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(Received 27 September 2010; published 18 November 2010)

A general method to treat non-Gaussian vacuum wave functionals in the Hamiltonian formulation of a

quantum field theory is presented. By means of Dyson-Schwinger techniques, the static Green functions

are expressed in terms of the kernels arising in the Taylor expansion of the exponent of the vacuum wave

functional. These kernels are then determined by minimizing the vacuum expectation value of the

Hamiltonian. The method is applied to Yang-Mills theory in Coulomb gauge, using a vacuum wave

functional whose exponent contains up to quartic terms in the gauge field. An estimate of the cubic and

quartic interaction kernels is given using as input the gluon and ghost propagators found with a Gaussian

wave functional.
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I. INTRODUCTION

According to our present understanding of nature, QCD
is the theory of the strong interaction. This theory has been
tested in the high-momentum or ultraviolet (UV) regime,
where perturbation theory is applicable due to asymptotic
freedom. Our knowledge on the low energy, strongly in-
teracting regime of QCD stems mainly from lattice calcu-
lations, which have at least qualitatively reproduced many
physical observables, in particular, the linearly rising con-
fining potential for heavy quarks. Furthermore, lattice
calculations have revealed the relevance of topological
field configurations such as magnetic monopoles and cen-
ter vortices for infrared phenomena like confinement and
spontaneous chiral symmetry breaking. These calculations
support the dual Meissner effect and the vortex condensa-
tion picture of confinement [1]. Despite these substantial
physical insights provided by the lattice calculations, a
thorough understanding of these infrared phenomena will
not come from lattice calculations alone but will require
also studies of the continuum theory.

In recent years there have been substantial efforts de-
voted to a nonperturbative treatment of continuum Yang-
Mills theory. Among these are a variational solution of the
Yang-Mills Schrödinger equation in Coulomb gauge [2–5].
In this approach, using Gaussian-type wave functionals,
minimization of the energy density results in the so-called
gap equation for the gluon energy (or static gluon propa-
gator). This equation has been solved analytically in the
infrared [6] and in the ultraviolet [7] and numerically in the
full momentum regime [4,8]. One finds a gluon energy,
which in the UV behaves like the photon energy but
diverges in the IR, signalling confinement. The obtained
gluon energy also compares favorably with the lattice data
[9]. In particular, the infrared regime is correctly repro-
duced, as far as we can tell from available lattice data.
There are, however, deviations in the midmomentum re-
gime (and minor ones in the UV) which can be attributed
to the missing gluon loop, which escapes the Gaussian

wave functionals. These deviations are presumably irrele-
vant for the confinement properties, which are dominated
by the ghost loop (which is fully included under the
Gaussian ansatz), but are believed to be important for a
correct description of spontaneous breaking of chiral sym-
metry [10].
The numerical wave functional obtained from the varia-

tional solution of Ref. [8] seems to embody the correct
infrared physics as is revealed in the various applications
considered to date: One finds a linearly rising static quark
potential [8], an infrared enhanced running coupling con-
stant with no Landau pole [6], a topological susceptibility
in accord with lattice data [11], a perimeter law for the
’t Hooft loop [12], and, within an approximate Dyson-
Schwinger equation, an area law for the spatial Wilson
loop [13]. Furthermore, in Ref. [14] it was shown that the
inverse ghost form factor of Coulomb gauge Yang-Mills
theory represents the dielectric function of the Yang-Mills
vacuum and the so-called horizon condition [15] (of an
infrared diverging ghost form factor) implies that the Yang-
Mills vacuum is a perfect color dielectricum, i.e., a dual
superconductor, which establishes the connection between
the Gribov-Zwanziger confinement scenario [15,16] and
the monopole condensation picture [17,18]. Finally, in
Ref. [19] the functional renormalization group flow equa-
tion of the Hamiltonian approach to Coulomb gauge Yang-
Mills theory was studied, yielding results for the gluon
and ghost propagator similar to that of the variational
approach [4].
In the present paper, we generalize the variational ap-

proach to the Hamiltonian formulation of Yang-Mills the-
ory to non-Gaussian wave functionals. We will present a
general method to treat non-Gaussian wave functionals in
quantum field theory. The method is based on the obser-
vation that expectation values in the Hamiltonian formula-
tion of d ¼ 3þ 1-dimensional quantum field theory can
be formally obtained from a generating functional of d ¼
3-dimensional Euclidean quantum field theory with an
action defined by the logarithm of the vacuum wave
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functional. Expanding this action functional in powers
of the underlying field results in ‘‘bare’’ n-point kernels
�n as expansion ‘‘coefficients.’’ We then exploit Dyson-
Schwinger equation (DSE) techniques [20–22] to express
the expectation value of the Hamiltonian hHi in terms of
these kernels �n, which are then determined by the varia-
tional principle, i.e., by minimizing hHi. This approach is
then applied to the Hamiltonian formulation of Yang-Mills
theory in Coulomb gauge to include three- and four-gluon
interaction kernels in the exponent of the Yang-Mills
vacuum wave functional.

By using such a non-Gaussian wave functional, the
gluon loop is retained in the expectation value of the
Hamiltonian. Although the gluon loop is irrelevant for
the IR properties, it certainly influences the midmomentum
and UV regime of the gluon propagator, and thus of the
running coupling, and also contributes to the anomalous
dimensions. As a first estimate of the effects of the non-
Gaussian terms in the wave functional, we will calculate
the gluon-loop contribution to the gluon propagator as well
as the three- and four-gluon proper vertices using the ghost
and gluon propagators obtained from the Gaussian wave
functional [8] as input. A full self-consistent inclusion of
the three- and four-gluon vertices will be the subject of
future research.

It is clear from the very beginning that eventually we
have to truncate the tower of DSEs for the proper n-point
vertex functions �n as well as the equations of motion for
the variational kernels �n following from the variational
principle. For a systematic counting of the various dia-
grams we will assume a skeleton expansion.

Previous variational calculations (using Gaussian wave
functionals) were restricted to two (overlapping) loops in
the energy hHi, resulting in a one-loop gap equation for the
gluon propagator. Restriction to two overlapping loops in
the energy results in a bare (zero-loop) three-gluon kernel
�3 and in a vanishing four-gluon kernel �4 ¼ 0. To get a
�4 � 0, one has to include up to three loops in the energy.
To keep the calculation sufficiently simple, we will keep
only those three (overlapping) loop terms in the energy
containing three- or four-gluon kernels. This will result in a
bare (zero-loop) four-gluon and a one-loop three-gluon
vertex.

The organization of the paper is as follows: In Sec. II we
present the DSEs of the Hamiltonian approach first for a
general field theory and afterwards for Yang-Mills theory
in Coulomb gauge. The full static (equal-time) propagators
of the Hamiltonian approach are expressed in terms of
proper vertex functions in Sec. III. In Sec. IV we specify
our Yang-Mills vacuum wave functional and derive the
corresponding DSEs for the gluon and ghost proper
n-point functions. By means of these DSEs, the vacuum
expectation value of the Hamiltonian is expressed in Sec. V
in terms of the variational kernels of the vacuum wave
functional. In Sec. VI these kernels are determined by

minimizing the energy density. Finally, in Sec. VII we
calculate the three- and four-gluon proper vertices using
as input the ghost and gluon propagators from the varia-
tional calculations with a Gaussian wave functional. A
short summary and our conclusions are given in Sec. VIII.

II. DYSON-SCHWINGER EQUATIONS OF THE
HAMILTONIAN APPROACH TO YANG-MILLS

THEORY IN COULOMB GAUGE

A. General DSE formalism of the Hamiltonian
approach to quantum field theory

Consider a quantum field theory comprised of a collec-
tion of fields � ¼ ð�1; �2; . . .Þ and let jc i be the exact
vacuum state. All static (time-independent) Green’s func-
tions, i.e., vacuum expectation values h�� . . .i, can be
calculated from the generating functional

Z½j� ¼ hc je
R

j��jc i; (1)

where j ¼ ðj1; j2; . . .Þ stands for the collection of sources
corresponding to the fields and we use the abbreviation j �
� ¼ j1�1 þ j2�2 þ � � � . In the ‘‘coordinate’’ representa-
tion of the vacuum state h�jc i ¼ c ½��, the scalar product
in (1) is defined by the functional integral over time-
independent fields �ðxÞ:

Z½j� ¼
Z

D�jc ½��j2e
R

j��: (2)

Furthermore, the integral in the exponent is over spatial
coordinates x of the static fields �ðxÞ. Expressing the
vacuum wave functional in the form1

c ½�� ¼ expð�1
2S½��Þ; (3)

the generating functional of the Hamiltonian approach to
quantum field theory becomes

Z½j� ¼
Z

D�e�S½��þ
R

j��; (4)

which is a standard generating functional of the d ¼
3-dimensional Euclidean quantum field theory defined by
an ‘‘action’’ S½��. Here, this action is defined by the
vacuum wave functional c ½�� and will, in general, be
nonlocal and nonlinear. We therefore perform a Taylor
expansion of the action functional S½�� in powers of the
time-independent fields �ðxÞ. The constant part S½0� is
fixed by the normalization of the wave functional and the
linear part can be absorbed into the external source. It is
then sufficient to consider expansions of S½�� starting at
second order:

1As long as we ignore the � vacuum of Yang-Mills theory, the
vacuum wave functional can be chosen to be real, which we will
assume in the present paper.
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S½�� ¼ 1

2

Z
�2�

2 þ 1

3!

Z
�3�

3 þ � � � : (5)

Restricting the expansion to second order yields a Gaussian
wave functional (3) for which the functional integral in
Eq. (2) can be explicitly carried out. This corresponds to
the so-called mean-field approximation, where all higher-
order Green’s functions of the field�ðxÞ are given in terms
of the propagator h��i.

In many cases the mean-field approximation is, however,
not sufficient. Going beyond the mean-field approxima-
tion, the functional integral in (2) can no longer be expli-
citly performed. However, we can calculate the desired
Green functions by exploiting Dyson-Schwinger equation
techniques. Starting from the identity

Z
D�

�

��
ðe�S½��þ

R
j�Þ ¼ 0; (6)

we can derive, in the standard fashion, a set of DSEs for the
Green functions h�� . . .i. This infinite tower of equations
has to be truncated to get a closed system of equations, and
further simplifying assumptions on the form of the inter-
action kernels �n entering the ansatz for the vacuum
wave functional [see Eqs. (3) and (5)] will be required.
Nevertheless, this approach allows us to go beyond
Gaussian wave functionals and calculate the static Green
functions h�� . . .i in terms of the kernels �n. By means of
these static Green functions, the vacuum expectation value
of the Hamiltonian hc jHjc i is expressed in terms of the
kernels �n, which are then found by minimizing the energy
density.

In the Hamiltonian approach to quantum field theory one
is not primarily interested in the generating functional (2)
itself but in expectation values of observables, in particular,
of the Hamiltonian. For this purpose it turns out to be more
convenient to generalize Eq. (6) to

Z
D�

�

��
ðe�S½��K½��Þ ¼

Z
D�

�

��
ðc �½��K½��c ½��Þ

¼ 0; (7)

where K½�� is an arbitrary functional of the underlying
field �.

B. Derivation of the DSEs for the Hamiltonian
approach to Yang-Mills theory in Coulomb gauge

Below, we apply the general Dyson-Schwinger approach
to the Hamiltonian formulation of quantum field theory
outlined above to Yang-Mills theory in Coulomb gauge
(which also assumes Weyl gauge Aa

0 ¼ 0). Implementing

the Coulomb gauge by the Faddeev-Popov method, the
expectation value of a functional K½A� of the (spatial
components of the) gauge field A is given by

hK½A�i ¼
Z
�
DAJ ½A�jc ½A�j2K½A�: (8)

Here, c ½A� ¼ hAjc i denotes the Yang-Mills vacuum wave
functional restricted to transverse fields, @iA

a
i ¼ 0, and

J ½A� ¼ DetðG�1
A Þ is the Faddeev-Popov determinant with

G�1
A ¼ ð��ab@2x � gÂab

i ðxÞ@xi Þ�ðx� yÞ (9)

being the Faddeev-Popov operator. Since we work only
with spatial vectors, we will use only Lorentz subscripts.

Furthermore, g is the coupling constant, Âab ¼ facbAc is
the gauge field in the adjoint representation of the color
group, and facb are the structure constants of the suðNcÞ
algebra. The functional integration in Eq. (8) runs over
transverse field configurations and is restricted to the first
Gribov region � or, more precisely, to the fundamental
modular region [23]. Moreover, we assume that the wave
functional c ½A� is properly normalized: hc jc i � h1i ¼ 1.
Writing the vacuum wave functional as in Eq. (3)

jc ½A�j2 ¼: e�S½A� (10)

and choosing

K½A� ¼ e
R

j�A; (11)

Eq. (8) becomes the generating functional of the static
Green functions of the (transverse) gauge field A. In the
following, it will be convenient not to fix K½A� to the form
(11) but rather to let K½A� be an arbitrary functional of the
gauge field. Furthermore, to simplify the bookkeeping we
will use the compact notation

Aa1
k1
ðx1Þ ¼ Að1Þ;

A � B ¼ Að1ÞBð1Þ ¼
Z

ddxAa
i ðxÞBa

i ðxÞ;
(12)

such that a repeated label means summation over the
discrete color and Lorentz indices along with integration
over the spatial coordinates.
Consider now the following identity:

0 ¼
Z
�
DA

�

�Að1Þ fJ ½A�e�S½A�K½A�g; (13)

which holds due to the fact that the Faddeev-Popov deter-
minant J ½A� vanishes on the Gribov horizon @�, tacitly
assuming that the considered functional K½A� does not
spoil the vanishing of J ½A�K½A� on @�. Equation (13)
with K½A� given by Eq. (11) becomes the ordinary DSE of
the usual (Lagrangian-based) functional integral formula-
tion of Yang-Mills theory in Coulomb gauge [24] when the
functional integration is extended over time-dependent
gauge fields A�ðx; tÞ and S½A� is chosen as the usual

classical action of Yang-Mills theory.
Working out the functional derivative in Eq. (13) yields

the following identity:��
� lnJ
�Að1Þ �

�S½A�
�Að1Þ

�
K½A�

�
þ

�
�K½A�
�Að1Þ

�
¼ 0: (14)
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The derivative of lnJ can be written as

� lnJ
�Að1Þ ¼ �

�Að1ÞTr lnG
�1
A ¼ ~�0ð1; 3; 2ÞGAð2; 3Þ; (15)

where we have introduced the bare ghost-gluon vertex2

~� 0ð1; 2; 3Þ ¼ �G�1
A ð2; 3Þ
�Að1Þ : (16)

With this result, Eq. (14) can be cast in the form�
�S½A�
�Að1ÞK½A�

�
¼

�
�K½A�
�Að1Þ

�
þ ~�0ð1; 3; 2ÞhGAð2; 3ÞK½A�i;

(17)

which is the basis of the gluon DSEs, exploited below in
the evaluation of hHi.

Introducing ghost fields in the usual way

J ½A� ¼ DetðG�1
A Þ ¼

Z
D �cDce� �cG�1

A
c; (18)

the expectation value (8) explicitly reads

hK½A�i ¼
Z
�
DA

Z
D �cDcK½A�e�S½A�� �cG�1

A c; (19)

and Eq. (17) can be written as�
�S½A�
�Að1ÞK½A�

�
¼

�
�K½A�
�Að1Þ

�
þ ~�0ð1; 3; 2Þhcð2Þ �cð3ÞK½A�i:

(20)

The bare vertex ~�0 is the lowest-order perturbative contri-

bution [7] to the full ghost-gluon vertex ~� defined by

hAð1ÞGAð2; 3Þi ¼ hAð1Þcð2Þ �cð3Þi
¼ �Dð1; 10ÞGð2; 20Þ~�ð10; 20; 30ÞGð30; 3Þ;

(21)

where

Dð1; 2Þ ¼ hAð1ÞAð2Þi (22)

is the gluon propagator and

Gð1; 2Þ :¼ hGAð1; 2Þi ¼ hcð1Þ �cð2Þi (23)

is the ghost propagator.
Equation (20) [or equivalently Eq. (17)] is the basic DSE

of the Hamiltonian formulation of Yang-Mills theory in
Coulomb gauge, and wewill refer to it as the ‘‘Hamiltonian
DSE.’’ Below, we will exploit this equation to express the
various static (equal-time) correlators occurring in the
vacuum expectation value of the Hamilton operator by
the variational kernels �n [Eq. (5)] of the wave functional
c ½A�. This requires appropriate choices of the so far
arbitrary functional K½A�.

III. EXPRESSING STATIC CORRELATORS
THROUGH PROPAGATORS AND PROPER

VERTEX FUNCTIONS

Choosing the functional K½A� in Eq. (20) as

K½A� ¼ expfj � Aþ �c � �þ �� � cg; (24)

where j and ��, � are the gluon and ghost sources, respec-
tively, we obtain the generating functional of the full static
(equal-time) Green functions

Z½j; �; ��� ¼ hexpfjAþ �c�þ ��cgi ¼: eW½j;�; ���; (25)

where W½j; ��;�� is the generating functional of the con-
nected Green functions

�W

�jð1Þ
��������j¼ ��¼�¼0

¼ hAð1Þi ¼ 0;

�2W

�jð1Þ�jð2Þ
��������j¼ ��¼�¼0

¼ hAð1ÞAð2Þi;

�3W

�jð1Þ� ��ð2Þ��ð3Þ
��������j¼ ��¼�¼0

¼ �hAð1Þcð2Þ �cð3Þi; etc:
(26)

Introducing the classical fields as3

A ¼ �W

�j
; �c ¼ ��W

��
; c ¼ �W

� ��
; (27)

we can define the effective action �½A; �c; c� through the
Legendre transform

�½A; �c; c� þW½j; �; ��� ¼ j � Aþ �c � �þ �� � c; (28)

where the sources have to be expressed by Eqs. (27) in
terms of the classical fields A, �c, and c. From the effective
action Eq. (28), the sources are obtained as

j ¼ ��

�A
; � ¼ ��

� �c
; �� ¼ ���

�c
: (29)

Using Eqs. (27), differentiation with respect to the gluonic
source can be expressed as

�

�jð1Þ ¼
�Að2Þ
�jð1Þ

�

�Að2Þþ
�cð2Þ
�jð1Þ

�

�cð2Þþ
� �cð2Þ
�jð1Þ

�

� �cð2Þ

¼ �2W

�jð1Þ�jð2Þ
�

�Að2Þþ
�2W

�jð1Þ� ��ð2Þ
�

�cð2Þ

� �2W

�jð1Þ��ð2Þ
�

� �cð2Þ : (30)

Similar expressions can be written for the derivatives with
respect to the ghost sources. Differentiating Eqs. (29) and

2The bare ghost-gluon vertex ~�0 defined by Eq. (16) differs
from the one of Ref. [4] by an overall sign.

3With a slight abuse of notation, we employ the same symbol
for both the classical fields and the quantum fields which are
integrated over. No confusion should arise, since they never
appear together. Furthermore, derivatives with respect to
Grassmann fields are always left derivatives.

DAVIDE R. CAMPAGNARI AND HUGO REINHARDT PHYSICAL REVIEW D 82, 105021 (2010)

105021-4



using Eqs. (27) and (30), we can link, in the usual way, the
connected Green functions (derivatives of W) with the
proper vertex functions (derivatives of �). As an example,
we explicitly show how to express the full ghost-gluon

vertex ~�ð1; 2; 3Þ, defined in Eq. (21), by derivatives of the
effective action. We start from the identity

�ð1; 2Þ ¼ �

��ð1Þ
��

� �cð2Þ

¼ �2W

��ð1Þ�jð20Þ
�2�

�Að20Þ� �cð2Þ þ
�2W

��ð1Þ� ��ð20Þ

� �2�

�cð20Þ� �cð2Þ �
�2W

��ð1Þ��ð20Þ
�2�

� �cð20Þ� �cð2Þ ;
(31)

which can be derived along the line of Eq. (30).
Differentiating Eq. (31) with respect to a gluonic source
jð3Þ and using Eq. (30) yields

0¼ �3W

�jð3Þ��ð1Þ� ��ð20Þ
�2�

�cð20Þ� �cð2Þþ
�2W

��ð1Þ� ��ð20Þ

� �2W

�jð3Þ�jð30Þ
�3�

�Að30Þ�cð20Þ� �cð2Þþ � � � ; (32)

where the omitted terms vanish when the sources are set to
zero. By means of Eq. (26) and of

�2�½A; �c; c�
�cð2Þ� �cð1Þ

��������A¼ �c¼c¼0
¼ G�1ð1; 2Þ; (33)

the last relation can be expressed as

0 ¼ �G�1ð2; 20ÞhAð3Þ �cð1Þcð20Þi þGð20; 1ÞDð3; 30Þ

� �3�½A; �c; c�
�cð20Þ� �cð2Þ�Að30Þ

��������A¼ �c¼c¼0
: (34)

Comparison with Eq. (21) shows

~�ð1; 2; 3Þ ¼ �3�½A; �c; c�
�cð3Þ� �cð2Þ�Að1Þ

��������A¼ �c¼c¼0
: (35)

Similarly, defining the n-gluon proper vertex function by

�n � �ð1; 2; . . . ; nÞ ¼ �n�½A; �c; c�
�Að1Þ�Að2Þ � � ��AðnÞ

��������A¼ �c¼c¼0
;

(36)

the full gluon n ¼ 2; 3; 4; 5-point functions defined by
Eq. (8) with K½A� ¼ AA . . . can be expressed through the
proper vertex functions as

Dð1; 2Þ � hAð1ÞAð2Þi ¼ �ð1; 2Þ�1; (37)

hAð1ÞAð2ÞAð3Þi ¼ ��ð10; 20; 30ÞDð10; 1ÞDð20; 2ÞDð30; 3Þ;
(38)

hAð1ÞAð2ÞAð3ÞAð4Þi ¼ Dð1;2ÞDð3;4Þ þDð1;3ÞDð2;4Þ þDð1;4ÞDð2;3Þ þDð10;1ÞDð20;2ÞDð30;3ÞDð40;4Þf��ð10;20;30;40Þ
þDð5;50Þ½�ð10;20;5Þ�ð50;30;40Þ þ �ð10;30;5Þ�ð50;20;40Þ þ �ð10;40;5Þ�ð50;20;30Þ�g; (39)

hAð1ÞAð2ÞAð3ÞAð4ÞAð5Þi ¼ ��ð10; . . . ; 50ÞDð1; 10Þ . . .Dð5; 50Þ þ ½hAð1ÞAð2ÞAð6Þi�ð6; 30; 40; 50ÞDð3; 30ÞDð4; 40ÞDð5; 50Þ
þ 9 combinations� � ½Dð1; 10ÞhAð10ÞAð6ÞAð7Þi�ð6; 60Þ�ð7; 70ÞhAð60ÞAð2ÞAð3ÞihAð70ÞAð4ÞAð5Þi
þ 14 combinations� � ½Dð1; 2ÞhAð3ÞAð4ÞAð5Þi þ 9 combinations�: (40)

The proper n-point gluonic functions �ð1; 2; . . . ; nÞ (36) are
by definition invariant with respect to a permutation of
external legs, i.e., of the entries 1; 2; . . . ; n. Equations (38)–
(40) are represented in diagrammatic form in Figs. 1–3.
The prefactors in Figs. 2 and 3 indicate the number of the

possible combinations. Consider, e.g., the second diagram
on the right-hand side of Fig. 3: Out of the five external
legs one can form ð52Þ ¼ 10 pairs of external legs attached
to the right vertex. The remaining three external legs have
to be attached then to the left vertex and thus do not add
more possible combinations. In the third diagram there are
five possibilities to select the external leg attached to the
internal lines. From the remaining 4 external legs there are

FIG. 1. Expression of the gluon three-point function [Eq. (38)]
by means of three-point proper vertex function and propagators.
Here and in the following, fat shaded gray blobs represent full
Green’s functions, small filled dots connected Green’s functions,
and small empty dots proper vertex functions.

FIG. 2. Expression of the full gluon four-point function
[Eq. (39)]. The prefactors indicate the number of possible
permutations.
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ð42Þ ¼ 6 possibilities to choose the two external legs at the
right external vertex. This fixes also the external legs at the
left vertex. The symmetry of the diagramwith respect to the
interchange of the two external vertices introduces an extra

factor 12 . Therefore this diagram occurs with the multiplicity
5 � 6 � 12 ¼ 15.
In a similar fashion one finds for the expectation value of

two gauge fields and a ghost and antighost field

hAð1ÞAð2Þcð3Þ �cð4Þi ¼ hAð1ÞAð2ÞGAð3; 4Þi
¼ Dð1; 2ÞGð3; 4Þ þDð10; 1ÞDð20; 2ÞGð3; 30ÞGð40; 4Þf�~�ð10; 20; 30; 40Þ þ �ð10; 20; 5ÞDð5; 50Þ~�ð50; 30; 40Þ

þ ~�ð10; 30; 5ÞGð5; 50Þ~�ð20; 50; 40Þ þ ~�ð20; 30; 5ÞGð5; 50Þ~�ð10; 50; 40Þ�g; (41)

where the two-gluon–two-ghost vertex is defined by

~�ð1; 2; 3; 4Þ ¼ �4�½A; �c; c�
�cð4Þ� �cð3Þ�Að2Þ�Að1Þ

��������A¼ �c¼c¼0
: (42)

The diagrammatic representation of Eq. (41) is shown in
Fig. 4.

The last four-point function we need for the evaluation
of hHi is the ghost four-point function

hcð1Þ �cð2Þcð3Þ �cð4Þi ¼ h½GAð1; 2ÞGAð3; 4Þ
�GAð1; 4ÞGAð3; 2Þ�i; (43)

which can be expressed in terms of propagators and proper
vertices in the standard way, yielding

hcð1Þ �cð2Þcð3Þ �cð4Þi ¼ Gð1; 2ÞGð3; 4Þ �Gð1; 4ÞGð3; 2Þ þGð1; 10ÞGð3; 30Þ~�ð5; 10; 20ÞDð5; 50Þ~�ð50; 30; 40Þ½Gð20; 2ÞGð40; 4Þ
�Gð20; 4ÞGð40; 2Þ� � ~�ð10; 30; 20; 40ÞGð1; 10ÞGð20; 2ÞGð3; 30ÞGð40; 4Þ;

(44)

where the four-ghost vertex is defined by

~�ð1; 3; 2; 4Þ ¼ �4�½A; �c; c�
�cð4Þ�cð2Þ� �cð3Þ� �cð1Þ

��������A¼ �c¼c¼0
: (45)

Equation (44) is represented diagrammatically in Fig. 5.

IV. THE VACUUM WAVE FUNCTIONAL AND
CORRESPONDING DSES

So far, all manipulations have been exact. In Sec. II B
we have presented the Hamiltonian DSEs for arbitrary

wave functionals. To proceed further, we have to make
an ansatz for the form of the vacuum wave func-
tional c ½A�, which by Eq. (10) defines the action func-
tional S½A�.
In perturbation theory, the vacuum wave functional in

the form (3) and (5) has been determined up to orderOðg2Þ
by a solution of the Schrödinger equation, and the resulting
expressions for the kernels �2, �3, and �4 are given in
Ref. [25]. In the present nonperturbative approach, we will
assume a wave functional of the form (3) and (5), with an
action functional to be given by

FIG. 3. Expression for the full gluon five-point Green function [Eq. (40)].

FIG. 4. Vacuum expectation value of two gauge fields and a ghost and an antighost field after Eq. (41).

FIG. 5. Vacuum expectation value of two ghost and two antighost fields [Eq. (44)].
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S½A� ¼!ð1;2ÞAð1ÞAð2Þþ 1

3!
�ð1;2;3ÞAð1ÞAð2ÞAð3Þ

þ 1

4!
�ð1;2;3;4ÞAð1ÞAð2ÞAð3ÞAð4Þ: (46)

For historical reasons, we have denoted 1
2�ð1; 2Þ by

!ð1; 2Þ. Consistent with our convention on the proper
vertices Eq. (36), we will frequently use the shorthand
�n � �ð1; . . . ; nÞ. The functions ! � 1

2�2, �3, and �4 are

variational kernels which will be determined by minimi-
zation of the vacuum energy density. As discussed before,
Eq. (46) can be considered as arising in leading orders of a
systematic Taylor expansion of the action functional.

Let us also stress that the ghost fields do not enter the
Yang-Mills vacuum wave functional c ½A�. The ghost
fields are auxiliary fields to represent the Faddeev-Popov
determinant in local action form. By the very definition of
the ghost fields [Eq. (18)], the ghost-gluon vertex in the
action [i.e., the exponent of Eq. (19)] has to be the bare
vertex and, in principle, there is absolutely no need to
include ghost or ghost-gluon kernels as variational kernels
in the wave functional. However, due to approximations to
be introduced, for practical purposes, one might also in-
clude ghost or ghost-gluon vertices as variational kernels in
the wave functional to improve the latter. If the exact gluon
wave functional c ½A� were used, the variational principle
would determine the ghost-gluon kernel as the bare one
and higher ghost kernels to vanish. Therefore we will not
include additional ghost vertices into the variational ansatz
for the vacuum wave functional.

By construction, the variational kernels �n (which are
purely gluonic) are totally symmetric with respect to per-
mutations of the overall indices. Furthermore, the wave
functional defined by Eqs. (10) and (46) is normalizable
even when the restriction of the functional integration to
the first Gribov region is ignored, provided the kernel �4 is
positive definite, which wewill assume for the moment and
which later on will be confirmed by our calculations. With
the action functional Eq. (46), the Hamiltonian DSE (17)
becomes

2!ð1; 2ÞhAð2ÞK½A�i þ 1

2
�ð1; 2; 3ÞhAð2ÞAð3ÞK½A�i

þ 1

3!
�ð1; 2; 3; 4ÞhAð2ÞAð3ÞAð4ÞK½A�i

¼
�
�K½A�
�Að1Þ

�
þ ~�0ð1; 3; 2ÞhGAð2; 3ÞK½A�i: (47)

Except for the nonlocality of the variational kernels !, �3,
and �4, the functional Eq. (46) has the same structure as the
ordinary Yang-Mills action. Therefore, the DSEs resulting
from Eq. (47) will have the same structure as the DSEs of
ordinary d ¼ 3 Yang-Mills theory in Landau gauge, how-
ever with bare vertices replaced by the nonlocal variational
kernels !, �3, and �4. Equation (47) is our fundamental

DSE for the Hamiltonian approach to Yang-Mills theory in
Coulomb gauge.

A. DSEs of gluonic vertex functions

The first DSE is obtained by setting K½A� ¼ 1 in
Eq. (47). Using hAi ¼ 0 and the expression Eq. (38) for
the three-point function yields the identity

0 ¼ 1

2
�ð1; 2; 3ÞDð2; 3Þ � ~�0ð1; 3; 2ÞGð2; 3Þ

� 1

3!
�ð1; 2; 3; 4Þ�ð20; 30; 40ÞDð2; 20ÞDð3; 30ÞDð4; 40Þ;

(48)

which is diagrammatically illustrated in Fig. 6. Equation
(48) is not really a dynamical equation but rather a con-
straint, which can be used to simplify tadpole terms in the
evaluation of higher-order DSEs. It is also easy to see that
in lowest-order perturbation theory each term in Eq. (48)
vanishes separately.
The DSE for the gluon propagator follows from (47)

by putting K½A� ¼ A, yielding

2!ð1; 3ÞhAð3ÞAð2Þi þ 1

2
�ð1; 3; 4ÞhAð3ÞAð4ÞAð2Þi

þ 1

3!
�ð1; 3; 4; 5ÞhAð3ÞAð4ÞAð5ÞAð2Þi

¼ tð1; 2Þ þ ~�0ð1; 4; 3ÞhGAð3; 4ÞAð2Þi; (49)

where we have introduced the abbreviation

tð1; 2Þ � �a1a2 tk1k2ðx1Þ�ðx1 � x2Þ (50)

and tk1k2ðx1Þ ¼ �k1k2 � @x1k1@
x1
k2
=@2x1 is the transverse projec-

tor. By means of Eqs. (38) and (39), the three- and four-
point functions in Eq. (49) can be expressed through the
proper vertex functions �n. By multiplying Eq. (49) by the
inverse gluon propagator Eq. (37) and defining

Dð1; 2Þ�1 ¼ �ð1; 2Þ ¼: 2�ð1; 2Þ; (51)

Eq. (49) can be cast in the form

�ð1; 2Þ ¼ !ð1; 2Þ � �ð1; 2Þ þ �ð1; 2Þ þ�1ð1; 2Þ
��2ð1; 2Þ þ�tð1; 2Þ; (52)

where we have introduced the following loop terms:

FIG. 6. Diagrammatic representation of Eq. (48). The empty
square boxes denote the variational kernels �n.
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�ð1; 2Þ ¼ 1
4�ð1; 3; 4ÞDð3; 30ÞDð4; 40Þ�ð30; 40; 2Þ; (53a)

�ð1; 2Þ ¼ 1
2
~�0ð1; 3; 4ÞGð30; 3ÞGð4; 40Þ~�ð2; 40; 30Þ; (53b)

�1ð1; 2Þ ¼ 1
4�ð1; 3; 4; 5ÞDð3; 30ÞDð4; 40ÞDð5; 50Þ
�Dð6; 60Þ�ð40; 50; 6Þ�ð30; 60; 2Þ; (53c)

�2ð1; 2Þ ¼ 1

3!2
�ð1; 3; 4; 5ÞDð3; 30ÞDð4; 40ÞDð5; 50Þ

� �ð30; 40; 50; 2Þ; (53d)

�tð1; 2Þ ¼ 1
2�ð1; 2; 3; 4ÞDð3; 4Þ: (53e)

Equation (52) is represented diagrammatically in Fig. 7
and is recognized as the usual DSE for the gluon propa-
gator of Landau-gauge Yang-Mills theory [26], except for
the replacement of the bare Yang-Mills vertices (defined by
the Yang-Mills Lagrangian) by the variational kernels �n

[defined by the ansatz (46) for the vacuum functional],
which are represented by open square boxes; see Fig. 8.

Note that the gluon loop �ð1; 2Þ [Eq. (53a)] disappears
when the three-gluon kernel �3 is absent from the expo-
nential [Eq. (46)] of the wave functional [Eq. (10)]. For a
Gaussian wave functional (�3 ¼ �4 ¼ 0) only the ghost
loop �ð1; 2Þ [Eq. (53b)] survives from the loop terms in the
DSE (52), Fig. 7.
Choosing K½A� ¼ Að2ÞAð3Þ in Eq. (47) yields the DSE

for the three-gluon vertex,

2!ð1; 4ÞhAð4ÞAð2ÞAð3Þi þ 1

2
�ð1; 4; 5ÞhAð4ÞAð5ÞAð2ÞAð3Þi

þ 1

3!
�ð1; 4; 5; 6ÞhAð4ÞAð5ÞAð6ÞAð2ÞAð3Þi

¼ ~�0ð1; 5; 4ÞhGAð4; 5ÞAð2ÞAð3Þi:
(54)

By means of Eqs. (38)–(41), the first two terms on the left-
hand side and the right-hand side of Eq. (54) can be ex-
pressed in terms of proper vertex functions �n. The explicit
evaluation of the five-point function is quite lengthy, and
we quote only the result. Restricting ourselves to terms
involving up to one loop (which is sufficient to obtain the
energy hHi up to three overlapping loops; see the intro-
duction) and chopping off the external propagators, we
eventually find from Eq. (54) the DSE for the proper
three-point vertex function �ð1; 2; 3Þ:

�ð1; 2; 3Þ ¼ �ð1; 2; 3Þ þ �ð1; 4; 5ÞDð4; 40ÞDð5; 50ÞDð6; 60Þ�ð2; 40; 6Þ�ð3; 50; 60Þ
� ~�0ð1; 4; 5ÞGð40; 4ÞGð5; 50ÞGð60; 6Þ½~�ð2; 6; 40Þ~�ð3; 50; 60Þ þ 2 $ 3�
� 1

2�ð1; 4; 5ÞDð4; 40ÞDð5; 50Þ�ð40; 50; 2; 3Þ þ ~�0ð1; 4; 5ÞGð40; 4ÞGð5; 50Þ~�ð2; 3; 50; 40Þ
� 1

2½�ð1; 2; 4; 5ÞDð4; 40ÞDð5; 50Þ�ð40; 50; 3Þ þ 2 $ 3�; (55)

which is represented diagrammatically in Fig. 9.
Analogously, one can derive the DSE for the four-gluon

vertex. Restricting ourselves again up to three loops in the
energy hHi, one finds just the ‘‘tree-level’’ expression

�ð1; 2; 3; 4Þ ¼ �ð1; 2; 3; 4Þ þ � � � ; (56)

which is represented diagrammatically in Fig. 10. Any loop
contribution to �4 generates at least four-loop terms in the
energy, which are beyond the scope of the present paper.

B. The DSEs for the ghost propagator and
the ghost-gluon vertex

Inverting the defining equation of the Faddeev-Popov
operator (9) one finds the following identity [4]:

GAð1; 2Þ ¼ G0ð1; 2Þ �GAð1; 4ÞAð3Þ~�0ð3; 4; 5ÞG0ð5; 2Þ;
(57)

FIG. 7. Diagrammatic representation of the DSE for the gluon
propagator [Eq. (52)].

FIG. 8. Variational kernels occurring in the exponent of the
wave functional.

FIG. 9. Diagrammatic representation of the DSE (55) for the three-gluon proper vertex function. The factor of 2 in front of the ghost
loop accounts for the two diagrams differing in the direction of the ghost line.
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where G0ð1; 2Þ ¼ ½ð�@2Þ�1�ð1; 2Þ is the bare ghost propa-

gator and ~�0 is the bare ghost-gluon vertex defined in
Eq. (16). Taking the expectation value of Eq. (57) and using
Eq. (21) yields the usual DSE for the ghost propagator [4]:

Gð1;2Þ�1 ¼G0ð1;2Þ�1

� ~�ð3;1;4ÞGð4;40ÞDð3;30Þ~�0ð30;40;2Þ; (58)

which in momentum space reads

G�1ðpÞ ¼ p2 þ ig

N2
c � 1

Z ddq

ð2	Þd f
abc~�abc

i ðq;p� q;pÞ

� tijðpÞqj
2�ðqÞ Gðp� qÞ;

(59)

and which is represented diagrammatically in Fig. 11.
To derive the DSE for the ghost-gluon vertex there are

two possibilities. The first one is to multiply Eq. (57) by the
gauge field and to take the expectation value of the result-
ing expression. This leads to

hAð1ÞGAð2; 3Þi ¼ �hAð1ÞAð4ÞGAð2; 5Þi~�0ð4; 5; 6ÞG0ð6; 3Þ:
(60)

The remaining expectation value can be expressed in terms
of proper vertices by means of Eqs. (21) and (41). After
chopping off the external propagators, this results in the
DSE for the ghost-gluon vertex shown in Fig. 12. Equation
(60) is exact, i.e., not truncated, but not very convenient for
the evaluation of the energy density. A more convenient
form of the DSE for the ghost-gluon vertex is obtained by
putting K½A� ¼ GA in our general Hamiltonian DSE (47),
thereby using the chain rule for the derivative of the ghost
Green’s function and using Eqs. (41) and (44) to express
vacuum expectation values through propagators and proper
vertex functions. The resulting equation reads at one-loop
level

~�ð1; 2; 3Þ ¼ ~�0ð1; 2; 3Þ þ �ð1; 4; 5ÞDð4; 40ÞDð5; 50ÞGð6; 60Þ~�ð40; 2; 6Þ~�ð50; 60; 3Þ
þ ~�0ð1; 4; 5ÞGð40; 4ÞGð5; 50ÞDð6; 60Þ~�ð6; 2; 40Þ~�ð60; 50; 3Þ � 1

2�ð1; 4; 5ÞDð4; 40ÞDð5; 50Þ�ð40; 50; 2; 3Þ
þ ~�ð1; 4; 5ÞGð40; 4ÞGð5; 50Þ~�ð2; 50; 3; 40Þ (61)

and is shown in Fig. 13. The main difference between
Eqs. (60) and (61) is that while Eq. (60) is exact, in
Eq. (61) two-loops terms involving higher-order vertices
are neglected. Nevertheless, to our purpose, calculating the
energy up to three loops, Eq. (61) is more convenient. We
will use this equation in Sec. V to simplify the expression
for the kinetic and Coulomb energy.

V. ENERGY DENSITY OF THE
YANG-MILLS VACUUM

The DSEs of the Hamiltonian approach derived in
Sec. IV are not ‘‘equations of motion’’ in the usual sense
but rather connect the various Green functions with the
kernels occurring in the ansatz for the wave functional,

while these kernels themselves are at this point not yet
fixed. Here is where the variational principle comes into
play: We will now evaluate the expectation value of the
Yang-Mills Hamiltonian for the wave functional (10) with
the ansatz (46) and then minimize it with respect to the
variational kernels �n.
The Yang-Mills Hamiltonian in Coulomb gauge reads

[27]

H ¼
Z

ddx

�
1

2
J�1½A��a

i ðxÞJ ½A��a
i ðxÞ þ

1

4
Fa
ijðxÞFa

ijðxÞ
�

þ g2

2

Z
ddxddyJ�1½A�
aðxÞFab

A ðx; yÞJ ½A�
bðyÞ:
(62)

FIG. 11. Diagrammatic representation of the ghost DSE (58).

FIG. 10. Leading order DSE for the four-gluon vertex.

FIG. 12. Diagrammatic representation of the DSE (60) for the
ghost-gluon vertex.

FIG. 13. Diagrammatic representation of the DSE (61) for the ghost-gluon vertex.
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Here, �a
kðxÞ ¼ �i�=�Aa

kðxÞ is the momentum operator,

and Fa
ij ¼ @iA

a
j � @jA

a
i þ gfabcAb

i A
c
j , is the non-Abelian

field strength tensor. The first two terms in Eq. (62) are the
electric (kinetic) and magnetic parts of the ordinary Yang-
Mills Hamiltonian restricted to the curvilinear coordinate
space of Coulomb gauge. The third (Coulomb) term arises
from the resolution of Gauss’s law and describes the inter-
action of the non-Abelian color charge (of the fluctuating
gauge field) with density


aðxÞ ¼ Âab
i ðxÞ�b

i ðxÞ (63)

through the non-Abelian Coulomb interaction kernel

Fab
A ðx; yÞ ¼ ½ð�D̂@Þ�1ð�@2Þð�D̂@Þ�1�a;bx;y : (64)

The Yang-Mills Hamiltonian in Coulomb gauge [Eq. (62)]
is a positive definite operator. Accordingly the energy
hc jHjc i is bounded from below (by zero) and the varia-
tional principle is applicable.

For later use, we rewrite the magnetic term of the
Hamiltonian in the symmetrized form

1

4
Fa
ijF

a
ij ¼ � 1

2
A@2Aþ g

3!
T3A

3 þ g2

4!
T4A

4; (65)

where the interaction kernels are given in momentum
space by

Tabc
ijk ðp;q;kÞ ¼ ifabc½�ijðp� qÞk þ �jkðq� kÞi

þ �kiðk� pÞj� (66a)

and

Tabcd
ijkl ¼ ffabefcdeð�ik�jl � �il�jkÞ

þ facefbdeð�ij�kl � �jk�ilÞ
þ fadefbceð�ij�kl � �ik�jlÞg: (66b)

The bare four-gluon vertex [Eq. (66b)] is independent of
the momenta.

A. Technicalities

To evaluate the vacuum expectation values of the kinetic
term and of the Coulomb Hamiltonian, it is convenient to
perform an integration by parts in the gauge field. This
leads to expressions of the form�

�S½A�
�Að1Þ

�S½A�
�Að2Þ f½A�

�
; (67)

where f½A� is a functional of the gauge field which does not
contain any momentum operator. In principle, we could
now explicitly write down the variations of the action (46)
and evaluate the expectation value (67). Then one would
recognize that some terms can be combined and simplified
by using the DSEs (52) and (55). Therefore, a more effi-
cient way to evaluate the expectation value (67) is to use
the Hamiltonian DSEs from the very beginning.
Putting K½A� ¼ �S=�Að2Þf½A� in the general DSE (17)

we obtain�
�S½A�
�Að1Þ

�S½A�
�Að2Þf½A�

�
¼
�

�2S½A�
�Að1Þ�Að2Þf½A�

�

þ
�
�f½A�
�Að1Þ

�S½A�
�Að2Þ

�

þ ~�0ð1;3;4Þ
�
�S½A�
�Að2ÞGAð4;3Þ

�
: (68)

The last two terms on the right-hand side of Eq. (68) can
again be reexpressed through the DSEs (17), thereby put-
ting K½A� ¼ �f½A�=�A and K½A� ¼ GA, respectively, and

using the definition of the bare ghost-gluon vertex ~�0

[Eq. (16)]. This results finally in the relation

�
�S½A�
�Að1Þ

�S½A�
�Að2Þ f½A�

�
¼

�
�2S½A�

�Að1Þ�Að2Þf½A�
�
þ

�
�2f½A�

�Að1Þ�Að2Þ
�
þ ~�0ð1; 4;3Þ

�
�f½A�
�Að2ÞGAð3;4Þ

�
þ ~�0ð2;4;3Þ

�
�f½A�
�Að1ÞGAð3;4Þ

�

þ ~�0ð1;4;3Þ~�0ð2; 6;5Þhf½A�½GAð3;4ÞGAð5;6Þ �GAð3;6ÞGAð5;4Þ�i: (69)

We stress that this is an exact identity, which holds for f½A�
being an arbitrary functional of the gauge field only, i.e.,
not containing the momentum operator. Furthermore, it
will be sometimes convenient to express the last expecta-
tion value in terms of ghost fields:

hf½A�½GAð3; 4ÞGAð5; 6Þ �GAð3; 6ÞGAð5; 4Þ�i
¼ hf½A�cð3Þ �cð4Þcð5Þ �cð6Þi: (70)

B. Kinetic energy

After an integration by parts, the vacuum expectation
value of the kinetic part of the Yang-Mills Hamiltonian
[first term in Eq. (62)] can be expressed as

Ek ¼ 1

2

Z
�
DAJ ½A��c ½A�

�Að1Þ
�c ½A�
�Að1Þ ¼ 1

8

�
�S½A�
�Að1Þ

�S½A�
�Að1Þ

�
:

(71)

The last expectation value has precisely the form of
Eq. (69) with f½A� ¼ 1 and the two external indices con-
tracted. The terms in Eq. (69) involving functional deriva-
tives of f½A� then vanish, and with the explicit form of the
action (46) we find for the kinetic energy

Ek ¼ 1
8½2!ð1; 1Þ þ 2�tð1; 1Þ þ ~�0ð1; 4; 3Þ~�0ð1; 6; 5Þ
� hcð3Þ �cð4Þcð5Þ �cð6Þi�: (72)
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Here, �t is the gluon tadpole term occurring in the gluon
DSE (52) and being defined by Eq. (53e). The ghost four-
point function hc �cc �ci occurring in the last term can be
expressed by means of Eq. (44) in terms of propagators and
proper functions. Contracting Eq. (44) with the two bare
ghost-gluon vertices as in Eq. (72), one obtains

~�0ð1; 4; 3Þ~�0ð1; 6; 5Þhcð3Þ �cð4Þcð5Þ �cð6Þi
¼ 4�ð1; 3ÞDð3; 4Þ�ð4; 1Þ � ½~�0ð1; 50; 60Þ

þ ~�0ð1; 4; 3Þ~�ð7; 30; 60Þ~�ð70; 50; 40ÞGð3; 30Þ
�Gð40; 4ÞDð7; 70Þ
þ ~�0ð1; 4; 3Þ~�ð30; 50; 40; 60ÞGð3; 30ÞGð40; 4Þ�
�Gð60; 6ÞGð5; 50Þ~�0ð1; 6; 5Þ; (73)

where �ð1; 2Þ is the ghost loop defined by Eq. (53b). The
terms in the square brackets represent precisely the first,
third, and fifth terms of the right-hand side of the truncated
DSE (61) for the ghost-gluon vertex. Therefore we can use
Eq. (61) to rewrite the terms in the bracket in Eq. (73) in a
more compact form:

Ek ¼ 1
4½!ð1; 1Þ þ�tð1; 1Þ � �ð1; 1Þ
þ 2�ð1; 2ÞDð2; 3Þ�ð3; 1Þ þ �cð1; 1Þ � �2ð1; 1Þ�;

(74)

where we have introduced the abbreviations

2�cð1; 2Þ ¼ ~�0ð1; 3; 4ÞGð30; 3ÞGð4; 40ÞGð5; 50Þ~�ð60; 50; 30Þ
� ~�ð70; 40; 5ÞDð6; 60ÞDð7; 70Þ�3ð6; 7; 2Þ;

2�2ð1; 2Þ ¼ ~�0ð1; 3; 4ÞGð30; 3ÞGð4; 40Þ~�ð50; 60; 40; 30Þ
�Dð5; 50ÞDð6; 60Þ�3ð5; 6; 2Þ; (75)

see Fig. 14. Equation (74) can be slightly rewritten by using
the gluon DSE (52) to eliminate the variational kernel !
(or, more precisely, the sum!þ�t) in favor of the inverse
gluon propagator [Eq. (51)]. Assuming furthermore that
the various loop terms Eqs. (53) are color diagonal, e.g.,

�ab
ij ðkÞ ¼ �abtijðkÞ�ðkÞ; etc:; (76)

which is guaranteed by global color invariance, we can
express the kinetic energy in momentum space as

Ek ¼ ðN2
c � 1Þðd� 1Þ

4
V
Z

}p

�½�ðpÞ � �ðpÞ�2
�ðpÞ þ �ðpÞ

��1ðpÞ þ�2ðpÞ � 2�cðpÞ
�
; (77)

where the terms �1;2 are defined in Eqs. (53c) and (53d),

and �c is given in Eq. (75). Furthermore, in Eq. (77) we
have introduced the abbreviation

} p � ddp

ð2	Þd ;

and V is the spatial volume which arises as in Ref. [4].
The ghost and gluon-loop contributions defined in

Eqs. (53) read in momentum space

�ðpÞ ¼ tijðpÞ
2ðN2

c � 1Þðd� 1Þ
Z

}q~�abc
0;i ðp;q� p;�qÞ

� ~�acb
j ð�p;q;p� qÞGðqÞGðp� qÞ; (78)

�ðpÞ ¼ 1

16ðN2
c � 1Þðd� 1Þ

�
Z

}qdk
ð�3 � �3Þðp;q;kÞ

�ðqÞ�ðkÞ �ðpþ qþ kÞ: (79)

In the above equations, ~� and �3 are, respectively, the full
ghost-gluon and three-gluon vertices defined by Eqs. (35)
and (36). We have also introduced here the contraction of
two color and Lorentz tensor structures through transverse
projectors as

A � B :¼ Aabc
ijk ðp;q;kÞtilðpÞtjmðqÞtknðkÞ

� Babc
lmnð�p;�q;�kÞ: (80)

Furthermore, the term �2 [Eq. (75)] has been discarded,
since it gives rise exclusively to higher-order contributions
with more than three loops in the energy, which are beyond
our truncation scheme.

C. Magnetic energy

In the notation of Eq. (65) the magnetic energy is
given by

EB ¼ 1

4
hF2

iji ¼ � 1

2
hA@2Ai þ g

3!
T3hA3i þ g2

4!
T4hA4i:

(81)

The first term on the right-hand side of Eq. (81) can be
expressed by means of the gluon propagator (22), while the
second term can be expressed through the proper three-
point function �3 [Eq. (38)]:

g

3!
T3hA3i ¼ � g

3!
T3 � �3hAAi3: (82)FIG. 14. Diagrammatic representation of the contributions

(75) to the kinetic energy density.
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In momentum space, these two energy contributions read

ðN2
c�1Þðd�1Þ

4
V
Z
}p

p2

�ðpÞ
� gV

8 �3!
Z
}p}qdk

ðT3��3Þðp;q;kÞ
�ðpÞ�ðqÞ�ðkÞ �ðpþqþkÞ: (83)

Let us turn now to the last term in Eq. (81), hA4i. The four-
point function is expressed by means of Eq. (39) in terms of
gluon propagators and proper vertex functions. The dis-
connected terms in Eq. (39), i.e., the products of two gluon
propagators, when contracted with the bare four-gluon
vertex T4 (66b) result in

g2
NcðN2

c � 1Þ
16

V
Z

}p}q
dðd� 3Þ þ 3� ðp̂ � q̂Þ2

�ðpÞ�ðqÞ ; (84)

which is the usual gluon tadpole term, which occurs al-
ready when a Gaussian wave functional is used. Notice
that, since the q integral does not depend on an external
momentum, we can replace q̂iq̂j ! 1

d �ij in the integrand,

and using

dðd� 3Þ þ 3� 1

d
¼ ðd� 1Þ3

d

we can rewrite Eq. (84) as 0

g2
NcðN2

c � 1Þ
16

ðd� 1Þ3
d

V
Z

}p}q
1

�ðpÞ�ðqÞ : (84)

Besides this, we get from the last term in Eq. (81) by using
Eq. (39) also a contribution containing the proper four-
point vertex function �4:

� g2V

16 � 4!
Z

}p}q}kd‘
ðT4 � �4Þ

�ðpÞ�ðqÞ�ðkÞ�ð‘Þ
� �ðpþ qþ kþ ‘Þ; (85)

and a contribution containing two three-gluon vertices

g2V

8

Z
}½pqk‘�

� Tabcd
ijmn�

abe
ijl ð�p;�q;pþqÞ�ecd

lmnðkþ ‘;�k;�‘Þ
32�ðpÞ�ðqÞ�ðkÞ�ð‘Þ�ðpþqÞ

�ð2	Þd�ðpþqþkþ ‘Þ: (86)

The Lorentz indices in Eq. (86) are supposed to be con-
tracted by transverse projectors, which we have not explic-
itly written down in order to prevent the equation from
getting cluttered. The various interaction contributions to
the magnetic energy given by Eqs. (83)–(86) are shown in
Fig. 15. Notice that the diagrams with a four-gluon vertex
contain already three loops.

D. Coulomb energy

After an integration by parts, as in the case of the kinetic
energy, the vacuum expectation value of the Coulomb
Hamiltonian, last term in Eq. (62), can be expressed as

Ec ¼ g2

2

Z
DAJ ½A�

Z
ddxddy

�
Âac
i ðxÞ �c ½A�

i�Ac
i ðxÞ

��

� Fab
A ðx; yÞ

�
Âbd
j ðyÞ �c ½A�

i�Ad
j ðyÞ

�
: (87)

In order to exploit our compact notation, we rewrite the
color charge density (63) as


ð1Þ ¼ Rð1; 2; 3ÞAð2Þ �

i�Að3Þ ; (88)

where

Rð1; 2; 3Þ ¼ �Rð1; 3; 2Þ
¼ fa1a2a3�i2i3�ðx1 � x2Þ�ðx1 � x3Þ: (89)

In this notation, the Coulomb energy (87) reads

Ec ¼ g2

8
Rð1; 3; 4ÞRð2; 5; 6Þ

�
�
FAð1; 2ÞAð3ÞAð5Þ�S½A��Að4Þ

�S½A�
�Að6Þ

�
: (90)

The remaining expectation value can, in principle, be ex-
pressed in terms of (so far unknown) higher-order vertex
functions. The required manipulations are, however, quite
involved, and further simplifications are needed for prac-
tical reasons. Here we will again restrict ourselves to terms
containing up to three overlapping loops in the energy.
With this approximation we can factorize the Coulomb
kernel FA (see also Ref. [4]) as

Ec ’ g2

8
Rð1; 3; 4ÞRð2; 5; 6Þ

� hFAð1; 2Þi
�
Að3ÞAð5Þ�S½A�

�Að4Þ
�S½A�
�Að6Þ

�
: (91)

The Coulomb propagator hFAi is discussed later in
Sec. VIC. The remaining expectation value has precisely
the form (67) with f½A� ¼ AA, and from Eq. (69) we obtain

FIG. 15. Contributions from the three- and four-gluon vertices
to the magnetic energy, from left to right: second term in Eqs.
(83)–(86). The filled diamonds stand for the bare vertices T3 and
T4 [Eqs. (66)] occurring in the magnetic part of the Hamilton
operator [Eq. (65)].
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�
�S½A�
�Að4Þ

�S½A�
�Að6Þ Að3ÞAð5Þ

�
¼

�
�2S½A�

�Að4Þ�Að6ÞAð3ÞAð5Þ
�
þ

�
�2

�Að4Þ�Að6Þ ½Að3ÞAð5Þ�
�

þ ~�0ð4; 8; 7Þ
�

�

�Að6Þ ½Að3ÞAð5Þ�GAð7; 8Þ
�
þ ~�0ð6; 8; 7Þ

�
�

�Að4Þ ½Að3ÞAð5Þ�GAð7; 8Þ
�

þ ~�0ð4; 8; 7Þ~�0ð6; 80; 70ÞhAð3ÞAð5Þ½GAð7; 8ÞGAð70; 80Þ �GAð7; 80ÞGAð70; 8Þ�i: (92)

When inserted into Eq. (91), this expression can be sim-
plified by exploiting the color antisymmetry of the vertices
R; see Eq. (89): For this reason, the part of Eq. (92)
symmetric with respect to the interchange of the indices
ð3 $ 4Þ or ð5 $ 6Þ vanishes. Furthermore, the two terms
on the right-hand side of Eq. (92) with a single (bare)
ghost-gluon vertex ~�0 yield identical contributions when
inserted into Eq. (91).

The first four terms on the right-hand side of Eq. (92) can
be straightforwardly evaluated as in the preceding sections.
With the explicit form of the action (46), one obtains for
these terms

tð3; 6Þtð4; 5Þ þ 2~�0ð4; 8; 7Þtð3; 6ÞhAð5ÞGAð7; 8Þi
þ 2!ð4; 6ÞhAð3ÞAð5Þi þ �ð4; 6; 7ÞhAð7ÞAð3ÞAð5Þi
þ 1

2�ð4; 6; 7; 8ÞhAð7ÞAð8ÞAð3ÞAð5Þi
¼ tð3; 6Þ½tð4; 5Þ � 4�ð4; 7ÞDð7; 5Þ� þ 2!ð4; 6ÞDð3; 5Þ

� �ð4; 6; 7ÞDð5; 50ÞDð3; 30ÞDð5; 50Þ�ð30; 50; 70Þ
þ 1

2�ð4; 6; 7; 8ÞhAð7ÞAð8ÞAð3ÞAð5Þi; (93)

where we have used Eqs. (21) and (22), and the definition
of the ghost loop [Eq. (53b)]. We are still left with the four-
point function in Eq. (93) and with the six-point function in
the last term in Eq. (92). Towork out these terms, we notice
that the Coulomb energy (91) can be diagrammatically
represented as

where the ‘‘blob’’ (including the four lines attached to it)
represents the vacuum expectation value given by the last
bracket in Eq. (91) and the double line stands for the
Coulomb propagator hFAi. Since we need the energy up
to three loops, we should keep only those contributions to
the blob which either factorize in two disconnected lines or
are either irreducible or at most one-particle reducible (no
box diagrams). At this order, for the last term in Eq. (93) it
is sufficient to keep from the expression for hA4i given in
Eq. (39) only the disconnected terms, yielding

1
2�ð4;6;7;8ÞhAð7ÞAð8ÞAð3ÞAð5Þi
¼ 1

2�ð4;6;7;8Þ½Dð3;5ÞDð7;8ÞþDð3;7ÞDð5;8Þ
þDð3;8ÞDð5;7Þþ����

¼Dð3;5Þ2�tð4;6Þþ�ð4;6;7;8ÞDð7;3ÞDð8;5Þþ��� ; (94)

where we have used the definition of gluon tadpole �t

(53e) and made use of the symmetry properties of the four-
gluon kernel �4. The dots in Eq. (94) stand for terms which
give rise to energy contributions with more than three
loops. Following the same line of reasoning, the last term
in Eq. (92) can be transformed to

~� 0ð4;8;7Þ~�0ð6;80;70ÞhAð3ÞAð5Þ½GAð7;8ÞGAð70;80Þ�GAð7;80ÞGAð70;8Þ�i
¼ ~�0ð4;8;7Þ~�0ð6;80;70ÞfDð3;5Þh½GAð7;8ÞGAð70;80Þ�GAð7;80ÞGAð70;8Þ�iþ hAð3ÞGAð70;80ÞihAð5ÞGAð7;8Þiþ �� �g
¼Dð3;5Þ½�2�ð4;6Þþ 4�ð4;7ÞDð7;8Þ�ð8;6Þþ �� ��þ 4Dð3;7Þ�ð7;6ÞDð5;8Þ�ð8;4Þþ �� � ; (95)

where we used Eqs. (21) and (44) and discarded terms involving more than three loops in the energy. Collecting all
terms given by Eqs. (92)–(95) and inserting the result into (91), we finally obtain the Coulomb energy to the desired (three-
loop) order:

Ec ¼ g2

8
Rð1; 3; 4ÞRð2; 5; 6ÞFð1; 2Þf2Dð3; 5Þ½!ð4; 6Þ þ�tð4; 6Þ � �ð4; 6Þ þ 2�ð4; 7ÞDð7; 8Þ�ð8; 6Þ� þ tð3; 6Þ½tð4; 5Þ

� 4�ð4; 7ÞDð7; 5Þ� þ 4Dð3; 7Þ�ð7; 6ÞDð5; 8Þ�ð8; 4Þ � �ð4; 6; 7ÞDð5; 50ÞDð3; 30ÞDð5; 50Þ�ð30; 50; 70Þ
þ �ð4; 6; 7; 8ÞDð7; 3ÞDð8; 5Þg; (96)

where Fð1; 2Þ ¼ hFAð1; 2Þi. For later use we rewrite this expression in momentum space. Exploiting the symmetries of the
entries and expressing the variational kernel ! through the inverse gluon propagator �, as we did for the kinetic energy,
Eq. (96) can be cast into the form
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Ec ¼ g2
NcðN2

c � 1Þ
16

V
Z

}p}qFðpþ qÞ ½d� 2þ ðp̂ � q̂Þ2�
�ðpÞ�ðqÞ f½�ðpÞ � �ðpÞ ��ðqÞ þ �ðqÞ�2 þ �ðpÞ�ðpÞ þ �ðqÞ�ðqÞg

� V
g2

8

Z
}p}q}‘Fð‘Þ timðpÞtjnðqÞtklðpþ qÞ

�ðpÞ�ðqÞ�ðpþ qÞ fgadfgbe�cde
lmnðpþ q; ‘� p;�q� ‘Þ�cab

kij ð�p� q;p;qÞ

þ V
g2

8

Z
}p}q}‘Fð‘Þ tijðpÞtlmðqÞ

�ðpÞ�ðqÞ f
abcfade�bdce

iljm ð‘� p;p;�‘� q;qÞ; (97)

where FðkÞ is the Fourier representation of the Coulomb
propagator hFAi; see Sec. VIC below. If we discard the
three- and four-gluon kernels �3 and �4, which also re-
moves the gluon loop �ðpÞ [Eq. (53a)], this expression
reduces to the Coulomb energy obtained in Refs. [4,5]
with a Gaussian wave functional:

Ec ¼ g2
NcðN2

c �1Þ
16

V
Z
}p}qFðpþqÞ

�½d�2þðp̂ � q̂Þ2�
�ðpÞ�ðqÞ ½�ðpÞ��ðpÞ��ðqÞþ�ðqÞ�2:

(98)

The new features introduced by the inclusion of the three-
and four-gluon kernels will be studied in the subsequent
sections.

VI. DETERMINATION OF THE
VARIATIONAL KERNELS

In the previous section we have expressed the vacuum
energy hc jHjc i in terms of the variational kernels !, �3,
and �4 [occurring in our ansatz (10) and (46) for the
vacuum wave functional c ½A�] and of the proper vertices

�n and
~�n. We now use the DSEs (52), (55), (56), and (61)

to express the proper vertex functions �n and
~�n occurring

in the energy in terms of the variational kernels �n. We are
then in a position to determine these kernels by minimizing
hc jHjc i. To make the calculations feasible, we will resort
to a skeleton expansion of hc jHjc i, keeping at most three-
loop terms. As we will see, this is the minimum number of
loops required to obtain a nontrivial four-gluon kernel �4.
In the variation of the energy with respect to 1

2�2 ¼ ! and

�3 we will restrict ourselves up to two-loop terms in
hc jHjc i, which will be sufficient to get a nontrivial �3

and a one-loop gap equation for !.

A. Three- and four-gluon kernels

Below, we determine the three-gluon kernel in leading
order in the number of loops. For this purpose, it is suffi-
cient to keep up to two-loop terms in the energy. The
relevant contributions come then from the gluon loop �
(79) occurring in the kinetic energy (77) and the magnetic
energy contribution (83). These terms contain the three-
gluon kernel �3 either explicitly or implicitly via the three-
point proper vertex �3, which by its DSE (55) is given in

lowest order by the three-gluon kernel �3. All remaining
terms of �3 contain additional loops and will henceforth
be discarded, resulting in the ‘‘tree-level’’ expression
�3 ¼ �3. Inserting this expression in Eqs. (79) and (83)
and taking into account the symmetry of these kernels, the
variation of these energy terms with respect to the three-
gluon kernel �3 leads to

�

��3

Z
}p}q}‘

�ðpþ qþ ‘Þ
�ðpÞ�ðqÞ�ð‘Þ

�
ð�3 � �3Þ

� �ðpÞ þ�ðqÞ þ�ð‘Þ
4

� ð�3 � gT3Þ
�
¼! 0; (99)

which fixes the three-gluon kernel to

�abc
ijk ðp;q;kÞ ¼

2gTabc
ijk ðp;q;kÞ

�ðpÞ þ�ðqÞ þ�ðkÞ ; (100)

where the tensor Tabc
ijk ðp;q;kÞ is defined in Eq. (66a). The

obtained three-gluon kernel �3 is reminiscent of the per-
turbative one following from a solution of the Yang-Mills
Schrödinger equation in leading order in the coupling
constant g [25]:

�ð0Þabc
ijk ðp;q;kÞ ¼ 2gTabc

ijk ðp;q;kÞ
jpj þ jqj þ jkj ; (101)

except that the perturbative gluon energy jkj is replaced in
Eq. (100) by the nonperturbative one �ðkÞ. Note that, in
principle, the Lorentz indices in Eqs. (100) and (101) are
contracted with transverse projectors, which we did not
explicitly write down, since they arise naturally as these
kernels are always contracted with either transverse gauge
fields or the corresponding transverse Green functions.
The variational determination of the four-gluon kernel

�4 is technically somewhat more involved. The terms of
hHi contributing to the variation with respect to �4 are
those containing �4 either explicitly or implicitly via the
DSEs (55) and (56) for the proper three- and four-gluon
vertices �3 and �4. Terms explicitly containing �4 are the
�1;2 terms Eqs. (53c) and (53d) of the kinetic energy

Eq. (77), as well as the last term of the Coulomb energy
(97). Terms containing �3 or �4 are given by the gluon loop
� (79) in the kinetic energy (77) as well as by the magnetic
energy contributions (83) and (85). All terms contributing
to the variation of the energy with respect to �4 are
collected below:
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1

4!2
�ð1; 2;3;4ÞDð1;10ÞDð2; 20ÞDð3;30Þ�ð10; 20; 30; 4Þ � 1

16
�ð1;2; 3; 4Þ�ð30; 40; 5ÞDð5; 50Þ�ð50; 1; 20ÞDð2;20ÞDð3; 30ÞDð4; 40Þ

þ �ð1;2;3ÞDð1;10ÞDð2; 20Þ
�
1

16
�ð10; 20; 3Þ � 1

3!
Dð3; 30ÞTð10;20; 30Þ

�

� 1

4!
�ð1; 2;3;4ÞDð1;10ÞDð2; 20ÞDð3;30ÞDð4; 40Þ�ð10; 20; 30;40Þ

þ g2

8
Fð1; 2ÞRð1; 3;4ÞRð2; 5; 6Þ�ð4; 6; 7; 8ÞDð7; 3ÞDð8; 5Þ: (102)

For simplicity, we have not explicitly symmetrized this
expression with respect to a permutation of the indices of
�4.

4 In the above expression we have used the DSE (56) to
replace the four-gluon vertex �4 by the four-gluon kernel
�4. To be consistent, we have to use the DSE for the three-
gluon vertex [Eq. (55)] to express the vertex function �3 in
(102) by the variational kernels, where it is sufficient to
retain only terms involving �4 or �4, and the latter is to be
replaced by �4 due to the DSE (56). Taking into account
the symmetry properties of the quantities involved, by

Eq. (55) we are led to make the following replacement in
Eq. (102):

�ð1; 2; 3Þ ! �1
2�ð3; 4; 5ÞDð4; 40ÞDð5; 50Þ�ð40; 50; 1; 2Þ

� �ð3; 1; 4; 5ÞDð4; 40ÞDð5; 50Þ�ð40; 50; 2Þ:
(103)

With this replacement, the variation of Eq. (102) with
respect to �4 is now straightforward and yields after proper
symmetrization with respect to external indices of �4

½�ðk1Þþ�ðk2Þþ�ðk3Þþ�ðk4Þ��abcd
ijkl ðk1;k2;k3;k4Þ

¼ 2g2Tabcd
ijkl � 1

2f�abe
ijm ðk1;k2;�k1�k2Þtmnðk1þk2Þ�cde

kln ðk3;k4;k1þk2Þþ�ace
ikmðk1;k3;�k1�k3Þ

� tmnðk1þk3Þ�bde
jln ðk2;k4;k1þk3Þþ�ade

ilm ðk1;k4;�k1�k4Þtmnðk1þk4Þ�bce
jkn ðk2;k3;k1þk4Þg

� 2g2ffabefcde�ij�kl½�ðk1Þ��ðk2Þ�Fðk1þk2Þ½�ðk3Þ��ðk4Þ�þfacefbde�ik�jl½�ðk1Þ��ðk3Þ�
�Fðk1þk3Þ½�ðk2Þ��ðk4Þ�þfadefbce�il�jk½�ðk1Þ��ðk4Þ�Fðk1þk4Þ½�ðk2Þ��ðk3Þ�g: (104)

FðpÞ is again the Fourier representation of the Coulomb
propagator hFAi. Equation (104) yields a four-gluon kernel
�4, which is reminiscent of the perturbative one [25] ex-
cept that the perturbative propagators and vertices are
replaced by the full ones.

B. Gap equation

Given the explicit form of the energy functional (77),
(83)–(86), and (97), it is more convenient to use the DSE
(52) for the gluon propagator to express the kernel !ðpÞ in
terms of the gluon energy�ðpÞ and vary the energy density
with respect to ��1ðpÞ. The vacuum energy is given by
closed loop diagrams, and the variation with respect to the
gluon propagator ��1ðpÞ reduces the number of loops by
one. If the (gap) equation for�ðpÞ is to be calculated up to
one loop, it is sufficient to keep up to two loops in the
energy. At this order, the energy density " defined by
hHi ¼: Vðd� 1ÞðN2

c � 1Þ" is given by

" ¼ 1

4

Z
}p

p2 þ ½�ðpÞ � �ðpÞ�2
�ðpÞ

� g2Nc

3!8ðd� 1Þ
Z

}p}q
1

�ðpÞ�ðqÞ�ðpþ qÞ
� �3 �

�
�ðpÞ þ�ðqÞ þ�ðpþ qÞ

4
�3 � gT3

�

þ g2Nc

16ðd� 1Þ
Z

}p}q½d� 2þ ðp̂ � q̂Þ2�Fðpþ qÞ

� ½�ðpÞ � �ðpÞ ��ðqÞ þ �ðqÞ�2
�ðpÞ�ðqÞ ; (105)

see Eqs. (77), (83), and (98). In Eq. (105) we have dis-
carded the tadpole term [Eq. (84) or (84)] since it repre-
sents an irrelevant constant, which disappears after
renormalization. Except for the gluon loop (second term),
the energy density Eq. (105) was already obtained in
Refs. [4,5], where a Gaussian wave functional multiplied

by J�1=2½A� was used. The gluon loop is lost when a
Gaussian wave functional is used, for which Green’s func-
tions with an odd number of fields vanish.
In principle, in Eq. (105) the three-gluon kernel �3 (100)

obtained from the variational principle �"=��3 ¼ 0 de-
pends on �ðpÞ. However, since the energy density " (105)

4Recall that, by definition, �4 is totally symmetric with respect
to a permutation of indices. Strictly speaking, one should first
symmetrize Eq. (102) and then take the variation. However, the
same result is more conveniently obtained by taking the variation
of the unsymmetrized expression and symmetrizing afterwards.
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with �3 given by Eq. (100) is already stationary with
respect to variations of �3, we can ignore the implicit
�ðpÞ dependence of " via �3. Variation of " (105) with
respect to ��1ðkÞ then yields the gap equation

�ðpÞ2 ¼ p2 þ �ðpÞ2 � IGðpÞ þ ICðpÞ; (106)

where �ðpÞ is the ghost loop (78),

IGðpÞ ¼ 1

4ðd� 1ÞðN2
c � 1Þ

Z ddq

ð2	Þd
1

�ðpÞ�ðpþ qÞ
� �3 �

�
gT3 � �3

�ðpÞ þ�ðpþ qÞ
4

�
(107a)

is the gluon-loop contribution, and

ICðpÞ ¼ g2Nc

2ðd� 1Þ
Z ddq

ð2	Þd ½d� 2þ ðk̂ � q̂Þ2�Fðpþ qÞ

� ½�ðqÞ � �ðqÞ þ �ðpÞ�2 ��ðpÞ2
�ðqÞ (107b)

arises from the Coulomb term. Except for the gluon loop
IGðkÞ, Eq. (106) is the gap equation found already in [4].

If we insert the expression derived above in leading
order for the three-gluon kernel �3 [Eq. (100)] into the
gluon-loop contribution [Eq. (107a)], this takes the form

IGðpÞ ¼ g2Nc

d� 1

Z ddq

ð2	Þd
2�ðpÞ þ�ðqÞ þ�ðpþ qÞ
½�ðpÞ þ�ðqÞ þ�ðpþ qÞ�2

� �ðp;qÞ
�ðqÞ�ðpþ qÞ ; (108)

where the function � arises from the contraction of the
Lorentz structure of two three-gluon vertices upon impos-
ing momentum conservation

T3 � T3jk¼�p�q ¼: 4NcðN2
c � 1Þ�ðp;qÞ (109)

and is given explicitly by

�ðp;qÞ ¼ ½1� ðp̂ � q̂Þ2�
�
ðd� 1Þðp2 þ q2Þ

þ ðd� 2Þp2q2 þ ðp � qÞ2
ðpþ qÞ2

�
: (110)

To exhibit the UV behavior of the various loop terms, let
us consider them in leading order in perturbation theory
[7,25], where FðpÞ ¼ 1=p2 and �ðpÞ ¼ 0. In this order we
find with 3-momentum cutoff � for the divergent parts

IGðpÞ ¼ g2Nc

ð4	Þ2
�
4

3
�2 þ 22

15
p2 ln

�2

p2

�
; (111a)

ICðpÞ ¼ g2Nc

ð4	Þ2
�
4

3
�2 � 8

15
p2 ln

�2

p2

�
: (111b)

One observes that the quadratic divergence in Eq. (106)
cancels, and the sum of the logarithmic ones is consistent
with the result of Lagrangian-based perturbation theory in
Coulomb gauge [24,28]

jpj
�ðpÞ ¼ 1þ 1

2p2
½IGðpÞ � ICðpÞ�Þ þ � � �

¼ 1þ g2Nc

ð4	Þ2�"

�
1

"
� ln

p2

�2

	
þ � � � ; (112)

where we have used dimensional regularization with
d ¼ 3� 2".
To estimate the size of the contribution of the gluon loop

(107a) to the gap equation (106), we use the gluon energy
� obtained with a Gaussian wave functional in Ref. [8] as
input. For practical purposes, we fit the �ðpÞ obtained in
Ref. [8] to the formula

�ðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm4

A

p2
þ c2

s
; (113)

which yields m4
A ’ 0:36�2

c , c2 ’ 1:0�c. The numerical
results of Ref. [8] and the fit to Eq. (113) are shown in
Fig. 16. The gluon loop (107a) is UV-divergent. In princi-
ple, the UV-divergent part is removed by the renormaliza-
tion of the gap equation (106), which can be done
analogously to Refs. [12,29]. We therefore calculate

�newðpÞ2 ¼ �oldðpÞ2 � ðIGðpÞ½�old� � IGðpÞdivÞ; (114)

where IGðpÞdiv is the (known) perturbative divergent part of
the gluon loop, which has been subtracted, and Eq. (113)
has been used for �oldðpÞ. The (inverse) gluon propagator
�newðpÞ [Eq. (114)] is shown in Fig. 17 together with the
one obtained previously [8] with a Gaussian wave func-
tional �oldðpÞ. The mismatch in the UV is due to the
anomalous dimension developed by �newðpÞ and absent
in �oldðpÞ. As seen in Fig. 17, significant correction from
the gluon loop arises in the midmomentum regime, a
behavior which was observed also in Landau gauge
[30,31]. This a posteriori supports the use of the
Gaussian wave functional for the description of the infra-
red regime.
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FIG. 16. Numerical results from Ref. [8] for the gluon energy
�ðpÞ and fit to Eq. (107a).
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C. The Coulomb form factor

With the explicit expression of the three- and four-gluon
kernels �3 [Eq. (100)] and �4 [Eq. (104)], on hand, we are
left with three coupled equations: Eq. (59) for the ghost
propagator, Eq. (61) for the ghost-gluon vertex, and the gap
equation (106) for the gluon propagator. The final piece
which is missing for closing this set of equations is the
non-Abelian color Coulomb potential Fð1; 2Þ defined by
the vacuum expectation value of the Coulomb kernel
[Eq. (64)]:

Fð1; 4Þ ¼ hFAð1; 4Þi ¼ hGAð1; 2ÞG�1
0 ð2; 3ÞGAð3; 4Þi:

(115)

The quantity g2Fð1; 2Þ directly relates to the heavy quark
potential [32] and is hence a renormalization group invariant
quantity. Before we come to the evaluation of hFAi, let us
remark that in practical application it is not necessary to
explicitly solve the DSE (61) for the ghost-gluon vertex.

Rather it is sufficient to replace the full ghost-gluon vertex ~�

[Eq. (35)] by the bare one ~�0 [Eq. (16)]. This approximation
is motivated by the ‘‘nonrenormalization’’ theorem for this
vertex [33]. Although this theorem was originally proven
[33] and confirmed on the lattice [34,35] for QCD in Landau
gauge, the arguments carry over to the present case of
Coulomb gauge. A perturbative evaluation of the ghost-
gluon vertex in Coulomb gauge shows indeed that its
quantum corrections are finite and independent of the
scale [7,25].

The vacuum expectation value hFAi is commonly ex-
pressed in terms of the Coulomb form factor f. This
quantity measures the deviation of hFAi from the factorized
form hGAiG�1

0 hGAi and is defined in momentum space by

FðpÞ ¼: GðpÞfðpÞp2GðpÞ; (116)

where G ¼ hGAi is the ghost propagator (23). By taking
the vacuum expectation value of the operator identity

FA ¼ @

@g
ðgGAÞ; (117)

the Coulomb form factor fðpÞ can be related to the ghost
form factor dðpÞ and from the ghost DSE (59) the follow-
ing (approximate) integral equation for the Coulomb form
factor is obtained [4,36]:

fðpÞ ¼ 1þ g2
Nc

2

Z
}q

1� ðp̂ � q̂Þ2
�ðqÞ ðp� qÞ2

�G2ðp� qÞfðp� qÞ: (118)

In the derivation of this equation no assumption on the
form of the vacuum wave functional enters, so this equa-
tion remains also valid for non-Gaussian wave functionals.

With the approximation ~� [Eq. (35)] ! ~�0 [Eq. (16)],
Eqs. (59), (106), and (118) form a closed set of coupled
equations for the ghost propagator GðpÞ, the gluon energy
�ðpÞ, and the Coulomb form factor fðpÞ, whose solutions
provide the variational solution of the Yang-Mills
Schrödinger equation. These equations have to be renor-
malized, which can be done in exactly the same way as in
Refs. [4,12,29]. The numerical solution of this set of equa-
tions can be carried out as in the case of the Gaussian wave
functional [4,8] and is subject to future work.
As already mentioned before, the use of a Gaussian

wave functional misses the contribution of the bare three-
gluon vertex and thus the gluon loop in the gap equation.
Fortunately, as we have seen in the previous subsection, the
gluon loop is IR subleading compared to the (included)
ghost loop and thus irrelevant for the IR behavior of the
Green functions. Therefore the results of Refs. [4,8] remain
fully valid in the IR. In particular, the gluon propagator
does not change in the IR. The gluon loop does, however,
matter in the UV and is responsible for the anomalous
dimension of the gluon propagator, which enters the run-
ning coupling constant.

VII. THE THREE- AND FOUR-GLUON VERTICES

As we have seen, the gap equation differs from the one
obtained in [4] only by the gluon-loop contribution, which
gives sizable corrections in the midmomentum regime. In
the present section, we investigate the three- and four-
gluon vertices �3;4 by using the ghost and gluon propaga-

tors determined with a Gaussian wave functional [8] as
input. We will not resort to the tree-level result �n ¼ �n

but rather solve the corresponding DSEs to one-loop order.

A. Solution of the truncated three-gluon-vertex DSE

The DSE for the three-gluon vertex at one-loop order is
given by Eq. (55). Assuming ghost dominance (see, for
example, Ref. [6]), we keep only the ghost loop [the third
term on the right-hand side of Eq. (55) and Fig. 9].
Furthermore, we replace the full ghost-gluon vertex by
the bare one; see Sec. VI C. After extracting the color
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FIG. 17. Comparison of the gluon propagator obtained in
Ref. [8] with a Gaussian wave functional (dashed line) with
the corrected one from Eq. (114) (full line), and the lattice data
from Ref. [9].
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structure, the truncated DSE for the three-gluon vertex
becomes

�ijkðp;q;kÞ ¼ �ijkðp;q;kÞþ ig3Nc

�
Z

}‘Gð‘ÞGð‘�pÞGð‘þqÞ‘i‘jð‘�pÞk; (119)

where momentum conservation kþ pþ q ¼ 0 is implied
and we have omitted longitudinal terms, which, by defini-
tion, cannot enter the proper n-point vertex functions (36)
of the transverse (Coulomb) gauge field. Possible tensor
decompositions of the three-gluon proper vertex are given
in Refs. [37,38]. Here, for sake of illustration, we confine
ourselves to the form factor corresponding to the tensor
structure of the bare three-gluon vertex, defined by

f3A :¼ �ð0Þ
3 � �3

�ð0Þ
3 � �ð0Þ

3

; (120)

where �ð0Þ
3 is the perturbative vertex given in Eq. (101).

Restricting the kinematic configuration to the case where
two external momenta have the same magnitude, i.e.,

q 2 ¼ p2 ¼ p2; q � p ¼ cp2; (121)

the form factor Eq. (120) depends only on two variables,
the magnitude p of the two momenta and the cosine c of
the angle between them. Contracting Eq. (119) with the
bare three-gluon vertex [Eq. (101)], thereby using the
variational kernel �3 [Eq. (100)] and the tensor structure
T3 given in Eq. (66a), yields the following equation for the
form factor f3A Eq. (120):

f3Aðp2;cÞ¼ 2pþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p2ð1þcÞp

2�ðp2Þþ�ð2p2ð1þcÞÞ

�g2
Nc

4

2þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þcÞp

pð1�cÞð9þ8cþc2Þ
�
Z
}‘Gð‘ÞGð‘�pÞGð‘þqÞBð‘;p;qÞ; (122)

where we have introduced the abbreviation

Bð‘;p;qÞ ¼ ‘2½p2ð1� cÞ � ð1þ 2cÞð‘ � q� ‘ � pÞ�

þ ð‘ � qÞ3
p2

� ð‘ � pÞ3
p2

� ð1þ cÞ½ð‘ � qÞ2

þ ð‘ � pÞ2� þ ð‘ � qÞð‘ � pÞ
�
cð1þ cÞ þ 2

þ 1� c

p2
ð‘ � q� ‘ � pÞ

�
: (123)

The apparent singularity at c ¼ 1 in the coefficient in front
of the integral in Eq. (122) is cancelled by the numerator,
and the whole term is regular in the collinear limit. Also the
singularities at ‘ ¼ 0, ‘ ¼ p, and ‘ ¼ �q are integrable.

For the actual calculation of f3A [Eq. (120)], we use the
numerical result for �ðpÞ and GðpÞ obtained in Ref. [8]
(with a Gaussian wave functional) as input. For �ðpÞ we

use the parametrization equation (113) while the ghost
form factor dðpÞ ¼ p2GðpÞ is parametrized as

dðxÞ ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

x2
þ 1

lnðx2 þ c2Þ

s
; x2 ¼ p2

�c

; (124)

with �c being the Coulomb string tension. The fit to the
data shown in Fig. 18 yields a ’ 5 and c ’ 4.
The form (124) of the ghost form factor embodies also

the nonperturbative anomalous dimension, which in turn
guarantees the convergence of the integral in Eq. (122).
The numerical results for f3Aðp2; cÞ are shown in Fig. 19

for some values of the cosine of the relative angle, c. The
logarithmic plot (left panel) shows that the curves for differ-
ent c have the same power law behavior in the infrared
region, namely, p�3, in agreement with the IR analysis of
the ghost loop carried out in Ref. [38], according to which
the IR exponent of the form factor f3A should be 3 times the
one of the ghost dressing function [Eq. (124)].5 The linear
plot (right panel) shows that the form factor approaches
unity in the high-momentum regime and changes sign in
the midmomentum regime.
In Ref. [39] the form factor f3A Eq. (120) of the three-

gluon vertex was evaluated on the lattice for d ¼ 3 Yang-
Mills theory in Landau gauge. The result is shown in
Fig. 20 and compares well to our result in low-momentum
regime. In particular, in both studies, the sign change of the
form factor occurs roughly at the same momentum where
the gluon propagator has its maximum. The d ¼ 3 Yang-
Mills theory in Landau gauge can be interpreted as using
the wave functional

c ½A� ¼ N exp

�
� 1

4�2

Z
ðFa

ijÞ2
�

(125)
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FIG. 18. Ghost form factor from [8] and fit to Eq. (124).

5In Ref. [6], due to the use of a Gaussian wave functional, the
bare term escaped, and only the ghost loop was calculated for a
different solution of the DSEs [4], which leads to less IR singular
ghost and gluon propagators.
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in the Hamiltonian approach to d ¼ 3þ 1 Yang-Mills
theory in Coulomb gauge. This wave functional can be
considered to represent the strong coupling limit of the true
vacuum wave functional [40]. In Ref. [41] it was shown by
means of lattice calculations that this wave functional
yields static propagators which in the IR compare well
with those obtained in d ¼ 3þ 1 Yang-Mills theory in
Coulomb gauge. Thus we can conclude from Fig. 20 that
our results compare favorably with the lattice data.

B. Estimate of the four-gluon vertex

Because of its DSE (56), the four-gluon vertex is given
in leading order (neglecting loops) by the variational kernel
�4 [Eq. (104)] determined in Sec. VIA. A form factor for

the four-gluon vertex can be introduced along the same line
of Eq. (120):

f4A :¼ �ð0Þ
4 � �4

�ð0Þ
4 � �ð0Þ

4

; (126)

where �ð0Þ
4 is the perturbative four-gluon vertex, which is

obtained from Eq. (104) by the replacements �ðpÞ ! jpj,
FðpÞ ! 1=p2. We consider here the form factor f4A at the
symmetric point, where

p 2
1 ¼ � � � ¼ p2

4 ¼ p2; pi � pj ¼ �1
3p

2 ði � jÞ:
(127)

For this kinematic configuration the terms in Eq. (104)
stemming from the Coulomb interaction do not contribute
to this vertex, and one finds for the form factor (126)

f4Aðp2Þ ¼ p

�ðp2Þ

� 171� 960½g0 þ gðp2Þ� þ 8704g0gðp2Þ
171� 1920g0 þ 8704g20

;

(128)

where

gðp2Þ ¼
�

p

2�ðp2Þ þ�ð43p2Þ
�
2
; (129a)

g0 ¼ gðp2Þj�ðp2Þ¼p ¼ 3
8ð2�

ffiffiffi
3

p Þ: (129b)

The function f4A [Eq. (128)] is shown in Fig. 21. The
function multiplying p=�ðp2Þ in Eq. (128) is of Oð1Þ,
and the form factor at the symmetric point [Eq. (127)]
can be fairly well represented by the gluonic dressing
function p=�ðp2Þ alone.
In the above calculation of the four-gluon vertex we have

neglected all loop diagrams, in particular, the ghost loop.
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From analogous investigations in Landau gauge [42] one
may expect that the ghost loop dominates the IR behavior
of the four-gluon vertex as it did for the three-gluon vertex.
We will defer this issue to future research.

VIII. SUMMARYAND CONCLUSIONS

We have presented a general method to treat non-
Gaussian wave functionals in the Hamiltonian formulation
of quantum field theory. By means of well-established
Dyson-Schwinger equation techniques, the equal-time
Green functions and, in particular, the expectation value
of the Hamiltonian are expressed in terms of kernels occur-
ring in the exponent of the vacuum wave functional. These
kernels are then determined by the variational principle
minimizing the vacuum energy density. The method was
applied to Yang-Mills theory in Coulomb gauge using a
vacuum wave functional which contains up to quartic
terms in the exponent. In leading order (in the number of
loops) the cubic and quartic interaction kernels obtained
from the variational principle are reminiscent of the

corresponding expressions obtained in leading order of a
perturbative solution of the Yang-Mills Schrödinger equa-
tion, except that the unperturbed gluon propagators are
replaced by the full ones. We have estimated these inter-
action kernels �3;4 and the corresponding proper gluon-

vertex functions �3;4 by using the gluon and ghost propa-

gators found in the variational approach with a Gaussian
wave functional. The resulting three-gluon vertex com-
pares fairly well to the available lattice data obtained in
d ¼ 3 Landau gauge. The (gap) equation of motion ob-
tained from the variation of the energy density with respect
to the gluon propagator contains the gluon loop, which was
missed in previous variational approaches due to the use
of a Gaussian wave functional. We have shown that the
gluon loop gives a substantial contribution in the midmo-
mentum regime while leaving the IR sector unchanged.
Furthermore (together with the contribution from the non-
Abelian Coulomb interaction already fully included in
previous studies [4]), it also provides the correct asymp-
totic UV behavior of the gluon propagator in accord with
perturbation theory [7]. The approach developed in the
present paper allows a systematic treatment of correlations
in the Hamiltonian approach to interacting quantum field
theories (analogous to the so-called ‘‘exponential S’’
method in many-body physics) and opens up a wide range
of applications. In particular, it allows us to extend the
variational approach from pure Yang-Mills theory to full
QCD. This will be subject to future research.
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