qÞ strings. This will be the subject
of our future study.
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APPENDIX A: 11-DIMENSIONAL
AND NINE-DIMENSIONAL

GAMMA MATRICES

A convenient SOð1; 1Þ � SOð9Þ invariant representa-
tions for the 11-dimensional gamma matrices and charge
conjugation matrix read

ð�aÞ�� 	
�
1

2
ð�# þ �¼Þ;�i;

1

2
ð�# � �¼Þ

�
;

a ¼ 0; 1; . . . ; 9; 10; i ¼ 1; . . . ; 9;

ð�#Þ�� ¼ 0 2i
pq

0 0

 !
;

ð�¼Þ�� ¼ 0 0

�2i
pq 0

 !
;

ð�iÞ�� ¼ �i�i
pq 0

0 i�i
pq

 !
; (A1)

C�� ¼ �C�� ¼ 0 i
pq

�i
pq 0

� �
¼ ðC�1Þ�� ¼: C��:

(A2)

These are imaginary as far as we use the mostly minus
metric convention so that the flat spacetime metric reads
�ab ¼ diagð1;�1; . . . ;�1Þ.

In (A1) �i
pq are 16� 16 d ¼ 9 Dirac matrices. These

are symmetric �i
pq ¼ �i

qp, and possesses the following

properties

�ði�jÞ ¼ 
ijI16�16; �i
pq ¼ �i

qp :¼ �i
ðpqÞ;

�i
ðpq�

i
rÞs ¼ 
ðpq
rÞs:

(A3)

The d ¼ 9 charge conjugation matrix is also symmetric,
which allows to chose its representation by Kronecker
delta symbol 
qp and do not distinguish upper and lower

Spinð9Þ (SOð9Þ spinor) indices. Notice that the matrices

�ij
qp and �ijk

qp are antisymmetric so that the complete basis
for the set of 16� 16 symmetric matrices is provided by


pq, �
i
pq, �

ijkl
pq ,


rðq
pÞs¼ 1

16

pq
rsþ 1

16
�i
pq�

i
rsþ 1

16 �4!�
ijkl
pq �

ijkl
rs : (A4)

In our conventions �123 456 789
qp ¼ 
qp and, consequently,

�i1...i7
qp ¼ �1

2

i1...i7jk�jk

qp; (A5)

�
i1...i5
qp ¼ 1

4!

i1...i5j1...j4�j1...j4

qp : (A6)

This, together with (A1), implies that our 11-dimensional
Dirac matrices obey

�0�1 . . . �9�ð10Þ ¼ 1
2�

#�¼�1 . . . �9 ¼ �iI32�32: (A7)

APPENDIX B: SOME PROPERTIES
OF MOVING FRAME AND SPINOR MOVING

FRAME VARIABLES ASSOCIATED
TO THE MASSLESS SUPERPARTICLE

Here we collect some useful equations describing prop-
erties of moving frame and spinor moving frame variables
(3.7) and (3.11).
Moving frame variables appropriate to the description of

massless D-dimensional (super)particle were also called
light-cone harmonics in [59] and Lorentz harmonics in
[60]. They are defined as columns of the D�D Lorentz
group matrix of which obey the constraints

UðaÞ
b ¼ ðu¼b ; u#b; uibÞ 2 SOð1; D� 1Þ

,

8>>><>>>:
U�UT ¼ � , 
b

a ¼ 1
2 u

#
au

b¼ þ 1
2 u

¼
a u

b# � uiau
bi

UT�U ¼ � ,
8><>:
u¼a ua¼ ¼ 0; u#au

a# ¼ 0;

u¼a ua# ¼ 2; u¼a uai ¼ 0; u#au
ai ¼ 0;

uiau
aj ¼ �
ij

b ¼ 0; 1; . . . ; ðD� 2Þ; ðD� 1Þ; ðaÞ ¼ ð#;¼; 1; . . . ; ðD� 2ÞÞ: (B1)
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The spinor moving frame variables or spinorial harmonics
(see [43–45,60–62]) are constrained spinors forming
two rectangular blocks of the Spin ð1; D� 1Þ valued matrix
corresponding to (the ‘‘square root’’ of) theD-dimensional
moving frame matrix (B1). Their definition is D and p
dependent, i.e., different not only for different D’s but
also for different p-branes. The harmonics appropriate to
the description of massless D ¼ 11 (super)particle are
collected in spin ð1; 10Þ valued matrix (3.11) obeying
Eqs. (3.12), (3.13), and (3.14). Its inverse matrix [45]

Vð�Þ
� ¼ ðv�q

�; v�q
þÞ 2 Spin ð1; 10Þ (B2)

obeys

Vð�Þ
�Vð�Þ

� ¼ 
ð�Þ
ð�Þ

,
�vþ�

q v�p
� ¼ 
qp; vþ�

q v�p
þ ¼ 0

v��
q v�p

� ¼ 0; v��
q v�p

þ ¼ 
qp

(B3)

and

V�ðaÞVT ¼ �buðaÞb ; VT~�ðaÞV ¼ uðaÞb
~�b;(B4a)

VTCV ¼ C; VC�1VT ¼ C�1:(B4b)

The square root-type relation between spinor moving frame
an moving frame variables encoded in the constraints (B4a)
can be split further into

2v�q
�v�q

� ¼ �a
��u

¼
a ;(B5a)

2v�q
þv�q

þ ¼ �a
��u

#
a;(B5b)

2vð�jq
þ�i

qpvj�Þq
þ ¼ �a

��ua
i;(B5c)

v�
q
~�av

�
p ¼ u¼a 
qp;(B5d)

vþ
q
~�av

þ
p ¼ u#a
qp;(B5e)

v�
q
~�av

þ
p ¼ ua

i�i
qp:(B5f)

The equations in (B4b), expressing the Lorentz invariance
of the charge conjugation matrix C, allow to construct
(explicitly) the elements of the inverse spinormoving frame
matrix, as in (3.15),

v�q
� ¼ �iC��v

��
q ; v��

q ¼ �iC��v�
�q: (B6)

In the massless superparticle model the set of 16 spinors
v�
�p in (B2) can be identified with the homogeneous coor-

dinates of the celestial S9 sphere given by the SOð1; 10Þ
Lorentz group coset [43–45]

fv�p
�g ¼ Spin ð1; 10Þ

½Spin ð1; 1Þ � Spin ð9Þ�ð�K9

¼ S9: (B7)

In the dynamical system of the massless (super)particle
these describe the angles defining the direction of the
lightlike momentum so that one can consider v�p

�’s as

carriers of all the momentum degrees of freedom but
energy. The set of others 16 spinors, v�p

þ, can be gauged

away (but, of course, not set to zero) by the K9 trans-
formations (3.40), so that, in principle, one can work with
the set of constrained spinors v�p

� only. However, it is

often convenient to use the complete spinor moving frame
and keep only the SOð9Þ � SOð1; 1Þ symmetry as an
equivalence relation on the set of v�q

�’s and v�q
þ’s which

satisfy the set of constraints in (B2). Then these con-
strained spinorial variables become homogeneous
coordinates of the noncompact SOð1; 10Þ=½SOð9Þ �
SOð1; 1Þ� coset, while K9 can be considered as a non-
manifest (‘‘hidden’’) symmetry.
The SOð1; 10Þ covariant derivatives (dþ w) of the har-

monic variables which do not break the kinematical
constraints (B1) and (B2) (admissible derivatives) are
expressed by

ðdþ wÞu¼a :¼ du¼a þ wa
bu¼b

¼ �2u¼a �ð0Þ þ uia�
¼i; (B8)

ðdþ wÞu#a ¼ þ2u#a�
ð0Þ þ uia�

#i; (B9)

ðdþ wÞuai ¼ 1
2u

¼
a �

#i þ 1
2u

#
a�

¼i � uja�ji; (B10)

through the covariant 1-forms

�ðaÞðbÞ :¼ UcðaÞðdþ wÞUðbÞ
c ¼ ��ðbÞðaÞ ¼

0 1
2 ð�#i þ�¼iÞ 2�ð0Þ

� 1
2 ð�#i þ�¼iÞ �ij � 1

2 ð�#i ��¼iÞ
�2�ð0Þ 1

2 ð�#i ��¼iÞ 0

0B@
1CA; (B11)

which generalize the SOð1; 10Þ=½SOð1; 1Þ � SOð9Þ�
Cartan forms for the case of local SOð1; 10Þ symmetry
(see [45]).

As reflected by the constraints in (B2), the spinor
Lorentz harmonics V (B2) give the spinor representation

of the Lorentz group element the vector representation of
which is given by the moving frame vectors (B1). Then
their admissible covariant derivatives [i.e., derivatives pre-
serving the constraints (B2)] are expressed through the
same generalized Cartan forms
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V�
ð�Þðdþ wÞVð�Þ

� ¼ 1
4�

ðaÞðbÞ�ðaÞðbÞð�Þ
ð�Þ 2 spin ð1; 10Þ;

�ðaÞðbÞ :¼ UmðaÞðdþ wÞUðbÞ
m 2 soð1; 10Þ: (B12)

This implies

ðdþ wÞv�
q ¼ ��ð0Þv�

q � 1
4�

ijv�
p �

ij
pq þ 1

2�
¼i�i

qpv
þ
p ;

(B13)

ðdþ wÞvþ
q ¼ �ð0Þvþ

q � 1
4�

ijvþ
p �

ij
pq þ 1

2�
#i�i

qpv
�
p

(B14)

for the elements of the Spin (1, 10) valued matrix (B2).

Since the Cartan forms �ð0Þ and �ij transform as con-
nections under local SOð1; 1Þ and SOð9Þ transformations,
respectively, we can use them to define SOð1; 10Þ �
SOð1; 1Þ � SOð9Þ covariant exterior derivatives (covariant
differentials) of the moving frame variables. Using such a
covariant differential we can write Eqs. (B8), (B9), (B13),
and (B14) in the form of

Du¼m :¼ ðdþ wÞu¼m þ 2u¼m�ð0Þ ¼ uim�
¼i;

Du#m :¼ ðdþ wÞu#m � 2u#m�
ð0Þ ¼ uim�

#i; (B15)

Duim :¼ ðdþ wÞuim þ ujm�ji

¼ 1
2u

#
m�

¼i þ 1
2u

¼
m�

#i; (B16)

Dv�
q :¼ ðdþ wÞv�

q þ�ð0Þv�
q þ 1

4�
ijv�

p �
ij
pq

¼ 1
2�

¼i�i
qpv

þ
p ; (B17)

Dvþ
q :¼ ðdþ wÞvþ

q ��ð0Þvþ
q þ 1

4�
ijvþ

p �
ij
pq

¼ 1
2�

#i�i
qpv

�
p : (B18)

To simplify notation in (B17) and (B18) we omit the
spinorial indices; than it is not excessive to notice that in
these equations we have presented the covariant derivatives
of the element of inverse spinor moving frame matrix (B2)
carrying lower Spin (1, 10) index, while the covariant
derivatives of the initial spinor moving frame variables
(3.11), with upper spin (1, 10) index, read

Dv��
q :¼ dv��

q þ�ð0Þv��
q þ 1

4�
ijv��

p �ij
pq

¼ �1
2�

¼ivþ�
p �i

pq; (B19)

Dvþ�
q :¼ dvþ�

q ��ð0Þvþ�
q þ 1

4�
ijvþ�

p �ij
pq

¼ �1
2�

#iv��
p �i

pq: (B20)

Also the following algebraic equations were useful in
our calculations

ðv�
q �aÞ� ¼ u¼a v

þq
� � uia�

i
qpv

�p
� ;

ðvþ
q �aÞ� ¼ u#av

�q
� � uia�

i
qpv

þp
� ; (B21)

ð~�av
�qÞ� ¼ u¼a vþ�

q þ uia�
i
qpv

��
p ;

ð~�av
þqÞ� ¼ u#av

��
q þ uia�

i
qpv

þ�
p ; (B22)

ðv�
q �abv

�
p Þ ¼ 2u¼½au

i
b��

i
qp: (B23)

APPENDIX C: SOME OTHER
TECHNICAL DETAILS

In calculating the SOð9Þ curvature (3.38) from (2.6) it is

useful to notice that c�F#ijk1...k4 ¼ 1
6 


ijk1...k4l1l2l3F̂#l1l2l3 . Here

and below the SOð1; 1Þ and SOð9Þ indices are obtained by
contraction with the moving frame variables u¼a , uia, v��

q ,

Eqs. (3.7) and (3.11).
Useful relations for the projections of the pullback of the

tensor-spin tensor (2.4) to W ð1j16Þ are

ðv�
q t̂

¼Þ� ¼ 1

36
F̂#ijk�

ijk
qpvþ�

p ;

ðt̂¼v�
q Þ� ¼ � 1

12
F̂#ijkv�p

þ�ijk
pq; (C1)

ðv�
q t̂

iv�
p Þ ¼ � 1

6
F̂#jkl

�

i½j�kl�

qp þ 1

6
�ijkl
qp

�
: (C2)

The explicit form of the tensor-spin tensor in the last term
of Eq. (3.42) is

�
i;j1j2j3;k1k2k3
pq :¼ 1

18 � 4!
�
�j1j2j3

�

i½k1�k2k3� þ 1

6
�ik1k2k3

�
þ 3

�

i½k1�k2k3� þ 1

6
�ik1k2k3

�
�j1j2j3

þ ðj1;2;3 $ k1;2;3Þ
�
: (C3)

It obeys

�i;j1j2j3;k1k2k3
pp ¼ 0;

�i;j1j2j3;k1k2k3
qp �jk

pq ¼ 0;

�
i;j1j2j3;k1k2k3
qp �i

pq ¼ � 8

3

½j1
k1

j2
k2


j3�
k3
;

�i;j1j2j3;k1k2k3
qp �j

pq ¼ � 4

27
ð9
i½j1
j2

½k2

j3�
k3

j
k1�

þ 
ij
½j1
k1

j2
k2

j3�
k3
Þ: (C4)
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