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Large dual transformations and the Petrov-Diakonov representation of the Wilson loop
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In this work, based on the Petrov-Diakonov representation of the Wilson loop average W in the SU(2)
Yang-Mills theory, together with the Cho-Fadeev-Niemi decomposition, we present a natural framework
to discuss possible ideas underlying confinement and ensembles of defects in the continuum. In this
language we show how for different ensembles the surface appearing in the Wess-Zumino term in W can
be either decoupled or turned into a variable, to be summed together with gauge fields, defects, and dual
fields. This is discussed in terms of the regularity properties imposed by the ensembles on the dual fields,
thus precluding or enabling the possibility of performing the large dual transformations that would be

necessary to decouple the initial surface.
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I. INTRODUCTION

Nowadays, one of the most important and interesting
open problems in physics corresponds to understanding
quark confinement. Although quantum chromodynamics
is completely successful in describing high energy phe-
nomena, where because of asymptotic freedom the main
characters are quarks and gluons, a theoretical explanation
for the confinement of these objects in colorless asymptotic
states is still lacking.

With regard to gluon confinement, an important line of
research corresponds to studying the effect of the Gribov
horizon [1]on the gluon propagator. These ideas indicate
that the inclusion of a Gribov-Zwanziger term in the pure
Yang-Mills action, as to avoid Gribov copies, leads to
infrared suppressed gluon and ghost propagators [2-6].
While the absence of the pole in the gluon propagator
would explain why gluons cannot occupy asymptotic
states, it is difficult to imagine an explanation for quark
confinement in this framework, as the infrared suppression
could not produce long range forces.

Therefore, among the possible frameworks for the con-
finement of (heavy) quarks in pure Yang-Mills theory,
those based on the inclusion of a nonperturbative sector
represented by magnetic defects become favored, and the
problem turns out to be the identification of defects, their
associated phases, and how they can imply an area law for
the Wilson loop. Although these points have been studied
for many years now, a closed theoretical understanding is
still lacking [7-9].

For example, in the mechanism of dual superconductivity
[10-13], the QCD vacuum is expected to behave as a
superconductor of chromomagnetic charges, which implies
the confinement of chromoelectric charges, in an analogous
(dual) manner to what would happen with a type II super-
conductor, where magnetic monopoles would be confined
because of the magnetic flux tube generated between them.

When implementing the Abelian projection [14], mono-
poles can appear as defects when a gauge fixing that
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diagonalizes a field that transforms in the adjoint represen-
tation of SU(N) is considered.

Another possible manner to identify them is as defects
when trying to implement the Cho-Faddeev-Niemi (CEN)
decomposition, with the advantage that in this case no
particular gauge fixing condition is invoked. For instance,
the monopoles for SU(2) are defects of the local direction
7 used to decompose the connection in color space (see
[15-21], and references therein),

A, =AlA - ;ﬁ Xa,a+X0,  Aa-XP =0 (1

Besides monopoles, Z(N) center vortices are also of
great interest, as they could explain the string tension
dependence on the representation of the subgroup Z(N)
of SU(N) observed in the lattice (N-ality), a property that
cannot be explained by the isolated effect of monopoles. In
addition, when closed center vortices are included, an areca
law (confining phase) or perimeter law (deconfining phase)
has also been observed, depending on whether these ob-
jects percolate or not [22-25].

Moreover, strong correlations between monopoles and
center vortices are supported by recent results on the
lattice, and they are quite promising in accommodating
the different properties of the confining phase [26-28] (for
a review, see also Ref. [7]).

The aim of this work is to present a natural framework to
discuss possible ideas underlying confinement and ensem-
bles of defects in the continuum.

In this regard, we have recently unified the description of
monopoles and center vortices [29]as different types of
defects of the complete local color frame 71,, a = 1,2, 3
used in the Cho-Faddeev-Niemi decomposition of the
SU(2) gauge fields, where 7i; = 7 and

X\ =XLA; + X2, )

When the element 72 contains monopolelike defects,
localized on closed strings, the elements 7, 71, inevitably
contain defects on open surfaces, and these can correspond
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to Dirac world sheets or to pairs of center vortex world
sheets, attached to the monopoles. When we go close to
and around an open center vortex (Dirac) world sheet, 7i;
and 7, rotate once (twice), corresponding to the flux 277/ g
(47r/g) carried by them.

In this manner, additional singular terms in the Yang-
Mills action appear, due to the fact that derivatives do not
commute when defects are present. These are either local-
ized on Dirac world sheets or on thin center vortices.

In fact, these singular terms were missing in previous
literature about the Cho-Faddeev-Niemi decomposition.
In this respect, we would like to point out that effective
Skyrme models have been constructed in terms of 7
[17,20,21,30,31], guided by the decomposition in
Eq. (1). Then, although they capture information about
monopoles without reference to unobservable Dirac world
sheets, as expected in a well-defined effective model, the
information about center vortices in the 7, 71, sector is
lost in this heuristic process (for a discussion, see
Refs. [29,32]).

In this article we will first give a representation for the
Wilson loop average W in the SU(2) Yang-Mills theory,
similar to the one in Refs. [16,33], but including the singular
terms for the monopole and the center vortex sectors. For
this purpose we will use the Petrov-Diakonov (PD) repre-
sentation of the Wilson loop [34-36], as the natural varia-
bles here are those used in the Cho-Faddeev-Niemi
decomposition [16].

In particular, for a given gauge field A - the Wilson loop
order parameter W(C) can be written as an integral over
U € SU(2) containing an Abelian looking integrand that
(n)
"

depends on A,,’, the field that appears in the decomposition

of A » With respect to the local frame induced by U (for a
brief review, see Sec. III). The important point is that this
representation also includes a Wess-Zumino term, concen-
trated on a “Wilson surface” S(C), whose border is the
Wilson loop C, although the usual representation for W(C)
contains no reference to a surface.

In the Petrov-Diakonov representation any surface S(C)
can be used, up to singular situations where it passes over
the monopoles [35]. This raises the problem of how to deal
with this arbitrary surface in the average over fields and
ensembles of defects. In Ref. [37], this kind of problem has
been discussed in the context of compact QED(3) and
QED(4).

Using our representation for W, we will discuss here
how monopole and center vortex ensembles can render the
surface appearing in the Wess-Zumino term a variable, to
be summed together with gauge fields, defects, and dual
fields. This occurs when the regularity properties imposed
by the associated physical phases on the dual fields pre-
clude the implementation of large dual field transforma-
tions in the path integral, a necessary step that should be
considered in order to decouple the initial Wilson surface
and show it is an unobservable object.
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In general, using our arguments in three dimensions
(3D) or four dimensions (4D), prior to the ensemble in-
tegration, we will obtain a representation evidencing the
decoupling of the initial Wilson surface or its replacement
by a “Wilson surface variable,” depending on the assumed
closure properties for the dual fields.

In 3D, as center vortices are stringlike, we will also be
able to propose the general form of an effective action
describing the interaction among gauge, vortex, and
dual fields, as well as Wilson surfaces. Therefore, the
relationship between deconfining/confining ensembles
and closure/nonclosure properties of the large dual trans-
formations will be clear in this case.

Of course, which is the correct ensemble of defects
associated with Yang-Mills theories is the fundamental
part of the problem of confinement. In particular, how
can the dressing of thin defects lead to dimensional pa-
rameters characterizing thick objects that condense. This is
outside the scope of this article, which is organized in the
following manner.

In Secs. II and 111, we review how to describe monopoles
and center vortices in terms of the defects of the complete
local color frame used to decompose the gauge fields, as
well as the Petrov-Diakonov representation of the Wilson
loop W. Section IV is dedicated to a brief discussion of the
representation for the average W, including a general
ensemble of monopoles and center vortices.

In Sec. V, we discuss the arbitrary Wilson surface S(C) in
connection with the integrand of W. In Sec. VI, we present
possible effective models that describe chains of correlated
monopoles and center vortices, and discuss how they could
preclude the implementation of large dual changes of
variables.

In Sec. VII, we show how to decouple the Wilson surface
S(C) in favor of its border, in the case where the dual fields
are closed under large dual transformations. In the opposite
case, we show how S(C) is replaced by a Wilson surface
variable, also including a discussion of generalized multi-
valued dual fields in continuum 4D theories.

Finally, we present our conclusions in Sec. VIII.

II. DEFECTS OF THE LOCAL COLOR FRAME

When studying Abelian projection scenarios, the gauge
fields are generally separated into ‘““diagonal” fields, living
in the Cartan subalgebra of SU(N), and “off-diagonal”
charged fields. For instance, in the case of SU(2), the
uncharged sector can be chosen along the &5 direction in
color space, while the components along ¢; and é, corre-
spond to the charged sector.

In the CFN decomposition, this separation into charged
and uncharged sectors is also implemented, with the ad-
vantage that it is naturally done along a general 7i; = 71
local direction in color space.

In Ref. [29], we have unified monopoles and center
vortex world sheets as different classes of defects in the
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local color frame /i, = Ré,, R € SO(3), used in the CFN
decomposition. While it is well known that monopolelike
defects are associated with a nontrivial I1, for the space of
directions 71, we can also think of thin center vortices as the
natural defects of a frame, due to the nontrivial fundamen-
tal group I, = Z(2) of SO(3).

The possibility of matching general nontrivial configu-
rations containing monopoles and center vortices is
evidenced by parametrizing the gauge fields in terms of
the CFN decomposition, based on a class of frames 7,

vO)re(vu)"' =i, - T, A, =RVU), (3)

where U is single-valued along any closed loop, defining a
frame 71,
ureuTt =m, T, i, = RU)e, )

such that M; = m is a topologically nontrivial mapping
that encodes the monopole sector. The V part is multi-
valued and enables the description of the center vortex
sector.

Let us consider, for example, a gauge field whose de-
composition is given by

. A A S\ 7
aM-T=—<C%)n+§nX6Mn)~T,

] &)
Cl) = — =iy - 0.
M g "

In the case where V=1, and taking U=U=
e ¢Te710T2ptieTs  \where ¢ and @ are the polar angles
defining 7, Eq. (5) corresponds to a nontrivial “gauge”
transformation éU ad MU ~! introducing an antimonopole
[16]. Note that no singularity is present at § =~ 0, where
U = I. The Dirac string is placed at § = 7r; when we go
close and around the negative z axis, the elements 71, 71,
rotate twice. A monopole is obtained with the replacement
O—m7—0,0— ¢+ .

More generally, a field decomposed according to Eq. (1),
with V = [, can be written as a nontrivial transformation of

a regular background A e

-> - —

le TO!

?Ql

A, T=A,- 0a,07". (6)

i
g
As is well known, the field strength for jzlff is
Fl-T=0F,, 10" +00, 0107 O
8

That is, the fields A , and jzlfi are not physically equiva-
lent, because of the second term in Eq. (7) which is
concentrated on a Dirac world sheet, namely, the two-
dimensional surface where U is singular.

Now, by considering in Eq. (5) a local frame defined by

U=Tand V =V = ¢T3 we obtain
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-1
d, T=-0,087T" (8)
8

that is, a thin center vortex placed on the two-dimensional
surface formed by the z axis, for every Euclidean time. As
the transformation V = ¢/¢’3 is not single valued, we have
1 i~ = )
—0,08%T* =—-Vd,V~! — ideal vortex, 9)

8 8
where the additional term (the so-called ideal vortex) is
localized on the three-volume where the transformation is
discontinuous. For a general discussion of thin and ideal
center vortices in the continuum, see Refs. [38,39]. Then,

unlike monopoles, center vortices can only be written in
the form 2 V3 V~! on a region outside the above men-

tioned three Volume

Furthermore, if on the monopole ansatz after Eq. (5),
V =1 were replaced by V = e "7 we would have
VU = e i¢T3¢71%T2 Then, instead of a monopole attached
to a Dirac world sheet placed at & = 7, one attached to a
pair of center vortices at # =0 and 6 = 7 would be
obtained. In this case, when we go close and around the
positive and negative z axis, the elements 7, 71, rotate
once, with different orientations. In general, any configu-
ration containing monopoles and center vortices (corre-
lated or not) can be written in terms of three Euler angles
VU = e T3¢~ T2+ ila=vTs that correspond to a single-
valued U = e @Ts¢7BT2etials  and a rotation V =
e T = =iy =1, leaving 1 = 7 fixed.

III. PETROV-DIAKONOV REPRESENTATION

The usual representation for the non-Abelian Wilson
loop order parameter is given by

W(C) = (1/2)trP explig }( dx,A,-T).  (10)
There is an alternative representation, due to Petrov and

Diakonov [34-36]. For quarks in the fundamental repre-
sentation, it is given by

W(C)
= (1/2) [[DU(T)]e(i/z)g Jodr ol (WU AU+ (/@)U (d/dT)U)]
(11)
dx, - -
A(r) = d—:A’u -T. (12)

Here, the Wilson loop C has been parametrized as x,, =
x,(7), 7 €[0, 1], x,(0) = x,(1). The integration measure

is
Jroven=fa [

DU(7), (13)
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which means that the functional integral is done over U
transformations that are single valued along the Wilson
loop.

Considering that on a given loop it is always possible to
write

] d u
A =207 0 Q(u)=eXp(—ig jo du'A(u')),

(14)
it results in [34-36]
w(C)

—(1/2) [ JU [ W DU ()il Jyamiir Uy @/arioun

= (1/2)ZD£3642>(Q*1(1>Q(0)). (15)

Of course, the Wilson variable generally takes a nontrivial
value; that is, Q(1) is generally not Q(0) = 1.

To see how these expressions work, let us recall that
closed center vortices are usually defined as defects in the
connection such that W(C) changes sign when the defect is
linked and is otherwise left unchanged.

As is well known, considering a line x(7) which lives on
a simply connected region outside a closed vortex, where it
is possible to write A w= jzlx , and then taking the limit
where their end points are joined to form the loop C, the
usual representation for W(C) gives e4”W 4(C), where
W 4(C) is the Wilson loop for the field A ,,.

Now, we can use the PD representation. From Eq. (12),
we have

A7) = A T

&““\

| —

VOADVD + Lvo) L U)—l],
g dr
(16)

where we have defined A (7) = d;—: A ue T. Recalling that
on the loop we can always write A (7) = é Q7149 we
get Q = QU 'V~!. Then, using in Eq. (15) the cyclic
property of the trace, and considering that D'/ is an odd
function, the previous result is reobtained,

W(C) = (I/Z)ZD“/Z)(Q(O)UJ‘VZ‘VfoQ’l(l))

= el4TW 4 (C). (17)

It is important to emphasize that the second part in the
exponent of Eq. (11) is a Wess-Zumino term, and can be
rewritten not in terms of a line but in terms of a surface
integral [34-36]. Therefore, in general, we have

w(e) = (1/2) j [DU(r, £)]e'@/? [ d s (18
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where the source s, is concentrated on a surface SC)
whose border is the Wilson loop C, and is constructed by
requiring [ d*xs,, Z”,,) + h(m)) to be the flux of f('")
h(m) through S(C). This surface can be parametrized by
x(T £), and s, must satisfy

.]/J,(C) = ,uvpa'allsp(ﬂ
d (19)
Ju(C) = al —5(x = x(7)),

where x(7) = x(7, 1) is a parametrization of C. In Eq. (18),
we also have

(m) _ p(m) __ (m)
,u’,nv - ,Ufr;/ - ,u,Vp(TaVAm
1 (20)
A = — gewm (8,10 X 0,10),

where the connection is decomposed by using a frame ,,,
defined on S(C), and induced by U(7, £), namely,

ur,u-'=m,-T, 1)
A=Al - ém X 9,0+ X" (22)

We also note that the possibility of writing,
f drt tr[ PUTt ] f d*xs, b, (23)

depends on the single valuedness of U(7) (see Ref. [35]).
This condition is met precisely because of the integration
measure in Eq. (13).

IV. WILSON LOOP AVERAGE

Now we will work with thin objects defined on the whole
Euclidean spacetime, taking into account the singular
terms arising from the color frame defects. Let us consider
the Wilson loop average,

Wie) = LN [DAIF, e Soldl irp
X exp(ig f dx, A, - T), (24)
N = [ [DA]F e~ SwlA], (25)

where F, ¢ is the part of the measure that fixes the gauge,
including in general auxiliary fields.
Using the PD representation, we have

W0 = 5o ~ 1o

X [DU(r, )F oy Swldleli/e [ atssunt 1),
(26)
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In fact, as we are interested in discussing the Wilson loop
globally, for any closed loop and any associated surface,
we will have to consider the extension U(x), defined on the
whole Euclidean spacetime, up to possible singularities,
such that U(x(7, &)) = U(r, &).

Now, as the Wilson loop is written in terms of the CFN
variables, it is convenient to change to these variables in
the path integral [16,33]. The procedure is to include the
integration over the extended U’s, which amounts to in-
troducing a product of group volumes, and then performing
a change (with unit Jacobian) to the variables AZ"), X 51")

(m =1, 2) in the decomposition of A » With respect to the
basis induced by U(x).

An important point to be emphasized is that after the
change, A » configurations containing monopoles will be
represented by U’s inducing frames with monopolelike
defects in 7. In addition, as U configurations are single
valued, thin center vortices will be manifested as defects in
the components of the charged fields )?Z"). For conve-
nience, the ensemble integration over these defects can
be replaced by the integration over a V sector, which
according to Eq. (3) rotates i, M, to Ay, M,, leaving
m = fi fixed. This is done in order to identify monopoles
and center vortices with singular frames. Then, we have

W(C) = ﬁ [ DA DX][DU]

% [DV]F fe,SYM[ﬁa’A(n),X(n)]e(i/2)g ]d4xsw,(fxl,),+h(,f},)
g s
(27)

M = f[DA][DX][@U][DV]Fgfe_SYM[ﬁa,A(”),X“’)].
(28)

A fundamental ingredient to be taken into account is
regarding the nontrivial singular terms associated with the
frame defects. In Ref. [29], we have identified two types,
which were missing in the field strength tensor computed
in Refs. [16-19]. The first one depends on defects of the
third component 7i; = 7 and occurs in the charged sector
of the field strength tensor. In Ref. [29], this type of term
has been nullified by considering 7i configurations that
have at most monopole defects. In this case, Syy results,

1 1
Svi= [ @[ GU - n 4 k2 3] )
where

gm = errola, + ig(Ay) + Co)1d,,
(30)
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1

d (XL +iXx2)
7 w wh
V2 G31)
_8,. g ;
k,u,V - ZE,LLVPO'((I)p(I)U' - q)pq)o');
(n) _ (n)
my e,uupo'apAO' B
® 1 A . . (32)
hyy = — gewwn (9,7 X 0 ,1).

The second type occurs when trying to express the mono-
pole part hﬁf,), of the dual field strength in terms of the
monopole potential Cgf). In this case, we obtain

hyy =R +d0, A% = €,,,00,C,  (33)
where the singular terms d,,; are concentrated on the frame
defects. If not for this difference, the surface integral in the
Wess-Zumino term of the PD representation could be
converted into a line integral.

Now we can proceed as we did for the partition function
in Ref. [29]. Introducing real and complex Lagrange multi-

pliers, A, and A ,,,, we get

(n)
n

nve

_ 1 e

W0 =57, [[DAIDYIDUIDV]e Se= [d*x(1/HA A,
s ot J /DN FD R+ ) =T AL+ CUN (/D (i + )

(34)

where we have defined [DV] = [DA(")][D<D][ZDA]Fgf.
Here, we have the action for the charged fields,

1+ v v i3 vV _uvpo
S, = f d4x[§A/’“ AR =~ (A#rerr7y, 0,
+ Awwwapég)], (35)

minimally coupled to the U(l) color current J& =
JH+ KW,
i - i -
JE = =S8R, 0, + Zge N, B, (36)

The terms K, and F of appear when fixing an
extended maximally Abelian gauge,

3,AL + iy =o. (37)
[0, + gAY + CiH]®, =0, )
[9, — ig(Al) + Ci)]D, = 0.
More precisely,
Fop = Fype™ J O cre, (39)

where F of 1s independent of A(”), and contains the
integration measure for Lagrange multipliers, ghosts,
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and auxiliary fields, while on these

fields, as well as on ®,.

Because of the Aﬁf) path integration, a constraint is
implicit here,

K* depends

PHYSICAL REVIEW D 82, 105020 (2010)

JH = 9,(A s + 85 ,0), (40)

2 ,uvpa' v

so that we finally get,

W(C) = /[@A][@\F][DU][DV]e—SC—fd4x(1/4)/\w,/\m,

w o JAA1/2€41000, s+ 850 = TIAR +(1/ DAk + (12D Ay 85,050}

It will also be convenient to discuss the representation in
3D, derived by following the same steps, namely,

WO = [IDATDYIDUTDVIe S [#:02,
Xeifd3x{(eﬂuf,ay()t +(g/2)5,)—TDAY + Ak, + (A, +(2/2)s,, )d"}

(42)

s, — f PrAA# — i(RFer2a,®, + APerra, )]
(43)

In the total charge current JX = J* 4+ K#, the term K*
receives contributions from the charged fields of the gauge
fixing sector and

Jr = ige“”p/_\VCI) — ige/’“”PA,,(i)p,

_ 44
8, ( D,D,—D,D,). @9

ky = 2 €uvp
The source s, is concentrated on S(C) and is such that
[ dxs, (f, + h,) gives the flux of (f, + h,). Also in
Eq. (42), we have the implicit constraint,

8
Jy = €up ,,(/\ + = 2 ) €u1pduS,

Finally, d&f) is concentrated on the defects and is obtained
from

= ju(0). (45)

W = R + iy, (46)
h§f>=—ie A (0,7 X 0,7
2g nvp p 7
) — (n)
B = €,,,0,Cp.

For a monopole/antimonopole correlated with a pair of
center vortices, the terms representing the defects in
Egs. (46) and (33) are given by [29]

1 2
dy) =dy) +d7, 4y

=di, +d3,  48)

2 dxy,
e =27 [ do St 50 (x — xo(a).  (49)
g do

(41)

o 2T
df“«lz = ? [dza-yva(4)(x - xa(a-lr 0-2))v (50)

Here, x*(0) [x*(07}, 03)], @ = 1, 2, is a pair of open center

vortex world lines (world sheets) with the same boundaries

atxt,x” (C*, C™), where the monopole and antimonopole
are localized. That is,

(a

9,d

_ %T(cwu —x") =89 —x), (5D

2
= (}{ dy,6W(x —y) — f dy, Y (x — y)>-
8 ct Cc”

(52)

9,d\) =

For uncorrelated objects, we can write dz’) = dﬁ:")+
dﬁf), a’ﬁf,), = dﬁiny) + dﬁf,), [29], where the first part comes
from defects in 71y, /i, concentrated on open Dirac strings
or world sheets, while the second part comes from defects
localized on closed center vortex world lines or world
sheets, thus satisfying

(v) _
aﬂd,f =0,

9,dY) = 0. (53)

V. WILSON SURFACES AND FRAME DEFECTS

Up to now, we have seen how to represent the Wilson
loop average in the continuum, by considering an ensemble
of thin defects. In fact, in Yang-Mills theories, these de-
fects are expected to be dressed by quantum fluctuations,
gaining dimensional properties such as the vortex thickness
and stiffness. This is the difficult part of the problem of
confinement; however, we can assume this scenario and
analyze its feedback on the structure of the theory.

That is, we can replace the measure over the monopole
and vortex sectors [ DU][DV] by another one [ Dmon] X
[Dvor] = [DU][DV]e ¢, including an action S, for the
physical part of the defects, characterizing the ensemble.
The ensemble integration in Eqgs. (41) and (42) can be
separated to define an effective contribution S, ,,,

e Sunldu] = f[Dmon][Dvor]ei(zﬂ/g)Z Jdxd,

)_\ = A, +§s

S (54)
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e~ Sunlh] — f [ Dmon][ Dvorle ™9 X f 00k,

)_t,“, = Ay T &S0 (55)

For correlated defects, with center vortices forming chains
of monopoles and antimonopoles, the sum in the integrand
would be performed over open center vortices attached in
pairs to the corresponding monopoles and antimonopoles.
In case of uncorrelated defects, the sum would be over
closed center vortices plus the sum over open Dirac strings
(in 3D) or Dirac world sheets (in 4D).

It is still an open problem which ensemble is associated
with SU(2) Yang-Mills theory. In the next section, we will
discuss some possibilities in the framework provided by
the CFN decomposition and the PD representation in the
presence of defects.

Note that in the representation for W, in Egs. (41) and
(42), the terms containing €,,,,9,5,, €,,,00,5 ;4> accord-
ing to Egs. (45) and (19), depend only on the Wilson loop
C. However, because of the Wess-Zumino term in the PD
representation and the presence of defects, W contains a
reference to the initially considered S(C), although the
usual non-Abelian Wilson loop representation contains
no reference to a surface.

Terms in dgf), dﬁ,’fl associated with closed center vortices
contribute with a flux =27/ g for each center vortex cross-
ing the surface. For a fixed Wilson loop C, this contribution
is independent of the surface S(C) considered, given a
factor (—1)"""™ that depends on the total linking number
between the closed center vortices and C. When vortices
percolate, this linking gives an area law that displays
N-ality [7].

As we have previously seen, monopoles can be joined by
Dirac defects or by pairs of open center vortices.

In the first case, for a surface crossed by a Dirac defect
the flux is *+4/g, while for a surface that is not crossed
the flux is zero. Both situations contribute with a trivial
phase *£2, or zero, respectively.

In the second case, consider, for example, a given mono-
pole/antimonopole configuration joined by a pair of center
vortices. If the loop C is “linked” by the chain, the flux
contribution will be +27/g or —27/g, depending on
which center vortex in the pair crosses the surface S(C).
In both cases the Wilson loop gains a —1 factor.

However, we see that when considering the ensemble
integration over defects, there are singularities when the
monopoles pass over S(C). This leads to the problem of
how to obtain a representation of the Wilson loop average
with no reference to the initially considered Wilson surface
S(C). The answer will depend on the type of ensemble.
Initially we will discuss in the CEN-PD framework how,
when the magnetic defects proliferate, the different phases
can enable or preclude the possibility of performing large
dual transformations.
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VI. POSSIBLE ENSEMBLES AND THE
ASSOCIATED CLOSURE PROPERTIES OF
THE DUAL FIELDS

As already discussed, the usual representation of the
Wilson loop contains no reference to a surface, so that
the Petrov-Diakonov representation of the Wilson loop
average should be invariant under the change of initial
Wilson surface S(C).

The consideration of a different S(C) can be written as
the addition of a closed surface 919, written as the border of
a three-volume 9: S(C) — S(C) o 949. This change can also
be written in terms of the new sources, s, + As ws Suv T+

nv
As,,, where, as 94 has no border, the additional pieces
verify

€uvp9y

Asp=0, € d,As,, =0,

uvpo Yy p

(56)
so that in 3D and 4D we can write

gAs# =0,00, gAs,, = a#w(;‘) — 9,05, (57)
Note that as long as x is not on the closed surface 91, we
have 9,0 =0, aﬂw(,fl) - aywﬁf) = 0. That is, ©®(x) is
piecewise constant. It takes the value *g/2, when x is
inside ¢, and is zero outside. The plus or minus sign
depends on whether the normal to 9 has an internal or
external orientation.

In 4D, the solution to Eq. (57) is a)([f) = 8ﬂw(4), where
™ is a multivalued phase. That is, when a path linking the
surface 9 is followed, w® changes by an amount +g/2,
while it does not change otherwise.

Now it is obvious that for a given A,, A,,
integrand of Eqs. (41) and (42), the configurations

in the

Ay T 0,0, Ay t o0, — 3,0, (58)

with @ and @, smooth well-defined fields, always corre-

spond to another possible field configuration, so that we

can operate with the associated changes of variables as

usual. Then we are tempted to always consider

Ay = Ay + 0,08 — 0,08,
(59)

as an acceptable change of variables. In terms of the Hodge
decomposition,

Ay =0,¢ + By,

3
Ay = A, + 0,009,

/\MV = a,ud)u - 8V¢M + B,uw
(60)

9,B,=0,  a,b,=0,

we are asking about the possibility of considering changes
of variables,

9,B,, =0, (6]

4
pop+o b dut o) =+ 0,00

(62)
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As we will see, this is not always possible and will depend
on how the symmetries are realized in the effective de-
scription for the Yang-Mills theory. In the next subsections
we will discuss some effective models; to simplify, we will
consider the partition functions, obtained by setting the
sources s,,, 5, equal to zero in Egs. (41) and (42).

A. Correlated monopoles and center vortices in 3D

Center vortices have been discussed in the SU(N)
Georgi-Glashow model in 3D [10]. Classically, this model
contains vortices with topological charge Z(N). At the
quantum level, the vortex sector can be represented by
means of vortex operators associated with the monopole
singularities in Euclidean spacetime, where the vortices are
created or destroyed. The relevant Green’s functions are
incorporated by means of an effective Lagrangian for a
vortex field,

3, Va,V + pVV + a(VV? + BVN + VN),  (63)

which displays a global Z(N) symmetry. When the vortex
is an elementary excitation (x> > 0), there is no sponta-
neous symmetry breaking (SSB). If vortices condense,
SSB occurs (u? < 0) and the formation of a domain wall
between a heavy quark-antiquark pair leads to an area law
for the Wilson loop [10].

Let us discuss the relationship between our representa-
tion and the effective model in Eq. (63). In the phase where
the vortex is an elementary excitation with mass u, center
vortex world lines can be associated with the propa-
gation of pointlike particles. Because of the coupling

e/ [ @t when representing this ensemble of
world lines in terms of an effective complex field V(x),
the vector field A, in S, ,,[A,] [cf. Equation (54)] should

be coupled through the covariant derivative,
D,V =1[d, +iQm/g)A,]V.

In order to determine the possible terms in S, ,,[A,, ], let
us consider a transformation A, — A, + 9,0, with
smooth w. In this case, the integrand in Eq. (54) would
gain a nontrivial factor,

ei(Zw’/g)Z fdx#(?’u

Here, we used that center vortices are always attached in
pairs to monopoles (antimonopoles) located at x;" (xj_).
Therefore, when center vortices concatenate monopoles to
form closed chains, we see that the presence of the mono-
poles should lead to an explicit w-symmetry breaking in
S,.m- On the other hand, the possible terms in S, ,, must be
constrained by a symmetry, that in the phase where u> > 0
is expected to be displayed by the vacuum of the theory.
When performing the ©® transformation in Eq. (59), the
associated factor in Eq. (64) is 47/9 (@O0~ 0)
e=iém/e(N+=N-)8/2) = |, where N (N_) is the number of
monopoles (antimonopoles) in .

0 _ ildm/e) Y ()~ o) (64)
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Therefore, the natural result for the ensemble integration
over chains is of the form

Sym =D, VD,V + u*VV + a(VV)?
+ (V2 + V) + S[F ] (65)
where F u = €u41p0,A,.This S, ,, enjoys the desired prop-

nrp9vhp:
erties, as the @ symmetry is explicitly broken by the V2, V2
terms. In addition, it displays a local Z(2) symmetry V —
e 127/ Ay — A, + 9,0, This comes about as
0 is given by *g/2 inside ¥, while it is zero outside.
Then, this transformation changes the sign of V, V inside
19, thus leaving the V2, V? terms invariant. The term S, is
also invariant; this can be seen from the property
GM,,pa,,apa)G) = (, implied from Egs. (56) and (57). For
a discussion of local discrete transformations in 3D gauge
theories, when matter fields in the fundamental represen-
tation are present, see Refs. [40,41].

The effective contribution in Eq. (65) can also be ob-
tained by direct ensemble integration based on polymer
field theory techniques, considering a phase where center
vortices are flexible, characterized by a small stiffness, and
tensile, weighted by a factor e~ # [42].

Then, taking into account the other terms in Eq. (42) and
the integral over [DW], the effective model for the parti-
tion function in SU(2) Yang-Mills, including the effect of
chains, would be of the form (for a discussion of the [ DWV]
integration, see Ref. [29], and references therein),

Seff = DMVDMV + ,L,LZVV + a(VV)2
+ B(V2+ V2) + S[F, 1+ yA A, (66)

where the term A, A, explicitly breaks the »® symmetry
in S, preserving a global Z(2). Now, in a phase where this
global Z(2) symmetry is spontaneously broken (u? < 0),
we have a topological structure, whose existence depends
on the consideration of well-behaved continuous fields. In
particular, we will have finite action domain walls where
V(x) will continuously change from +V, to —V,, accom-
panied by a well-behaved continuous A,. As we go across
the wall, either the phase of V(x) must change continuously
from O to 77 or we can have a 7r discontinuity at a thin
surface S inside the thick wall, as long as V(x) vanishes for
points x € S. These kinds of walls have been discussed in
Ref. [40].

In other words, when the global Z(2) is spontaneously

broken, changes of variables of the form V —

e 12/ %y o Ay — A, + 8Mw(3) are not acceptable,
as the fields produced will no longer correspond to well-
behaved continuous fields. On the other hand, in the phase
where the global Z(2) symmetry is not spontaneously
broken (u? > 0), these requirements are no longer appli-
cable, and the large dual transformations are acceptable.
It is also interesting to note that if S[F ] were dominated
by a Maxwell term (see Ref. [29]), A, would be a massive
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vector field. Then, depending on the generated mass scale,
A, would be suppressed and the model in Eq. (63) would
be obtained. In addition, because of Eq. (44), the off-
diagonal current is given by €,,,9,A, (in this subsection
we are considering s, = 0) so that this suppression would
correspond to Abelian dominance [43,44].

B. Loop-like monopoles in 4D

In 4D, the problem concerning the closure properties of
large dual field transformations can easily be understood in
the simpler context of ensembles of uncorrelated mono-
poles and center vortices. In this case, the ensemble inte-
gration is of the form S, ,,[A,,, ] = S,[B,,]+ S,[¢,],

i(m/9)Y. §d0,,B,,

e SulBu] = f[Dvor]e v . (67)

iAm/ON» (¢ dy,d,— @ _dy,d,)
e~ Suldu] = I[Dmon]e % fcj wPu fci Vu u}

(68)

where we have used that unobservable Dirac world sheets
can be decoupled in favor of their borders (see Ref. [32]).

As the dual vector field ¢, is minimally coupled with
closed stringlike objects, the action S, ,, originated from
the ensemble integration will be gauge invariant under
regular gauge transformations ¢, — ¢, + 9, and will
contain a complex field @ representing the monopole
sector minimally coupled through the covariant derivative
(for a review, see Ref. [45]),

[0, +i(4m/g)}, 1.

Now, in the corresponding effective action for SU(2) Yang-
Mills, the A, A, term and the DV integration in Eq. (41)
will give additional gauge invariant terms, depending on
8M¢V - a,u, ¢V'

In a phase where the U(1) gauge symmetry is sponta-
neously broken, we will again have a topological structure,
whose existence depends on the consideration of well-
behaved continuous fields. For instance, the phase in
®(x) can be ill defined only in places of false vacuum.
Therefore, when SSB is present, changes of variables with

multivalued phase w® cannot be accepted, as in general

i(m/Q)Y [ 0,8, +iGm/DY (§ . dvudu— . dvudy)
e SonlBur bl — f[@vor][fDmon]e v o A T

where B, is integrated over open vortex world sheets
with their borders attached in pairs, so as to form
the associated monopole or antimonopole loops at
cr, C;.

"For each vortex world sheet, we have a contribution in
the integrand of the form
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¢~i47/90% D would be ill defined on the closed surface
ad.

This discussion, together with the minimal coupling
with ¢, leads to the impossibility of considering ¢, —
¢, +0 Ma)(“) as an acceptable change of variables in the
path integral for a SSB phase. A similar situation occurs
with the spacetime independent phase transformations, in
the SSB phase, where the boundary condition imposed on
@ at infinity is not closed under them.

In more formal language, according to the Elitzur theo-
rem [46], gauge transformations cannot be spontaneously
broken. That is, at the nonperturbative level, in the canoni-
cal version of the quantized theory, there is no gauge
variant operator with a nonzero expectation value (for a
discussion in the context of confinement, see Refs. [8,9]).

What can be spontaneously broken is the subgroup of
“global” gauge transformations that remains after a gauge
fixing is implemented. An order parameter to explore the
possible realizations must be something invariant under
gauge transformations and variant under global transfor-
mations. This can be constructed for different gauge
fixings. In the dual </3  theory it could be considered of
the form

0 = /9 [V 8. P0G (69)
where D(x) is the Green function for the Laplacian opera-
tor. This order parameter is invariant under local regu-
lar phase tAransformations é = b p T oa), b —
e~ i4m/2)a @ while under spacetime independent ones it
transforms as O — ¢/“0.

We also note that »¥ satisfies 9,0,0® =0 (see
Sec. VII A), so that the order parameter in Eq. (69) also
transforms under the operation q’3 Pl (]3 w0, 0@, d —
e~i4m/90% according to O — ¢~ i¢T/90Y .

Then, when the spacetime independent phase transfor-
mations are spontaneously broken, the large dual trans-
formations are also spontaneously broken; that is, the
vacuum is not invariant under them.

C. Correlated monopoles and center vortices in 4D

For chains of monopoles and antimonopoles, we have
[cf. Equations (50) and (52)]

ij

, (70)

V(CHV(C)e ) Js o,
n
V(CE) = £5127/9) $ox drud,

where 2 = 3(C*, C™) is a surface with borders at C*
and C.
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This configuration represents the creation, propagation,
and annihilation of a loop, minimally coupled to B, so
that V(C) can be compared to the disorder operator intro-
duced in Ref. [10] for the Yang-Mills theory.

If center vortex world sheets were closed objects prop-
agating stringlike excitations, characterized by a finite ten-
sion, S,,,,[A,,] in Eq. (55) would be invariant under the
transformations A,, — A,, + d,0, — d,w,, including
the large ones, ¢, — ¢, + 9 Mw(“), so that a typical effec-
tive action for this sector would be of the form [47-50],

Sc.v. = Sc.v.[[:I,u]: I:I = € J,A

o prvpoYvipo

(72)

[note that due to Egs. (56) and (57), €,,,,9,0,X

3,0 = 0]. When these center vortex world sheets con-
catenate monopoles, we can see from Eq. (70) that the
presence of the latter explicitly breaks the w, symmetry
in S, ,,[A,,]. However, this contribution will be symmetric
under the regular ¢,, — ¢, + 9, @ transformations and,
as in Eq. (70) the loop variables appear in the form V?(C™),
it is expected to be symmetric under the large ones, ¢, —
¢, + 9,09 Then, S,,, can be written as S¥ + So[H ],
where @ is only symmetric under w® transformations,
breaking the w , symmetry. This part would be analogous to
the V-dependent terms in Eq. (64); however, the problem of
presenting effective models for S is highly nontrivial, as
in 4D the vortex field V(x) is replaced by a loop variable
V(C).

Taking into account the other terms in the representation
and the [ DWV] integration [29], in this case, the effective
action for Yang-Mills is expected to be of the form

Serr = SW + S[H, 1+ yA,,A

urtuys

(73)

where the A, A, term explicitly breaks the o™ symme-
try present in the first two terms. Again, we could expect a
phase for the ensemble of chains where the associated
regularity requirements imposed on A, could disallow
the changes of variables ¢, — ¢, + 9 ﬂw(“), as occurs
in 3D with the u? < 0 phase and the changes of variables

¢ — ¢+ 0 (see Sec. VIA).

VII. WILSON SURFACE DECOUPLING VS
WILSON SURFACE VARIABLES

The discussion about how a surface whose border is the
Wilson loop can become observable in Yang-Mills theory
is a key point in understanding the possible mechanisms
underlying confinement and its associated properties.

In Ref. [10], the possible observability of Wilson sur-
faces or center vortex world sheets has been analyzed as
follows. The algebra between the Wilson loop operator
W(C, t) and the disorder operator V(C', 1) is

W(C, t)V(C', 1) = V(C, ) W(C, t)(—1)link, (74)

PHYSICAL REVIEW D 82, 105020 (2010)

where C and C' are defined at a given time ¢, and the
right-hand side contains the linking number between
them. Then, a family C'(a) in R*, a € [0, 1] is considered,
continuously changing from Cj,, passing by an intermedi-
ate C!, and then returning to C,, both curves living on the
constant time ¢ hyperplane where C is contained. As we
are in R*, this family can be chosen with C}y (C}) unlinked
(linked) with C, and such that C'(a) never comes close to
C. In these conditions, a declustering property was used,

(W(OV(CL)) = (WOXV(C))el*CCa, (75)

where the phase is required in order to be consistent with
Eq. (74), which implies that ¢'*©C) must change from
+1 to —1 and then back to +1 in this process. If massless
modes exist in Yang-Mills theory, a(C, Cl,) could be a
smoothly varying function. On the other hand, when
Z(2)-invariant Higgs fields are switched on, it has been
argued that a sudden change in the phase must exist, and
as the pairs of curves are always maintained far apart, an
observable surface must be attached to the Wilson loop or
to the half-charge magnetic loop.

In Ref. [37], the Wilson loop average W has been
analyzed in confining models such as compact QED(3)
and QED(4), the latter regularized on the lattice. In that
reference, considering the dual field ¢ defined on the
interval [ —oo, +00], a representation based on axion fields,
with multivalued action, has been obtained, and a series of
approximations led to an explicit dependence of the result-
ing W on the arbitrary S(C) appearing in its definition. Then
it has been conjectured that this problem would be resolved
if all the branches of the multivalued action were consi-
dered in the calculation, and that this would be equivalent
to considering the integration over all Wilson surfaces (that
now become dynamical) and dual ¢’s with an appropriate
jump at the associated surface.

Because of the Wess-Zumino term in the PD represen-
tation, our expressions in Egs. (41) and (42) for W in
Yang-Mills theory also have an arbitrary surface S(C)
attached to the Wilson loop from the beginning.
However, the representation must be independent of S(C).
In the next subsections, we will discuss how to obtain, in
general, a Wilson loop representation with no reference to
the initially considered S(C).

The answer will depend on the underlying realization of
symmetries in the effective models describing the Yang-
Mills theory, which according to the discussion in Sec. VI
will determine whether changes of variables ¢ —
¢+, ¢, — ¢, + 3,0 are acceptable or not.

In 3D, we have seen that in the phase without global
Z(2) SSB, the change ¢ — ¢ + w® is acceptable; this
corresponds to single-valued possibly discontinuous ¢’s
defined on the interval [ —oo, +00]. In this case, we will be
able to decouple the initial Wilson surface following
treatment I. On the other hand, in the SSB phase, the
change is not acceptable, and the ¢’s will have to be
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considered as continuous multivalued angles. Here, the
reference to the arbitrary initial S(C) will also disappear,
but giving place to an integral over all the Wilson surfaces
and the above mentioned ¢’s. These two possibilities for
the class of ¢’s and their consequences will also be ex-
tended to classes of ¢, ’s in 4D theories in the continuum.

A. Dealing with Wilson surfaces I

Let us consider ¢, ¢, as single-valued fields, so that the
large dual transformations, adding the single-valued pieces
w®, d,w®, can be performed. Of course, in this case, the
Wilson surface should be an unobservable object, but the
question is, how can we use the large dual transformations
in order to decouple S(C) in favor of C, thus evidencing the
unobservability of S(C)?

PHYSICAL REVIEW D 82, 105020 (2010)

For this aim, let us follow a procedure similar to the one
we implemented in Ref. [32], where we discussed how to
decouple unobservable Dirac defects in favor of their
borders, in the CEN representation of the Yang-Mills par-
tition function.

Considering the auxiliary fields {,, {,,, and a change
of variables A, +5s, — A, A,, +g5,,— A we
have

n wvs

w(e) = f [ DDA DW]e S [0/
Xé;fﬁﬂuwﬂy%%XQ+hJH%WaMWJpAT+Mﬂyi

(76)

)

_ o _ . _ ey ) (n
W) = [[D{][DA][D‘I’]@ Se fd4X(1/4){ﬂV§My % elfd4x{(1/2)()\w 880 F ) F(1/2)€0p0 0,40 —J5)AY +(1/2)/\de}‘ (77)

The path integrals in [DA] can be done over the fields
defined in Eq. (60), with ¢, ¢, single-valued. Including
the conditions in Eq. (61), in 3D we must consider the
replacement,

[DA]— [DBID][De)e [ @360 (78)
while in 4D, we have
[DA] — [ DB D] DE]
X [Dyle! J #36utBur gt [dxviudn — (79)

Therefore, using Eq. (57) and considering in Egs. (76)
and (77) the large dual transformations, with trivial
Jacobian,

_ .0 R _ 4
b — ¢ w(), d’u ¢M Gﬂw(),

the terms in Eqgs. (76) and (77), containing, respectively,

(80)

dﬁf) , dﬁf)y, gain a phase which is a trivial multiple of 27; the
second term is invariant, while the first term gives a change
in the surface. In the 4D case, it is important to emphasize
that the explicit form for 9, 0™ is

duod = x5 fﬁ B (5,,9 — 8,0,)D(x — T(o)),
(81)

dx, 0Xg 0x
a J Jd(TldO'de'}

€ —— 82
waBy =ik g o do; doy (82)

1
& w=5€
Using Stokes’s theorem, this can be written only in terms of
07, the manifold where the added closed Wilson surface is
placed (for a discussion in the context of thin center vortices
and Dirac world sheets, see Refs. [32,38,39]). Therefore,
the index structure in Eq. (81) implies 9,9 Mw(“) =0, and

[

d, ¢, inthe measure given in Eq. (79) is invariant under the
change of variables in Eq. (80).

Summarizing, in 3D and 4D we can deform the Wilson
surface by means of a change of variables, with trivial
Jacobian, keeping its border C fixed.

Now let us consider a Hodge decomposition,

(o tk,=0,0+C,

(83)
{;LV + k/.LV = a,ulpv - aulp,u, + C,uw

with

4,C, =0, 3,Cpy =0, b, =0, (84)

that permits the identification of C,, C,, as fields only
coupled to the Wilson loop C, while the fields ¢, ¢, are
the ones coupled with the whole surface S(C).

We will show that the Wilson surface can be decoupled
by means of an appropriate change of variables, leaving
only the effect of its border. For this purpose we leave the
integration over ¢, {,, and the charged fields present in
k., k,, until the end, and analyze the integral over A, A,
first. Let us consider the term coupling ¢, ¥,

d*xs, 0,0

Joo) = I L 85
5O { fd4xs/uz(a,u, lpl/ - aV '10/1,) ( )
For the initial Wilson surface, and sources s s Spups WE Can

assume Jg) > 0 without loss of generality. In addition, we
can assume that a closed surface 91 exists, such that

J :{fd3xAsM8M¢
Lo5] fd4XAS,u,V(ap. l,b,, - avlzb,u,)
is nonzero. In this regard, it suffices to consider a small 4,

as in this case Jp,y7 is given by the local value of %,
821// e If this value were zero for any 9, we would have

(86)
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=0, ¢, =0, and the term coupling the surface would
be automatically zero.

Now let us include m times the closed surface 99 and
define the sources sju sjw, concentrated on the surface
S'(8) = S(C) o [a9]™. This amounts to the transformation,

¢ — ¢ —mao, b= by — 0 (ma®).  (87)

Then, we have
Jsic) = Jsie) T mI[y9)- (88)
Now, we can take 9 oriented such that
Jrao1 <0, (89)

so that Jg () can be rendered negative for a large enough
value of m. As S'(C) can be continuously deformed into
S(C), by shrinking 99 to zero, an intermediate surface S, (C)
must exist in this process such that Jg ) = 0 is verified.
This suggests that it is always possible to make a large dual
transformation that changes the initial S(C) into Sy(C), thus
nullifying the terms coupling the Wilson surface with i,
i, Then, in practice, the prescription in this case for
obtaining a representation for W with no reference to the
initial S(C) is simply to disregard the above mentioned
terms in Egs. (76) and (77).

B. Dealing with Wilson surfaces II

Now the question is what to do in the case where the
ensemble of defects requires regular fields ¢, ¢, in the
Hodge decomposition (60), so that large dual changes of
variables are no longer acceptable.

In order to answer this question, let us first consider the
3D case, denoting the fields in the decomposition for A o
with the properties used in the previous subsection, as ¢!
and B),. That is, ¢! is single valued and defined on the
interval [ —o0, +00]. Now, considering a smooth A w add-

ing and substracting a source sﬂ(i) concentrated on a

general Wilson surface 2 whose border is C, we can also
write a decomposition using fields ¢'' and Bl}, with ¢"
being a multivalued field, when we go around the Wilson
loop C. That is,

Ay =0,¢"+ B, =0d,¢" + B, (90)

0up" = 0,8 - 55,5, F=o'+ 5005,

oD

8 .
Bl = B! - Ee,”pa,,a 2j,(C). (92)
Note that, when computing 9, ¢", the derivative of the
discontinuity in the second term of ¢ is canceled by the

—£s M(S) term, so that the defined ¢! is a continuously
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changing multivalued field, satisfying €,,,9,9,¢" =
~£,(0.

On the other hand, the class of fields A, generated by the
single-valued, possibly discontinuous, ¢"s is different
from the class of fields A, generated by the continuous
multivalued ¢'s. In the first case, there is no problem in
summing ¢! and w® to obtain another possible configu-
ration; in the second case, summing the multivalued ¢!
and @® does not make any sense.

In a similar way, in 4D, we will have type I and type II
dual fields ¢, the former are the single-valued fields used
in the previous subsection, the latter being appropriate for
describing situations where w® changes of variables are
not acceptable.

Then in this section, we will introduce a decomposition
in terms of type II fields in 3D and 4D, enjoying the
properties

€urp?ndyd = =57, (0),
€urpodsiybs = =27, (0). 93)

In three dimensions, the integral of €,,,,0,9,¢ over an
open surface with border 2P, crossed by the Wilson loop C,
gives *g/2. Then, using Stokes’s theorem, the integral of
d,,¢ along P gives A¢p = *+g¢/2, while this change is zero
on a path that does not link C. We have already seen that the
multivalued ¢ can be written in terms of q~5(x), discontinu-
ous at some surface > whose border is the Wilson loop C,
such that 9, ¢ = 8Mq~5 —55,(2).

In four dimensions, ¢, must be considered as a vector
field that cannot be globally defined on the closed surfaces S
linked by the Wilson loop. It can be differently defined on
two hemispheres meeting on a closed path P, where the
difference between ¢, continued from each one of the
hemispheres is 9, a, with @ multivalued. This can be vi-
sualized by considering, for example, the Wilson loop con-
tained in the x” = 0 hyperplane (a three-volume). If we stay
on this hyperplane, the loop C is seen to be linked by path 2.
If we continuously move to other hyperplanes with x° # 0,
the Wilson loop will no longer be seen, while the former
path 2 will be seen to continuously shrink to a point,
mapping both hemispheres in four dimensions, for positive
or negative x, forming the closed surface linked by C.

Precisely because of Eq. (93), the integral of
€.1ps0,9,¢,, over an open three-volume with border S,
gives *g/2 and can be equated via Gauss’s theorem with
the integral of €,,,,,,9, ¢, over the closed surface S linked
by C. This surface integral can be done on the two hemi-
spheres A and B, sharing the same border P, where ¢,
takes the values (;Sﬁ and ¢3, respectively. Now, we can use
Stokes’s theorem to write the surface integral as the line
integral of ¢}, — ¢5 = 9,a over the closed path P, thus
obtaining Aa = *g/2.
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Then, in Eq. (60), the multivalued field ¢, can be
replaced by ¢, (x), defined on the whole Euclidean space-
time as a function of point x and discontinuous at some
surface 3., whose border is the Wilson loop C. Again, the
derivatives of ¢, cannot contain any singular term on s,
so that the replacement must by done as follows:

a,ufbv - 8V¢M = ap,(zv - avé,u, - gs,uv(i);

where the second term is concentrated on 3 and compen-

(94)

sates the & distribution on 3 that originated when taking

the derivatives of the discontinuous vector field g{; ﬂ(x).
Because of the multivalued character of the fields, the

factors containing the defects in Egs. (41) and (42) become

: (n) : 7 (n)
etfd3x()\ﬂ+(g/2)s#)d,f _ etfd3x(aﬂ¢+BM)d; )

(95)

. (n) . v 7 (n)
o jd4x(1/2)().w+gsw)dw _ elfd4x(1/2)(8M(byfd,,qﬁMJer,)dw’
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g [ d*x(s,, — 5,,(SNdY), = 2nm. (98)

In addition, the implicit constraints in Egs. (40) and (45)
become

1= unpt( By + 55, = 5,(80) = €p8,8, 99)

1 -
JE = EEMVPUaV(BPf’ + g[sp" B SPU(E)])
1

= E G,LLVp(TaVBp(T’

(100)

where we used that the sources s,,, s, are concentrated on
S(C), sharing the same border C with s,

Therefore, using the above results when considering
multivalued dual fields ¢, ¢,, we can represent the
Wilson loop in Egs. (41) and (42) according to

CORR (o f[Di][DT(i)]e—S,.—jd3x(l/2)(a#qz—(g/E)su(i)-%—B#)z
where we used _ . i "
% ¢! fd3x{(ew/,aVB,,—J;L)A# + Ak, (0, +B,)d. }’ (101)
% '[d3x(sﬂ — SM(E))d%) = 2nm, 97)
|
w(e) = f [DINDFE)Je S D000 b330+ Bu)?
% ol J 5 ((1/2)€4p00,B 0 =TDAR +(1/2) Mk +(1/2)(0 4 =0, by + B )l , (102)

[DF ()] = [DBIDSIDYIFE F?,, where FE, is the
part of the measure fixing the condition for B, B,,,, and
in four dimensions F;f’f is the part fixing the condition
for ¢,,. .

In this manner, W(C) no longer refers to the particular
surface S(C), initially introduced in the PD representation.
In turn, the path integral over multivalued fields is equiva-
lent to the integral over all the surfaces 3 with border C,
together with the path integral over the fields ¢, ¢ us With a

given jump at s,

VIII. CONCLUSIONS

In this work we have presented a natural framework for
discussing possible ideas underlying confinement and en-
sembles of defects in 3D and 4D SU(2) Yang-Mills theory
in the continuum.

Initially, we have considered a representation for the
Wilson loop average W, based on the Petrov-Diakonov
representation of the non-Abelian Wilson loop W, com-
bined with the Cho-Faddeev-Niemi decomposition of
SU(2) gauge fields, which permits one to write the average
W as a path integral over SU(2) mappings. These mappings
induce local frames 7, in color space, whose defects

represent not only the monopole sector, but also a Z(2)
center vortex sector.

The interesting point is that the integrand of W contains
an arbitrary surface S(C), whose border is the Wilson loop,
originated from the Wess-Zumino term in the Petrov-
Diakonov representation. On the other hand, the usual
representation for W(C) only refers to C. Then, the problem
is how the representation for W can be worked out so as to
implement the independence on the initial choice for S(C).

In other words, when defects proliferate, the natural
question that arises is how and under what conditions the
surface S(C) can be decoupled, in favor of its border, or it
becomes a Wilson surface variable.

On the other hand, the discussion about how a surface
can become observable is a key point to understanding the
possible mechanisms underlying confinement and its asso-
ciated properties.

In Ref. [10], this has been analyzed by means of the
peculiar declustering properties of correlators involving
the Wilson loop operator W(C) and the disorder operator
V().

In Ref. [37], the Wilson loop average W has been
considered in the context of compact QED(3) and compact
QED(4) regularized on the lattice. There, considering in
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3D the dual field ¢ defined on the interval [ —oo, +00], a
representation based on axion fields, with multivalued
action, has been obtained, and a series of approximations
led to an explicit dependence of the resulting W on the
arbitrary S(C) appearing in its definition. Then, it has been
conjectured that this problem would be resolved if all the
branches of the multivalued action were considered in the
calculation, and that this would be equivalent to consider-
ing an integration over all Wilson surfaces, and dual fields
¢ with a given jump at the corresponding surface.

In this article we have discussed this kind of problem in
terms of the regularity properties imposed on the dual
fields by the different ensembles of defects, and the asso-
ciated closure properties under large dual transformations.

Our representation for W contains an integral over the
ensemble of defects, a path integral over the diagonal and
off-diagonal gluon fields, including a gauge fixing, and one
over dual fields A, =d,¢ + B,, y = 0,0, —
d,¢, + B,,, minimally coupled to the center vortex
world lines or world sheets, in three and four dimensions,
respectively.

In terms of the effective action S, originated from the
ensemble integration, the effective model for the Yang-
Mills partition function is of the form

Seff = SU m[)‘ ] + S[F,u,] + 7/\#/\#:

F,=€,,,0,A,
Seff = vm[/\,u,v] + S[FI,U,] + ’y)t,u,v)\,u.w
ﬁ,u ,u,Vp(TaVAplT’

in 3D and 4D, respectively.

For example, in 3D, we have argued that for chains of
monopoles attached in pairs to center vortices, S, ,, is
naturally associated with a vortex field V(x), minimally
coupled with A, displaying a local Z(2) symmetry. This
symmetry is also present in the second term S[F -
However, because of the last term A, A, the Z(2) symme-
try in S is only global, and the effective model is ex-
pected to be a generalization of the well-known vortex
model of Ref. [10].

Moreover, in a phase where the global Z(2) is sponta-
neously broken, the effective theory contains domain
walls, a topological structure whose existence depends on
the consideration of well-behaved continuous fields V(x),
A, Then, the change of variables associated with the local
Z(2) transformations ¢ — ¢ + w®, adding to A . asource
localized on a closed Wilson surface, cannot even be
accepted in this case, as these transformations are not
closed. On the contrary, if there is no SSB, the regularity
requirement is no longer valid, and this change of variables
becomes acceptable.

Similarly for monopole chains in4D, the A,,,A,,,, term in
Setr would be the noninvariant part under large dual trans-
formations ¢, — ¢, + 9 Mw(“), adding a source localized

PHYSICAL REVIEW D 82, 105020 (2010)

on a closed Wilson surface 9. Here the discussion about a
possible topological structure for the effective theory is
highly nontrivial, as the vortex field V(x) in 3D is replaced
by a loop variable V(C). Nevertheless, we can assume that
different phases could exist, where the associated regularity
requirements on A, could lead us to consider the changes
of variables ¢, — ¢, + 9 #w(“) as acceptable or not.

For example, this discussion already occurs in 4D when
looking at the monopole part of S, ,,, in the simpler situ-
ation where monopoles are uncorrelated with center vorti-
ces. As is well known, this part is typically represented by a
complex field ®(x), minimally coupled with ¢,. In a
phase where the dual U(1) is spontaneously broken, the
model has a topological structure, whose existence de-
pends on the consideration of well-behaved continuous
fields ®(x), A,,,, thus precluding the ¢, — ¢, + 9, 0¥
transformations.

In canonical language, this corresponds to the fact that
an order parameter must be invariant under regular gauge
transformations. For the condition 9, ¢, = 0, such an
order parameter turns out to be variant not only under
spacetime independent phase transformations, but also
under multivalued w® transformations. Then, if the global
U(1) is spontaneously broken, the large dual transforma-
tions will also display SSB.

For these reasons, in the last part of this work, we were
led to analyze the representation for W in two possible
scenarios, before considering an effective model for the
ensemble integration.

In the representation of W in 3D, we have discussed two
alternatives for the class of fields A,. They are generated
by ¢!, general single-valued fields defined on the interval
[—o0, +00], or by the fields ¢, multivalued when we go
around the Wilson loop C. While in the former case
changes of variables ¢' — ¢! + w® are acceptable, in
the latter, the addition of ¢! with w® is meaningless.

These alternatives have been generalized to 4D, where
the class of fields A,, can be generated by two types of
fields. The first type is closed under the transformation
¢l — ¢l + 9,09, with ¥ a multivalued phase when
we go around 9. For the second type, this transformation
does not make any sense, as the fields cannot be globally
defined on the closed surfaces linked by the Wilson loop C.

In general, if in 3D or 4D the required fields are type I,
we have shown that it is possible to perform changes of
variables in the representation for W so as to decouple the
Wilson surface S(C).

In the second case, the integral over type II multivalued
fields were replaced by an integral over all possible sur-
faces 2 whose border is C, and dual fields ¢, ¢ - functions
of point x on the Euclidean spacetime, with an appropriate
jump at 3. In this manner, any reference to the initial
arbitrary S(C) also disappeared, but in a different way;
the initial surface has become a Wilson surface variable.
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Summarizing, for SU(2) Yang-Mills theories, we intro-
duced a framework to discuss the coupling between gauge
fields containing defects, surfaces attached to the Wilson
loop, and dual fields. We have discussed some effective
models, the implied regularity requirements, and the asso-
ciated inequivalent manners to represent the Wilson loop
without reference to the initial Wilson surface considered.
This general framework could prove useful as a starting
point to understand the promising scenario associated with

PHYSICAL REVIEW D 82, 105020 (2010)

correlated monopoles and center vortices in continuum 4D
Yang-Mills theories.
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