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I. INTRODUCTION

Historically, the Slavnov-Taylor (ST) identities [1] have
played an essential role in proving the renormalizability of
non-Abelian gauge theories [2]. It is therefore important to
know the limitations or even the validity of these identities
whenever new structures as algebra deformations and
space noncommutativity are introduced. Nowadays, this
issue has aroused a great deal of attention particularly due
to results that seem to indicate that at the Planck’s scale the
space may become noncommutative [3]. In this situation
the coordinates should satisfy

½x�; x�� ¼ i���; (1)

where for the most studied case, called canonical non-
commutativity, ��� is a constant, antisymmetric matrix
(see also [4]). In general terms, the unleashing of non-
commutativity signals not only for the breaking of Lorentz
invariance but also leads to the appearance of an ultraviolet
metamorphosis (some ultraviolet divergences are transmu-
tated into infrared singularities), the so-called IR/UV mix-
ing, which may destroy the perturbative scheme [5]. This
mixing may also produce inconsistencies whenever the
renormalization procedure requires a detailed balancing
between Feynman amplitudes [6,7]. Besides these basic
aspects the possible modifications of results linked to
standard symmetries must also be investigated. It has
been proved, for example, that CPT symmetry is preserved
by the noncommutativity, in spite of its strong nonlocality
[8]. Gauge symmetry seems also to be important to secure
the presence of Goldstone bosons for spontaneously bro-
ken symmetries [6]. Concerning the ST identities, explor-
atory studies have been dedicated to the effects of the
noncommutativity on the renormalization of the QED4

[9] and also specific scattering processes in the tree

approximation [10]. These studies were complemented
by a systematic analysis at the one-loop level for QED4

in Ref. [11]. Such studies are relevant particularly taking
into account the incoming LHC experiments to test pos-
sible extensions of the standard model. Going further with
these investigations, in this work we shall analyze the
possible modifications on the ST identities due to the non-
commutativity of the underlying space in the context of the
three-dimensional CPN�1 model. When compared with
QED4, the new feature in this model is the absence of a
kinetic term for the gauge field, which however is gener-
ated by quantum corrections. This study is also a natural
sequel of an earlier work on the noncommutative CPN�1

model in which, up to the leading order of 1=N, the
absence of dangerous UV/IR mixing was proved [12].
The noncommutative CPN�1 model is defined by the

action

S ¼
Z

d3x

�
@��y

a@��a �m2�y
a ? �a

þ � ?

�
�a ? �y

a � N

g

�
þ e2�y

a ? A� ? A� ? �a

þ ieð@��y
a ? A� ? �a ��y

a ? A� ? @��aÞ
� N

2�
ð@�A�Þ ? ð@�A�Þ

þ N@� �c ? ½@�c� ieðc ? A� � A� ? cÞ�
�
; (2)

where �a (a ¼ 1; . . . ; N) is a N-tuple of charged scalar
fields transforming in accord with the left fundamental
representation of the U?ð1Þ group,

�aðxÞ ! U?ðxÞ ? �aðxÞ;
U?ðxÞ ¼ ei�ðxÞ

? � 1þ i�ðxÞ � 1
2�ðxÞ ?�ðxÞ þ � � � ;

(3)

the star symbol denoting the Moyal product (for a review
about noncommutativity see [13])

fðxÞ ? gðxÞ ¼ eði=2Þ���@x�@y�fðxÞgðyÞjx¼y: (4)
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Besides the gauge field, the auxiliary field �, which

implements the constraint �a ? �y
a ¼ N

g , is taken in the

adjoint representation of the gauge group, i.e.,

�ðxÞ ! �0ðxÞ ¼ U?ðxÞ ? �ðxÞ ? U�1
? ðxÞ: (5)

The great advantage of this choice is that � and A� are

then, in the leading 1=N order, independent fields. In the
present situation, the propagators will be given by

Note that the propagators (6a) and (6b) are obtained di-
rectly from the action (2) considering the quadratic part of
the fields � and c, whereas the propagators for the gauge
(6c) and auxiliary (6d) fields are obtained perturbatively,
by considering large spacelike p behavior.
The vertices for the theory are the following:

ieð@��y
a ? A� ? �a ��y

a ? A� ? @��aÞ $ �ieð2kþ pÞ�e�ik^p; (7a)

e2�y
a ? A� ? A� ? �a $ 2ie2g��e�ik1^k2 cosðp1 ^ p2Þ; (7b)

� ? �a ? �y
a $ ie�ik^p; (7c)

�ieN@� �c ? ðc ? A� � A� ? cÞ $ 2eNk� sinðp ^ kÞ; (7d)

such that the graphical representation are given, respec-
tively, in Fig. 1.

As explained in Ref. [12], the renormalization of the
noncommutative CPN�1 model is greatly simplified with
the help of the graphical identities of Fig. 2, first found for
the commutative setting in Ref. [14]. In particular the
identity in Fig. 2(b) implies that graphs containing the
vertex (7b) cancel pairwise except by the one-loop graph
contribution to the vector field propagator which has
already been included in (6c).

Notice that, as indicated in the last line of (2), we are
adopting a generic Lorentz gauge fixing whereas the cal-
culations performed in [12] were restricted to the Landau
gauge. Our gauge fixing together with the term for the

ghost fields c and �c signalize a formal symmetry associated
with the invariance of the action under Becchi-Rouet-
Stora-Tyutin (BRST) transformations which have the fol-
lowing form:

�a ! �0
a ¼ �a þ ic ? �a�; (8a)

�y
a ! �y0

a ¼ �y
a � i�y

a ? c�; (8b)

A� ! A0
� ¼ A� � 1

e
@�c�þ i½c; A��?�; (8c)

� ! �0 ¼ �þ i½c; ��?�; (8d)

c ! c0 ¼ c� ic ? c�; (8e)

�c ! �c0 ¼ �c� 1

e�
@�A��; (8f)

FIG. 1. Vertices associated to the action (3).

+

b

= 0+ 0=

a

FIG. 2. Graphical identities for the CPN�1 model.
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where � is an infinitesimal Grassmannian parameter.
Because of the presence of the Moyal product, the impli-
cations of this invariance have to be examined anew. In
particular, we shall inspect the ST identities characteristics
of this invariance but, as the leading contributions in 1=N
involve both the one-loop and two-loop diagrams whose
analytic expressions are very intricate, we will focus di-
rectly on the asymptotic behavior for high momenta of the
relevant Green functions.

To derive the ST identities, as usual, we add to the source
terms for the basic fields the source terms associated with
the BRST transformations

Ssource ¼
Z

d3x

�
J� ? A� þ �y

a ? �a þ�y
a ? �a þ �	 ? c

þ �c ? 	þ 
 ? �þ u ? ði½c; ��?Þ
þ K� ?

�
� 1

e
@�cþ i½c; A��?

�
þ v ? ð�ic ? cÞ

þ!y
a ? ðic ? �aÞ þ ð�i�y

a ? cÞ ? !a

�
: (9)

The invariance of the functional generator under the field
transformations (8) formally allows for the ST identity

Z
d3x

�
J� ?

�W

�K�

þ �y
a ?

�W

�!y
a

� �W

�!a

? �a

þ �	 ?
�W

�v
þ 1

e�
@�

�W

�J�
? 	þ 
 ?

�W

�u

�
¼ 0; (10)

where W is the functional generator for the connected
Green functions. The above result together with the rela-
tion

Z
d3x

�
i	þ Ne@�

�W

�K�

�
¼ 0; (11)

obtained from the invariance of Sþ Ssource under a general
transformation � �c of the ghost field, constitutes a powerful
tool for the study of the UV behavior of field theories.

We begin the analysis of the above identities by proving
that the longitudinal part of the gauge field propagator is
not modified by radiative corrections, as it happens in [11].
In fact, by functionally deriving (10) with respect to the
J�ðyÞ and 	ðzÞ sources, we get

�2W

�	ðzÞ�K�ðyÞ
��������þ

1

e�
@�z

�2W

�J�ðyÞ�J�ðzÞ
��������¼ 0; (12)

where henceforth a vertical bar is used just to remember
that the function immediately to its left must be calculated
with all sources equal to zero. Now, from (11) it follows
that

Ne@�x
�2W

�	ðzÞ�K�ðxÞ
��������¼ �i�3ðx� zÞ; (13)

implying that

� i

N
�3ðy� zÞ þ 1

�
@�y@

�
z

�2W

�J�ðyÞ�J�ðzÞ
��������¼ 0: (14)

In momentum space, this equation becomes

k�k�D��ðkÞ ¼ � i�

N
; (15)

so that the longitudinal part of the gauge propagator, which
is proportional to k�k�, must be given by

DL
��ðkÞ ¼ � i�

N

k�k�

ðk2Þ2 : (16)

Therefore, at any finite order of 1=N, it is not affected by
the noncommutativity. This result will be used in the forth-
coming analysis of the ST identity.
We now consider the three-point function which in-

volves the gauge and the charged fields. h0jTA���yj0i
by deriving (10) with respect to the sources �aðxÞ, �y

b ðyÞ,
and 	ðzÞ, we get

�3W

�	ðzÞ��aðxÞ�!y
b ðyÞ

��������� �3W

�	ðzÞ��y
b ðyÞ�!aðxÞ

��������
þ 1

e�
@�z

�3W

��y
b ðyÞ��aðxÞ�J�ðzÞ

��������¼ 0 (17)

or, equivalently,

1

e�
@�z hT�bðyÞ�y

a ðxÞA�ðzÞi ¼ ihT�cðzÞ�y
a ðxÞcðyÞ ? �bðyÞi

� ihT�cðzÞ�bðyÞ�y
a ðxÞ ? cðxÞi: (18)

It is convenient to write the above identity in terms of the
one-particle irreducible vertex functions whose generating
functional, �, is defined by

W½J; �; ��; 	; �	;K; v;!; �!�
¼ �½Acl; �cl; �

y
cl; Ccl; �Ccl;K; v;!; �!�

þ
Z

d4xðJ� ? A
�
cl þ �y ? �cl þ�y

cl ? �

þ �	 ? Ccl þ �Ccl ? 	Þ; (19)

where we have introduced the classical fields

A
�
cl ¼

�W

�J�
; �cl ¼ �W

��y ;

�y
cl ¼ ��W

��
; Ccl ¼ �W

� �	
;

�Ccl ¼ ��W

�	
: (20)
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Employing the momenta representation, it then follows
that

i

e�
ðp3Þ�D��ðp3Þ�ðp2Þ�ðp1Þ��ðp2;�p1; p3Þ

¼ i
Z d3k

ð2
Þ3 e
ik^p2�ðp1Þ�ðkÞSðp2 � kÞSð�p3Þ

� �4ðk;�p1; p2 � k; p3Þ

� i
Z d3k

ð2
Þ3 e
�ik^p1�ðp2Þ�ðkÞSð�p1 þ kÞSð�p3Þ

� �4ðp2;�k;�p1 þ k; p3Þ;
(21)

where in a simplified notation SðkÞ and �ðkÞ represent the
Fourier transforms of SðxÞ and �ðxÞ, respectively, the
matter field and the ghost field propagators. The � func-
tions introduced above are the Fourier transforms of

��ða; x; b; y; zÞ ¼ �3�

��y
a ðxÞ��bðyÞ�A�

clðzÞ
; (22)

�4ða; x; b; y; z; uÞ ¼ �4�

��y
a ðxÞ��bðyÞ� �cclðzÞ�cclðuÞ

: (23)

The steps leading to (21) are very formal but its validity
can be directly verified as we shall do now, up to the
subleading order of 1=N. We note that this equation can
be rewritten as

1

Ne

p�
3

p2
3

��ðp2;�p1;p3Þ¼��1ðp2ÞSð�p3ÞH2ðp1;p2;p3Þ

���1ðp1ÞSð�p3ÞH1ðp1;p2;p3Þ;
(24)

where we have used the identity (16) for the longitudinal
part of the gauge field propagator and, as suggested in an
analysis of the ST identities for QCD [15], introduced the
functions

H1ðp1; p2; p3Þ ¼ i
Z d3k

ð2
Þ3 e
�ik^p1�ðkÞSð�p1 þ kÞ

� �4ðp2;�k;�p1 þ k; p3Þ; (25)

H2ðp1; p2; p3Þ ¼ i
Z d3k

ð2
Þ3 e
ik^p2�ðkÞSðp2 � kÞ

� �4ðk;�p1; p2 � k; p3Þ: (26)

We will now check (24) up to subleading order of 1=N.
Note first that, including corrections up to 1=N order, the
matter field propagator is given by

�ðpÞ ¼ i

p2 �m2 � i
N��ðpÞ

: (27)

From now on, we will work in the Landau gauge, � ¼ 0.

Adopting dimensional regularization with minimal sub-
traction, we have

�unr
� ðpÞ ¼ �N

Z dDk

ð2
ÞD ðkþ 2pÞ�D0
��ðkÞðkþ 2pÞ�

� �0ðkþ pÞ � N
Z dDk

ð2
ÞD �0ðkþ pÞ�0
�ðkÞ

¼ � 20i


2

1

�
p2 þ finite terms; (28)

where the superscripts unr denote unrenormalized func-
tion. Notice that the one-loop graph containing the vertex
(7b) does not contribute since, as discussed before, this
type of diagram cancels pairwise due to the identity in

Fig. 2(b). The convenient counterterm is b@��
y
a@��a,

where the renormalization constant is b ¼ 20
N
2

1
� . As for

the ghost propagator, we obtain

Sðp3Þ ¼ i

p2
3½N � i�cðp3Þ�

: (29)

The unrenormalized �cðp3Þ is given by

�unr
c ðp3Þ ¼

�
1

p2
3

��
�ð2eNÞ2

Z dDk

ð2
ÞD ðkþ p3Þ�D0
��ðkÞ

� p�
3S

0ðkþ p3Þsin2ðk ^ p3Þ
�
: (30)

The result for the planar part is

�unr
c ðp3Þ ¼ � 32i

3
2

1

�
þ finite terms; (31)

which may be renormalized by the counterterm
fN@� �c@

�c, with f ¼ 32
3N
2

1
� .

The unrenormalized three-point vertex �� and Hm func-
tions have the following expansions:

�� ¼ �0
� þ 1

N
�1unr
� (32)

and

Hm ¼ H0
m þ 1

N
H1

m; (33)

up to 1=N order. We have verified that theH1
m functions are

not UV divergent; therefore, no counterterms are needed.
However, as shown in [12], �1unr

� consists of divergent
diagrams with one and two loops. In the two-loop case,
the regularization is introduced just in the last integral.
Thus, the total UV divergence is given by

�1unr
� ¼ 28ieð2p2 þ p3Þ�

3
2

1

�
: (34)

The numerical difference, a factor of 2, from Ref. [12], is
due to a different regularization prescription adopted in
that work. Therefore, the counterterm is
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Bieð@��y
a ? A� ? �a ��y

a ? A� ? @��aÞ; (35)

where the renormalization constant is B ¼ 28
3N
2

1
� .

Using the above notation, and allowing terms up to 1=N
order, the identity (24) may be rewritten as

1

Ne

�
p�
3

p2
3

��
�0
� þ 1

N
�1
�

�
½p2

3ðN � i�cðp3ÞÞ�

¼
��
p2
2 �m2 � i

N
��ðp2Þ

��
H0

2 þ
1

N
H1

2

��

�
��
p2
1 �m2 � i

N
��ðp1Þ

��
H0

1 þ
1

N
H1

1

��
; (36)

where the renormalized functions are given by

�1
� ¼ �1unr

� þ NB�0
�; (37a)

�c ¼ �unr
c þ iNf; (37b)

�� ¼ �unr
� þ iNb: (37c)

To obtain the ST identity at leading order we must
consider the vertex function �0

� on the left-hand side of
the expression (36). The right-hand side receives the con-
tribution of H0

1 and H0
2 , which are both equal to ie�ip2^p3 .

Replacing these results in (36), we get

1

e
p�
3ð�ieÞð2p2 þ p3Þ�e�ip2^p3

¼ ðp2
2 �m2Þie�ip2^p3 � ðp2

1 �m2Þie�ip2^p3 ; (38)

which is identically satisfied, as can be seen by using the
momentum conservation p1 ¼ p2 þ p3.

A less trivial result is obtained when we analyze the
subleading order which receives loop corrections. As we
will see, the identity in subleading order carries quantum
corrections and establishes a relation among the renormal-
ization constants. Therefore, from (36) we must have

1

e
p�
3½�1

� � i�0
��cðp3Þ� ¼ ½ðp2

2 �m2ÞH1
2 � iH0

2��ðp2Þ�
� ½ðp2

1 �m2ÞH1
1 � iH0

1��ðp1Þ�:
(39)

Replacing (37) into the above expression, the UV diver-
gences of the unrenormalized functions shown in (37)
cancel each other, which proves the validity of the non-
commutative ST identities for the CPN�1 model.
Furthermore, we obtain the relation involving the renor-
malization constants, Bþ f ¼ b.

II. CONCLUSION

We have verified the ST identity in the 1=N expansion
for the noncommutative CPN�1 model. As is known, the
diagrams of 1=N order involve one and two loops which
are very intricate. Therefore, we restricted ourselves to the
verification of the matching of the UV divergent parts. Our
result proves that the relation Bþ f ¼ b, found by direct
calculation, is an explicit consequence of the BRST invari-
ance of the original action. Besides these UV parts, we
have also infrared singular parts coming from nonplanar
parts of the functions. However, in [12] it was shown that
the leading IR singular parts are canceled due to diagra-
matic identities [14], leaving only logarithmic singular-
ities, which are not problematic as they are integrable.
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