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In this work, based on the Petrov-Diakonov representation of the Wilson loop average �W in the SUð2Þ
Yang-Mills theory, together with the Cho-Fadeev-Niemi decomposition, we present a natural framework

to discuss possible ideas underlying confinement and ensembles of defects in the continuum. In this

language we show how for different ensembles the surface appearing in the Wess-Zumino term in �W can

be either decoupled or turned into a variable, to be summed together with gauge fields, defects, and dual

fields. This is discussed in terms of the regularity properties imposed by the ensembles on the dual fields,

thus precluding or enabling the possibility of performing the large dual transformations that would be

necessary to decouple the initial surface.
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I. INTRODUCTION

Nowadays, one of the most important and interesting
open problems in physics corresponds to understanding
quark confinement. Although quantum chromodynamics
is completely successful in describing high energy phe-
nomena, where because of asymptotic freedom the main
characters are quarks and gluons, a theoretical explanation
for the confinement of these objects in colorless asymptotic
states is still lacking.

With regard to gluon confinement, an important line of
research corresponds to studying the effect of the Gribov
horizon [1]on the gluon propagator. These ideas indicate
that the inclusion of a Gribov-Zwanziger term in the pure
Yang-Mills action, as to avoid Gribov copies, leads to
infrared suppressed gluon and ghost propagators [2–6].
While the absence of the pole in the gluon propagator
would explain why gluons cannot occupy asymptotic
states, it is difficult to imagine an explanation for quark
confinement in this framework, as the infrared suppression
could not produce long range forces.

Therefore, among the possible frameworks for the con-
finement of (heavy) quarks in pure Yang-Mills theory,
those based on the inclusion of a nonperturbative sector
represented by magnetic defects become favored, and the
problem turns out to be the identification of defects, their
associated phases, and how they can imply an area law for
the Wilson loop. Although these points have been studied
for many years now, a closed theoretical understanding is
still lacking [7–9].

For example, in themechanismof dual superconductivity
[10–13], the QCD vacuum is expected to behave as a
superconductor of chromomagnetic charges, which implies
the confinement of chromoelectric charges, in an analogous
(dual) manner to what would happen with a type II super-
conductor, where magnetic monopoles would be confined
because of the magnetic flux tube generated between them.

When implementing the Abelian projection [14], mono-
poles can appear as defects when a gauge fixing that

diagonalizes a field that transforms in the adjoint represen-
tation of SUðNÞ is considered.
Another possible manner to identify them is as defects

when trying to implement the Cho-Faddeev-Niemi (CFN)
decomposition, with the advantage that in this case no
particular gauge fixing condition is invoked. For instance,
the monopoles for SUð2Þ are defects of the local direction
n̂ used to decompose the connection in color space (see
[15–21], and references therein),

~A � ¼ AðnÞ
� n̂� 1

g
n̂� @�n̂þ ~XðnÞ

� ; n̂ � ~XðnÞ
� ¼ 0: (1)

Besides monopoles, ZðNÞ center vortices are also of
great interest, as they could explain the string tension
dependence on the representation of the subgroup ZðNÞ
of SUðNÞ observed in the lattice (N-ality), a property that
cannot be explained by the isolated effect of monopoles. In
addition, when closed center vortices are included, an area
law (confining phase) or perimeter law (deconfining phase)
has also been observed, depending on whether these ob-
jects percolate or not [22–25].
Moreover, strong correlations between monopoles and

center vortices are supported by recent results on the
lattice, and they are quite promising in accommodating
the different properties of the confining phase [26–28] (for
a review, see also Ref. [7]).
The aim of this work is to present a natural framework to

discuss possible ideas underlying confinement and ensem-
bles of defects in the continuum.
In this regard, we have recently unified the description of

monopoles and center vortices [29]as different types of
defects of the complete local color frame n̂a, a ¼ 1; 2; 3
used in the Cho-Faddeev-Niemi decomposition of the
SUð2Þ gauge fields, where n̂3 ¼ n̂ and

~X
ðnÞ
� ¼ X1

�n̂1 þ X2
�n̂2: (2)

When the element n̂ contains monopolelike defects,
localized on closed strings, the elements n̂1, n̂2 inevitably
contain defects on open surfaces, and these can correspond
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to Dirac world sheets or to pairs of center vortex world
sheets, attached to the monopoles. When we go close to
and around an open center vortex (Dirac) world sheet, n̂1
and n̂2 rotate once (twice), corresponding to the flux 2�=g
(4�=g) carried by them.

In this manner, additional singular terms in the Yang-
Mills action appear, due to the fact that derivatives do not
commute when defects are present. These are either local-
ized on Dirac world sheets or on thin center vortices.

In fact, these singular terms were missing in previous
literature about the Cho-Faddeev-Niemi decomposition.
In this respect, we would like to point out that effective
Skyrme models have been constructed in terms of n̂
[17,20,21,30,31], guided by the decomposition in
Eq. (1). Then, although they capture information about
monopoles without reference to unobservable Dirac world
sheets, as expected in a well-defined effective model, the
information about center vortices in the n̂1, n̂2 sector is
lost in this heuristic process (for a discussion, see
Refs. [29,32]).

In this article we will first give a representation for the
Wilson loop average �W in the SUð2Þ Yang-Mills theory,
similar to the one in Refs. [16,33], but including the singular
terms for the monopole and the center vortex sectors. For
this purpose we will use the Petrov-Diakonov (PD) repre-
sentation of the Wilson loop [34–36], as the natural varia-
bles here are those used in the Cho-Faddeev-Niemi
decomposition [16].

In particular, for a given gauge field ~A�, the Wilson loop

order parameter WðCÞ can be written as an integral over
U 2 SUð2Þ containing an Abelian looking integrand that

depends on AðnÞ
� , the field that appears in the decomposition

of ~A� with respect to the local frame induced by U (for a

brief review, see Sec. III). The important point is that this
representation also includes a Wess-Zumino term, concen-
trated on a ‘‘Wilson surface’’ SðCÞ, whose border is the
Wilson loop C, although the usual representation for WðCÞ
contains no reference to a surface.

In the Petrov-Diakonov representation any surface SðCÞ
can be used, up to singular situations where it passes over
the monopoles [35]. This raises the problem of how to deal
with this arbitrary surface in the average over fields and
ensembles of defects. In Ref. [37], this kind of problem has
been discussed in the context of compact QEDð3Þ and
QEDð4Þ.

Using our representation for �W, we will discuss here
how monopole and center vortex ensembles can render the
surface appearing in the Wess-Zumino term a variable, to
be summed together with gauge fields, defects, and dual
fields. This occurs when the regularity properties imposed
by the associated physical phases on the dual fields pre-
clude the implementation of large dual field transforma-
tions in the path integral, a necessary step that should be
considered in order to decouple the initial Wilson surface
and show it is an unobservable object.

In general, using our arguments in three dimensions
(3D) or four dimensions (4D), prior to the ensemble in-
tegration, we will obtain a representation evidencing the
decoupling of the initial Wilson surface or its replacement
by a ‘‘Wilson surface variable,’’ depending on the assumed
closure properties for the dual fields.
In 3D, as center vortices are stringlike, we will also be

able to propose the general form of an effective action
describing the interaction among gauge, vortex, and
dual fields, as well as Wilson surfaces. Therefore, the
relationship between deconfining/confining ensembles
and closure/nonclosure properties of the large dual trans-
formations will be clear in this case.
Of course, which is the correct ensemble of defects

associated with Yang-Mills theories is the fundamental
part of the problem of confinement. In particular, how
can the dressing of thin defects lead to dimensional pa-
rameters characterizing thick objects that condense. This is
outside the scope of this article, which is organized in the
following manner.
In Secs. II and III, we review how to describe monopoles

and center vortices in terms of the defects of the complete
local color frame used to decompose the gauge fields, as
well as the Petrov-Diakonov representation of the Wilson
loopW. Section IV is dedicated to a brief discussion of the
representation for the average �W, including a general
ensemble of monopoles and center vortices.
In Sec. V, we discuss the arbitraryWilson surface SðCÞ in

connection with the integrand of �W. In Sec. VI, we present
possible effective models that describe chains of correlated
monopoles and center vortices, and discuss how they could
preclude the implementation of large dual changes of
variables.
In Sec. VII, we show how to decouple theWilson surface

SðCÞ in favor of its border, in the case where the dual fields
are closed under large dual transformations. In the opposite
case, we show how SðCÞ is replaced by a Wilson surface
variable, also including a discussion of generalized multi-
valued dual fields in continuum 4D theories.
Finally, we present our conclusions in Sec. VIII.

II. DEFECTS OF THE LOCAL COLOR FRAME

When studying Abelian projection scenarios, the gauge
fields are generally separated into ‘‘diagonal’’ fields, living
in the Cartan subalgebra of SUðNÞ, and ‘‘off-diagonal’’
charged fields. For instance, in the case of SUð2Þ, the
uncharged sector can be chosen along the ê3 direction in
color space, while the components along ê1 and ê2 corre-
spond to the charged sector.
In the CFN decomposition, this separation into charged

and uncharged sectors is also implemented, with the ad-
vantage that it is naturally done along a general n̂3 ¼ n̂
local direction in color space.
In Ref. [29], we have unified monopoles and center

vortex world sheets as different classes of defects in the
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local color frame n̂a ¼ Rêa, R 2 SO 3ð Þ, used in the CFN
decomposition. While it is well known that monopolelike
defects are associated with a nontrivial�2 for the space of
directions n̂, we can also think of thin center vortices as the
natural defects of a frame, due to the nontrivial fundamen-
tal group �1 ¼ Zð2Þ of SOð3Þ.

The possibility of matching general nontrivial configu-
rations containing monopoles and center vortices is
evidenced by parametrizing the gauge fields in terms of
the CFN decomposition, based on a class of frames n̂a,

ðVUÞTaðVUÞ�1 ¼ n̂a � ~T; n̂a ¼ RðVUÞêa; (3)

where U is single-valued along any closed loop, defining a
frame m̂a,

UTaU�1 ¼ m̂a � ~T; m̂a ¼ RðUÞêa; (4)

such that m̂3 ¼ m̂ is a topologically nontrivial mapping
that encodes the monopole sector. The V part is multi-
valued and enables the description of the center vortex
sector.

Let us consider, for example, a gauge field whose de-
composition is given by

~a � � ~T ¼ �
�
CðnÞ
� n̂þ 1

g
n̂� @�n̂

�
� ~T;

CðnÞ
� ¼ � 1

g
n̂1 � @�n̂2:

(5)

In the case where V � I, and taking U ¼ �U ¼
e�i’T3e�i�T2eþi’T3 , where ’ and � are the polar angles
defining r̂, Eq. (5) corresponds to a nontrivial ‘‘gauge’’
transformation i

g
�U@� �U�1 introducing an antimonopole

[16]. Note that no singularity is present at � � 0, where
�U � I. The Dirac string is placed at � ¼ �; when we go
close and around the negative z axis, the elements n̂1, n̂2
rotate twice. A monopole is obtained with the replacement
� ! �� �, ’ ! ’þ �.

More generally, a field decomposed according to Eq. (1),
with V � I, can be written as a nontrivial transformation of

a regular background ~A�,

~A � � ~T ¼ ~A
�U
� � ~T ¼ �U ~A� � ~T �U�1 þ i

g
�U@� �U�1: (6)

As is well known, the field strength for ~A
�U
� is

~F
�U
�� � ~T ¼ �U ~F�� � ~T �U�1 þ i

g
�U½@�; @�� �U�1: (7)

That is, the fields ~A� and ~A
�U
� are not physically equiva-

lent, because of the second term in Eq. (7) which is
concentrated on a Dirac world sheet, namely, the two-
dimensional surface where �U is singular.

Now, by considering in Eq. (5) a local frame defined by
U � I and V ¼ �V ¼ ei’T3 , we obtain

~a � � ~T ¼ 1

g
@�’�

a3Ta; (8)

that is, a thin center vortex placed on the two-dimensional
surface formed by the z axis, for every Euclidean time. As
the transformation �V ¼ ei’T3 is not single valued, we have

1

g
@�’�

a3Ta ¼ i

g
�V@� �V�1 � ideal vortex; (9)

where the additional term (the so-called ideal vortex) is
localized on the three-volume where the transformation is
discontinuous. For a general discussion of thin and ideal
center vortices in the continuum, see Refs. [38,39]. Then,
unlike monopoles, center vortices can only be written in
the form i

g
�V@� �V�1 on a region outside the above men-

tioned three-volume.
Furthermore, if on the monopole ansatz after Eq. (5),

V � I were replaced by �V ¼ e�i’m̂� ~T , we would have
�V �U ¼ e�i’T3e�i�T2 . Then, instead of a monopole attached
to a Dirac world sheet placed at � ¼ �, one attached to a
pair of center vortices at � ¼ 0 and � ¼ � would be
obtained. In this case, when we go close and around the
positive and negative z axis, the elements n̂1, n̂2 rotate
once, with different orientations. In general, any configu-
ration containing monopoles and center vortices (corre-
lated or not) can be written in terms of three Euler angles
�V �U ¼ e�i�T3e�i�T2eþið���ÞT3 that correspond to a single-

valued �U ¼ e�i�T3e�i�T2eþi�T3 , and a rotation �V ¼
e�i�m̂� ~T ¼ �Ue�i�T3 �U�1, leaving m̂ ¼ n̂ fixed.

III. PETROV-DIAKONOV REPRESENTATION

The usual representation for the non-Abelian Wilson
loop order parameter is given by

WðCÞ ¼ ð1=2ÞtrP expðig
I

dx� ~A� � ~TÞ: (10)

There is an alternative representation, due to Petrov and
Diakonov [34–36]. For quarks in the fundamental repre-
sentation, it is given by

WðCÞ
¼ ð1=2Þ

Z
½DUð	Þ�eði=2Þg

R
1

0
d	 tr½	3ðU�1AUþði=gÞU�1ðd=d	ÞUÞ�;

(11)

Að	Þ ¼ dx�
d	

~A� � ~T: (12)

Here, the Wilson loop C has been parametrized as x� ¼
x�ð	Þ, 	 2 ½0; 1�, x�ð0Þ ¼ x�ð1Þ. The integration measure

is

Z
½DUð	Þ� ¼

Z
dU

Z Uð1Þ¼U

Uð0Þ¼U
DUð	Þ; (13)
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which means that the functional integral is done over U
transformations that are single valued along the Wilson
loop.

Considering that on a given loop it is always possible to
write

AðuÞ ¼ i

g
Q�1 d

d	
Q; QðuÞ ¼ exp

�
�ig

Z u

0
du0Aðu0Þ

�
;

(14)

it results in [34–36]

WðCÞ
¼ð1=2Þ

Z
dU

Z Uð1Þ¼U

Uð0Þ¼U
DUð	Þeði=2Þ

R
1

0
d	 tr½	3ðiðQUÞ�1ðd=d	ÞðQUÞÞ�;

¼ð1=2ÞX
�

Dð1=2Þ
�� ðQ�1ð1ÞQð0ÞÞ: (15)

Of course, the Wilson variable generally takes a nontrivial
value; that is, Qð1Þ is generally not Qð0Þ ¼ 1.

To see how these expressions work, let us recall that
closed center vortices are usually defined as defects in the
connection such thatWðCÞ changes sign when the defect is
linked and is otherwise left unchanged.

As is well known, considering a line xð	Þ which lives on
a simply connected region outside a closed vortex, where it

is possible to write ~A� ¼ ~A
�V �U
� , and then taking the limit

where their end points are joined to form the loop C, the
usual representation for WðCÞ gives eiq�WAðCÞ, where
WAðCÞ is the Wilson loop for the field A�.

Now, we can use the PD representation. From Eq. (12),
we have

Að	Þ ¼ dx�
d	

~A� � ~T

¼
�
ð �V �UÞAð	Þð �V �UÞ�1 þ i

g
ð �V �UÞ d

d	
ð �V �UÞ�1

�
;

(16)

where we have definedAð	Þ ¼ dx�
d	

~A� � ~T. Recalling that

on the loop we can always write Að	Þ ¼ i
gQ

�1 d
d	Q, we

get Q ¼ Q �U�1 �V�1. Then, using in Eq. (15) the cyclic

property of the trace, and considering that Dð1=2Þ is an odd
function, the previous result is reobtained,

WðCÞ ¼ ð1=2ÞX
�

Dð1=2Þ
�� ðQð0Þ �U�1

i
�V�1
i

�Vf
�UfQ�1ð1ÞÞ

¼ eiq�WAðCÞ: (17)

It is important to emphasize that the second part in the
exponent of Eq. (11) is a Wess-Zumino term, and can be
rewritten not in terms of a line but in terms of a surface
integral [34–36]. Therefore, in general, we have

WðCÞ ¼ ð1=2Þ
Z
½DUð	; 
Þ�eiðg=2Þ

R
d4xs��ðfðmÞ

��þhðmÞ
�� Þ; (18)

where the source s�� is concentrated on a surface SðCÞ
whose border is the Wilson loop C, and is constructed by

requiring
R
d4xs��ðfðmÞ

�� þ hðmÞ
�� Þ to be the flux of fðmÞ

�� þ
hðmÞ
�� through SðCÞ. This surface can be parametrized by

xð	; 
Þ, and s�� must satisfy

j�ðCÞ ¼ ����@�s�;

j�ðCÞ ¼
Z

d	
dx�
d	

�ðx� xð	ÞÞ;
(19)

where xð	Þ ¼ xð	; 1Þ is a parametrization of C. In Eq. (18),
we also have

fðmÞ
�� ¼ fðmÞ

�� ¼ ����@�A
ðmÞ
 ;

hðmÞ
�� ¼ � 1

2g
����m̂ � ð@�m̂� @m̂Þ;

(20)

where the connection is decomposed by using a frame m̂a,
defined on SðCÞ, and induced by Uð	; 
Þ, namely,

UTaU
�1 ¼ m̂a � ~T; (21)

~A � ¼ AðmÞ
� m̂� 1

g
m̂� @�m̂þ ~XðmÞ

� : (22)

We also note that the possibility of writing,

Z 1

0
d	

i

g
tr

�
	3U�1 d

du
U

�
¼

Z
d4xs��h

ðmÞ
�� ; (23)

depends on the single valuedness of Uð	Þ (see Ref. [35]).
This condition is met precisely because of the integration
measure in Eq. (13).

IV. WILSON LOOP AVERAGE

Nowwewill work with thin objects defined on the whole
Euclidean spacetime, taking into account the singular
terms arising from the color frame defects. Let us consider
the Wilson loop average,

�WðCÞ ¼ 1

2N

Z
½D ~A�Fgfe

�SYM½ ~A� trP

� exp

�
ig

I
dx� ~A� � ~T

�
; (24)

N ¼
Z
½D ~A�Fgfe

�SYM½ ~A�; (25)

where Fgf is the part of the measure that fixes the gauge,

including in general auxiliary fields.
Using the PD representation, we have

�WðCÞ ¼ 1

2N

Z
½D ~A�

� ½DUð	; 
Þ�Fgfe
�SYM½ ~A�eði=2Þg

R
d4xs��ðfðmÞ

��þhðmÞ
�� Þ:
(26)
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In fact, as we are interested in discussing the Wilson loop
globally, for any closed loop and any associated surface,
we will have to consider the extensionUðxÞ, defined on the
whole Euclidean spacetime, up to possible singularities,
such that Uðxð	; 
ÞÞ ¼ Uð	; 
Þ.

Now, as the Wilson loop is written in terms of the CFN
variables, it is convenient to change to these variables in
the path integral [16,33]. The procedure is to include the
integration over the extended U’s, which amounts to in-
troducing a product of group volumes, and then performing

a change (with unit Jacobian) to the variables AðmÞ
� , ~XðmÞ

�

(m ¼ 1; 2) in the decomposition of ~A� with respect to the

basis induced by UðxÞ.
An important point to be emphasized is that after the

change, ~A� configurations containing monopoles will be

represented by U’s inducing frames with monopolelike
defects in m̂. In addition, as U configurations are single
valued, thin center vortices will be manifested as defects in

the components of the charged fields ~XðmÞ
� . For conve-

nience, the ensemble integration over these defects can
be replaced by the integration over a V sector, which
according to Eq. (3) rotates m̂1, m̂2 to n̂1, n̂2, leaving
m̂ ¼ n̂ fixed. This is done in order to identify monopoles
and center vortices with singular frames. Then, we have

�WðCÞ ¼ 1

2M

Z
½DA�½DX�½DU�

� ½DV�Fgfe
�SYM½n̂a;AðnÞ;XðnÞ�eði=2Þg

R
d4xs��ðfðnÞ��þhðnÞ��Þ;

(27)

M ¼
Z
½DA�½DX�½DU�½DV�Fgfe

�SYM½n̂a;AðnÞ;XðnÞ�:

(28)

A fundamental ingredient to be taken into account is
regarding the nontrivial singular terms associated with the
frame defects. In Ref. [29], we have identified two types,
which were missing in the field strength tensor computed
in Refs. [16–19]. The first one depends on defects of the
third component n̂3 � n̂ and occurs in the charged sector
of the field strength tensor. In Ref. [29], this type of term
has been nullified by considering n̂ configurations that
have at most monopole defects. In this case, SYM results,

SYM¼
Z
d4x

�
1

4
ðfðnÞ��þhðnÞ��þk��Þ2þ1

2
�g��g��

�
; (29)

where

g�� ¼ ����½@� þ igðAðnÞ
� þ CðnÞ

� Þ��;

CðnÞ
� ¼ � 1

g
n̂1:@�n̂2;

(30)

�� ¼ 1ffiffiffi
2

p ðX1
� þ iX2

�Þ;

k�� ¼ g

2i
����ð ���� ���

��Þ;
(31)

fðnÞ�� ¼ ����@�A
ðnÞ
 ;

hðnÞ�� ¼ � 1

2g
����n̂ � ð@�n̂� @n̂Þ:

(32)

The second type occurs when trying to express the mono-

pole part hðnÞ�� of the dual field strength in terms of the

monopole potential CðnÞ
� . In this case, we obtain

h�� ¼ ~hðnÞ�� þ dðnÞ��; ~hðnÞ�� ¼ ����@�C
ðnÞ
 ; (33)

where the singular terms dðnÞ�� are concentrated on the frame
defects. If not for this difference, the surface integral in the
Wess-Zumino term of the PD representation could be
converted into a line integral.
Now we can proceed as we did for the partition function

in Ref. [29]. Introducing real and complex Lagrange multi-
pliers, ��� and ���, we get

�WðCÞ¼ 1

2M

Z
½D��½D��½DU�½DV�e�Sc�

R
d4xð1=4Þ������

�ei
R
d4x½ð1=2Þ���ðfðnÞ��þhðnÞ��þk��Þ�J

�
c ðAðnÞ

� þCðnÞ
� Þþðg=2Þs��ðfðnÞ��þhðnÞ��Þ�:

(34)

where we have defined ½D�� ¼ ½DAðnÞ�½D��½D�� ~Fgf.

Here, we have the action for the charged fields,

Sc ¼
Z

d4x

�
1

2
������� � i

2
ð ��������@��

þ�������@� ��Þ
�
; (35)

minimally coupled to the Uð1Þ color current J�c ¼
J� þ K�,

J� ¼ � i

2
g���� ����� þ i

2
g�������

��: (36)

The terms K� and ~Fgf appear when fixing an

extended maximally Abelian gauge,

@�ðAðnÞ
� þ CðnÞ

� Þ ¼ 0: (37)

½@� þ igðAðnÞ
� þ CðnÞ

� Þ��� ¼ 0;

½@� � igðAðnÞ
� þ CðnÞ

� Þ� ��� ¼ 0:
(38)

More precisely,

Fgf ¼ ~Fgfe
�i
R

d4xðAðnÞ
� þCðnÞ

� ÞK�

; (39)

where ~Fgf is independent of AðnÞ
� , and contains the

integration measure for Lagrange multipliers, ghosts,
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and auxiliary fields, while K� depends on these
fields, as well as on ��.

Because of the AðnÞ
� path integration, a constraint is

implicit here,

J�c ¼ 1

2
����@�ð�� þ gs�Þ; (40)

so that we finally get,

�WðCÞ ¼
Z
½D��½D��½DU�½DV�e�Sc�

R
d4xð1=4Þ������

� ei
R

d4xfðð1=2Þ����@�ð��þgs�Þ�Jc�ÞAðnÞ
� þð1=2Þ���k��þð1=2Þð���þgs��ÞdðnÞ��g: (41)

It will also be convenient to discuss the representation in
3D, derived by following the same steps, namely,

�WðCÞ¼
Z
½D��½D��½DU�½DV�e�Sc�

R
d3xð1=2Þ����

�ei
R
d3xfð����@�ð��þðg=2Þs�Þ�Jc�ÞAðnÞ

� þ��k�þð��þðg=2Þs�ÞdðnÞ� g;

(42)

Sc ¼
Z

d3x½ ����� � ið �������@��� þ������@� ���Þ�:
(43)

In the total charge current J�c ¼ J� þ K�, the term K�

receives contributions from the charged fields of the gauge
fixing sector and

J� ¼ ig���� ����� � ig������
���;

k� ¼ g

2i
����ð ����� ���

���Þ:
(44)

The source s� is concentrated on SðCÞ and is such thatR
d3xs�ðf� þ h�Þ gives the flux of (f� þ h�). Also in

Eq. (42), we have the implicit constraint,

Jc� ¼ ����@�

�
�� þ g

2
s�

�
; ����@�s� ¼ j�ðCÞ: (45)

Finally, dðnÞ� is concentrated on the defects and is obtained
from

hðnÞ� ¼ ~hðnÞ� þ dðnÞ� ; (46)

hðnÞ� ¼ � 1

2g
����n̂ � ð@�n̂� @�n̂Þ;

~hðnÞ� ¼ ����@�C
ðnÞ
� :

(47)

For a monopole/antimonopole correlated with a pair of
center vortices, the terms representing the defects in
Eqs. (46) and (33) are given by [29]

dðnÞ� ¼ dð1Þ� þ dð2Þ� ; dðnÞ�� ¼ dð1Þ�� þ dð2Þ��; (48)

dð�Þ� ¼ 2�

g

Z
d

dx��

d
�ð3Þðx� x�ðÞÞ: (49)

dð�Þ�� ¼ 2�

g

Z
d2���

ð4Þðx� x�ð1; 2ÞÞ; (50)

Here, x�ðÞ [x�ð1; 2Þ], � ¼ 1; 2, is a pair of open center
vortex world lines (world sheets) with the same boundaries
at xþ, x� (Cþ,C�), where the monopole and antimonopole
are localized. That is,

@�d
ð�Þ
� ¼ 2�

g
ð�ð3Þðx� xþÞ � �ð3Þðx� x�ÞÞ; (51)

@�d
ð�Þ
�� ¼ 2�

g

�I
Cþ

dy��
ð4Þðx� yÞ �

I
C�

dy��
ð4Þðx� yÞ

�
:

(52)

For uncorrelated objects, we can write dðnÞ� ¼ dðmÞ
� þ

dðvÞ� , dðnÞ�� ¼ dðmÞ
�� þ dðvÞ�� [29], where the first part comes

from defects in n̂1, n̂2 concentrated on open Dirac strings
or world sheets, while the second part comes from defects
localized on closed center vortex world lines or world
sheets, thus satisfying

@�d
ðvÞ
� ¼ 0; @�d

ðvÞ
�� ¼ 0: (53)

V. WILSON SURFACES AND FRAME DEFECTS

Up to now, we have seen how to represent the Wilson
loop average in the continuum, by considering an ensemble
of thin defects. In fact, in Yang-Mills theories, these de-
fects are expected to be dressed by quantum fluctuations,
gaining dimensional properties such as the vortex thickness
and stiffness. This is the difficult part of the problem of
confinement; however, we can assume this scenario and
analyze its feedback on the structure of the theory.
That is, we can replace the measure over the monopole

and vortex sectors ½DU�½DV� by another one ½Dmon��
½Dvor� ¼ ½DU�½DV�e�Sd , including an action Sd for the
physical part of the defects, characterizing the ensemble.
The ensemble integration in Eqs. (41) and (42) can be
separated to define an effective contribution Sv;m,

e�Sv;m½ ���� ¼
Z
½Dmon�½Dvor�eið2�=gÞ

PR
dx� ���;

��� ¼ �� þ g

2
s�; (54)
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e�Sv;m½ ����� ¼
Z
½Dmon�½Dvor�eið�=gÞ

PR
d2��

���� ;

���� ¼ ��� þ gs��: (55)

For correlated defects, with center vortices forming chains
of monopoles and antimonopoles, the sum in the integrand
would be performed over open center vortices attached in
pairs to the corresponding monopoles and antimonopoles.
In case of uncorrelated defects, the sum would be over
closed center vortices plus the sum over open Dirac strings
(in 3D) or Dirac world sheets (in 4D).

It is still an open problem which ensemble is associated
with SUð2Þ Yang-Mills theory. In the next section, we will
discuss some possibilities in the framework provided by
the CFN decomposition and the PD representation in the
presence of defects.

Note that in the representation for �W, in Eqs. (41) and
(42), the terms containing ����@�s�, ����@�s�, accord-

ing to Eqs. (45) and (19), depend only on the Wilson loop
C. However, because of the Wess-Zumino term in the PD
representation and the presence of defects, �W contains a
reference to the initially considered SðCÞ, although the
usual non-Abelian Wilson loop representation contains
no reference to a surface.

Terms in dðnÞ� , dðnÞ�� associated with closed center vortices
contribute with a flux�2�=g for each center vortex cross-
ing the surface. For a fixed Wilson loop C, this contribution
is independent of the surface SðCÞ considered, given a
factor ð�1Þlink that depends on the total linking number
between the closed center vortices and C. When vortices
percolate, this linking gives an area law that displays
N-ality [7].

As we have previously seen, monopoles can be joined by
Dirac defects or by pairs of open center vortices.

In the first case, for a surface crossed by a Dirac defect
the flux is �4�=g, while for a surface that is not crossed
the flux is zero. Both situations contribute with a trivial
phase �2�, or zero, respectively.

In the second case, consider, for example, a given mono-
pole/antimonopole configuration joined by a pair of center
vortices. If the loop C is ‘‘linked’’ by the chain, the flux
contribution will be þ2�=g or �2�=g, depending on
which center vortex in the pair crosses the surface SðCÞ.
In both cases the Wilson loop gains a �1 factor.

However, we see that when considering the ensemble
integration over defects, there are singularities when the
monopoles pass over SðCÞ. This leads to the problem of
how to obtain a representation of the Wilson loop average
with no reference to the initially considered Wilson surface
SðCÞ. The answer will depend on the type of ensemble.
Initially we will discuss in the CFN-PD framework how,
when the magnetic defects proliferate, the different phases
can enable or preclude the possibility of performing large
dual transformations.

VI. POSSIBLE ENSEMBLES AND THE
ASSOCIATED CLOSURE PROPERTIES OF

THE DUAL FIELDS

As already discussed, the usual representation of the
Wilson loop contains no reference to a surface, so that
the Petrov-Diakonov representation of the Wilson loop
average should be invariant under the change of initial
Wilson surface SðCÞ.
The consideration of a different SðCÞ can be written as

the addition of a closed surface @#, written as the border of
a three-volume#: SðCÞ ! SðCÞ � @#. This change can also
be written in terms of the new sources, s� þ�s�, s�� þ
�s��, where, as @# has no border, the additional pieces

verify

����@��s� ¼ 0; ����@��s� ¼ 0; (56)

so that in 3D and 4D we can write

g

2
�s� ¼ @�!

ð3Þ; g�s�� ¼ @�!
ð4Þ
� � @�!

ð4Þ
� : (57)

Note that as long as x is not on the closed surface @#, we

have @�!
ð3Þ ¼ 0, @�!

ð4Þ
� � @�!

ð4Þ
� ¼ 0. That is, !ð3ÞðxÞ is

piecewise constant. It takes the value �g=2, when x is
inside #, and is zero outside. The plus or minus sign
depends on whether the normal to @# has an internal or
external orientation.

In 4D, the solution to Eq. (57) is !ð4Þ
� ¼ @�!

ð4Þ, where
!ð4Þ is a multivalued phase. That is, when a path linking the

surface @# is followed, !ð4Þ changes by an amount �g=2,
while it does not change otherwise.
Now it is obvious that for a given ��, ��� in the

integrand of Eqs. (41) and (42), the configurations

�� þ @�!; ��� þ @�!� � @�!�; (58)

with ! and !� smooth well-defined fields, always corre-

spond to another possible field configuration, so that we
can operate with the associated changes of variables as
usual. Then we are tempted to always consider

�� ! �� þ @�!
ð3Þ; ��� ! ��� þ @�!

ð4Þ
� � @�!

ð4Þ
� ;

(59)

as an acceptable change of variables. In terms of the Hodge
decomposition,

�� ¼ @��þ B�; ��� ¼ @��� � @��� þ B��;

(60)

@�B� ¼ 0; @��� ¼ 0; @�B�� ¼ 0; (61)

we are asking about the possibility of considering changes
of variables,

� ! �þ!ð3Þ; �� ! �� þ!ð4Þ
� ¼ �� þ @�!

ð4Þ:
(62)
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As we will see, this is not always possible and will depend
on how the symmetries are realized in the effective de-
scription for the Yang-Mills theory. In the next subsections
we will discuss some effective models; to simplify, we will
consider the partition functions, obtained by setting the
sources s�, s�� equal to zero in Eqs. (41) and (42).

A. Correlated monopoles and center vortices in 3D

Center vortices have been discussed in the SUðNÞ
Georgi-Glashow model in 3D [10]. Classically, this model
contains vortices with topological charge ZðNÞ. At the
quantum level, the vortex sector can be represented by
means of vortex operators associated with the monopole
singularities in Euclidean spacetime, where the vortices are
created or destroyed. The relevant Green’s functions are
incorporated by means of an effective Lagrangian for a
vortex field,

@� �V@�V þ�2 �VV þ �ð �VVÞ2 þ �ðVN þ �VNÞ; (63)

which displays a global ZðNÞ symmetry. When the vortex
is an elementary excitation (�2 > 0), there is no sponta-
neous symmetry breaking (SSB). If vortices condense,
SSB occurs (�2 < 0) and the formation of a domain wall
between a heavy quark-antiquark pair leads to an area law
for the Wilson loop [10].

Let us discuss the relationship between our representa-
tion and the effective model in Eq. (63). In the phase where
the vortex is an elementary excitation with mass �, center
vortex world lines can be associated with the propa-
gation of pointlike particles. Because of the coupling

eið2�=gÞ
PR

dx��� , when representing this ensemble of
world lines in terms of an effective complex field VðxÞ,
the vector field �� in Sv;m½��� [cf. Equation (54)] should

be coupled through the covariant derivative,

D�V ¼ ½@� þ ið2�=gÞ���V:
In order to determine the possible terms in Sv;m½���, let

us consider a transformation �� ! �� þ @�!, with

smooth !. In this case, the integrand in Eq. (54) would
gain a nontrivial factor,

eið2�=gÞ
PR

dx�@�! ¼ eið4�=gÞ
Pð!ðxþi Þ�!ðx�j ÞÞ: (64)

Here, we used that center vortices are always attached in
pairs to monopoles (antimonopoles) located at xþi (x�j ).
Therefore, when center vortices concatenate monopoles to
form closed chains, we see that the presence of the mono-
poles should lead to an explicit !-symmetry breaking in
Sv;m. On the other hand, the possible terms in Sv;m must be

constrained by a symmetry, that in the phase where�2 > 0
is expected to be displayed by the vacuum of the theory.

When performing the !ð3Þ transformation in Eq. (59), the

associated factor in Eq. (64) is eið4�=gÞ
Pð!ð3Þðxþi Þ�!ð3Þðx�j ÞÞ ¼

e�ið4�=gÞðNþ�N�Þðg=2Þ ¼ 1, where Nþ (N�) is the number of
monopoles (antimonopoles) in #.

Therefore, the natural result for the ensemble integration
over chains is of the form

Sv;m ¼ D�VD�V þ�2 �VV þ �ð �VVÞ2
þ �ðV2 þ �V2Þ þ S0½ ~F��; (65)

where ~F� ¼ ����@���. This Sv;m enjoys the desired prop-

erties, as the! symmetry is explicitly broken by the V2, �V2

terms. In addition, it displays a local Zð2Þ symmetry V !
e�ið2�=gÞ!ð3Þ

V, �� ! �� þ @�!
ð3Þ. This comes about as

!ð3Þ is given by �g=2 inside #, while it is zero outside.
Then, this transformation changes the sign of V, �V inside
#, thus leaving the V2, �V2 terms invariant. The term S0 is
also invariant; this can be seen from the property

����@�@�!
ð3Þ ¼ 0, implied from Eqs. (56) and (57). For

a discussion of local discrete transformations in 3D gauge
theories, when matter fields in the fundamental represen-
tation are present, see Refs. [40,41].
The effective contribution in Eq. (65) can also be ob-

tained by direct ensemble integration based on polymer
field theory techniques, considering a phase where center
vortices are flexible, characterized by a small stiffness, and
tensile, weighted by a factor e��L [42].
Then, taking into account the other terms in Eq. (42) and

the integral over [D�], the effective model for the parti-
tion function in SUð2Þ Yang-Mills, including the effect of
chains, would be of the form (for a discussion of the ½D��
integration, see Ref. [29], and references therein),

Seff ¼ D�VD�V þ�2 �VV þ �ð �VVÞ2
þ �ðV2 þ �V2Þ þ S½ ~F�� þ �����; (66)

where the term ���� explicitly breaks the !ð3Þ symmetry

in Seff , preserving a global Zð2Þ. Now, in a phase where this
global Zð2Þ symmetry is spontaneously broken (�2 < 0),
we have a topological structure, whose existence depends
on the consideration of well-behaved continuous fields. In
particular, we will have finite action domain walls where
VðxÞ will continuously change from þV0 to �V0, accom-
panied by a well-behaved continuous ��. As we go across

the wall, either the phase of VðxÞmust change continuously
from 0 to � or we can have a � discontinuity at a thin
surface S inside the thick wall, as long as VðxÞ vanishes for
points x 2 S. These kinds of walls have been discussed in
Ref. [40].
In other words, when the global Zð2Þ is spontaneously

broken, changes of variables of the form V !
e�ið2�=gÞ!ð3Þ

V or �� ! �� þ @�!
ð3Þ are not acceptable,

as the fields produced will no longer correspond to well-
behaved continuous fields. On the other hand, in the phase
where the global Zð2Þ symmetry is not spontaneously
broken (�2 > 0), these requirements are no longer appli-
cable, and the large dual transformations are acceptable.
It is also interesting to note that if S½ ~F��were dominated

by a Maxwell term (see Ref. [29]), �� would be a massive
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vector field. Then, depending on the generated mass scale,
�� would be suppressed and the model in Eq. (63) would

be obtained. In addition, because of Eq. (44), the off-
diagonal current is given by ����@��� (in this subsection

we are considering s� ¼ 0) so that this suppression would

correspond to Abelian dominance [43,44].

B. Loop-like monopoles in 4D

In 4D, the problem concerning the closure properties of
large dual field transformations can easily be understood in
the simpler context of ensembles of uncorrelated mono-
poles and center vortices. In this case, the ensemble inte-
gration is of the form Sv;m½���� ¼ Sv½B��� þ Sm½���,

e�Sv½B��� ¼
Z
½Dvor�e

ið�=gÞP
v

H
d2��B��

; (67)

e�Sm½��� ¼
Z
½Dmon�e

ið4�=gÞP
ij

ðH
Cþ
j

dy����
H

C�
i

dy���Þ
;

(68)

where we have used that unobservable Dirac world sheets
can be decoupled in favor of their borders (see Ref. [32]).

As the dual vector field �� is minimally coupled with

closed stringlike objects, the action Sv;m originated from

the ensemble integration will be gauge invariant under
regular gauge transformations �� ! �� þ @�! and will

contain a complex field � representing the monopole
sector minimally coupled through the covariant derivative
(for a review, see Ref. [45]),

½@� þ ið4�=gÞ����:

Now, in the corresponding effective action for SUð2ÞYang-
Mills, the ������ term and theD� integration in Eq. (41)

will give additional gauge invariant terms, depending on
@��� � @���.

In a phase where the Uð1Þ gauge symmetry is sponta-
neously broken, we will again have a topological structure,
whose existence depends on the consideration of well-
behaved continuous fields. For instance, the phase in
�ðxÞ can be ill defined only in places of false vacuum.
Therefore, when SSB is present, changes of variables with

multivalued phase !ð4Þ cannot be accepted, as in general

e�ið4�=gÞ!ð4Þ
� would be ill defined on the closed surface

@#.
This discussion, together with the minimal coupling

with ��, leads to the impossibility of considering �� !
�� þ @�!

ð4Þ as an acceptable change of variables in the

path integral for a SSB phase. A similar situation occurs
with the spacetime independent phase transformations, in
the SSB phase, where the boundary condition imposed on
� at infinity is not closed under them.
In more formal language, according to the Elitzur theo-

rem [46], gauge transformations cannot be spontaneously
broken. That is, at the nonperturbative level, in the canoni-
cal version of the quantized theory, there is no gauge
variant operator with a nonzero expectation value (for a
discussion in the context of confinement, see Refs. [8,9]).
What can be spontaneously broken is the subgroup of

‘‘global’’ gauge transformations that remains after a gauge
fixing is implemented. An order parameter to explore the
possible realizations must be something invariant under
gauge transformations and variant under global transfor-
mations. This can be constructed for different gauge

fixings. In the dual �̂� theory it could be considered of

the form

Ô ¼ eið4�=gÞ
R

d4x0@��̂�ðx0ÞDðx0�xÞ�̂ðxÞ; (69)

where DðxÞ is the Green function for the Laplacian opera-
tor. This order parameter is invariant under local regu-

lar phase transformations �̂� ! �̂� þ @��ðxÞ, �̂ !
e�ið4�=gÞ�ðxÞ�̂, while under spacetime independent ones it

transforms as Ô ! ei�Ô.

We also note that !ð4Þ satisfies @�@�!
ð4Þ ¼ 0 (see

Sec. VII A), so that the order parameter in Eq. (69) also

transforms under the operation �̂� ! �̂� þ @�!
ð4Þ, �̂ !

e�ið4�=gÞ!ð4Þ
�̂, according to Ô ! e�ið4�=gÞ!ð4Þ

Ô.
Then, when the spacetime independent phase transfor-

mations are spontaneously broken, the large dual trans-
formations are also spontaneously broken; that is, the
vacuum is not invariant under them.

C. Correlated monopoles and center vortices in 4D

For chains of monopoles and antimonopoles, we have
[cf. Equations (50) and (52)]

e�Sv;m½B��;��� ¼
Z
½Dvor�½Dmon�e

ið�=gÞP
v

R
d2��B��þið4�=gÞP

ij

ðH
Cþ
j

dy����
H

C�
i

dy���Þ
; (70)

where B�� is integrated over open vortex world sheets
with their borders attached in pairs, so as to form
the associated monopole or antimonopole loops at
Cþ
j , C�

i .
For each vortex world sheet, we have a contribution in

the integrand of the form

VðCþÞVðC�Þeið�=gÞ
R

�
d2��B�� ;

VðC�Þ ¼ e�ið2�=gÞH
C� dy���;

(71)

where � ¼ �ðCþ; C�Þ is a surface with borders at Cþ
and C�.

LARGE DUAL TRANSFORMATIONS AND THE PETROV- . . . PHYSICAL REVIEW D 82, 105020 (2010)

105020-9



This configuration represents the creation, propagation,
and annihilation of a loop, minimally coupled to B��, so

that VðCÞ can be compared to the disorder operator intro-
duced in Ref. [10] for the Yang-Mills theory.

If center vortex world sheets were closed objects prop-
agating stringlike excitations, characterized by a finite ten-
sion, Sv;m½���� in Eq. (55) would be invariant under the

transformations ��� ! ��� þ @�!� � @�!�, including

the large ones,�� ! �� þ @�!
ð4Þ, so that a typical effec-

tive action for this sector would be of the form [47–50],

Sc:v: ¼ Sc:v:½ ~H��; ~H� ¼ ����@��� (72)

[note that due to Eqs. (56) and (57), ����@�@��
@!

ð4Þ ¼ 0]. When these center vortex world sheets con-
catenate monopoles, we can see from Eq. (70) that the
presence of the latter explicitly breaks the !� symmetry

in Sv;m½����. However, this contribution will be symmetric

under the regular �� ! �� þ @�! transformations and,

as in Eq. (70) the loop variables appear in the form V2ðC�Þ,
it is expected to be symmetric under the large ones, �� !
�� þ @�!

ð4Þ. Then, Sv;m can be written as Sð4Þ þ S0½ ~H��,
where Sð4Þ is only symmetric under !ð4Þ transformations,
breaking the!� symmetry. This part would be analogous to

the V-dependent terms in Eq. (64); however, the problem of

presenting effective models for Sð4Þ is highly nontrivial, as
in 4D the vortex field VðxÞ is replaced by a loop variable
VðCÞ.

Taking into account the other terms in the representation
and the ½D�� integration [29], in this case, the effective
action for Yang-Mills is expected to be of the form

Seff ¼ Sð4Þ þ S½ ~H�� þ �������; (73)

where the ������ term explicitly breaks the !ð4Þ symme-

try present in the first two terms. Again, we could expect a
phase for the ensemble of chains where the associated
regularity requirements imposed on ��� could disallow

the changes of variables �� ! �� þ @�!
ð4Þ, as occurs

in 3D with the �2 < 0 phase and the changes of variables

� ! �þ!ð3Þ (see Sec. VIA).

VII. WILSON SURFACE DECOUPLING VS
WILSON SURFACE VARIABLES

The discussion about how a surface whose border is the
Wilson loop can become observable in Yang-Mills theory
is a key point in understanding the possible mechanisms
underlying confinement and its associated properties.

In Ref. [10], the possible observability of Wilson sur-
faces or center vortex world sheets has been analyzed as
follows. The algebra between the Wilson loop operator

ŴðC; tÞ and the disorder operator V̂ðC0; tÞ is
ŴðC; tÞV̂ðC0; tÞ ¼ V̂ðC0; tÞŴðC; tÞð�1Þlink; (74)

where C and C0 are defined at a given time t, and the
right-hand side contains the linking number between
them. Then, a family C0ðaÞ in R4, a 2 ½0; 1� is considered,
continuously changing from C0

0, passing by an intermedi-

ate C0
i, and then returning to C0

0, both curves living on the

constant time t hyperplane where C is contained. As we
are in R4, this family can be chosen with C0

0 (C
0
i) unlinked

(linked) with C, and such that C0ðaÞ never comes close to
C. In these conditions, a declustering property was used,

hWðCÞVðC0
aÞi � hWðCÞihVðC0

aÞiei�ðC;C0
aÞ; (75)

where the phase is required in order to be consistent with

Eq. (74), which implies that ei�ðC;C0
aÞ must change from

þ1 to �1 and then back to þ1 in this process. If massless
modes exist in Yang-Mills theory, �ðC; C0

aÞ could be a
smoothly varying function. On the other hand, when
Zð2Þ-invariant Higgs fields are switched on, it has been
argued that a sudden change in the phase must exist, and
as the pairs of curves are always maintained far apart, an
observable surface must be attached to the Wilson loop or
to the half-charge magnetic loop.
In Ref. [37], the Wilson loop average �W has been

analyzed in confining models such as compact QEDð3Þ
and QEDð4Þ, the latter regularized on the lattice. In that
reference, considering the dual field � defined on the
interval ½�1;þ1�, a representation based on axion fields,
with multivalued action, has been obtained, and a series of
approximations led to an explicit dependence of the result-
ing �W on the arbitrary SðCÞ appearing in its definition. Then
it has been conjectured that this problem would be resolved
if all the branches of the multivalued action were consi-
dered in the calculation, and that this would be equivalent
to considering the integration over all Wilson surfaces (that

now become dynamical) and dual ~�’s with an appropriate
jump at the associated surface.
Because of the Wess-Zumino term in the PD represen-

tation, our expressions in Eqs. (41) and (42) for �W in
Yang-Mills theory also have an arbitrary surface SðCÞ
attached to the Wilson loop from the beginning.
However, the representation must be independent of SðCÞ.
In the next subsections, we will discuss how to obtain, in
general, a Wilson loop representation with no reference to
the initially considered SðCÞ.
The answer will depend on the underlying realization of

symmetries in the effective models describing the Yang-
Mills theory, which according to the discussion in Sec. VI

will determine whether changes of variables � !
�þ!ð3Þ, �� ! �� þ @�!

ð4Þ are acceptable or not.
In 3D, we have seen that in the phase without global

Zð2Þ SSB, the change � ! �þ!ð3Þ is acceptable; this
corresponds to single-valued possibly discontinuous �’s
defined on the interval ½�1;þ1�. In this case, we will be
able to decouple the initial Wilson surface following
treatment I. On the other hand, in the SSB phase, the
change is not acceptable, and the �’s will have to be
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considered as continuous multivalued angles. Here, the
reference to the arbitrary initial SðCÞ will also disappear,
but giving place to an integral over all the Wilson surfaces

and the above mentioned ~�’s. These two possibilities for
the class of �’s and their consequences will also be ex-
tended to classes of �� ’s in 4D theories in the continuum.

A. Dealing with Wilson surfaces I

Let us consider�,�� as single-valued fields, so that the

large dual transformations, adding the single-valued pieces

!ð3Þ, @�!ð4Þ, can be performed. Of course, in this case, the

Wilson surface should be an unobservable object, but the
question is, how can we use the large dual transformations
in order to decouple SðCÞ in favor of C, thus evidencing the
unobservability of SðCÞ?

For this aim, let us follow a procedure similar to the one
we implemented in Ref. [32], where we discussed how to
decouple unobservable Dirac defects in favor of their
borders, in the CFN representation of the Yang-Mills par-
tition function.
Considering the auxiliary fields ��, ���, and a change

of variables �� þ g
2 s� ! ��, ��� þ gs�� ! ���, we

have

�WðCÞ¼
Z
½D��½D��½D��e�Sc�

R
d3xð1=2Þ����

�ei
R
d3xfð���ðg=2Þs�Þð��þk�Þþð����@����Jc�ÞAðnÞ

� þ��d
ðnÞ
� g;
(76)

�WðCÞ ¼
Z
½D��½D��½D��e�Sc�

R
d4xð1=4Þ������ � ei

R
d4xfð1=2Þð����gs��Þð���þk��Þþðð1=2Þ����@����Jc�ÞAðnÞ

� þð1=2Þ���d
ðnÞ
��g: (77)

The path integrals in ½D�� can be done over the fields
defined in Eq. (60), with �, �� single-valued. Including
the conditions in Eq. (61), in 3D we must consider the
replacement,

½D�� ! ½DB�½D��½D
�ei
R

d4x
@�B�; (78)

while in 4D, we have

½D�� ! ½DB�½D��½D
�
� ½D��ei

R
d4x
�@�B��ei

R
d4x�@���: (79)

Therefore, using Eq. (57) and considering in Eqs. (76)
and (77) the large dual transformations, with trivial
Jacobian,

� ! ��!ð3Þ; �� ! �� � @�!
ð4Þ; (80)

the terms in Eqs. (76) and (77), containing, respectively,

dðnÞ� , dðnÞ��, gain a phase which is a trivial multiple of 2�; the
second term is invariant, while the first term gives a change
in the surface. In the 4D case, it is important to emphasize

that the explicit form for @�!
ð4Þ is

@�!
ð4Þ ¼ �g

2

Z
#
d3 ~�ð���@

2 � @�@�ÞDðx� �xðÞÞ;
(81)

d3 ~� ¼ 1

2
������ijk

@ �x�
@i

@ �x�
@j

@ �x�
@k

d1d2d3: (82)

Using Stokes’s theorem, this can bewritten only in terms of
@#, the manifold where the added closed Wilson surface is
placed (for a discussion in the context of thin center vortices
and Dirac world sheets, see Refs. [32,38,39]). Therefore,

the index structure in Eq. (81) implies @�@�!
ð4Þ ¼ 0, and

@��� in themeasure given in Eq. (79) is invariant under the

change of variables in Eq. (80).
Summarizing, in 3D and 4D we can deform the Wilson

surface by means of a change of variables, with trivial
Jacobian, keeping its border C fixed.
Now let us consider a Hodge decomposition,

�� þ k� ¼ @�c þ C�;

��� þ k�� ¼ @�c � � @�c � þ C��;
(83)

with

@�C� ¼ 0; @�C�� ¼ 0; @�c � ¼ 0; (84)

that permits the identification of C�, C�� as fields only

coupled to the Wilson loop C, while the fields c , c � are

the ones coupled with the whole surface SðCÞ.
We will show that the Wilson surface can be decoupled

by means of an appropriate change of variables, leaving
only the effect of its border. For this purpose we leave the
integration over ��, ��� and the charged fields present in

k�, k�� until the end, and analyze the integral over ��, ���

first. Let us consider the term coupling c , c �,

JSðCÞ ¼
� R

d3xs�@�cR
d4xs��ð@�c � � @�c �Þ: (85)

For the initial Wilson surface, and sources s�, s��, we can

assume JSðCÞ > 0without loss of generality. In addition, we
can assume that a closed surface @# exists, such that

J½@#� ¼
� R

d3x�s�@�cR
d4x�s��ð@�c � � @�c �Þ (86)

is nonzero. In this regard, it suffices to consider a small #,
as in this case J½@#� is given by the local value of @2c ,

@2c �. If this value were zero for any @#, we would have
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c � 0, c � � 0, and the term coupling the surface would

be automatically zero.
Now let us include m times the closed surface @# and

define the sources s0�, s0��, concentrated on the surface

S0ðSÞ ¼ SðCÞ � ½@#�m. This amounts to the transformation,

� ! ��m!ð3Þ; �� ! �� � @�ðm!ð4ÞÞ: (87)

Then, we have

JS0ðCÞ ¼ JSðCÞ þmJ½@#�: (88)

Now, we can take @# oriented such that

J½@#� < 0; (89)

so that JS0ðCÞ can be rendered negative for a large enough

value of m. As S0ðCÞ can be continuously deformed into
SðCÞ, by shrinking @# to zero, an intermediate surface S0ðCÞ
must exist in this process such that JS0ðCÞ ¼ 0 is verified.

This suggests that it is always possible to make a large dual
transformation that changes the initial SðCÞ into S0ðCÞ, thus
nullifying the terms coupling the Wilson surface with c ,
c �. Then, in practice, the prescription in this case for

obtaining a representation for �W with no reference to the
initial SðCÞ is simply to disregard the above mentioned
terms in Eqs. (76) and (77).

B. Dealing with Wilson surfaces II

Now the question is what to do in the case where the
ensemble of defects requires regular fields �, �� in the

Hodge decomposition (60), so that large dual changes of
variables are no longer acceptable.

In order to answer this question, let us first consider the
3D case, denoting the fields in the decomposition for ��,

with the properties used in the previous subsection, as �I

and BI
�. That is, �

I is single valued and defined on the

interval ½�1;þ1�. Now, considering a smooth ��, add-

ing and substracting a source s�ð~�Þ concentrated on a

general Wilson surface ~� whose border is C, we can also
write a decomposition using fields �II and BII

�, with �II

being a multivalued field, when we go around the Wilson
loop C. That is,

�� ¼ @��
I þ BI

� ¼ @��
II þ BII

�; (90)

@��
II ¼ @� ~�� g

2
s�ð~�Þ; ~� ¼ �I þ g

2
@�2ð@ � sð~�ÞÞ;

(91)

BII
� ¼ BI

� � g

2
����@�@

�2j�ðCÞ: (92)

Note that, when computing @��
II, the derivative of the

discontinuity in the second term of ~� is canceled by the

� g
2 s�ð~�Þ term, so that the defined �II is a continuously

changing multivalued field, satisfying ����@�@��
II ¼

� g
2 j�ðCÞ.
On the other hand, the class of fields �� generated by the

single-valued, possibly discontinuous, �I’s is different
from the class of fields �� generated by the continuous

multivalued �II’s. In the first case, there is no problem in

summing �I and !ð3Þ to obtain another possible configu-
ration; in the second case, summing the multivalued �II

and !ð3Þ does not make any sense.
In a similar way, in 4D, we will have type I and type II

dual fields ��, the former are the single-valued fields used

in the previous subsection, the latter being appropriate for

describing situations where !ð4Þ changes of variables are
not acceptable.
Then in this section, we will introduce a decomposition

in terms of type II fields in 3D and 4D, enjoying the
properties

����@�@�� ¼ � g

2
j�ðCÞ;

����@�@�� ¼ � g

2
j�ðCÞ: (93)

In three dimensions, the integral of ����@�@�� over an

open surface with border P , crossed by the Wilson loop C,
gives �g=2. Then, using Stokes’s theorem, the integral of
@�� along P gives�� ¼ �g=2, while this change is zero

on a path that does not link C. We have already seen that the

multivalued � can be written in terms of ~�ðxÞ, discontinu-
ous at some surface ~� whose border is the Wilson loop C,
such that @�� ¼ @� ~�� g

2 s�ð~�Þ.
In four dimensions, �� must be considered as a vector

field that cannot be globally defined on the closed surfacesS
linked by the Wilson loop. It can be differently defined on
two hemispheres meeting on a closed path P , where the
difference between �� continued from each one of the

hemispheres is @��, with � multivalued. This can be vi-

sualized by considering, for example, the Wilson loop con-
tained in the x0 ¼ 0 hyperplane (a three-volume). If we stay
on this hyperplane, the loop C is seen to be linked by pathP .
If we continuously move to other hyperplanes with x0 � 0,
the Wilson loop will no longer be seen, while the former
path P will be seen to continuously shrink to a point,
mapping both hemispheres in four dimensions, for positive
or negative x0, forming the closed surface linked by C.
Precisely because of Eq. (93), the integral of

����@�@���, over an open three-volume with border S,
gives �g=2 and can be equated via Gauss’s theorem with
the integral of ����@�� over the closed surface S linked

by C. This surface integral can be done on the two hemi-
spheres A and B, sharing the same border P , where ��

takes the values�A
� and�B

�, respectively. Now, we can use

Stokes’s theorem to write the surface integral as the line
integral of �A

� ��B
� ¼ @�� over the closed path P , thus

obtaining �� ¼ �g=2.
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Then, in Eq. (60), the multivalued field �� can be

replaced by ~��ðxÞ, defined on the whole Euclidean space-

time as a function of point x and discontinuous at some

surface ~�, whose border is the Wilson loop C. Again, the
derivatives of �� cannot contain any singular term on ~�,

so that the replacement must by done as follows:

@��� � @��� ¼ @� ~�� � @� ~�� � gs��ð~�Þ; (94)

where the second term is concentrated on ~� and compen-

sates the � distribution on ~� that originated when taking

the derivatives of the discontinuous vector field ~��ðxÞ.
Because of the multivalued character of the fields, the

factors containing the defects in Eqs. (41) and (42) become

ei
R

d3xð��þðg=2Þs�ÞdðnÞ� ¼ ei
R

d3xð@� ~�þB�ÞdðnÞ� ; (95)

ei
R

d4xð1=2Þð���þgs��ÞdðnÞ�� ¼ ei
R

d4xð1=2Þð@� ~���@� ~��þB��ÞdðnÞ�� ;

(96)

where we used

g

2

Z
d3xðs� � s�ð~�ÞÞdðnÞ� ¼ 2n�; (97)

g

2

Z
d4xðs�� � s��ð~�ÞÞdðnÞ�� ¼ 2n�: (98)

In addition, the implicit constraints in Eqs. (40) and (45)
become

Jc� ¼ ����@�

�
B� þ g

2
½s� � s�ð~�Þ�

�
¼ ����@�B�; (99)

J
�
c ¼ 1

2
����@�ðB� þ g½s� � s�ð~�Þ�Þ

¼ 1

2
����@�B�; (100)

where we used that the sources s�, s�� are concentrated on

SðCÞ, sharing the same border C with ~�.
Therefore, using the above results when considering

multivalued dual fields �, ��, we can represent the

Wilson loop in Eqs. (41) and (42) according to

�WðCÞ¼
Z
½D~��½DF ð~�Þ�e�Sc�

R
d3xð1=2Þð@� ~��ðg=2Þs�ð~�ÞþB�Þ2

�ei
R
d3xfð����@�B��Jc�ÞAðnÞ

� þ��k�þð@� ~�þB�ÞdðnÞ� g; (101)

�WðCÞ ¼
Z
½D~��½DF ð~�Þ�e�Sc�

R
d4xð1=4Þð@� ~���@� ~���gs��ð~�ÞþB��Þ2

� ei
R

d4xfðð1=2Þ����@�B��Jc�ÞAðnÞ
� þð1=2Þ���k��þð1=2Þð@� ~���@� ~��þB��ÞdðnÞ��g; (102)

½DF ð~�Þ� ¼ ½DB�½D ~��½D��FB
gfF

~�
gf, where FB

gf is the
part of the measure fixing the condition for B�, B��, and
in four dimensions F

~�
gf is the part fixing the condition

for ~��.
In this manner, �WðCÞ no longer refers to the particular

surface SðCÞ, initially introduced in the PD representation.
In turn, the path integral over multivalued fields is equiva-

lent to the integral over all the surfaces ~� with border C,
together with the path integral over the fields ~�, ~��, with a

given jump at ~�.

VIII. CONCLUSIONS

In this work we have presented a natural framework for
discussing possible ideas underlying confinement and en-
sembles of defects in 3D and 4D SUð2Þ Yang-Mills theory
in the continuum.

Initially, we have considered a representation for the
Wilson loop average �W, based on the Petrov-Diakonov
representation of the non-Abelian Wilson loop W, com-
bined with the Cho-Faddeev-Niemi decomposition of
SUð2Þ gauge fields, which permits one to write the average
�W as a path integral over SUð2Þmappings. These mappings
induce local frames n̂a in color space, whose defects

represent not only the monopole sector, but also a Zð2Þ
center vortex sector.
The interesting point is that the integrand of �W contains

an arbitrary surface SðCÞ, whose border is the Wilson loop,
originated from the Wess-Zumino term in the Petrov-
Diakonov representation. On the other hand, the usual
representation forWðCÞ only refers to C. Then, the problem
is how the representation for �W can be worked out so as to
implement the independence on the initial choice for SðCÞ.
In other words, when defects proliferate, the natural

question that arises is how and under what conditions the
surface SðCÞ can be decoupled, in favor of its border, or it
becomes a Wilson surface variable.
On the other hand, the discussion about how a surface

can become observable is a key point to understanding the
possible mechanisms underlying confinement and its asso-
ciated properties.
In Ref. [10], this has been analyzed by means of the

peculiar declustering properties of correlators involving

the Wilson loop operator ŴðCÞ and the disorder operator

V̂ðC0Þ.
In Ref. [37], the Wilson loop average �W has been

considered in the context of compactQEDð3Þ and compact
QEDð4Þ regularized on the lattice. There, considering in
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3D the dual field � defined on the interval ½�1;þ1�, a
representation based on axion fields, with multivalued
action, has been obtained, and a series of approximations
led to an explicit dependence of the resulting �W on the
arbitrary SðCÞ appearing in its definition. Then, it has been
conjectured that this problem would be resolved if all the
branches of the multivalued action were considered in the
calculation, and that this would be equivalent to consider-
ing an integration over all Wilson surfaces, and dual fields
~� with a given jump at the corresponding surface.
In this article we have discussed this kind of problem in

terms of the regularity properties imposed on the dual
fields by the different ensembles of defects, and the asso-
ciated closure properties under large dual transformations.

Our representation for �W contains an integral over the
ensemble of defects, a path integral over the diagonal and
off-diagonal gluon fields, including a gauge fixing, and one
over dual fields �� ¼ @��þ B�, ��� ¼ @��� �
@��� þ B��, minimally coupled to the center vortex

world lines or world sheets, in three and four dimensions,
respectively.

In terms of the effective action Sv;m originated from the

ensemble integration, the effective model for the Yang-
Mills partition function is of the form

Seff ¼ Sv;m½��� þ S½ ~F�� þ �����;

~F� ¼ ����@���;

Seff ¼ Sv;m½���� þ S½ ~H�� þ �������;

~H� ¼ ����@���;

in 3D and 4D, respectively.
For example, in 3D, we have argued that for chains of

monopoles attached in pairs to center vortices, Sv;m is

naturally associated with a vortex field VðxÞ, minimally
coupled with ��, displaying a local Zð2Þ symmetry. This

symmetry is also present in the second term S½ ~F��.
However, because of the last term ����, the Zð2Þ symme-

try in Seff is only global, and the effective model is ex-
pected to be a generalization of the well-known vortex
model of Ref. [10].

Moreover, in a phase where the global Zð2Þ is sponta-
neously broken, the effective theory contains domain
walls, a topological structure whose existence depends on
the consideration of well-behaved continuous fields VðxÞ,
��. Then, the change of variables associated with the local

Zð2Þ transformations� ! �þ!ð3Þ, adding to �� a source

localized on a closed Wilson surface, cannot even be
accepted in this case, as these transformations are not
closed. On the contrary, if there is no SSB, the regularity
requirement is no longer valid, and this change of variables
becomes acceptable.

Similarly for monopole chains in 4D, the������ term in

Seff would be the noninvariant part under large dual trans-

formations �� ! �� þ @�!
ð4Þ, adding a source localized

on a closed Wilson surface @#. Here the discussion about a
possible topological structure for the effective theory is
highly nontrivial, as the vortex field VðxÞ in 3D is replaced
by a loop variable VðCÞ. Nevertheless, we can assume that
different phases could exist, where the associated regularity
requirements on ��� could lead us to consider the changes

of variables �� ! �� þ @�!
ð4Þ as acceptable or not.

For example, this discussion already occurs in 4D when
looking at the monopole part of Sv;m, in the simpler situ-

ation where monopoles are uncorrelated with center vorti-
ces. As is well known, this part is typically represented by a
complex field �ðxÞ, minimally coupled with ��. In a

phase where the dual Uð1Þ is spontaneously broken, the
model has a topological structure, whose existence de-
pends on the consideration of well-behaved continuous

fields �ðxÞ, ���, thus precluding the �� ! �� þ @�!
ð4Þ

transformations.
In canonical language, this corresponds to the fact that

an order parameter must be invariant under regular gauge
transformations. For the condition @��� ¼ 0, such an

order parameter turns out to be variant not only under
spacetime independent phase transformations, but also

under multivalued!ð4Þ transformations. Then, if the global
Uð1Þ is spontaneously broken, the large dual transforma-
tions will also display SSB.
For these reasons, in the last part of this work, we were

led to analyze the representation for �W in two possible
scenarios, before considering an effective model for the
ensemble integration.
In the representation of �W in 3D, we have discussed two

alternatives for the class of fields ��. They are generated

by �I, general single-valued fields defined on the interval
½�1;þ1�, or by the fields �II, multivalued when we go
around the Wilson loop C. While in the former case

changes of variables �I ! �I þ!ð3Þ are acceptable, in

the latter, the addition of �II with !ð3Þ is meaningless.
These alternatives have been generalized to 4D, where

the class of fields ��� can be generated by two types of

fields. The first type is closed under the transformation

�I
� ! �I

� þ @�!
ð4Þ, with !ð4Þ a multivalued phase when

we go around @#. For the second type, this transformation
does not make any sense, as the fields cannot be globally
defined on the closed surfaces linked by the Wilson loop C.
In general, if in 3D or 4D the required fields are type I,

we have shown that it is possible to perform changes of
variables in the representation for �W so as to decouple the
Wilson surface SðCÞ.
In the second case, the integral over type II multivalued

fields were replaced by an integral over all possible sur-

faces ~�whose border is C, and dual fields ~�, ~��, functions

of point x on the Euclidean spacetime, with an appropriate

jump at ~�. In this manner, any reference to the initial
arbitrary SðCÞ also disappeared, but in a different way;
the initial surface has become a Wilson surface variable.
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Summarizing, for SUð2Þ Yang-Mills theories, we intro-
duced a framework to discuss the coupling between gauge
fields containing defects, surfaces attached to the Wilson
loop, and dual fields. We have discussed some effective
models, the implied regularity requirements, and the asso-
ciated inequivalent manners to represent the Wilson loop
without reference to the initial Wilson surface considered.
This general framework could prove useful as a starting
point to understand the promising scenario associated with

correlated monopoles and center vortices in continuum 4D
Yang-Mills theories.
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