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The nonperturbative electron-positron pair production (Schwinger effect) is considered for space- and

time-dependent electric fields ~Eð ~x; tÞ. Based on the Dirac-Heisenberg-Wigner formalism, we derive a

system of partial differential equations of infinite order for the 16 irreducible components of the Wigner

function. In the limit of spatially homogeneous fields the Vlasov equation of quantum kinetic theory is

rediscovered. It is shown that the quantum kinetic formalism can be exactly solved in the case of a

constant electric field EðtÞ ¼ E0 and the Sauter-type electric field EðtÞ ¼ E0sech
2ðt=�Þ. These analytic

solutions translate into corresponding expressions within the Dirac-Heisenberg-Wigner formalism and

allow to discuss the effect of higher derivatives. We observe that spatial field variations typically exert a

strong influence on the components of the Wigner function for large momenta or for late times.

DOI: 10.1103/PhysRevD.82.105026 PACS numbers: 12.20.Ds, 11.15.Tk

I. INTRODUCTION

Pair production in strong external electric fields is in
many respects a paradigmatic phenomenon in quantum
field theory [1–3]. It is nonperturbative in the coupling
times the external field strength. It exemplifies the non-
trivial properties of the quantum vacuum, as it manifests
the instability of the vacuum against the formation of
many-body states. In general, it depends strongly on the
space-time structure of the external field, such that the
pair-production process is expected to exhibit features of
nonlocality, final state correlations and real-time dynamics.
Moreover, it is a nonequilibrium process in quantum field
theory and as such belonging perhaps to the least-well
understood branch of modern field theory. Whereas pair
proliferation is expected to occur at the critical Schwinger
field strength Ec ¼ m2=e ’ 1:3� 1018 V=m, recent stud-
ies have suggested that pair production might become
observable already at lower but dynamically modulated
field strengths [4–10]. These estimates of the required field
strengths indicate that pair production might already be-
come accessible at future high-intensity laser systems such
as the extreme light infrastructure (ELI) [11–13] or the
European x-ray free electron laser (XFEL) [14,15].

Computing pair production in a complicated space- and
time-dependent field such as a high-intensity pulse is by no
means straightforward. Many different theoretical meth-
ods, such as the proper time method [3], WKB techniques
[16–20], the Schrödinger-functional approach [21],
functional techniques [22,23], quantum kinetic equations
[24–29], being also closely related to scattering techniques
[30], various instanton techniques [31–35], Borel summa-
tion [36], propagator constructions [37], and worldline
numerics [38] have been developed to study pair produc-
tion in external fields. Most of those approaches have
only been applied to one-dimensional temporal or spatial

inhomogeneities, see [39] for the only true multidimen-
sional case. Also, finite-temperature contributions have
been determined which under the assumption of local
thermal equilibrium first occur at the two-loop level
[40,41]. For thermal pair production from more general
initial states, see [42–44].
For both, a profound understanding of the phenomenon

as well as reliable quantitative predictions for realistic
cases, a formalism that can deal with arbitrary space- and
time-dependent fields is urgently required. This is also
stressed by recent observations of characteristic and poten-
tially easy to detect signatures of pair production in the
momentum distribution of the pairs which has turned out
surprisingly sensitive to the subcycle structure of high-
intensity pulses [45,46], also exhibiting information about
the quantum statistics of the particles involved [47,48].
Such a formalism based on suitable real-time correlation
functions is indeed available and has already been studied
in the context of pair production [49]. The present work
is devoted to exploring this DHW formalism, putting it
into the context also of other work such as quantum kinetic
equations, and performing first systematic studies with the
aid of both exactly soluble cases and within approximative
schemes.
This paper is organized as follows: In Sec. II we briefly

review the Dirac-Heisenberg-Wigner (DHW) formalism,
adopting already a notation which will prove to be advanta-
geous in the following. We describe how the Quantum
Kinetic Theory (QKT) emerges as a specific limit of the
DHW formalism and present some analytical solutions.
In Sec. III we introduce a derivative expansion and discuss
its region of validity. In Sec. IV we conclude and provide
an outlook. Details about the QKT are summarized in
Appendix A. The analytical results for the irreducible
components of the Wigner function in the constant electric
field and Sauter-type electric field are given in Appendix B.
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II. THE EQUAL-TIME DHW FORMALISM

A classical statistical one-particle system is described by
probability distributions F ð ~x; ~p; tÞ in 6-dimensional phase
space f ~x; ~pg. The generalization for a relativistic quantum
field theory is obtained by choosing an appropriate density
operator and performing a Wigner transformation to
8-dimensional phase space fx�; p�g. The corresponding

Wigner operator Ŵ ðx; pÞ is manifestly Lorentz covariant

but the associated Wigner function h�jŴ ðx; pÞj�i may
not have a clear physical interpretation [50,51].

Alternatively, one may drop the manifest Lorentz
covariance in favor of a canonical time evolution from
the beginning and start with an equal-time density operator.

The corresponding Wigner operator Ŵ ð ~x; ~p; tÞ is then
defined in 6-dimensional phase space f ~x; ~pg. It is an
advantage of this approach that the Wigner function

h�jŴ ð ~x; ~p; tÞj�i might be interpreted as quasiprobability
distribution in analogy to classical physics. It is an addi-
tional benefit that the equation of motion might be formu-
lated as initial value problem [49,52]. Alternatively, one
could also start with the Lorentz covariant formulation and
switch to the equal-time formulation by performing an
energy integral over p0 [53–55].

We will adopt the equal-time formulation throughout
this paper. Because of the fact that we have dropped
manifest Lorentz covariance anyway, we will also fix the
gauge from the beginning. We will choose the temporal
gauge A0 ¼ 0 throughout, such that the electric and mag-

netic fields are calculable from the vector potential ~Að ~x; tÞ
according to

~Eð ~x; tÞ ¼ �@t ~Að ~x; tÞ; ~Bð ~x; tÞ ¼ ~r� ~Að ~x; tÞ: (1)

A. Derivation of the DHW formalism

In this section we define the equal-time Wigner operator

Ŵ ð ~x; ~p; tÞ in the presence of an external electromagnetic
field. By applying a Hartree approximation for the electro-
magnetic field, i.e. treating it as a C-number field instead
of an operator-valued quantum field, we are able to derive
the equation of motion for the corresponding Wigner

function h�jŴ ð ~x; ~p; tÞj�i.
For this, we consider the following equal-time density

operator of two Dirac field operators in the Heisenberg
picture,

Ĉð ~x1; ~x2; tÞ � e
�ie

R
~x1
~x2

~Að ~x0;tÞ�d~x0 ½�ð ~x1; tÞ; ��ð ~x2; tÞ�; (2)

where we have dropped the Lorentz indices for simplicity.
Here we choose the equal-time commutator, since the
equal-time anticommutator is trivially fulfilled for spinor
fields. Additionally, in order to preserve gauge invariance
we include a Wilson line factor with an integral of the
vector potential over a straight line. In fact, the choice of

the integration path is not unique, but the present choice
will allow for introducing a properly defined kinetic
momentum variable ~p. In terms of the center-of-mass
coordinates ~x ¼ 1

2 ð ~x1 þ ~x2Þ and ~s ¼ ~x1 � ~x2, it reads

Ĉð ~x; ~s; tÞ ¼ e
�ie

R
1=2

�1=2
~Að ~xþ�~s;tÞ� ~sd�

� ½�ð ~xþ ~s=2; tÞ; ��ð ~x� ~s=2; tÞ�: (3)

The Wigner operator is then defined as the Fourier trans-

form of Ĉð ~x; ~s; tÞ with respect to the relative coordinate ~s,
such that the arguments are the center-of-mass coordinate
~x, the kinetic momentum variable ~p and time t:

Ŵ ð ~x; ~p; tÞ � � 1

2

Z
d3se�i ~p� ~sĈð ~x; ~s; tÞ: (4)

Note that if we had defined Eq. (2) with�yð ~x2; tÞ instead of
��ð ~x2; tÞ, the corresponding Wigner operator would have
been Hermitian. With our definition, W ð ~x; ~p; tÞ is not
Hermitian but transforms like a Dirac matrix:

Ŵ yð ~x; ~p; tÞ ¼ �0Ŵ ð ~x; ~p; tÞ�0: (5)

In general, the Wigner function is then defined
as the expectation value of the Wigner operator

h�jŴ ð ~x; ~p; tÞj�i with respect to the full interacting
vacuum. However, due to the fact that we are mainly
interested in describing Schwinger pair production in the
following, we restrict ourselves to the vacuum state in the
Heisenberg picture j�i ¼ j0i:

W ð ~x; ~p; tÞ ¼ � 1

2

Z
d3se�i ~p� ~sh0jĈð ~x; ~s; tÞj0i: (6)

In order to derive the equation of motion for the Wigner
function, we take the time derivative of Eq. (6) and take the
properly gauge fixed Dirac equation

ði�0@t þ i ~� � ½ ~r ~x � ie ~Að ~x; tÞ� �mÞ�ð ~x; tÞ ¼ 0 (7)

into account. In the course of the derivation we adopt a
Hartree approximation of the electromagnetic field, which
should be a good approximation for high field strengths.
This means that we replace the operator-valued electro-
magnetic quantum field by a C-number electromagnetic
field:

h0jF̂��ð ~x; tÞĈð ~x; ~s; tÞj0i ! F��ð ~x; tÞh0jĈð ~x; ~s; tÞj0i: (8)

Diagrammatically, this approximation corresponds to
ignoring higher-loop radiative corrections. Physically,
this implies that final state interactions as well as mass
shift effects are ignored. This derivation finally yields the
equation of motion for the Wigner function:

DtW ¼ � 1

2
~D~x½�0 ~�;W � � im½�0;W � � i ~Pf�0 ~�;W g;

(9)
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withDt, ~D~x and ~P denoting the following nonlocal pseudo-
differential operators:

Dt ¼ @t þ e
Z 1=2

�1=2
d� ~Eð ~xþ i� ~r ~p; tÞ � ~r ~p;

~D~x ¼ ~r ~x þ e
Z 1=2

�1=2
d� ~Bð ~xþ i� ~r ~p; tÞ � ~r ~p;

~P ¼ ~p� ie
Z 1=2

�1=2
d�� ~Bð ~xþ i� ~r ~p; tÞ � ~r ~p:

(10)

As the Wigner function W ð ~x; ~p; tÞ is in fact a Dirac
matrix, we may expand it in terms of irreducible compo-
nents by choosing an appropriate complete basis set of
4� 4matrices f1; �5; �

�; ���5; �
��g. Actually we choose

16 real functions (from now on called DHW functions)
which transform under orthochronous Lorentz transforma-
tions as scalar sð ~x; ~p; tÞ, pseudoscalar pð ~x; ~p; tÞ, vector
v�ð ~x; ~p; tÞ, axialvector a�ð ~x; ~p; tÞ and tensor t��ð ~x; ~p; tÞ,
respectively:

W ð ~x; ~p; tÞ ¼ 1

4
½1sþ i�5pþ��v�þ���5a�þ���t���:

(11)

Inserting this decomposition into the equation of motion,
Eq. (9), and comparing the coefficients of the basis
matrices, we find a partial differential equation (PDE)
system for the 16 DHW functions. Introducing the compact
notation for the tensorial components,

ð~t1Þi ¼ t0i � ti0; ð~t2Þi ¼ �ijktjk; (12)

this system reads

Dts� 2 ~P � ~t1 ¼ 0 (13)

Dtpþ 2 ~P � ~t2 ¼ 2ma0 (14)

Dtv0 þ ~D~x � ~v ¼ 0 (15)

Dta0 þ ~D~x � ~a ¼ 2mp (16)

Dt~vþ ~D~xv0 þ 2 ~P� ~a ¼ �2m~t1 (17)

Dt~aþ ~D~xa0 þ 2 ~P� ~v ¼ 0 (18)

Dt
~t1 þ ~D~x � ~t2 þ 2 ~Ps ¼ 2m~v (19)

Dt
~t2 � ~D~x � ~t1 � 2 ~Pp ¼ 0: (20)

Note that for spatially homogeneous electromagnetic fields
F��ð ~x; tÞ ¼ F��ðtÞ, an enormous simplification occurs as
the nonlocal operators Eq. (10) reduce to local ones:

Dt ¼ @tþe ~EðtÞ � ~r ~p; ~D~x ¼ ~r ~xþ e ~BðtÞ� ~r ~p; ~P¼ ~p:

(21)

It has been shown previously [49], that some of the
DHW functions can be given an intuitive interpretation,
whereas others do not have a classical analogue. First,

the symmetrized electromagnetic current j�ð ~x; tÞ ¼ e
2 �

h0½ ��ð ~x; tÞ; ���ð ~x; tÞ�0i is expressed as

j�ð ~x; tÞ ¼ e
Z d3p

ð2�Þ3 v
�ð ~x; ~p; tÞ: (22)

Additionally, several conservation laws concerning physi-
cally observable quantities like the total chargeQ, the total

energy E, the total linear momentum ~P and the total

angular momentum ~M are valid,

d

dt
fQ; E; ~P ; ~Mg ¼ 0; (23)

with

Q ¼ e
Z

d�v0ð ~x; ~p; tÞ; (24)

E ¼
Z

d�½ ~p � ~vð ~x; ~p; tÞ þmsð ~x; ~p; tÞ�

þ 1

2

Z
d3x½j ~Eð ~x; tÞj2 þ j ~Bð ~x; tÞj2�; (25)

~P ¼
Z

d� ~pv0ð ~x; ~p; tÞ þ
Z

d3x ~Eð ~x; tÞ � ~Bð ~x; tÞ; (26)

~M ¼
Z

d�

�
~x� ~pv0ð ~x; ~p; tÞ � 1

2
~að ~x; ~p; tÞ

�

þ
Z

d3x ~x� ~Eð ~x; tÞ � ~Bð ~x; tÞ;
(27)

with d� ¼ d3xd3p=ð2�Þ3 denoting the phase-space vol-
ume element. According to these expressions, we may
associate sð ~x; ~p; tÞ with a mass density, v0ð ~x; ~p; tÞ with a
charge density and ~vð ~x; ~p; tÞ with a current density and
~að ~x; ~p; tÞ with a spin density. Another important conserva-
tion law concerns the norm of the Wigner function itself:

d

dt

Z
d�Tr½W ð ~x; ~p; tÞW yð ~x; ~p; tÞ� ¼ 0; (28)

which translates into a conservation law for the 16 DHW
functions.

B. Quantum kinetic theory (QKT) as limit
of the DHW formalism

In this subsection we show that the DHW formalism in
the case of a spatially homogeneous, time-dependent elec-

tric field ~Eð ~x; tÞ ¼ EðtÞ ~e3 and vanishing magnetic field
~Bð ~x; tÞ ¼ 0 yields the well-known Vlasov equation of
QKT for Schwinger pair production [24,25,27]. For this,
we first calculate the Wigner function for pure vacuum to
obtain appropriate initial conditions. In a second step, we
simplify the PDE system (13)–(20) to an ODE system [49],
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which turns out to be equivalent to the Vlasov equation
[56]. For an analysis of the relation between the Wigner
function and QKT for several examples of pair production
in non-Abelian fields, see [57].

In order to calculate the Wigner function for pure vac-
uumW vacð ~x; ~p; tÞ, we consider first the general expression
Eq. (6) for vanishing vector potential: Að ~x; tÞ ¼ 0. We first
decompose the Dirac field operator in its Fourier basis

�ð ~x; tÞ ¼
Z d3q

ð2�Þ3
~c ð ~q; tÞei ~q� ~x; (29)

and introduce a decomposition in terms of anticommuting
creation/annihilation operators as well as four spinors

~c ð ~q; tÞ ¼ X
s

~usð ~q; tÞasð ~qÞ þ ~vsð� ~q; tÞbys ð� ~qÞ: (30)

Evaluating the vacuum expectation value and taking
advantage of the four-spinor completeness relations, we
finally obtain for the vacuum Wigner function

W vacð ~x; ~p; tÞ ¼ � 1

2!ð ~pÞ ½1m� ~� � ~p�; (31)

with !ð ~pÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ~p2

p
. Comparing this expression with

Eq. (11), we immediately see that (a) in the pure vacuum
only 4 DHW functions do not vanish and (b) these vacuum
functions do not depend on ~x and t:

s vacð ~pÞ ¼ � 2m

!ð ~pÞ ; (32)

~v vacð ~pÞ ¼ � 2 ~p

!ð ~pÞ : (33)

After fixing the vacuum initial conditions, we consider

next the PDE system Eqs. (13)–(20) for ~Eð ~x; tÞ ¼ EðtÞ ~e3
and ~Bð ~x; tÞ ¼ 0 in more detail: Because of spatial homo-
geneity, the DHW functions do not depend on the variable
~x and hence all spatial derivatives vanish. As an immediate
consequence, v0ð ~p; tÞ decouples completely. Additionally,

due to the fact that the DHW functions fp; a0; ~t2gð ~p; tÞ are
subject to a closed set of equations which does not couple
to the nonvanishing vacuum initial conditions, these func-
tions have to vanish as well. As a consequence, the PDE
system for former 16 DHW functions reduces to a PDE

system for the remaining 10 DHW functions ~wð ~p; tÞ �
ðs; ~v; ~a; ~t1Þð ~p; tÞ:

½@t þ eEðtÞ@p3
� ~wð ~p; tÞ ¼ Mð ~pÞ ~wð ~p; tÞ: (34)

Here, ~wð ~p; tÞ is a column vector andMð ~pÞ is the following
10� 10 matrix:

M ð ~pÞ ¼
0 0 0 2 ~pT

0 0 �2 ~p� �2m
0 �2 ~p� 0 0

�2 ~p 2m 0 0

0
BBB@

1
CCCA; (35)

with

~p� ¼
0 �p3 p2

p3 0 �p1

�p2 p1 0

0
@

1
A: (36)

The PDE system Eq. (34) will be simplified by applying
the method of characteristics. We introduce a new parame-
ter 	 and assume that the originally independent variables
depend on this new parameter:

~p ¼ ~�ð	Þ and t ¼ �ð	Þ: (37)

Imposing the following equality for any function F ð ~p; tÞ
depending on the former independent variables ~p and t,�

@

@t
þ eEðtÞ @

@p3

�
F ð ~p; tÞ¼! d

d	
F ð ~�ð	Þ; �ð	ÞÞ; (38)

we find 	 ¼ � ¼ t and ~�ð ~q; tÞ ¼ ~q� eAðtÞ ~e3. Note that
~�ð ~q; tÞ denotes the time-dependent kinetic momentum on
a trajectory, whereas ~q, which serves as an integration
constant in the method of characteristics, corresponds to
the canonical momentum. Additionally, we still have the
notion of a phase-space kinetic momentum ~p. These three
types of momenta have to be clearly distinguished in the
following. To be consistent throughout this paper, we
always denote

~p kinetic momentum in phase space;

~q canonical momentum;

~�ð ~q; tÞ kinetic momentum on a trajectory:

On the one hand, any function defined in phase space
possesses only an explicit time dependence and will hence-
forth be denoted by F ð ~p; tÞ. On the other hand, functions
depending on the time-dependent kinetic momentum
~�ð ~q; tÞ show both an explicit and an implicit time depen-

dence and will be denoted by ~F ð ~q; tÞ.
Formally, the method of characteristics is applied to the

PDE system Eq. (34) by replacing ~p by ~�ð ~q; tÞ, such that
the relation between the phase-space DHW functions and
the DHW functions on a trajectory reads

~~wð ~q; tÞ ¼ ~wð ~p; tÞj ~p! ~q�e ~AðtÞ (39)

~wð ~p; tÞ ¼ ~~wð ~q; tÞj ~q! ~pþe ~AðtÞ: (40)

Consequently, the PDE system Eq. (34) becomes an ODE
system, with the former time-independent matrix Mð ~pÞ
becoming a time-dependent quantity ~Mð ~q; tÞ:

d

dt
~~wð ~q; tÞ ¼ ~Mð ~q; tÞ ~~wð ~q; tÞ: (41)

In order to proceed, we seek an appropriate basis to span
~~wð ~q; tÞ, such that Eq. (41) reduces to a simple form:
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~~wð ~q; tÞ ¼ �2
X10
i¼1

~
ið ~q; tÞ~~eið ~q; tÞ; (42)

with the factor �2 chosen for later convenience. To this
end, we exploit the vacuum initial conditions Eq. (32) and

(33) and choose the first basis vector ~~e1ð ~q; tÞ such that in
pure vacuum the first coefficient ~
1

vacð ~q; tvacÞ ¼ 1, whereas
all other coefficients ~
i

vacð ~q; tvacÞ vanish. Consequently,
we find a subset of basis vectors,

~~e1ð ~q; tÞ ¼ 1

~!ð ~q; tÞ

m

~�ð ~q; tÞ
~0

~0

0
BBBBB@

1
CCCCCA;

~~e2ð ~q; tÞ ¼ 1

�? ~!ð ~q; tÞ

m�3ðq3; tÞ
~�ð ~q; tÞ�3ðq3; tÞ � ~!2ð ~q; tÞ ~e3

~0

~0

0
BBBBB@

1
CCCCCA;

~~e3ð ~q; tÞ ¼ 1

�?

0

~0

~�ð ~q; tÞ � ~e3

�m~e3

0
BBBBB@

1
CCCCCA; (43)

with �? ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ~q2?

q
and ~!ð ~q; tÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2? þ �2

3ðq3; tÞ
q

,

which form an orthonormalized, complete set:

~Mð ~q; tÞ
8><
>:
~~e1
~~e2
~~e3

9>=
>;ð ~q; tÞ ¼ 2 ~!ð ~q; tÞ

8><
>:

~0
~~e3
~~� e2

9>=
>;ð ~q; tÞ; (44)

d

dt

8><
>:
~~e1
~~e2
~~e3

9>=
>;ð ~q; tÞ ¼ � eEðtÞ�?

~!2ð ~q; tÞ

8><
>:

~~e2
~~� e1
~0

9>=
>;ð ~q; tÞ: (45)

As a consequence, only the coefficients ~
i¼f1;2;3gð ~q; tÞ
couple to the initial vacuum state whereas all other coef-

ficients ~
ið ~q; tÞ vanish. This means that ~~wð ~q; tÞ is fully
characterized by

~~wð ~q; tÞ ¼ �2
X3
i¼1

~
ið ~q; tÞ~~eið ~q; tÞ: (46)

Next we introduce ~fð ~q; tÞ ¼ 1� ~
1ð ~q; tÞ parametrizing
the deviation from the vacuum state, such that in pure

vacuum ~fvacð ~q; tvacÞ ¼ 0. Additionally, we define

~Qð ~q; tÞ ¼ eEðtÞ�?
~!2ð ~q; tÞ : (47)

If we consider the ODE system Eq. (41) together with the
relations Eqs. (44) and (45), we obtain

d

dt
~fð ~q; tÞ ¼ ~Qð ~q; tÞ~
2ð ~q; tÞ; (48)

d

dt
~
2ð ~q; tÞ ¼ ~Qð ~q; tÞ½1� ~fð ~q; tÞ�� 2 ~!ð ~q; tÞ~
3ð ~q; tÞ; (49)

d

dt
~
3ð ~q; tÞ ¼ 2 ~!ð ~q; tÞ~
2ð ~q; tÞ; (50)

together with vacuum initial conditions ~fvacð ~q; tvacÞ ¼
~
2
vacð ~q; tvacÞ ¼ ~
3

vacð ~q; tvacÞ ¼ 0. This ODE system is noth-
ing but the well-known Vlasov equation of QKT in its
differential form [56] (cf. also Appendix A). Note that
~fð ~q; tÞ denotes the single-particle momentum distribution
function in quantum kinetic theory. Thus, the DHW for-
malism in the presence of a spatially homogeneous, time-

dependent electric field ~Eð ~x; tÞ ¼ EðtÞ ~e3 is completely
equivalent to QKT. However, the DHW formalism is the
more general approach since it allows for any time- and
space-dependent electromagnetic field whereas the Vlasov
equation is restricted to spatially homogeneous, time-
dependent electric fields.
For some special cases, an exact solution of QKT can be

found (see Sec. II C), such that we are able to calculate
the DHW functions as well. To this end one uses the
representation Eq. (46) and projects back to phase-space
Eq. (40). For Schwinger pair production in spatially homo-
geneous, time-dependent electric fields; for instance, one
finds that only 7 of the possible 16 DHW functions con-
tribute:

s ð ~p; tÞ ¼ � 2m

!ð ~pÞ

1ð ~p; tÞ � 2mp3

�?!ð ~pÞ

2ð ~p; tÞ; (51)

~v?ð ~p; tÞ ¼ � 2 ~p?
!ð ~pÞ


1ð ~p; tÞ � 2 ~p?p3

�?!ð ~pÞ

2ð ~p; tÞ; (52)

v 3ð ~p; tÞ ¼ � 2p3

!ð ~pÞ

1ð ~p; tÞ þ 2�?

!ð ~pÞ

2ð ~p; tÞ; (53)

a 1ð ~p; tÞ ¼ � 2p2

�?

3ð ~p; tÞ; (54)

a 2ð ~p; tÞ ¼ 2p1

�?

3ð ~p; tÞ; (55)

t 1;3ð ~p; tÞ ¼ 2m

�?

3ð ~p; tÞ: (56)

C. Exactly solvable electric fields

In this subsection we derive the analytic expressions for

the single-particle momentum distribution function ~fð ~q; tÞ
of QKT for both the constant electric field EðtÞ ¼ E0 and
the Sauter-type electric field EðtÞ ¼ E0sech

2ðt=�Þ. The
construction of the solution can be oriented along the lines
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of QKT, cf. Appendix A: We first seek an analytic solution

for ~gðþÞð ~q; tÞ of Eq. (A6) and determine its normalization

such that it coincides at tvac ! �1 with ~GðþÞð ~q; tÞ defined
in Eq. (A17). According to Eq. (A22), we are then able

to calculate the Bogoliubov coefficient ~�ð ~q; tÞ and, con-
sequently, the single-particle momentum distribution func-

tion ~fð ~q; tÞ according to Eq. (A20).
As soon as this solution is known, we are able to

calculate the nonvanishing coefficients ~
i¼f2;3gð ~q; tÞ ac-
cording to Eqs. (48)–(50). As an immediate consequence
of Eqs. (51)–(56), all the nonvanishing DHW functions
can be calculated as well.

1. Constant electric field

A constant electric field EðtÞ ¼ E0 might be represented
by the vector potential

AðtÞ ¼ �E0t; (57)

such that Eq. (A6) reads

ð@2t þ �2? þ ðq3 þ eE0tÞ2 þ ieE0Þ~gðq3; tÞ ¼ 0: (58)

Note that for notational simplicity we do not explicitly
indicate the dependence on the orthogonal canonical mo-
mentum via �2? ¼ m2 þ ~q2?. Dynamically, q3 is the only

relevant parameter such that the situation becomes effec-
tively one-dimensional. Introducing the dimensionless
parameter � ¼ �2?=eE0 and performing the variable trans-

formation

q3 þ eE0t ¼
ffiffiffiffiffiffi
eE0

2

q
u; (59)

we see that ~gðuÞ will only depend on one dimensionless
variable u due to the linear relation between q3 and t.
As a consequence, the differential equation Eq. (58) turns
into the parabolic cylinder differential equation ([58],
Chapter 19):�

@2u þ 1

4
u2 þ 1

2
ðiþ �Þ

�
~gðuÞ ¼ 0: (60)

This second-order differential equation has two standard
solutions which are given by

~g ðþÞðuÞ ¼ NðþÞD�1þi�=2ð�ue�ið�=4ÞÞ; (61)

~g ð�ÞðuÞ ¼ Nð�ÞD�i�=2ð�ueið�=4ÞÞ (62)

with D�ðzÞ being the parabolic cylinder function and Nð�Þ
being normalization factors. For u ! �1, these solutions
behave asymptotically as

~g ðþÞðuÞ !u!�1 1

juj e
i½ðu2=4Þþð�=2Þ logðjujÞþð�=4Þ�e��=8; (63)

~g ð�ÞðuÞ !u!�1
e�i½ðu2=4Þþð�=2Þ logðjujÞ�e��=8: (64)

On the other hand, the adiabatic mode functions are given
by, cf. Eq. (A17),

~G ð�ÞðuÞ ¼ e�i�ðu0;uÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�þ u2

p ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�þ u2

p � uÞ
q ; (65)

with

� ¼ E0=Ec: (66)

The dynamical phase �ðu0; uÞ can be explicitly calculated
as soon as we fix u0. Here, we choose the symmetric point
u0 ¼ 0, such that the definite integral,

�ð0; uÞ ¼ 1

2

Z u

0
du0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�þ u02

q
; (67)

yields

1

4
½u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�þ u2

q
þ 2� logðuþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�þ u2

q
Þ � � log2��:

(68)

Consequently, we fix the normalization constants Nð�Þ

such that ~gð�Þðu ! �1Þ ¼ ~Gð�Þðu ! �1Þ:

NðþÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
2m2�

p ei½ð�=4Þ½1þlogð2=�Þ��ð�=4Þ�e�ð��=8Þ; (69)

Nð�Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
m2��

p e�ið�=4Þ½1þlogð2=�Þ�e�ð��=8Þ: (70)

According to Eqs. (A20) and (A22), we are then able to
calculate the single-particle momentum distribution func-
tion. Taking into account the general relation for parabolic
cylinder functions,

@zD�ðzÞ ¼ 1

2
zD�ðzÞ �D1þ�ðzÞ; (71)

we finally obtain

~fðuÞ ¼ 1

4

�
1þ uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�þ u2
p

�
e�ð��=4Þjð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�þ u2

q
� uÞ

�D�1þi�=2ð�ue�ið�=4ÞÞ
� 2eið�=4ÞDi�=2ð�ue�ið�=4ÞÞj2: (72)

Finally, we may show that we obtain the Schwinger result
for the pair production rate in a constant electric field if we
consider the limit u ! 1. To this end, we take the leading
term in the asymptotic expansion of the parabolic cylinder
functions in Eq. (72). Neglecting terms of the order
Oðu�1Þ, they are given by

D�1�i�=2ð�uið�=4ÞÞ

!u!1
ffiffiffiffiffiffiffi
2�

p
�ð1þ i�=2Þ e

i½ðu2=4Þþð�=2Þ logðuÞ�e�ð��=8Þ; (73)
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D�i�=2ð�uið�=4ÞÞ !u!1
e�i½ðu2=4Þþð�=2Þ logðuÞ�e�ð3��=8Þ; (74)

such that the asymptotic behavior of ~fðuÞ is given by

lim
u!1

~fðuÞ ¼ 2e���: (75)

As a consequence, the Schwinger pair-production rate
per volume and time _n½eþe��, i.e. the first term in the
Schwinger expression for the vacuum decay probability
[59,60], is found

_n½eþe�� ¼
Z d3q

ð2�Þ3 @t
~fð ~q; tÞ ¼ e2E2

0

4�3
e�ðm2�=eE0Þ; (76)

which completes our analytical solution for the constant
electric field.

2. Sauter-type electric field

The Sauter-type electric field EðtÞ ¼ E0sech
2ðt=�Þ

might be represented by the vector potential,

AðtÞ ¼ �E0� tanhð t�Þ; (77)

such that Eq. (A6) reads

½@2t þ �2? þ ðq3 þ eE0� tanhð t�ÞÞ2
þ ieE0sech

2ð t�Þ�~gðq3; tÞ ¼ 0: (78)

Again, we only indicate the dependence on q3 whereas the
dependence on the orthogonal canonical momentum will
not be denoted explicitly. In the following, we introduce
the dimensionless variable,

u ¼ 1
2½1þ tanhð t�Þ�; (79)

such that t ! �1 corresponds to u ! 0 whereas t ! 1
corresponds to u ! 1. Additionally, we introduce the
Keldysh parameter � ¼ 1=ðm��Þ and dimensionless mo-
mentum variables q̂3 ¼ q3=m and ̂2 ¼ ~q2?=m

2, such that

the dimensionless kinetic momentum on the trajectory
�̂3ðq̂3; uÞ and the dimensionless energy variable !̂ðq̂3; uÞ
read

�̂ 3ðq̂3; uÞ ¼ q3 þ eE0�ð2u� 1Þ
m

¼ q̂3 þ 2u� 1

�
; (80)

!̂ 2ðq̂3; uÞ ¼ 1þ ̂2 þ �̂2
3ðq̂3; uÞ: (81)

Within these new variables, the differential equation
Eq. (78) reads

½4�2�2uð1� uÞ@ufuð1� uÞg@u þ !̂2ðq̂3; uÞ
þ 4i�uð1� uÞ�~gðq̂3; uÞ ¼ 0: (82)

In order to solve this differential equation, we apply an
ansatz for ~gðq̂3; uÞ:
~gðq̂3;uÞ¼u�ið!̂ðq̂3;0Þ=2��Þð1�uÞið!̂ðq̂3;0Þ=2��Þ ~hðq̂3;uÞ: (83)

Plugging this ansatz into Eq. (82) yields the hypergeomet-

ric differential equation ([58], Chapter 15) for ~hðq̂3; uÞ:
½uð1� uÞ@2u þ ð~c� ½~aþ ~bþ 1�uÞ@u � ~a ~b�~hðq̂3; uÞ ¼ 0;

(84)
with

~aðq̂3Þ ¼ � i

��

�
1

�
þ !̂ðq̂3; 0Þ

2
� !̂ðq̂3; 1Þ

2

�
;

~bðq̂3Þ ¼ 1þ i

��

�
1

�
� !̂ðq̂3; 0Þ

2
þ !̂ðq̂3; 1Þ

2

�
;

~cðq̂3Þ ¼ 1� i

��
!̂ðq̂3; 0Þ:

(85)

Note that these parameters do not depend on u. The two

linearly independent solutions ~hð�Þðq̂3; uÞ in the neighbor-
hood of the singular point u ¼ 0 are given by

~h ðþÞðq̂3; uÞ ¼ NðþÞFð~a; ~b; ~c; uÞ; (86)

~hð�Þðq̂3; uÞ ¼ Nð�Þuið!̂ðq̂3;0Þ=��Þð1� uÞ�ið!̂ðq̂3;1Þ=��Þ

� Fð1� ~a; 1� ~b; 2� ~c; uÞ; (87)

with Fð~a; ~b; ~c; uÞ denoting the Gauss hypergeometric func-
tion. Taking Eq. (83) into account, the asymptotic behavior

of ~gð�Þðq̂3; uÞ for u ! 0 is

~g ðþÞðq̂3; uÞ !u!0þ
e�ið!̂ðq̂3;0Þ=2��Þ logðuÞ; (88)

~g ð�Þðq̂3; uÞ !u!0þ
eið!̂ðq̂3;0Þ=2��Þ logðuÞ: (89)

On the other hand, we are again able to give an analytic
expression for the adiabatic mode functions:

~G ð�Þðq̂3; uÞ ¼ e�i�ðq̂3;u0;uÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m2!̂ðq̂3; uÞ½!̂ðq̂3; uÞ � �̂3ðq̂3; uÞ�

p :

(90)

Again, the dynamical phase�ðq̂3; u0; uÞ, which is given by
the following integral

�ðq̂3; u0; uÞ ¼ 1

2��

Z u

u0

du0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ̂2 þ �̂2

3ðq̂3; u0Þ
q

u0ð1� u0Þ ; (91)

can be analytically calculated. For u0 � f0; 1g and u ! 0,
this phase splits into a relevant divergent part and an
irrelevant regular part �ðq̂3; u0; 0Þ,

�ðq̂3; u0; 0Þ ¼ �ðq̂3; u0; 0Þ þ !̂ðq̂3; 0Þ
2��

logðuÞ; (92)

such that the normalization constants Nð�Þ is fixed accord-

ing to ~gð�Þðq̂3; 0Þ ¼ ~Gð�Þðq̂3; 0Þ:

Nð�Þ ¼ e�i�ðq̂3;u0;0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m2!̂ðq̂3; 0Þ½!̂ðq̂3; 0Þ � �̂3ðq̂3; 0Þ�

p : (93)
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Again, the single-particle momentum distribution function
is calculated according to Eqs. (A20) and (A22):

~fðq̂3; uÞ ¼ ~Nfðq̂3Þ
�
1þ �̂3ðq̂3; uÞ

!̂3ðq̂3; uÞ
�
j½!̂ðq̂3; uÞ

� ð1� uÞ!̂ðq̂3; 0Þ � u!̂ðq̂3; 1Þ�Fð~a; ~b; ~c; uÞ
� 2i��uð1� uÞ@uFð~a; ~b; ~c;uÞj2 (94)

with the normalization factor ~Nfðq̂3Þ being given by

~N fðq̂3Þ ¼ 1

2!̂ðq̂3; 0Þ½!̂ðq̂3; 0Þ � �̂3ðq̂3; 0Þ� (95)

and

@uFð~a; ~b; ~c; uÞ ¼ ~a ~b

~c
Fð1þ ~a; 1þ ~b; 1þ ~c; zÞ: (96)

Similarly to the constant electric field, we may give a
simple expression for the asymptotic single-particle

momentum distribution function. Applying a linear trans-
formation formula for hypergeometric functions and
considering the asymptotic limit u ! 1, one first obtains

~fðq̂3; 1Þ ¼ 2�2�2

!̂ðq̂3; 0Þ!̂ðq̂3; 1Þ
!̂ðq̂3; 1Þ þ �̂3ðq̂3; 1Þ
!̂ðq̂3; 1Þ � �̂3ðq̂3; 1Þ

�
��������~a ~b

~c

�ð1þ ~cÞ�ð1þ ~aþ ~b� ~cÞ
�ð1þ ~aÞ�ð1þ ~bÞ

��������
2

: (97)

Applying the transformation formulae for gamma
functions

�ð1þaÞ ¼ a�ðaÞ and j�ð1þ ibÞj2 ¼ �b

sinhð�bÞ ; (98)

we obtain a relatively simple analytic expression for the
asymptotic single-particle momentum distribution func-

tion ~fðq̂3; 1Þ:

2 sinhð �
2�� ½2� þ !̂ðq̂3; 1Þ � !̂ðq̂3; 0Þ�Þ sinhð �

2�� ½2� � !̂ðq̂3; 1Þ þ !̂ðq̂3; 0Þ�Þ
sinhð��� !̂ðq̂3; 1ÞÞ sinhð��� !̂ðq̂3; 0ÞÞ

: (99)

III. INFLUENCE OFA SMALL SPATIAL
INHOMOGENEITY

In this section, we discuss the influence of a small spatial
inhomogeneity along the direction of the time-dependent

electric field ~Eð ~x; tÞ based on the analytic results for both
the constant electric field and the Sauter-type electric field.
In order to estimate the effect of higher derivatives, we
adopt a derivative expansion and determine the ratio be-
tween the first derivative and higher derivatives. Note that
we again ignore the effect of magnetic fields for simplicity,
~Bð ~x; tÞ ¼ 0.

A. Derivative expansion

We consider a space- and time-dependent electric field:

~Eð ~x; tÞ ¼ EðtÞ½1þ �ðx3Þ� ~e3; (100)

where j�ðx3Þj � 1 describes a small deviation from the
spatially homogeneous electric field. The equation of
motion for the 16 DHW functions ~wð ~x; ~p; tÞ reads

Dt ~wð ~x; ~p; tÞ ¼ Mð ~r ~x; ~pÞ ~wð ~x; ~p; tÞ; (101)

with ~wð ~x; ~p; tÞ andMð ~r ~x; ~pÞ satisfying Eqs. (13)–(20). We
perform a derivative expansion of the pseudodifferential
operator Dt in Eq. (10), such that,

Dt ¼ @t þ eEðtÞ@p3
þ eEðtÞ

�
�ðx3Þ@p3

��00ðx3Þ
24

@3p3
þ . . .

�
(102)

where �00ðx3Þ denotes the second derivative with respect
to x3. We may consider ~wð ~x; ~p; tÞ in an expansion as well:

~wð ~x; ~p; tÞ ¼ ~wð0Þð ~p; tÞ þ ~wð1Þð ~x; ~p; tÞ; (103)

with ~wð0Þð ~p; tÞ being the exact result for the case of a

spatially homogeneous electric field and ~wð1Þð ~x; ~p; tÞ denot-
ing a small deviation from the zeroth-order solution due to
the spatial inhomogeneity. Neglecting terms of the order

�ðx3Þ ~wð1Þð ~x; ~p; tÞ, we obtain
½@t þ eEðtÞ@p3

�Mð ~r ~x; ~pÞ� ~wð1Þð ~x; ~p; tÞ

	 �eEðtÞ
�
�ðx3Þ@p3

� �00ðx3Þ
24

@3p3

�
~wð0Þð ~p; tÞ; (104)

such that the spatially homogeneous solution ~wð0Þð ~p; tÞ acts
as a source term for the spatially inhomogeneous solution.
In order to estimate the parameter regime for which the
omission of derivatives higher than linear might be a good
approximation, we consider a simple model,

�ðx3Þ ¼ �0 cos

�
x3
L

�
; (105)

with L being the length scale of the spatial variation and
�0 � 1 being its amplitude. Introducing the dimensionless
variable

� ¼ mL (106)

which measures the spatial variation in units of the
Compton wave length, we obtain
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½@t þ eEðtÞ@p3
�Mð ~r ~x; ~pÞ� ~wð1Þð ~x; ~p; tÞ

	 �eEðtÞ�ðx3Þ
�
@p3

þ m2

24�2
@3p3

�
~wð0Þð ~p; tÞ: (107)

This equation serves as the starting point for our analysis of
the influence of a small spatial inhomogeneity. In order to
estimate the influence of higher derivatives, we compare
the terms occurring in the derivative expansion of the
pseudodifferential operator Dt in Eq. (102):

@p3
~wð0Þð ~p; tÞ with

m2

24�2
@3p3

~wð0Þð ~p; tÞ: (108)

In fact, by means of this procedure we do not quantify the
overall influence of the small spatial inhomogeneity �ðx3Þ
on the Schwinger effect; for this we would really have to
solve the PDE system Eq. (101). However, by means of the
derivative expansion we might estimate a parameter region
for which the higher derivatives do not play an important
role such that we could restrict ourselves to the solution of
the first-order PDE system:

½@t þ eEðtÞ@p3
� ~wð ~x; ~p; tÞ ¼ Mð ~r ~x; ~pÞ ~wð ~x; ~p; tÞ: (109)

It is known from the analysis of the Schwinger effect in
spatially homogeneous electric fields that the orthogonal
momentum solely acts as an additional mass term and does
not change the qualitative behavior. Thus, for simplicity,
we will restrict ourselves in the following to ~p? ¼ 0, such
that we deal only with the following DHW functions:

s ðp̂3; tÞ ¼ � 2

!̂ðp̂3Þ

1ðp̂3; tÞ � 2p̂3

!̂ðp̂3Þ

2ðp̂3; tÞ; (110)

v 3ðp̂3; tÞ ¼ � 2p̂3

!̂ðp̂3Þ

1ðp̂3; tÞ þ 2

!̂ðp̂3Þ

2ðp̂3; tÞ; (111)

t 1;3ðp̂3; tÞ ¼ 2
3ðp̂3; tÞ; (112)

where we have introduced the dimensionless phase-space
kinetic momentum p̂3 ¼ p3

m and the dimensionless energy

variable !̂ðp̂3Þ ¼ !ðp3Þ
m .

B. Example 1: Constant electric field

We explicitly calculated the time-independent coeffi-

cients 
i¼f1;2;3gð ~pÞ in Appendix. B, such that the DHW
functions Eqs. (110)–(112) for ~p? ¼ 0 and in terms of
the dimensionless variables p̂3 and !̂ðp̂3Þ are easily cal-
culable. In the end, we want to compare the first with the
third derivative of the source term in Eq. (107):

�m��ðx3Þ
�
@p̂3

þ 1

24�2
@3p̂3

�
~wð0Þðp̂3Þ: (113)

Therefore, we explicitly determine these derivatives ac-
cording to Eq. (34), yielding

@p̂3
sð0Þ ¼ 2p̂3

�
tð0Þ1;3;

@p̂3
vð0Þ ¼ � 2

�
tð0Þ1;3;

@p̂3
tð0Þ1;3 ¼ � 2p̂3

�
sð0Þ þ 2

�
vð0Þ3

(114)

and

@3p̂3
sð0Þ ¼ 4

�2

�
�3p̂3s

ð0Þ þ 2vð0Þ3 � 2p̂3!̂
2ðp̂3Þ
�

tð0Þ1;3

�
;

@3p̂3
vð0Þ3 ¼ 4

�2

�
sð0Þ þ 2!̂2ðp̂3Þ

�
tð0Þ1;3

�
;

@3p̂3
tð0Þ1;3 ¼

4

�2

�
2p̂3!̂

2ðp̂3Þ
�

sð0Þ � 2!̂2ðp̂3Þ
�

vð0Þ3 � 3p̂3t
ð0Þ
1;3

�
;

(115)

where we have dropped the arguments of the DHW func-
tions for simplicity.

According to Eq. (113), we compare @p̂3
~wð0Þðp̂3Þ with

1
24@

3
p̂3
~wð0Þðp̂3Þ in the following: due to the fact that all the

DHW functions show a rather similar behavior, we restrict

ourselves to tð0Þ1;3ðp̂3Þ for simplicity. Figure 1 clearly shows

2 1 1 2 3
p3

2

1

1

2

2 1 1 2 3 4 5
p3

30

20

10

10

20

30

FIG. 1. Comparison of the leading-order derivative term

@p̂3
tð0Þ1;3ðp̂3Þ (dashed line) with the next-to-leading-order term

1
24@

3
p̂3
tð0Þ1;3ðp̂3Þ (solid line) for EðtÞ ¼ E0 with � ¼ E0=Ec ¼ 0:2

(upper) and � ¼ 1 (lower). For higher momenta, the next-to-
leading-order term eventually exceeds the leading-order term as
the electric field persistently accelerates the produced pairs.
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that the higher derivatives always become more important
than the first derivative for large momenta p̂3. This might
be understood in the following way: Because of the accel-
eration in the electric field, all length scales are ultimately
probed and become important, even though the pair crea-
tion process happens on the length scale of Oð�Þ. Note,
however, that the point at which the higher derivatives are
of the order of the first derivative depends on the electric
field strength � ¼ E0=Ec: For higher field strengths this
point is already reached for lower momenta.

In order to estimate the importance of the spatial inho-
mogeneity for the pair creation process itself, we should
have a closer look at the pair-production rate in Fig. 2:

For � ¼ 0:2, the dominant contributions to the pair-
production rate stem from a region of kinetic momenta
up to p̂3 	 �2. In this regime, the first derivatives are still
of the order of the third derivatives, as shown in Fig. 1. As a
consequence, the effect of higher derivatives on the pair-
production process should be taken into account only for a
spatial variation of the Compton wavelength � ¼ Oð1Þ,
whereas the effect of the higher derivatives becomes
suppressed for larger variation scales �.

For � ¼ 1, the situation is slightly different: Again, the
dominant contributions to the pair-production rate arise
from kinetic momenta up to p̂3 	 �2; however, there
are nonvanishing contributions for higher momenta as
well, as shown in Fig. 1. Because of the fact that the higher
derivatives become more important than the first deriva-
tives for large momenta, the scale of spatial variation �
has to increase as well in order to suppress the higher
derivatives.
To conclude: Concerning the pair-production process,

there is a strong interplay between the electric field
strength � and the scale of spatial variation �. This inter-
play between field strength and scale of spatial variation
affecting the quality of the derivative expansion has al-
ready been observed in earlier studies [38]. In order to keep
the pair-production process itself unaltered by higher de-
rivatives, the scale of spatial variation �must get larger for
higher electric field strengths �. However, even if the effect
of the higher derivatives on the pair-production process
might be negligible, the effect on the final momentum
distribution might be large: this is due to the acceleration
of the pairs in the electric field which finally emphasizes
higher momenta such that higher derivatives always be-
come more important than the first derivative.

C. Example 2: Sauter-type electric field

For the Sauter-type electric field we may perform a
similar analysis like for the constant electric field. Again,
we only consider ~p? ¼ 0; however, there is a huge quali-
tative difference since the DHW functions now depend on
both the phase-space kinetic momentum p̂3 and the time
variable u. Using the expressions given in Appendix B,
we are able to analytically calculate the DHW functions
Eqs. (110)–(112). Again, we consider the source term in
Eq. (107), which now reads

� 4m�uð1�uÞ�ðx3Þ
�
@p̂3

þ 1

24�2
@3p̂3

�
~wð0Þðp̂3;uÞ: (116)

In what follows, we compare the first derivative

@p̂3
~wð0Þðp̂3; uÞ with the third derivatives 1

24 @
3
p̂3
~wð0Þðp̂3;uÞ.

Again, we restrict ourselves to tð0Þ1;3ðp̂3;uÞ. Nonetheless,
there are three big differences in comparison to the con-
stant electric field: First, we are not able to calculate the
first and third derivative with respect to p̂3 as easily as
for the constant electric field, as shown in Eqs. (114) and
(115), since these derivatives now include parameter
derivatives of the Gauss hypergeometric function.
Nevertheless, a numerical calculation is rather simple.
Second, the situation is not quasistatic anymore but it
makes a difference at which moment of time the system
is considered. Third, the field strength � is not the only
relevant parameter but we also have to consider the depen-
dence on the pulse length � via the Keldysh parameter
� ¼ 1=ðm��Þ. In order to analyze the interplay between

2 1 1 2 3
p3

50

50

2 1 1 2 3 4 5
p3

100 000

50 000

50 000

100 000

FIG. 2. Pair-production rate for EðtÞ ¼ E0 with � ¼ E0=Ec ¼
0:2 (upper) and � ¼ 1 (lower). For � ¼ 0:2, pair production
occurs dominantly for momenta p3 & 2 where next-to-leading-
order derivative terms remain small, cf. Figure 1. By contrast,
higher derivative terms are expected to take a quantitative
influence on pair production for � ¼ 1 and sizable spatial
variation �.
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these quantities, we consider the system at three different
instants of time: At t ¼ �� (increase of field strength),
t ¼ 0 (maximum of field strength) and t ¼ � (decrease of
field strength).

Let us first concentrate on Fig. 3 with � ¼ 0:2 and
� ¼ 1, where we already observe some general features:
As in the case of the constant electric field, the third
derivatives show an out-of-phase behavior compared to
the first derivative: At momentum values where the third
derivatives show a local maximum, the first derivative
shows a local minimum and vice versa. As a consequence,
depending on the scale of spatial variation �, the influence

of the first derivative might be inverted due to the third
derivative term. We also observe that the relative impor-
tance of the third derivatives in comparison to the first
derivative becomes bigger for later times. This might be
interpreted in the following way: At late times the created
particles have had more time to be accelerated in the
electric field and, as a consequence, have travelled over
larger distances and were exposed to even large scale
inhomogeneities. The effect of acceleration in the electric
field might also be seen in the shift of the global maximum
of the third derivatives towards higher-momentum values.
If we want to suppress the higher derivatives in comparison
to the first derivative, we should choose the scale of spatial
variation to be at least of the order � * Oð5Þ.
Next we switch to a longer pulse with � ! 0:2 as shown

in Fig. 4, which corresponds to a pulse with the same
electric field strength but with a 5-times longer duration.
We see that the behavior at early times t ¼ �� is very
similar, however, the situation changes drastically for later
times: First, due to the longer pulse duration the created
particles are accelerated to higher momenta. Additionally,
we observe a strong enhancement of the oscillatory struc-
ture and a strong increase of the magnitude of the third
derivatives. Especially at t ¼ �, the third derivatives are
orders of magnitude larger than the first derivatives. This
means that the scale of spatial variation � has to be chosen
much larger in order to suppress the influence of higher
order derivatives.
The change in the overall magnitude is the distinctive

feature when we increase the field strength � ! 1 as shown
in Fig. 5. The general behavior is rather similar as before,
however, the source term becomes more important in
comparison to the left-hand side of Eq. (107). As a con-
sequence, we expect the overall effect of spatial inhomo-
geneities to be more important for strong electric fields
than for weak electric fields.
To summarize, Figs. 3–5 give us the following physical

picture:
(i) Concerning the time variable u, we see that the role

of higher derivatives is more important at late times
than at early times. This suggests that even if the
influence of spatial inhomogeneities on the pair-
production process itself might not be very strong,
the final momentum distribution can be strongly
altered.

(ii) Concerning the field strength �, we conclude by
comparing the magnitude of the source term for
the different values of � that the influence of spatial
inhomogeneities on the pair-production process
becomes more important for higher field strengths.
We interpret this observation as arising from the
fact that for weak fields the created particles are
not accelerated that much and, as a consequence,
they do only feel inhomogeneities on large length
scales but not on shorter variation scales.
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FIG. 3. Comparison of the leading-order derivative term

@p̂3
tð0Þ1;3ðp̂3; uÞ (dashed line) with the next-to-leading-order term

1=24@3p̂3
tð0Þ1;3ðp̂3; uÞ (solid line) for � ¼ E0=Ec ¼ 0:2 and � ¼ 1

for t ¼ �� (upper), t ¼ 0 (middle) and t ¼ � (lower).
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(iii) Concerning the Keldysh parameter � we note that
small values of � correspond either to strong elec-
tric field strengths or to longer pulse durations �.
Therefore, particles are more substantially acceler-
ated in the electric field and, as a consequence,
spatial inhomogeneities might have a greater im-
portance, since the particles feel the inhomogene-
ities even on shorter scales of variation.

As a consequence, we observe that there will generally
be a complex interplay between all the relevant parameters

for any type of space- and time-dependent electric field
~Eð ~x; tÞ. Thus, it is difficult to predict a priori whether
neglecting higher derivatives can be a good approximation
or not. It is clear that in the limit of a spatially homoge-
neous electric fields � ! 1 the leading-order derivative
approximation Eq. (109) becomes exact since all higher
derivatives are suppressed by a factor of ��2n. However, it
is not clear a priori for which values of � the higher
derivatives play a quantitatively important role and should
be taken into account. Future investigations on that prob-
lem should help to better understand the interplay between
the different scales.
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FIG. 4. Comparison of the leading-order derivative term

@p̂3
tð0Þ1;3ðp̂3; uÞ (dashed line) with the next-to-leading-order term

1=24@3p̂3
tð0Þ1;3ðp̂3; uÞ (solid line) with � ¼ E0=Ec ¼ 0:2 and

� ¼ 0:2 for t ¼ �� (upper), t ¼ 0 (middle) and t ¼ � (lower).
Note: For t ¼ � the third derivative is in fact 2 magnitudes larger
than the first derivative but has been scaled by a factor of 0.01.
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FIG. 5. Comparison of the leading-order derivative term
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IV. CONCLUSIONS AND OUTLOOK

We have investigated the Dirac-Heisenberg-Wigner
(DHW) formalism for nonperturbative pair production
in general electromagnetic fields. As a genuine real-time
formalism, this approach provides for a comprehensive
framework of addressing all aspects of pair production,
most notably, the nonequilibrium character of pair produc-
tion in a fully time- and space-resolved manner.

We have shown that the DHW formalism includes quan-
tum kinetic theory (QKT) which has so far been the most
successful approach to describe the real-time evolution of
pair production in the limit of time-dependent but spatially
homogeneous electric fields. We conclude that the DHW
formalism provides for the desired generalization of QKT
to the case of arbitrarily general space- and time-dependent
electromagnetic fields. For a given field, the solution of
the DHW formalism is parameterized in spinor QED in
4-dimensional space-time by 16 irreducible components of
the Wigner function which encode the phase-space distri-
butions of physical quantities such as mass, charge and
current densities as provided by the produced pairs. From
the knowledge of these quantities, although they are no
semipositive definite probability distributions, physical ob-
servables such as the pair distribution function in phase-
space can directly be inferred.

Whereas the DHW formalism is completely general as
far as the details of the external field are concerned, we
have confined ourselves in the present work to an analysis
of exactly solvable cases such as the constant electric field
and the Sauter potential. Of course, such exactly solvable
cases always provide for a controlled starting point
for more general cases, in particular, they should also
serve as a benchmark for future full numerical studies.
Moreover, we have used these cases in the present work
to provide for a first glance at the possible use and limita-
tions of natural approximation schemes such as the deriva-
tive expansion. The leading-order of this approximation
corresponds to a locally constant field approximation, i.e.,
approximating the spatial dependence of the field locally
by a constant field.

The picture arising from this investigation is rather di-
verse: it has already been known, for instance, from world-
line instanton studies [33,34], that the locally constant field
approximation underestimates the pair-production rate for
fields varying in time, and overestimates the rate for fields
varying in space. Whereas the exact solution, e.g. for the
Sauter potential in Sec. II C 2 reflects this fact, we observe
that general statements about the potential quality of the
derivative or locally constant-field approximation cannot
straightforwardly be made. For all concrete examples, we
observe that the next-to-leading-order derivative terms in
fact exceed the leading-order terms either for higher mo-
menta or for late times. Taken at face value, this seems to
imply that the derivative expansion is always bound to fail as
soon as the field exhibits spatial variations. However, the

reason for this strong modification of the next-to-leading-
order terms lies in the fact that the persistent presence of
accelerating field components, of course, exerts a strong
influence on high-momentum components which eventually
resolve also small spatial variations of the field. Therefore, it
is only natural to expect that the derivative expansion should
fail in the way it does for high-momentum components and
at late times.
Nevertheless, our results also provide a guideline to a less

strict view on the quality of the derivative expansion: phe-
nomenologically, the most relevant quantity is the pair dis-
tribution function in momentum space. Quantitatively, the
question needs to be addressed whether the next-to-leading-
order terms of the derivative expansion exert a strong influ-
ence on this distribution function. As the higher derivative
terms become dominant for higher-momentum components,
we conclude that the derivative expansion can still remain a
reasonable approximation as long as the dominant pair
distribution is peaked at lower momenta. Whether or not
this is the case, depends not only on the scale of spatial
variation of the field, but also on the overall field strength
and also possible further time dependencies. As a rule
of thumb, we observe that the dominant low-momentum
components appear to remain little affected at significantly
subcritical field strengths with spatial variations being sub-
stantially larger than the Compton wavelength.
Beyond the technical question about the quality of the

derivative expansion, the most interesting question is cer-
tainly as to whether a phenomenologically relevant inter-
play between characteristic signatures of pair production
and space-time shaping of the external field exists. Based
on the surprising observations that have already been made
for simple time-dependencies [45,46], we expect that this
question can be answered in the affirmative. From our
present studies of spatial variations and the dominant effect
on high-momentum components, we conclude that tempo-
ral and spatial pulse shaping can have substantial effects on
the momentum structure of the pair distribution function.
As to whether temporal and spatial pulse shaping can also
optimize the total number of produced pairs certainly
remains the most pressing question which we hope to
address with the DHW formalism based on full numerical
solutions in the near future.
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APPENDIX A: QUANTUM KINETIC
THEORY (QKT)

In this Appendix, we give a brief derivation of the
quantum kinetic equation describing Schwinger pair
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production in spatially homogeneous, time-dependent
electric fields [24,25]. As in the main part of this paper,
we adopt the temporal gauge A0 ¼ 0. We choose the vector

potential ~AðtÞ ¼ AðtÞ ~e3 such that the Dirac equation reads

ði�0@t þ i ~� � ½ ~r ~x � ieAðtÞ ~e3� �mÞ�ð ~x; tÞ ¼ 0: (A1)

Because of spatial homogeneity, we decompose the spinor
field into its Fourier modes according to Eq. (29), such that

the Dirac equation for the mode function ~c ð ~q; tÞ reads
ði�0@t � ~� � ~�ð ~q; tÞ �mÞ ~c ð ~q; tÞ ¼ 0: (A2)

Again note that ~�ð ~q; tÞ ¼ ~q� eAðtÞ ~e3 denotes the time-
dependent kinetic momentum on the trajectory whereas ~q
denotes the canonical momentum. In order to solve this
equation we apply the ansatz

~c ð ~q; tÞ ¼ ði�0@t � ~� � ~�ð ~q; tÞ þmÞ ~�ð ~q; tÞ; (A3)

such that the spinor-valued function ~�ð ~q; tÞ obeys the
equation

ð@2t þ ~!2ð ~q; tÞ þ ieEðtÞ�0�3Þ ~�ð ~q; tÞ ¼ 0; (A4)

with ~!ð ~q; tÞ defined as before. It is convenient to expand
~�ð ~q; tÞ in a basis consisting of the eigenvectors of �0�3,
such that

~�ð ~q; tÞ ¼ X
s

Rs~gsð ~q; tÞ with �0�3Rs ¼ �Rs: (A5)

There are two eigenvectors Rs¼1;2 with � ¼ þ1 and two

eigenvectors Rs¼3;4 with � ¼ �1. Inserting this ansatz into
Eq. (A4), each ~gsð ~q; tÞ obeys the equation of a time-
dependent oscillator:

ð@2t þ ~!2ð ~q; tÞ þ ieEðtÞ�Þ~gsð ~q; tÞ ¼ 0; (A6)

which are in general not exactly solvable; exceptions are
the constant electric field EðtÞ ¼ E0 and the Sauter-type
electric field EðtÞ ¼ E0sech

2ðt=�Þ (see Sec. II C). Each of
them is a second-order differential equation and possesses
as such two linearly independent solutions ~g�s ð ~q; tÞ.
Because of the fact that Eq. (A4) gives four equations but
the ansatz Eq. (A5) allows for eight solutions, there is a
redundancy which is removed by choosing only one set of
eigenvectors, either s ¼ f1; 2g or s ¼ f3; 4g. Because of the
absence of magnetic fields, we impose the same initial
conditions for both spin states, such that

~g ð�Þ
1 ð ~q; tÞ ¼ ~gð�Þ

2 ð ~q; tÞ ¼ ~gð�Þð ~q; tÞ: (A7)

Consequently, we canonically quantize ~c ð ~q; tÞ according
to Eq. (30) by introducing anticommuting creation/annihi-
lation operators as well as four spinors, with

~u sð ~q; tÞ ¼ ði�0@t � ~� � ~�ð ~q; tÞ þmÞ~gðþÞð ~q; tÞRs; (A8)

~v sð� ~q; tÞ ¼ ði�0@t � ~� � ~�ð ~q; tÞþmÞ~gð�Þð ~q; tÞRs: (A9)

Because of the fact that we work in the Heisenberg picture,
the creation/annihilation operators are time dependent
in general, however, due to the choice Eqs. (A8) and
(A9), the whole time-dependence can be absorbed into
the four spinors. It can be shown, that in the case of
vanishing electric fields, the properly normalized vacuum
solutions are given by

~g ð�Þ
vac ð ~q; tÞ ¼ e�i!ð ~qÞtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2!ð ~qÞð!ð ~qÞ � q3Þ
p ; (A10)

with !ð ~qÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ~q2

p
. It is important to note that a

particle/antiparticle interpretation of the field quanta is
only possible in the case of such plane-wave solutions.
However, as soon as electric fields are present, the mode

functions ~gð�Þð ~q; tÞ are no plane waves anymore and an
interpretation in terms of particles/antiparticles is not
straightforward. It is a further consequence of the presence
of electric fields that the Hamiltonian operator achieves
off-diagonal elements which account for particle/antipar-
ticle creation/annihilation.
The Hamiltonian operator might be diagonalized by

performing a unitary nonequivalent change of basis
to a quasiparticle representation via a time-dependent
Bogoliubov transformation:

~a sð ~q; tÞ ¼ ~	ð ~q; tÞasð ~qÞ � ~�
ð ~q; tÞbys ð� ~qÞ; (A11)

~b y
s ð� ~q; tÞ ¼ ~�ð ~q; tÞasð ~qÞ þ ~	
ð ~q; tÞbys ð� ~qÞ; (A12)

with the creation/annihilation operators becoming time
dependent but still fulfilling the equal-time anticommuta-
tion relations. In order to be a canonical transformation, the

Bogoliubov coefficients ~	ð ~q; tÞ and ~�ð ~q; tÞ have to fulfill

j~	ð ~q; tÞj2 þ j ~�ð ~q; tÞj2 ¼ 1: (A13)

In pure vacuum when no electric fields are present, the two
different operator bases coincide such that ~	vacð ~q; tÞ ¼ 1

and ~�vacð ~q; tÞ ¼ 0. Note, that this relation also holds in the
presence of electric fields at asymptotic times t ! �1.
Within this so-called adiabatic basis, the Fourier modes
~c ð ~q; tÞ read
~c ð ~q;tÞ¼X

s

~Usð ~q;tÞ~asð ~q;tÞþ ~Vsð� ~q;tÞ~bys ð� ~q;tÞ: (A14)

The adiabatic four spinors are chosen in close analogy
to Eqs. (A8) and (A9) such that they coincide with the
vacuum solutions in the case of vanishing electric fields:

~U sð ~q; tÞ ¼ ð�0 ~!ð ~q; tÞ � ~� � ~�ð ~q; tÞ þmÞ ~GðþÞð ~q; tÞRs;

(A15)

~V sð� ~q; tÞ ¼ ð��0 ~!ð ~q; tÞ � ~� � ~�ð ~q; tÞ þmÞ ~Gð�Þð ~q; tÞRs;

(A16)

with the adiabatic mode function ~Gð�Þð ~q; tÞ given by
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~G ð�Þð ~q; tÞ ¼ e�i�ð ~q;t0;tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ~!ð ~q; tÞð ~!ð ~q; tÞ � �3ðq3; tÞÞ

p ; (A17)

and the dynamical phase �ð ~q; t0; tÞ being defined as

�ð ~q; t0; tÞ ¼
Z t

t0

~!ð ~q; t0Þdt0: (A18)

The lower bound t0 is not determined since it only fixes
an arbitrary phase at a given instant of time. Note that an
interpretation in terms of particles/antiparticles is only
straightforward at asymptotic times when the external
electric field vanishes and the solutions Eq. (A17) behave
like plane waves.

In order to define the single-particle momentum distri-

bution function ~fð ~q; tÞ, we assume that we start with
vacuum initial conditions at t ! �1:

h0jays ð ~qÞasð ~qÞj0i ¼ h0jbys ð ~qÞbsð ~qÞj0i ¼ 0: (A19)

We then define ~fð ~q; tÞ as the instantaneous quasiparticle
number density for a given canonical momentum ~q.
Because of the absence of magnetic fields, we take the
sum over both spin states, such that

~fð ~q; tÞ ¼ lim
V!1

X
s¼1;2

h0j~ays ð ~q; tÞ~asð ~q; tÞj0i
V

¼ 2j ~�ð ~q; tÞj2

(A20)

with V being the (infinite) configuration space volume.

As a consequence, the knowledge of ~�ð ~q; tÞ allows for

the calculation of ~fð ~q; tÞ. In fact, the different representa-

tions of ~c ð ~q; tÞ Eqs. (30) and (A14) translate into an
expression for the Bogoliubov coefficients:

~	ð ~q; tÞ ¼ i�? ~Gð�Þð ~q; tÞ½@t � i ~!ð ~q; tÞ�~gðþÞð ~q; tÞ; (A21)

~�ð ~q; tÞ ¼�i�? ~GðþÞð ~q; tÞ½@t þ i ~!ð ~q; tÞ�~gðþÞð ~q; tÞ; (A22)

such that their time derivatives form an ODE system:

d

dt
~	ð ~q; tÞ ¼ 1

2
~Qð ~q; tÞ ~�ð ~q; tÞe2i�ð ~q;t0;tÞ; (A23)

d

dt
~�ð ~q; tÞ ¼ � 1

2
~Qð ~q; tÞ~	ð ~q; tÞe�2i�ð ~q;t0;tÞ; (A24)

with ~Qð ~q; tÞ defined as in Eq. (47). Introducing ~Cð ~q; tÞ ¼
2~	ð ~q; tÞ ~�
ð ~q; tÞ, this ODE system might be rewritten as

d

dt
~Cð ~q; tÞ ¼ � ~Qð ~q; tÞ½1� ~fð ~q; tÞ�e�2i�ð ~q;t0;tÞ; (A25)

d

dt
~fð ~q; tÞ ¼ � ~Qð ~q; tÞRe½~Cð ~q; tÞe2i�ð ~q;t0;tÞ�: (A26)

Formally integrating the first equation from a time of pure
vacuum tvac ! �1 to t, yields the Vlasov equation for the

single-particle momentum distribution function ~fð ~q; tÞ in
its integro-differential form:

d

dt
~fð ~q; tÞ ¼ ~Qð ~q; tÞ

Z t

tvac

dt0 ~Qð ~q; t0Þ½1� ~fð ~q; t0Þ�

� cos½2�ð ~q; t0; tÞ�; (A27)

with ~fð ~q; tvacÞ ¼ 0. It is possible to rewrite this integro-
differential equation in terms of an equivalent ODE system
by introducing auxiliary functions ~�ð ~q; tÞ and ~�ð ~q; tÞ:

d

dt
~fð ~q; tÞ ¼ ~Qð ~q; tÞ~�ð ~q; tÞ; (A28)

d

dt
~�ð ~q; tÞ ¼ ~Qð ~q; tÞ½1� ~fð ~q; tÞ�� 2 ~!ð ~q; tÞ~�ð ~q; tÞ; (A29)

d

dt
~�ð ~q; tÞ ¼ 2 ~!ð ~q; tÞ~�ð ~q; tÞ; (A30)

with appropriate vacuum initial conditions ~�ð ~q; tvacÞ ¼
~�ð ~q; tvacÞ ¼ 0.

APPENDIX B: DHW FUNCTIONS FOR EXACTLY
SOLVABLE ELECTRIC FIELDS

In this Appendix we give the analytic expressions for
the DHW functions for the exactly solvable cases of the
constant electric field and the Sauter-type electric field.
The DHW functions are obtained as follows: We already
derived the analytic expressions for the single-particle

momentum distribution function ~fð ~q; tÞ in Sec. II C. As a
consequence, according to Eqs. (48)–(50) we are able

to calculate the nonvanishing coefficients ~
i¼f2;3gð ~q; tÞ,
cf. Eq. (46), as well. Finally, we obtain the DHW functions
according to Eqs. (51)–(56) after performing the phase-
space projection Eq. (40).

1. Constant electric field

In order to simplify the expression for the single-particle

momentum distribution function ~fðuÞ derived in Eq. (72),
we introduce the following abbreviations:

~d 1ðuÞ ¼ jD�1þi�=2ð�ue�ið�=4ÞÞj2 (B1)

~d 2ðuÞ ¼ jDi�=2ð�ue�ið�=4ÞÞj2 (B2)

~d 3ðuÞ ¼ eið�=4ÞD�1�i�=2ð�ue�ið�=4ÞÞ
�Di�=2ð�ue�ið�=4ÞÞ þ c:c: (B3)

~d 4ðuÞ ¼ e�ið�=4ÞD�1�i�=2ð�ue�ið�=4ÞÞ
�Di�=2ð�ue�ið�=4ÞÞ þ c:c: (B4)

which fulfill
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@u ~d1ðuÞ ¼ ~d4ðuÞ; (B5)

@u ~d2ðuÞ ¼ ��

2
~d4ðuÞ; (B6)

@u ~d3ðuÞ ¼ �u~d4ðuÞ: (B7)

We may then express ~fðuÞ in terms of ~diðuÞ, such that

~
i¼f1;2;3gðuÞ are given by

~
1ðuÞ ¼ 1� e�ð��=4Þ
�
�

2

�
1� uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�þ u2
p

�
~d1ðuÞ

þ
�
1þ uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�þ u2
p

�
~d2ðuÞ � �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�þ u2
p ~d3ðuÞ

�
;

(B8)

~
2ðuÞ ¼
ffiffiffiffi
�

2

r
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�þ u2
p e�ð��=4Þf��~d1ðuÞ þ 2~d2ðuÞ

þ u~d3ðuÞg; (B9)

~
3ðuÞ ¼
ffiffiffiffiffiffi
2�

p
ð2�þ u2Þ3=2 þ

ffiffiffiffi
�

2

r
1

ð2�þ u2Þ3=2
� e�ð��=4Þf��~d1ðuÞ � 2~d2ðuÞ
þ ð2�þ u2Þ3=2 ~d4ðuÞg; (B10)

with ~
1ðuÞ ¼ 1� ~fðuÞ. In order to obtain the DHW

functions we perform the variable transformation ~q ! ~pþ
e ~AðtÞ. Because of the linear relation between q3 and t, this
phase-space projection is trivial and reads

u !
ffiffi
2
�

q
p̂3 and dið ~pÞ ¼ ~di

� ffiffi
2
�

q
p̂3

�
; (B11)

where we introduced the dimensionless phase-space ki-
netic momentum p̂3 ¼ p3

m . Note that the dið ~pÞ implicitly

depend on the orthogonal kinetic momentum ~p? by means
of � ¼ �2?=eE0 with �2? ¼ m2 þ ~p2

?. Obviously, dið ~pÞ do
not depend on the time variable t but only on the kinetic
momentum ~p such that the Schwinger effect in a constant
electric field might be regarded as a quasistatic problem.

The phase-space coefficients 
i¼f1;2;3gð ~pÞ which allow for
the calculation of the DHW functions Eqs. (51)–(56) thus
read


1ð ~pÞ ¼ 1� e�ðð��2?Þ=ð4eE0ÞÞ
�
�2?
2eE0

�
1� p3

!ð ~pÞ
�
d1ð ~pÞ

þ
�
1þ p3

!ð ~pÞ
�
d2ð ~pÞ�

�2?ffiffiffiffiffiffiffiffiffiffiffi
2eE0

p
!ð ~pÞd3ð ~pÞ

�
; (B12)


2ð ~pÞ ¼ �?
2!ð ~pÞ e

�ðð��2?Þ=ð4eE0ÞÞ
�
� �2?
eE0

d1ð ~pÞ þ 2d2ð ~pÞ

þ
ffiffiffiffiffiffiffiffi
2

eE0

s
p3d3ð ~pÞ

�
; (B13)


3ð ~pÞ ¼ eE0�?
2!3ð ~pÞ

�
1þ 1

2
e�ðð��2?Þ=ð4eE0ÞÞ

�
� �2?
eE0

d1ð ~pÞ

� 2d2ð ~pÞ þ
�

2

eE0

�
3=2

!3ð ~pÞd4ð ~pÞ
��
: (B14)

2. Sauter-type electric field

We start from the expression for the single-particle

momentum distribution function ~fðq̂3; uÞ given in
Eq. (94) and introduce the following abbreviations:

~h 1ðq̂3; uÞ ¼ jFð~a; ~b; ~c;uÞj2 (B15)

~h 2ðq̂3; uÞ ¼
��������~a ~b

~c
Fð1þ ~a; 1þ ~b; 1þ ~c;uÞ

��������
2

(B16)

~h 3ðq̂3; uÞ ¼ �i
~a ~b

~c
Fð1þ ~a; 1þ ~b; 1þ ~c; uÞ

� Fð~a
; ~b
; ~c
;uÞ þ c:c: (B17)

and

~% 1ðq̂3; uÞ ¼ ½!̂ðq̂3; uÞ � ð1� uÞ!̂ðq̂3; 0Þ � u!̂ðq̂3; 1Þ�2
(B18)

~% 2ðq̂3; uÞ ¼ 4�2�2u2ð1� uÞ2 (B19)

~%3ðq̂3; uÞ ¼ 2��uð1� uÞ � ½!̂ðq̂3; uÞ � ð1� uÞ!̂ðq̂3; 0Þ
� u!̂ðq̂3; 1Þ� (B20)

such that ~fðq̂3; uÞ can be written as

~fðq̂3; uÞ ¼ ~Nfðq̂3Þ
�
1þ �̂3ðq̂3; uÞ

!̂ðq̂3; uÞ
�X3
i¼1

~%iðq̂3; uÞ~hiðq̂3; uÞ:

(B21)

Again note that f~a; ~b; ~cg, which have been defined in
Eq. (85), only depend on q̂3 but not on u. Taking into
account the general derivation formula for the Gauss hy-
pergeometric function Eq. (96), we can explicitly calculate
the first and second derivative of Eq. (B21). After calculat-

ing @u ~fðq̂3; uÞ and @2u ~fðq̂3; uÞ, we are able to determine the

coefficients ~
i¼f1;2;3gðq̂3; uÞ according to

~
 1ðq̂3; uÞ ¼ 1� ~fðq̂3; uÞ (B22)

~
 2ðq̂3; uÞ ¼ �!̂2ðq̂3; uÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ̂2

p @u ~fðq̂3; uÞ (B23)
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~
 3ðq̂3; uÞ ¼ 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ̂2

p
uð1� uÞ

!̂3ðq̂3; uÞ
�
1� ~fðq̂3; uÞ

� �!̂2ðq̂3; uÞ�̂3ðq̂3; uÞ
1þ ̂2

@u ~fðq̂3; uÞ

� �2!̂4ðq̂3; uÞ
4ð1þ ̂2Þ @2u ~fðq̂3; uÞ

�
: (B24)

In order to obtain the coefficients in phase-space, we have

to perform the variable transformation ~q ! ~pþ e ~AðtÞ,
which reads

q̂ 3 ! p̂3 � 2u� 1

�
: (B25)

As a consequence, the quantities !̂ðq̂3; uÞ and �̂3ðq̂3; uÞ
only depend on p̂3 but not on u after performing this
variable transformation:

�̂ 3ðq̂3; uÞ ! p̂3; (B26)

!̂ðq̂3; uÞ ! !̂ðp̂3Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ̂2 þ p̂2

3

q
: (B27)

On the other hand, any function of the canonical momen-
tum q̂3 only, e.g. !̂ðq̂3; 0Þ or !̂ðq̂3; 1Þ, acquires a

dependence on both the phase-space kinetic momentum
p̂3 and the time variable u:

�̂ 3ðq̂3; 0Þ ¼ q̂3 � 1

�
! p̂3 � 2u

�
; (B28)

�̂ 3ðq̂3; 1Þ ¼ q̂3 þ 1

�
! p̂3 � 2u� 2

�
; (B29)

and

!̂ðq̂3; 0Þ !
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ̂2 þ

�
p̂3 � 2u

�

�
2

s
; (B30)

!̂ðq̂3; 1Þ !
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ̂2 þ

�
p̂3 � 2u� 2

�

�
2

s
: (B31)

Therefore, whereas the functions ~hiðq̂3; uÞ depend on u
solely through the last argument of the Gauss hypergeo-
metric function, the transformed functions hiðp̂3; uÞ have a
twofold u dependence: On the one hand, there is still the u
dependence due to the last argument. On the other hand,
due to the fact that the parameters Eq. (85) were function
of q̂3 only, they will depend on both p̂3 and u after the
transformation to phase space.
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