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The structure of the phase diagram for strong interactions becomes richer in the presence of a magnetic

background, which enters as a new control parameter for the thermodynamics. Motivated by the relevance

of this physical setting for current and future high-energy heavy-ion collision experiments and for the

cosmological QCD transitions, we use the linear sigma model coupled to quarks and to Polyakov loops as

an effective theory to investigate how the chiral and the deconfining transitions are affected, and present a

general picture for the temperature–magnetic field phase diagram. We compute and discuss each

contribution to the effective potential for the approximate order parameters, and uncover new phenomena

such as the paramagnetically induced breaking of global Z3 symmetry, and possible splitting of

deconfinement and chiral transitions in a strong magnetic field.
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I. INTRODUCTION

The phase diagram of QCD has a very rich structure,
and keeps unveiling new, sometimes unexpected phases
of strong interactions as one plays with thermodynamic
control parameters such as the temperature, chemical
potentials, and quark masses (for recent results, see, e.g.,
Ref. [1]). A particular external control parameter that is
often overlooked, however, is the magnetic field. Since
quarks and charged hadrons couple to the magnetic field
and neutral hadrons do not, this control parameter can
affect the phase structure of QCD in a nontrivial fashion.
Moreover, it is present in most physical systems exhibiting
deconfinement and chiral symmetry restoration. The
example that was considered to be the most spectacular
is from astrophysics, provided by magnetars [2].
Additionally, magnetic fields are expected to be strong
and play an important role in structure formation in the
early Universe, during the epochs of the electroweak and
the QCD primordial phase transitions [3]. However, it was
recently found that noncentral high-energy heavy-ion col-
lisions might generate the most intense observed magnetic
fields, much stronger than in magnetars, reaching values
of B� 1019 gauss, which corresponds to eB� 6m2

�, where
e is the fundamental charge andm� is the pion mass. These
magnetic fields are short-lived for very high energies but
play an important role in possible experimental signatures
of strong CP violation and the phenomenon of the chiral
magnetic effect [4–7].

In this paper, we present a general picture for the tem-
perature–magnetic field phase diagram of QCD, restricting
our analysis to a vanishing baryonic chemical potential. In
particular, we investigate how the chiral and the deconfin-
ing transitions are affected, and uncover new phenomena
such as the paramagnetically induced breaking of Z3. We
also demonstrate the possible splitting of the deconfine-
ment and chiral transition in an external magnetic field.
For this purpose, we adopt the linear sigma model

coupled to quarks with two flavors, Nf ¼ 2, and to

Polyakov loops (PLSMq) under the effect of a magnetic

background field as an effective theory for the thermody-
namics of QCD. The linear sigma model coupled to quarks
[8] has been widely used to describe different aspects of the
chiral transition, such as thermodynamic properties and the
nonequilibrium phase conversion process [9–20]. It has
also been combined to Polyakov loops to include confine-
ment [21–24]. However, as will be clear in Sec. II,
we perform this generalization in a different fashion,
which is also more natural in the presence of an external
magnetic field.
In our effective model, PLSMq, we compute and discuss

each one-loop contribution to the effective potential for the
approximate order parameters of the chiral and deconfining
transitions, given by the chiral condensate and the expec-
tation value of the Polyakov loop, respectively. We treat the
external magnetic field, which plays the role of a thermo-
dynamic control parameter, as a constant and uniform field,
and make no assumption on its intensity. In Fig. 1, we show
a cartoon of the temperature–magnetic field phase diagram
one would expect from previous results for the limits of
strong and weak fields, for chiral and deconfining transi-
tions treated separately, as discussed below.
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Modifications in the vacuum of strong interactions by
the presence of an external magnetic field have been in-
vestigated previously within different frameworks, mainly
using effective models [25–33], especially the Nambu-
Jona-Lasinio (NJL) model [34] and chiral perturbation
theory [35–37], but also resorting to the quark model
[38] and certain limits of QCD [39]. Most treatments
have been concerned with vacuum modifications by the
magnetic field, though medium effects were considered in
a few cases, as, e.g., in the study of the stability of quark
droplets under the influence of a magnetic field at finite
density and zero temperature, with nontrivial effects on the
order of the chiral transition [40]. Magnetic effects on the
dynamical quark mass [41], as well as magnetized chiral
condensates in a holographic description of chiral symme-
try breaking [42], were also considered. Lattice simula-
tions were also used to demonstrate an enhancement of the
chiral condensate and the appearance of chiral magnetiza-
tion of the chirally broken vacuum under the influence of
a strong magnetic field [43]. Ring-diagram corrections to
the effective potential in a weak magnetic field were con-
sidered in Ref. [44]. Recent applications of quark matter
under strong magnetic fields to the physics of magnetars
using the NJL model can be found in Refs. [45,46].

The case of the thermal quark-hadron transition in a
magnetic field was studied recently in Ref. [47]. It was
found that the critical temperature and the latent heat are
both diminished in the presence of the magnetic field, and
that the first-order deconfining turns into a crossover at
sufficiently strong magnetic fields. On the other hand, it
has been shown in Ref. [48] that the chiral transition can be
dramatically modified in the presence of a strongmagnetic
field. In particular, the smooth crossover found for vanish-
ing baryonic densities can be turned into a first-order
phase transition if the magnetic field is sufficiently high,

the threshold being close to fields that can be achieved in
current and future heavy-ion collision experiments. For the
chiral transition—on the contrary to the case of the decon-
fining transition of Ref. [47]—the critical temperature
seems to increase with the magnetic field, thus favoring a
first-order behavior, which goes in line with the theoretical
expectation on the role played by magnetic fields in the
nature of phase transitions [49]. On the other hand, at very
weak magnetic field, both confinement and the chiral
transitions should again be crossovers [50]. This justifies
our preliminary approximate cartoon of Fig. 1.
More recently, the chiral magnetic effect was also

studied in the context of the Polyakov-loop-extended
NJL model [6]. Here, we propose a different effective
theory for the study of the phase structure of QCD in the
presence of an external magnetic field, the linear sigma
model coupled to quarks and to the Polyakov loop, and
compute the T � eB-phase diagram in the presence and,
separately, in the absence of vacuum corrections. The
contribution from these corrections is very large, though
the issue of their relevance or necessity is nontrivial in this
context as well as in different ones, such as the Higgs
potential in the electroweak theory and the Walecka model
in high-density nuclear physics [51]. We choose to present
results in both scenarios and address the issue in the end.
Nevertheless, we believe that lattice results will be crucial
in setting the most appropriate effective theory approach.
The PLSMq can, of course, also be used to study chiral

symmetry breaking and deconfinement in the absence of a
magnetic field. We present a few results in this case, but,
keeping our focus on the phase structure in the presence of
a magnetic background, leave a thorough study for a future
publication [52].
The paper is organized as follows. In Sec. II, we provide

a description of the effective theory that allows us to study
the influence of an external magnetic field on confining
and chiral properties of QCD, the linear sigma model
coupled to quarks and to the Polyakov loop (PLSMq).

We discuss the quark, chiral, and confining sectors, the
total free energy, and the connection to various observ-
ables. In Sec. III, we compute all one-loop contributions to
the effective potential, discussing vacuum and thermal
corrections in detail. Section IV contains our results for
the effective potential and a discussion of the temperature–
magnetic field phase diagram. Section V contains our
conclusions and outlook.

II. EFFECTIVE THEORY

A. Quark, chiral, and confining variables

The effective field theory that we denote by PLSMq has

three types of variables: the quark field c ðxÞ, the chiral
field �ðxÞ, and the Polyakov loop variable LðxÞ.
The confining properties of QCD are described by the

complex-valued Polyakov loop variable L, which plays the

FIG. 1 (color online). Expected magnetic field–temperature
phase diagram of QCD. The thick lines indicate first-order
transitions, the filled circles are the (second-order) endpoints
of these lines, and the thin dashed lines stand for the correspond-
ing crossovers. A new phase with broken chiral symmetry and
deconfinement appears at high magnetic fields.

MIZHER, CHERNODUB, AND FRAGA PHYSICAL REVIEW D 82, 105016 (2010)

105016-2



role of an approximate order parameter for the confining
phase transition in QCD. The Polyakov loop is a singlet
part of the 3� 3 matrix � (‘‘untraced Polyakov loop’’)
which belongs to the adjoint representation of the SUð3Þ
color group, i.e.:

LðxÞ ¼ 1

3
Tr�ðxÞ; �¼ P exp

�
i
Z 1=T

0
d�A4ð ~x;�Þ

�
; (1)

where A4 ¼ iA0 is the matrix-valued temporal component
of the Euclidean gauge field A� and the symbol P denotes

path ordering. The integration takes place over compacti-
fied imaginary time �.

The expectation value of the Polyakov loop L is an exact
order parameter of the color confinement in the limit of
infinitely massive quarks:

Confinement :

� hLi ¼ 0; lowT
hLi � 0; highT

: (2)

The chiral features of the model are encoded in the
dynamics of the Oð4Þ chiral field

� ¼ ð�; ~�Þ; ~� ¼ ð�þ; �0; ��Þ; (3)

where ~� is the isotriplet of the pseudoscalar pion fields
and � is the chiral scalar field which plays the role of an
approximate order parameter of the chiral transition. The
expectation value of the field � is an exact order parameter
in the chiral limit, in which quarks and pions are massless
degrees of freedom:

Chiral symmetry :

� h�i � 0; lowT
h�i ¼ 0; highT

: (4)

The up and down fields of the constituent quarks are
grouped together into the doublet fermion field

c ¼ u
d

� �
; (5)

which plays a central role in our discussion. The fermion
field couples two other variables, the Polyakov loop L and
the chiral field � to each other, thus linking confining and
chiral properties together. The quarks c are also coupled to
the external magnetic field, since the u and d quarks are
electrically charged. Since the quarks are also coupled to
the Polyakov loop and the chiral field �, it is clear that the
external magnetic field will affect the chiral dynamics and
the confining properties of the model. Thus, this model
allows us to investigate the influence of the external mag-
netic field on color confinement and chiral symmetry
breaking simultaneously.

We can write the Lagrangian of PLSMq as follows:

L ¼ Lqð �c ; c ; �; LÞ þL�ð�Þ þLLðLÞ: (6)

B. Quark sector

The first part of the full Lagrangian (6),

L q ¼ �c ½i 6D� gð�þ i�5 ~� � ~�Þ�c ; (7)

describes the constituent quarks, which interact with the
meson fields �, the Abelian gauge field a�, and the SUð3Þ
gauge field A� via the covariant derivative:

6D ¼ ��DðqÞ
� ; DðqÞ

� ¼ @� � iQa� � iA�: (8)

The Abelian gauge field describes the influence of the

external magnetic field ~B aligned along the third direction,
Bi ¼ B�i3, for convenience:

a� ¼ ða0; ~aÞ ¼ ð0;�By; 0; 0Þ; (9)

and the electric charges of the quarks are defined by the
following matrix:

Q � qu 0
0 qd

� �
¼ þ 2

3 e 0
0 � e

3

 !
; (10)

where e is the elementary electron charge.
The SUð3Þ gauge field A� represents a nontrivial back-

ground due to the Polyakov loop (1). It is convenient to
diagonalize the untraced Polyakov loop �. In this gauge,
the field A4, which enters the quark Lagrangian (7), is
diagonal:

A4 ¼ t3A
ð3Þ
4 þ t8A

ð8Þ
4 ; (11)

where t3;8 ¼ �3;8=2 are the Cartan generators of the SUð3Þ
gauge group. The SUð3Þ gauge field is prescribed to take
constant values, being linked to the Polyakov loop as
follows:

� ¼ exp

�
i

�
t3
Að3Þ
4

T
þ t8

Að8Þ
4

T

��
¼ diagðei’1 ; ei’2 ; ei’3Þ;

(12)

with

’1 � A11
4

T
¼ 1

T

�
1

2
Að3Þ
4 þ 1

2
ffiffiffi
3

p Að8Þ
4

�
;

’2 � A22
4

T
¼ 1

T

�
� 1

2
Að3Þ
4 þ 1

2
ffiffiffi
3

p Að8Þ
4

�
;

’3 � A33
4

T
¼ � 1

T

1ffiffiffi
3

p Að8Þ
4 :

(13)

C. Chiral Lagrangian

The chiral part of the PLSMq Lagrangian is given by

the second term of Eq. (6), that can be written in the
Minkowski space-time as follows:
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L�ð�; ~�Þ ¼ 1

2
ð@��@��þ @��

0@��0Þ
þDð�Þ

� �þDð�Þ��� � V�ð�; ~�Þ: (14)

Here we have introduced the charged �� and neutral �0

mesons, respectively,

�� ¼ 1ffiffiffi
2

p ð�1 � i�2Þ; �0 ¼ �3: (15)

The electric charges of the �� mesons are �e, so that the
covariant derivative in Eq. (14) reads

Dð�Þ
� ¼ @� þ iea�: (16)

This derivative does not involve the Polyakov loop, con-
trary to the covariant derivative acting on quarks (8), since
the pions are colorless states.

In Eq. (14), V� stands for the potential of the chiral

fields. This potential exhibits both spontaneous and explicit
breaking of chiral symmetry:

V�ð�; ~�Þ ¼ �

4
ð�2 þ ~�2 �v2Þ2 � h�

¼ 1

2
m2

��
2 þ 1

2
m2

�ð�0Þ2 þm2
��

þ�� þ . . . : (17)

In the second line of this equation, we explicitly show the
quadratic form of the potential, which provides the masses
to the meson fields. Here, the masses m� and m� corre-
spond to the vacuum masses of the sigma and the pion
mesons, which are used to fix the parameters � and v in the
classical potential, since f� is also known, as explained
below.

As is customary in the linear sigma model, we follow a
mean-field analysis in which the mesonic sector is treated
classically, whereas quarks represent fast degrees of free-
dom. The parameters of the Lagrangian (14) are chosen to
match the low-energy phenomenology of mesons in the
absence of magnetic fields and at zero temperature, i.e., in
the vacuum [53]. Using the notation of Ref. [13], this
implies the following expectation values for the conden-
sates: h�i ¼ f� and h ~�i ¼ 0, with f� � 93 MeV and
m� � 138 MeV. The masses in Eq. (17) should be con-
sidered as parameters of the model, which coincide with
corresponding meson masses at T ¼ 0 and B ¼ 0.

The explicit symmetry breaking term, as usual, is deter-
mined by the partially conserved axial current relation h ¼
f�m

2
�, so that v2 ¼ f2� �m2

�=� and m2
� ¼ 2�f2� þm2

� in
the vacuum. Choosing the value of the quartic interaction
� ¼ 20, one gets a reasonable �-mass m� � 600 MeV.
The constituent quark mass is given by mq � mqðh�iÞ ¼
gh�i, and, choosing g ¼ 3:3 at T ¼ 0, one obtains for the
constituent quarks in the vacuum mq � 310 MeV. At low

temperatures the quarks are not excited, and the model (14)
reproduces results from the usual linear � model without
quarks [51].

If the explicit symmetry breaking term is absent (i.e., if
hq ¼ 0), then the model (14) experiences a second-order

phase transition [54] from the broken symmetry phase to

the restored phase at a critical temperature Tc ¼
ffiffiffi
2

p
v. The

presence of the explicit symmetry breaking term changes
the phase transition into a smooth crossover.
The pion directions play no major role in the process

of phase conversion we have in mind, as was argued in
Ref. [14] for the case of the chiral transition. Therefore, in
what follows, we focus on the sigma direction of the chiral
sector. However, the coupling of charged pions to the
magnetic fields might be quantitatively important in a
possible development of charged chiral condensates.
This issue, though, makes the computation technically
much more involved and will be addressed in a future
publication [52].

D. Confining potential

We choose to couple the Polyakov loop to the linear
sigma model in the same fashion as was success-
fully implemented in the case of the NJL model in
Refs. [55–57]. The confining properties of the system in
our model are accounted for by the third term in Eq. (6),
which describes the Polyakov loop variable (1):

L L ¼ �VLðL; TÞ: (18)

We treat the Polyakov loop in a mean-field approach,
neglecting a kinetic term for this variable. Although the
Polyakov loop is, strictly speaking, a static quantity, a
kinetic term is often added to describe the dynamics in
an effective model for deconfinement [58,59].
Notice that, in our approach, the Polyakov loop variable

L is not coupled to the chiral variables � in the bare
Lagrangian (18). The reason is that the chiral variables are
colorless degrees of freedom which should not affect the
Polyakov loop, at least in a first approximation. Of course,
the mesons � are made of colored quarks which do feel
colored degrees of freedom like L. Thus, the interaction
between the chiral and confining variables will inevitably
appear later, after the quarks c are integrated out. This
approach is not unique. In fact, it is common to couple the
Polyakov loop directly to chiral fields phenomenologically
as a way to link the chiral and deconfining transitions in a
generalized Landau-Ginzburg theory, inwhich the behavior
of an order parameter induces a change in the behavior of
non-order parameters at the transition via the presence of a
possible coupling between the fields [21–23].
The term (18) is essentially the potential term of

the Polyakov action in the pure Yang-Mills theory not
coupled to quarks. Quark effects manifest via coupling
with the quark matter field in the first part of our
Lagrangian, Eq. (7).
The effective potential (18) has the following properties:

it should satisfy the center Z3 symmetry,
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Z 3: L ! e2�ni=3L; n ¼ 0; 1; 2; (19)

which is realized in the limit of the pure gauge theory
(the coupling to dynamical quarks break this symmetry).
According to Eq. (2), the potential (18) should have an
absolute minimum at L ¼ 0 in the confined phase. Results
from lattice simulations [60] show that the deconfining
transition in SUð3Þ gauge theory takes place at a critical
temperature TSUð3Þ ’ 270 MeV. As the system undergoes

the phase transition, the single minimum at L ¼ 0 of the
potential splits into three degenerate minima labeled by
the Z3 variable. As a consequence, in the deconfined phase
the Z3 symmetry is spontaneously broken, and hLi � 0.

Following Ref. [57], we use a specific form for the
phenomenological potential of the Polyakov loop:

VLðL;TÞ
T4

¼�1

2
aðTÞL	L

þ bðTÞ ln½1� 6L	Lþ 4ðL	3 þL3Þ� 3ðL	LÞ2�;
(20)

with

aðTÞ ¼ a0 þ a1

�
T0

T

�
þ a2

�
T0

T

�
2
; (21)

bðTÞ ¼ b3

�
T0

T

�
3
; (22)

where T0 is the critical temperature in the pure gauge case:
T0 � TSUð3Þ ¼ 270 MeV.

The phenomenological parameters in Eq. (22) are

a0 ¼ 16�2=45 � 3:51; a1 ¼ �2:47;

a2 ¼ 15:2; b3 ¼ �1:75:
(23)

Consistently with the original definition (1), the potential
(20) limits the values of the Polyakov loop to the interval
L	L 
 1 because of a logarithmic divergence in (20).
The value L	L ¼ 1 is reached in the limit T ! 1. In the
confined phase, T < T0, the potential has one trivial mini-
mum [as illustrated in Fig. 2 (top)], whereas in the decon-
fined phase, T > T0, the potential has three degenerate
minima [see Fig. 2 (bottom)]. The latter are mutually
connected by Z3 transformations.

The set of parameters (23) is obtained by demanding
the following requirements valid for pure SUð3Þ gauge
theory [57]:

(i) the Stefan-Boltzmann limit is reached at T ! 1;
(ii) a first-order phase transition takes place at T ¼ T0;
(iii) the potential describes well lattice data for the

Polyakov loop and for the thermodynamic func-
tions such as pressure, energy density, and entropy.

The uncertainties for the parameters in Eq. (23) are: 6%
for a1, less than 3% for a2, and about 2% for b3 [57].

E. Total free energy and observables

The free energy of the system is given by

� ¼ � T

V3d

lnZ; (24)

where V3d is the spatial volume and Z is the partition
function

Z ¼
Z

DcD �cD�D ~� exp

�
�i

Z 1=T

0
dt
Z

d3xL
�
:

(25)

In the mean-field approximation, treating the meson fields
classically and keeping only the sigma direction in the
mesonic sector, the free energy is given by

�ð�;L;T; BÞ ¼ V�ð�; ~�Þ þ VLðL; TÞ þ�qð�;L; TÞ;
(26)

where the potential V� for the chiral field is given in

Eq. (17) and the potential for the Polyakov loop VL is
defined by Eq. (20). In (26), we explicitly show the depen-
dence of the free energy on the external magnetic field B,
the temperature T, and the mean-field value of the chiral
field �, as well as the expectation value of the Polyakov
loop L.
The temperature and the magnetic field impose the fixed

external conditions, whereas the expectation values of the
dynamical fields are obtained by minimization of the free
energy (26) with respect to the dynamical variables:

FIG. 2 (color online). The phenomenological potential of the
Polyakov loop (20) at T ¼ 0:8T0 (top) and T ¼ 1:2T0 (bottom).
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@�

@X
¼ 0; X ¼ �;L: (27)

The mass of the � mesons is given by the curvature
of � evaluated at the global minimum (27) of the free
energy, i.e.:

m2
�ðT; BÞ ¼ @2�

@�2
: (28)

Notice that the mass (28) depends implicitly on the tem-
perature T and the strength of the magnetic field B. The
zero-temperature and zero-field value of the � meson
mass [defined in Eq. (17)] is related to Eq. (28) as follows:
m� � m� (T ¼ 0, B ¼ 0).

III. FREE ENERGYAT ONE LOOP

We compute the free energy of the system in the one-
loop approximation. To this end, we functionally integrate
over the quark fields and take the integral over the fluctua-
tions of the mesonic degrees of freedom near the minimum
of the free energy, determined by Eq. (27). These integrals
yield thermal determinants, either in the background of the
magnetic field B or for vanishing field.

The one-loop correction coming from quarks can be
written in the form

exp

�
i
V3d

T
ð�uþ�dÞ

�
¼
Z
D �cDc exp

�
�i

Z
d4xLq

�

¼ Y
q¼u;d

detT½i 6DðqÞ�gð�þ i�5 ~� � ~�Þ�
det½i@�gð�þ i�5 ~� � ~�Þ� ;

(29)

where the quark Lagrangian Lq is given in Eq. (7). The

notation ‘‘detT’’ means that the determinant is taken at
nonzero temperature, while ‘‘det’’ indicates that we con-
sider the T ¼ 0 case.

The numerator in Eq. (29) involves the covariant deriva-
tive (8) because we calculate the contribution of the fer-
mion loop in the presence of an external magnetic field and
in the background of the nontrivial Polyakov loop. The
magnetic field B and the Polyakov loop L affect the chiral
degrees of freedom via the covariant derivative. Thus, the
integration over quark fields provides an effective potential
for the meson fields, � and ~�, and the Polyakov loop, L.
The coefficients of this potential should in general depend
on the strength of the magnetic field B and on the tem-
perature T. The determinant in the numerator of Eq. (29) is
regularized by a similar determinant in the denominator
which is calculated at T ¼ 0, B ¼ 0 and in the absence of
the confining background. Thus, the quark one-loop cor-
rection is expressed in terms of a ratio of fermionic deter-
minants. In what follows, we assume that the vacuum of the
model is defined by h�i ¼ f�, h ~�i ¼ 0.

Following Ref. [47], it is convenient to regroup in
Eq. (29) the ratio of the determinants, and represent the
free energy of each species of the light quarks as follows:

eiV3d�q=T ¼
�
detði 6DðqÞ �mqÞ
detði@�mqÞ

�
�
�
detTði 6DðqÞ �mqÞ
detði 6DðqÞ �mqÞ

�
;

(30)

where q stands for either u or d. The first ratio corresponds
to the response of the quark loops to the external fields at
zero temperature. This term represents the vacuum contri-
bution, �vac

q . The second ratio in Eq. (30) represents the

finite-temperature correction due to thermal fermion ex-
citations. As in Ref. [47], we call this contribution the
paramagnetic part of free energy, �

para
q .

In this paper, as mentioned previously, we consider two
approaches for the PLSMq, one that includes B-dependent

vacuum effects and one that does not. We intentionally
ignore pure vacuum corrections, in order to compare our
results with what is found in the absence of a magnetic
background in the literature of the linear sigma model with
quarks, coupled or not to Polyakov loops (e.g., Ref. [13]).
However, since this is a theory with spontaneous sym-
metry breaking (in addition to an explicit breaking), a
nonzero condensate modifies the quark mass, and vacuum
subtractions are more subtle. At the end, there are finite
logarithmic contributions that survive renormalization,
sometimes called zero-point corrections, but that are
usually discarded phenomenologically in the LSMq.

These contributions have been studied by the authors of
Ref. [16] in the LSMq. Vacuum contributions were con-

sidered at finite density in the perturbative massive Yukawa
model with exact analytic results up to two loops in
Refs. [61,62] and, more specifically, in optimized pertur-
bation theory at finite temperature and chemical potential
in Ref. [63], also comparing to mean-field theory. More
recently, this issue was discussed in a comparison with the
NJL model [64]. A very recent careful and detailed study
in the (Polyakov-loop extended) quark-meson model,
with special attention to the chiral limit, can be found in
Ref. [65].
Thus, the one-loop correction from quarks to the free

energy of the system is given by

�qðB; TÞ ¼
X

f¼u;d

½�vac
qf ðBÞ þ�para

qf ðB; TÞ�: (31)

Below, we discuss each term in this equation separately.

A. Vacuum contribution, �vac
q

The vacuum contribution can be expressed as the
Heisenberg-Euler energy density1:

1In Ref. [66], one can find results for spinor and scalar
determinants in the presence of external fields.

MIZHER, CHERNODUB, AND FRAGA PHYSICAL REVIEW D 82, 105016 (2010)

105016-6



�vac
q ðBÞ ¼ 1

iV4d

log

�
detði 6DðqÞ �mqÞ
detði@�mqÞ

�

¼ Nc � ðqBÞ
2

8�2

Z 1

0

ds

s3

�
s

tanhs
� 1� s2

3

�
e�sm2

q=ðqBÞ;

(32)

where we have already accounted for the color degeneracy
of the quark degrees of freedom.

Since the covariant derivative 6DðqÞ contains not only the
electromagnetic but also the non-Abelian gluon fields, one
could expect that non-Abelian features should also appear
in Eq. (32). Notice, however, that the Polyakov loop con-
tribution is trivial since, for T ¼ 0, it can be put away by a
simple shift in the integral over the zeroth component of
the momentum. Therefore, for the vacuum contribution
from quarks, we can ignore its presence in the covariant
derivative. On the other hand, as we discuss below, at
nonzero temperature, the presence of the gluon field leads
effectively to a shift of the Matsubara frequencies, thus
contributing to the paramagnetic (second) part of (31).

The expression above corresponds, of course, to the
quark vacuum correction in the presence of the external
magnetic field

�ðBÞ
q ¼ �Nc

�

X
f¼u;d

jqfjB
��X

n

Ið1ÞB ðM2
nfÞ
�
� Ið1ÞB ðmfÞ

2

�

(33)

minus the vacuum correction in the absence of the field

�ð0Þ
q ¼ 2Nc

X
f¼u;d

Ið3ÞB ðm2
fÞ; (34)

where we have defined the integral

IðdÞB ðM2Þ ¼
Z ddp

ð2�Þd
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

q
(35)

and the quark mass in the presence of B

M2
nf ¼ m2

f þ 2njqfjB: (36)

One can control the divergences in the integrals above via
dimensional regularization and compute the difference

�ðBÞ
q ��ð0Þ

q in the MS scheme, obtaining

�vac
q ðBÞ ¼ � Nc

2�2

X
f¼u;d

ðqfBÞ2
�
	 0ð�1; xfÞ

� 1

2
ðx2f � xfÞ logxf þ

x2f
4
þ 1

12
log

�
�2

2jqfjB
��

;

(37)

where xf � m2
f=ð2jqfjBÞ, 	 0 is the derivative with respect

to the first argument of the Riemann-Hurwitz 	 function
[67], and � is the renormalization subtraction scale. This
expression is in agreement with the results of Refs. [45,68],

except for the scale-dependent term. Since the scale-
dependent term is independent of the meson fields and
we are concerned only with the effective potential of the
theory, we can discard it. Here our normalization is such
that this correction vanishes in the limit of B ¼ 0. One
arrives at the same result using the Heisenberg-Euler ap-
proach and imposing the normalization mentioned above.
We can cast the correction to the effective potential in

a dimensionless form normalizing every quantity by a
mass scale. For this purpose, we choose v as our mass
unit and define:


 � �

v
; b � eB

v2
; t � T

v
: (38)

It is also convenient to write the quark electric charge as
qf ¼ rfeBsignðqfÞ, so that ru ¼ 2=3 and rd ¼ 1=3. Then,

the vacuum one-loop contribution to the effective potential
is given by

Vvacð
; bÞ
v4

¼ �Ncb
2

2�2

X
f¼u;d

r2fF

�
g2
2

2rfb

�
; (39)

where the function F is defined as

FðxÞ � 	 0ð�1; xfÞ � 1

2
ðx2f � xfÞ logxf þ

x2f
4
; (40)

and displayed in Fig. 3. For small values of its argument it
behaves as

FðxÞ ¼ �0:165 421þ 1

2
x logxþOðxÞ; (41)

whereas for large argument x one finds

FðxÞ ¼ 1

12
ð1þ logxÞ þOðx�2Þ: (42)

Since the constituent quark mass mq is linear in �, the

external magnetic field modifies the classical potential (17)
for the � field. One can see from the behavior of this
correction that its effect is to increase the value of the
condensate and deepen the absolute minimum of the
effective potential, as expected from previous results on
magnetic catalysis.

0.001 0.01 0.1 1 10 100

0.1

0.0

0.1

0.2

0.3

0.4

x

F
x

FIG. 3 (color online). The function FðxÞ, Eq. (40).
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Finally, for the sake of completeness, we discuss
the weak and strong field limits of the T ¼ 0-quark free
energy (32). The leading term in the weak-field limit
(jqBj � m2

q) is

�vac
q ðBÞ ¼ � Nc

360�2

�
qB

mq

�
4
�
1þO

��
qB

m2
q

�
2
��
: (43)

The strong field limit (jqBj � m2
q) with on-shell renor-

malization (� ¼ m) is given by [66]

�vac
q ðBÞ ¼ � Nc

24�2
ðqBÞ2 ln

�
C2

2eB

m2
q

�

� Nc

8�2
qBm2

q ln

�
C1

2eB

m2
q

�

� Nc

16�2
m4

q ln

�
C0

2eB

m2
q

�
þO

�
m6

q

qB

�
; (44)

where C0 ¼ e3=2�� ¼ 2:516 29, C1 ¼ e=2� ¼ 0:432 628,
C2 ¼ A�12 ¼ 0:050 536 8, � ¼ 0:577 216 is the Euler
constant, and A ¼ 1:282 43 is the Glaisher constant.2

Numerical tests show that only in the limit of very high
fields, in units of v, the vacuum corrections bring a non-
negligible modification to the effective potential.

B. Paramagnetic contribution, �para
q

The paramagnetic temperature-induced contribution
comes from the second determinant ratio in Eq. (30). In
general, a quark determinant can be formally written as the
product over the eigenvalues �n of the corresponding
Dirac operator, i.e.:

det½i 6Dþmq�T �Y
n

�n

T
; (45)

where �n satisfy the eigenvalue equation

½i 6Dþmq�c n ¼ �nc n: (46)

It is important to stress that in Eq. (45), we omitted a
T-independent constant which would anyway be sub-
tracted at the end of the calculation.

The algebraic equation for eigenvalues �n reads as
follows:

ðp0 � Aii
0 Þ2 � p2

z � ðmq ��Þ2 � ð2nþ 1� 2sÞjqjB ¼ 0;

(47)

where q is the electric charge of the quark, n ¼ 0; 1; 2; . . .
is the quantum number that labels the Landau levels,
and s ¼ �1=2 is the projection of the spin of the quark
eigenstate onto the z axis. Here, Aii

0 is the ith diagonal

component of the SUð3Þ gauge field. We assume no sum
over color indices i ¼ 1; 2; 3 unless explicitly indicated.
From (47), one finds

�ðiÞ
� ¼ mq � ½ðp0 � Aii

0 Þ2 � p2
z � ð2nþ 1� 2sÞjqjB�1=2:

(48)

At zero magnetic field the contribution to the effective
potential coming from (45) can be written as follows:

T

V3d

lndet½i 6Dþm�T ¼ T
X
‘2Z

Z d3p

ð2�Þ3 ln

�
�ðiÞ

þ�ðiÞ�
T2

�
; (49)

where ‘ labels the Matsubara frequencies !‘. The zeroth
component of the momentum is related to the Matsubara
frequency as follows:

p0 ¼ �ip4 � �i!‘; !‘ ¼ 2�Tð‘þ 1=2Þ; (50)

where the odd frequency takes into account the antiperio-
dicity of the quark fields along the temporal direction.
In the presence of a magnetic field B, the integral over

the phase space in Eq. (49) is modified to

Z d3p

ð2�Þ3 �
jqjB
2�

X1
n¼0

Z dpz

2�
; (51)

where the integer n labels the Landau levels.
Using the mapping (51), the explicit expression for the

fermion determinant (49) and the eigenvalues (48), we can
rewrite the quark-induced potential (30) as follows:

�para
q ð�;�Þ ¼ T

iV3d

ln

�
detTði 6DðqÞ �mqÞ
detði 6DðqÞ �mqÞ

�

¼ � jqjBT
2�

X3
i¼1

X
s¼�ð1=2Þ

X1
n¼0

X
‘2Z

Z þ1

�1
dpz

2�
ln

�
��

!‘

T
þ Aii

4

T

�
2 þ!2

snðpz; �Þ
T2

�
; (52)

where the dispersion relation for quarks in the external
magnetic field is

!snðpz; �Þ ¼ ½m2
qð�Þ þ p2

z þ ð2nþ 1� 2sÞjqjB�1=2;
(53)

with constituent quark mass mqð�Þ ¼ g�.

With a suitable identification, � ¼ Aii
4=T and � ¼

!sn=T, the sum over Matsubara frequencies in Eq. (52)
can be done explicitly with the help of the following
formula (with arbitrary real � and �):X

‘2Z

ln½ð2�‘þ �þ �Þ2 þ �2�

¼ 4
X1
j¼1

lnð2�jÞ þ �þ lnð1þ ei�e��Þ

þ lnð1þ e�i�e��Þ: (54)

2In Ref. [48], the quark vacuum term was not included.
Instead, the vacuum contribution coming from charged pion
loops was considered. Both treatments increase the value of
the condensate and deepen the effective potential. In this paper,
we choose to treat the mesonic fields classically.

MIZHER, CHERNODUB, AND FRAGA PHYSICAL REVIEW D 82, 105016 (2010)

105016-8



The first term in the right-hand side of the equation
above is divergent. In the language of the effective poten-
tial (52), the divergent term corresponds to a contribution
from massless fermions plus an additive constant. We
ignore this term, since it depends neither on chiral nor
on confining variables. The second term leads to a
T-independent contribution to (52), which is already taken
into account by the vacuum energy (32). The last two terms
lead to the regularized paramagnetic free energy for the
chiral and confining fields:

�para
q ¼ �jqjBT

2�

X
s¼�ð1=2Þ

X1
n¼0

Z þ1

�1
dpz

2�
WT½!snðpz; �Þ;��;

(55)

where

WTð!;�Þ ¼ Trc½lnð1þ�e�!=TÞ þ c:c:�

¼ X3
i¼1

lnð1þ 2e�!=T cos’i þ e�2!=TÞ: (56)

Here, the trace Trc is taken in the color space and the
angles ’i are defined in the diagonal representation (12)
of the untraced Polyakov loop � [the Polyakov loop is
defined in Eq. (1)]. Notice that the parameters ’i—which
are the phases of the diagonal components of the untraced
Polyakov loop—enter the partition function exactly like
imaginary chemical potentials.

The paramagnetic contribution, given by Eqs. (55) and
(56), can be simplified further by expanding the logarith-
mic function in Eq. (56) in the following series:

lnð1þ 2e�!=T cos’þ e�2!=TÞ

¼ �2
X1
k¼1

ð�1Þk
k

cosðk’Þe�k!=T: (57)

Next, we use the simple relation

Z þ1

�1
dpz exp

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ�2

q
T

�
¼ 2�K1

�
�

T

�
; (58)

where KlðxÞ is the modified Bessel function of the second
kind (the MacDonald function) and order l [67]. Finally,
we express the free energy (55) in terms of the sums only:

�para
q ¼ jqjBT

�2

X
s¼�ð1=2Þ

X1
n¼0

X1
k¼1

ð�1Þk
k

Re½Tr�k��snð�Þ

� K1

�
k

T
�snð�Þ

�
; (59)

where �sn � !snðpz ¼ 0; �Þ is the energy of the nth
Landau level (53) at zero longitudinal momentum

�snð�Þ ¼ ½g2�2 þ ð2nþ 1� 2sÞjqjB�1=2; (60)

and the untraced Polyakov loop is defined in Eq. (12),
so that

Re ½Tr�k� ¼ X3
i¼1

cosðk’iÞ: (61)

The integer number k corresponds to the winding number
of the Polyakov loops.
It is also convenient to express the paramagnetic con-

tribution to the effective potential in terms of dimension-
less quantities as follows:

Vparað
;�1;�2; b; tÞ
v4

¼� bt2

2�2
Kðb=t2; 
=t;�1;�2Þ; (62)

where we defined the dimensionless function

Kð
;�1; �2; b; tÞ ¼
X

f¼u;d

X
s¼�1=2

X1
n¼0

X3
i¼1

�
Z 1

0
dx logð1þ e�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þ ~�snfð
;bÞ=t

p

þ 2e�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þ ~�snfð
;bÞ=t

p
cos�iÞ (63)

and the dimensionless version of Eq. (60), i.e.,

~� snf ¼ ½g2
2 þ ð2nþ 1� 2sÞrfb�1=2: (64)

C. Paramagnetically induced breaking of Z3

One can see from Eq. (59) that the magnetic field dras-
tically affects the potential for the Polyakov loop. Take, for

example, the limit of a very strong field,
ffiffiffiffiffiffiffiffiffiffijqjBp � mq �

g�. Then, the leading contribution to Eq. (59) is given by
the lowest Landau level, n ¼ 0, with spins oriented along
the field, s ¼ þ1=2, at the lowest winding number of the
Polyakov loop, k ¼ 1. Thus, the leading term of the strong
field expansion of the paramagnetic potential (59) is

�
para
q ¼ �3

g�jqjBT
�2

K1

�
g�

T

�
ReL; (65)

where the Polyakov loop variable is defined in Eq. (1). At
fixed value of the magnetic field and temperature, the
function (65) is a nonmonotonic function of the field �:
it increases at small values of � and decreases at large
values of �. This fact will be essential for our discussion of
the role of the vacuum contribution introduced in the
previous subsection: the vacuum contribution makes the
expectation value of the � field larger, eventually dimin-
ishing the role of the paramagnetic contribution (65) at
large enough magnetic fields.
Notice that the paramagnetic contribution (65) is not

invariant under the Z3 symmetry, and therefore the para-
magnetic contribution (65) deforms the potential for the
Polyakov loops. Therefore, it is clear that the magnetic
field tends to break the Z3 symmetry and induce deconfine-
ment in this model.
In order to illustrate the effect of the paramagnetic term

(59), we plot in Fig. 4 the potential for the Polyakov loop
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(20), including the correction induced by the paramagnetic

interaction (65). In the figure, the magnetic field is
ffiffiffiffiffiffi
eB

p ¼
3T. We show the potential for two temperatures, T ¼
0:8T0 and T ¼ 1:2T0, in order to compare the plots with
the pure gauge field potential displayed in Fig. 2. The effect
of the magnetic field is clearly seen in the deconfined
phase: the paramagnetic interaction induces the expecta-
tion value of the Polyakov loop to be real-valued.

D. Complete effective potential

It is, of course, also convenient to define dimensionless
expressions for the classical potential

Vclð
Þ
v4

¼ �

4
ð
2 � 1Þ2 � ~h
; (66)

where ~h � h=v3, and the potential for the Polyakov loops

VPð�1; �2; t; t0Þ
v4

¼ VLðL; TÞ
v4

; (67)

where we used Eq. (20) and defined t0 � T0=v, besides
expressing L and L	 in terms of �1 and �2.

The total (dimensionless) effective potential can then be
expressed as

Veffð
;�1; �2; b; tÞ
v4

¼ Vclð
Þ
v4

þ VPð�1; �2; t; t0Þ
v4

þ Vvacð
; bÞ
v4

þ Vparað
;�1; �2; b; tÞ
v4

; (68)

and it is this form of the effective potential that we use to
determine the phase structure of the PLSMq effective field

theory in the following section.

IV. PHASE STRUCTURE

In our numerical analysis, we have considered the fol-
lowing situations:
(A) The linear sigma model with thermal corrections,

without the coupling to the Polyakov loop. This is a
standard analysis and has been performed previ-
ously in Refs. [9–20], and it is shown here for the
sake of completeness;

(B) The linear sigma model at finite temperature
coupled to the Polyakov loop. At this point the
effects of the magnetic field were not taken into
account yet, and we investigated only the effects of
the interaction between the two order parameters;

(C) The linear sigma model in a magnetic background
at zero temperature. In this case, the Polyakov loop
is excluded by construction. The magnetic field
manifests itself through vacuum corrections from
the quarks;

(D) The complete scenario: the linear sigma model
coupled to the Polyakov loop with thermal correc-
tions in the presence of a magnetic background.

In the latter case, we also investigated the effects of in-
cluding vacuum corrections or not. The discussion about

FIG. 4 (color online). The same as in Fig. 2, but with the
paramagnetic contribution (59) included. The potential is shown
at two temperatures: T ¼ 0:8T0 (top) and T ¼ 1:2T0 (bottom).
The magnetic field is given by

ffiffiffiffiffiffi
eB

p ¼ 3T in both cases.
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FIG. 5 (color online). Effective potential of the linear sigma
model with thermal corrections for several values of tempera-
ture. The transition is a crossover.
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the inclusion or not of such terms is still inconclusive, not
being clear which treatment is closer to the original theory,
QCD. We obtained phase diagrams in the ðT; BÞ plane for
both cases and verified that the inclusion or not of vacuum
corrections is crucial to the structure of the phases, influ-
encing not only the nature of the transitions, as it was first
observed in [64], but also changing the qualitative behavior
of the transition lines.

A. B ¼ 0; T � 0; ’1;2 ¼ 0

This case is described by the linear sigma model coupled
to quarks. We take into account thermal corrections and
disregard coupling to the Polyakov loop (12). The chiral
condensate is the approximate order parameter for the
chiral transition, and for low temperatures it is nonzero,
indicating symmetry breaking. The value in the vacuum is
adjusted to correspond to the pion decay constant, f�, as
described in Sec. II C. As the temperature is raised the
minimum approaches zero, and for high enough T, the
symmetry is recovered. As the position of the minimum
as a function of temperature is continuous, and so is its
derivative, the transition is a crossover (see Fig 5).

B. B ¼ 0, T � 0, ’1;2 � 0

In this subsection, we analyze the interaction between
the chiral condensate and the Polyakov loop, without the
presence of the magnetic field. We treat the model at finite
temperature and include the presence of the Polyakov loop
(12) in the formulation of the model. The expression for the
thermal effective potential is similar to Eq. (55):

�para
q ¼ �T

Z dp3
z

ð2�Þ3 WB¼0½!ðpz; �Þ;��; (69)

where WB¼0 has an expression similar to Eq. (56), but the
frequency ! has no dependence on the magnetic field, and

is given by ! ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

q

q
.

Because of the interaction, the Z3 degeneracy is broken,
and the minimum along the real axis becomes the global
one. Both transitions, chiral and deconfinement, are con-
sistent with a crossover-type transition, since the order
parameters behave as smooth functions of the temperature
in Fig. 6. The slopes of both order parameters become
steepest at the same temperature Tc ’ 215 MeV, clearly
showing the tight relation between the order parameters.

C. B � 0, T ¼ 0

At zero temperature, the Polyakov loop is absent by
construction. The only pieces of effective potential that
contribute are the linear sigma model potential and the
vacuum correction from quarks. The magnetic field influ-
ences the system through the latter. We plot in Fig. 7 the
effective potential for different values of the external
magnetic field. We can see that as the field increases in

magnitude, the potential becomes deeper and the value of
the condensate raises, in accordance with results at zero
temperature that indicate an enhancement of chiral sym-
metry breaking. This effect—known as magnetic cataly-
sis—is in accordance with previous results from two of us
[48]. In Fig. 7, we subtracted the value of the potential with

 ¼ 0, in order to have a better comparison for different
values of magnetic field, and �V is the resultant potential.
This procedure will be applied in all plots of the effective
potential along this section.
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FIG. 6 (color online). Expectation values of the order parame-
ters for the chiral and deconfinement transitions as functions of
the temperature. The filled circles represent the �-condensate,
and the empty circles stand for the expectation value of the
Polyakov loop. Both lines are smooth functions of the tempera-
ture, indicating the presence of a crossover-type smooth tran-
sition.

0 0.5 1 1.5 2

 ξ

-80

-60

-40

-20

0

20

 ∆
V

/v
4  (

T
=

0)

eB=5mπ
2

eB=10mπ
2

eB=20mπ
2

eB=30mπ
2

FIG. 7 (color online). Zero-temperature effective potential
(68) with vacuum corrections included is shown as a function
of the chiral variable 
 ¼ �=v for different values of external
magnetic field.
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D. B � 0, T � 0, � � 0

Finally, we analyze the full potential. It contains the
linear sigma model, the pure gauge potential, thermal
corrections including interaction between the two fields,
and vacuum corrections from the quarks. The effects of
including or not the vacuum terms were also considered
and have shown to be crucial for the structure of phases.
The relevant potential is given in Eq. (68). This potential is
a function of the parameters �, ’1, and ’2, where we used
the parameterization (12) and set ’3 ¼ �’1 � ’2. As
shown in Fig. 2, for pure gauge the potential—written in
terms of L and L	—has three degenerated minima. It is
known that in the presence of quarks, this degeneracy is
broken, and the global minimum will be in the direction
of Re½L�. Since we are interested only in the minima of the
potential, we can simplify our analysis by setting Im½L� to
be zero.

Let us consider first the potential without vacuum cor-
rections. We evaluate it for different values of magnetic
field and temperature. For each set of values of T and B, we
minimize the potential with respect to � and ’1. Then, we
use this value of h’1i to plot the effective potential as a
function of � only. Figure 8 illustrates the evolution of the
chiral transition at the magnetic field eB ¼ 10m2

�. Initially,
the condensate has a nonzero expectation value, and this
value decreases as the temperature increases. Then, a local
minimum appears for � ¼ 0, and above a certain critical
temperature it becomes the global minimum. The barrier
between the two minima causes a discontinuity in the
expectation value of �, pointing out to a first-order char-
acter of the chiral transition, in accordance with Ref. [48].
In the same way as in the case B � 0, T ¼ 0, the potential
becomes deeper for high values of the magnetic field.
However, the thermal corrections, responsible for restoring

chiral symmetry, also acquire a higher magnitude, bringing
the chiral critical temperature down.
In Fig. 9, we fix � at its minimum for a set of values of T

and B and plot the potential as a function of ’1. We can
then follow the evaluation of the expectation value of the
parameter Re½L�. At low temperatures it is zero, indicating
confinement, and above a critical temperature it goes
asymptotically to one. At the critical value of the tempera-
ture, where the chiral transition occurs, the variable hLi
also presents a discontinuity, so that the first-order chiral
transition is accompanied by a first-order deconfinement
transition for large strengths of the magnetic field. Thus, if
the vacuum corrections are not taken into account, then the
magnetic field enhances the order of the phase transition
and the transition changes from the crossover type (real-
ized at B ¼ 0, Sec. IVB) to the first-order type.
The phase diagram for the potential described above is

shown in Fig. 10.3 The critical temperature for the chiral
and deconfinement transitions are the same for different
values of magnetic field, resulting in two phases: a con-
fined phase with broken chiral symmetry, and a deconfined
phase with restored chiral symmetry. The common critical
line of these phase transitions is of first order for all values
of the magnetic field B except for very small values of B.
As the magnetic field decreases, the transition turns back
into a crossover, reproducing the physical situation with
B ¼ 0 that was discussed around Fig. 6.
The inclusion of vacuum corrections from quarks

changes the phase diagram dramatically. Following the
same procedure described above, we plot the potential as
a function of � in Fig. 11 and as a function of Re½L� in
Fig. 12. The corresponding phase diagram is shown in
Fig. 13. The vertical green line indicates the value of
magnetic field that is expected to be reached in heavy-
ion collisions in the ALICE experiment at the LHC [7].
The presence of the quark vacuum term changes the

order of the chiral transition, turning it into a crossover.
In the case without the vacuum correction, the transition
was of first order due to thermal effects. The thermal
contribution generates a minimum at 
 ¼ 0, being rather
sensitive to the value of the magnetic field. In the present
case, however, the vacuum term has a magnitude that is
larger compared to the thermal piece. Thus, the vacuum
contribution dominates the position of the minimum, and it
is the vacuum part that is responsible for driving the
transition to a crossover. Moreover, the chiral-violating
property of the vacuum quark contribution overwhelms
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FIG. 8 (color online). Complete effective potential without
vacuum corrections from quarks as a function of 
 ¼ �=v.
The value of ’ was chosen to take the minimum for each
temperature. The barrier between the two minima indicates a
first-order chiral transition.

3The starting point of the curve—given by the critical tem-
perature at zero chemical potential—is somewhat higher com-
pared to the value obtained in recent numerical calculations of
lattice QCD with two flavors of light fermions (see, for instance,
the review [69]). Generally, effective models like our PLSMq or
the Polyakov-loop extended NJL model give approximate an-
swers for particular quantities while being able to predict a
general picture at a very good qualitative level.
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the chiral restoration tendency of the thermal part so
that the critical temperature of the chiral transition—
calculated by taking into account both vacuum and thermal
effects—becomes an increasing function of the external
magnetic field.

It is interesting to recall that the thermal contribution of
quarks tends to destroy the confinement at strong magnetic
fields, Fig. 10, contrary to the confinement-enhancing

property of the vacuum contribution. This effect is due to
the fact that the vacuum contribution makes the value of
the field � larger (as one can see in Fig. 7), suppressing the
Z3-violating paramagnetic contribution (65) at large
enough magnetic fields. Thus, large magnetic fields tend
to enhance the confinement property of the vacuum. As in
the case of the chiral transition, the vacuum contribution
exceeds its thermal counterpart so that the deconfinement
transition temperature appears to be a weakly increasing
function of the magnetic field, Fig. 13. The confinement
transition is also a crossover.
The lines of the confinement and chiral transitions co-

incide for small values of B, and go apart as the field
increases in magnitude. Results from lattice QCD indicate
that in the absence of the magnetic field, the deconfinement
transition and chiral symmetry restoration happen in the
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FIG. 9 (color online). Complete effective potential without
vacuum corrections from quarks as a function of Re½L�. The
value of � was chosen to be the minimum for each temperature.
The different curves are then slices with different �, representing
a first-order transition, even if there is no apparent barrier in the
plot (the first-order jump in the chiral condensate makes the
expectation value of the Polyakov loop discontinuous as well).

0 10 20 30 40 50

eB(mπ
2
)

100

125

150

175

200

T
c(M

eV
)

Chiral transition
Deconfinement transition

Without vacuum corrections

FIG. 10 (color online). Phase diagram for the complete poten-
tial without the vacuum corrections coming from quarks. The
chiral (black line) and deconfinement (light red line) transitions
happen at the same temperature, leading to a common line. Both
critical temperatures decrease with the increase of B. The lines
mark first-order transitions, except for very small values of B,
when the transitions become crossovers. The exact value of field
for which it happens is not clear from our numerical analysis.
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�=v. The transition is a crossover.
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same narrow temperature interval [70]. Our calculations
indicate that the presence of a strong magnetic field should
inevitably split these transitions in this case.

The deconfinement transition occurs at lower tempera-
tures compared to the temperature of chiral restoration.
Thus, in a strong magnetic field, a deconfined phase with
broken chiral symmetry should appear. The splitting be-
tween these transitions becomes wider with the increase of
the magnetic field B. Some other approaches [47]—that
were not taking into account vacuum corrections—
demonstrate that (i) the deconfinement temperature drops
down as the magnetic field B increases; and that (ii) at
some critical value of the magnetic field, eB� 24m2

�,
color confinement may disappear as illustrated in Fig. 1.
On the contrary, we show that the inclusion of the men-
tioned vacuum corrections make the critical deconfining
temperature to be an increasing function of the magnitude
of the magnetic field up to eB� 50m2

�. We have not found
a signature of a critical magnetic field that would lead to
the magnetic field–induced deconfining transition in either
scenario, with and without vacuum corrections.

V. CONCLUSION

In this paper, we studied the influence of a strong
magnetic field background on confining and chiral proper-
ties of QCD, using the linear sigma model coupled simul-
taneously to quarks and to the Polyakov loop (PLSMq).

This model associates electromagnetic, chira,l and the
confining degrees of freedom in a natural way.

In the confining sector, the strong magnetic field affects
the expectation value of the Polyakov loop, which is an
approximate order parameter for the confinement-
deconfinement phase transition at finite temperature. We
found that the contribution from the quarks to the Polyakov
loop potential has three features:
(1) the presence of the magnetic field breaks the global

Z3 symmetry and makes the Polyakov loop real-
valued (this effect is seen in the Polyakov loop
potential, Fig. 4);

(2) the thermal contribution from quarks tends to
destroy the confinement phase by increasing the
expectation value of the Polyakov loop;

(3) on the contrary, the vacuum quark contribution tends
to restore the confining phase by lowering the ex-
pectation value of the Polyakov loop.

The vacuum correction from quarks has a crucial impact
on the phase structure. If one ignores the vacuum contri-
bution from the quarks, then one finds that the confinement
and chiral phase transition lines coincide, Fig. 10, and in
this case the increasing magnetic field lowers the common
chiral-confinement transition temperature. However, if one
includes the vacuum contribution, then the confinement
and chiral transition lines split, and both chiral and decon-
fining critical temperatures become increasing functions of
the magnetic field, Fig. 13. The vacuum contribution from
the quarks drastically affect the chiral sector as well.
Our calculations also show that the vacuum contribution

seems to soften the order of the phase transition: the
first-order phase transition—which would be realized in
the absence of the vacuum contribution—becomes a
smooth crossover in the system, with vacuum quark loops
included.
It is important to stress that in a strong magnetic field, a

deconfined phase with broken chiral symmetry will appear
in the scenario with quark vacuum corrections. The split-
ting of the confinement and chiral transitions—as shown in
Fig. 13—may be substantial at a steady magnetic field of
the magnitude that is expected to be realized in heavy-ion
collisions. For example, in the ALICE experiment at the
LHC facility, the magnetic field may peak around the value
eB ’ 15m2

� [7]. We find (see Fig. 13) that the splitting
between the critical temperatures of the confinement and
chiral crossovers in a constant field of the typical LHC
magnitude may reach the noticeable value

ðTchiral
c � Tdeconf

c ÞLHC ’ 10 MeV:

Deciding whether quark vacuum contributions should be
included or not is, unfortunately, an open issue yet. Lattice
simulations of QCD with dynamical fermions in the
presence of a magnetic field could certainly shed some
light onto this matter. Recent lattice results seem to favor
the scenario that takes into account the vacuum contribu-
tions [71].
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FIG. 13 (color online). Phase diagram for the complete poten-
tial with the vacuum corrections from quarks. The critical
temperatures of the deconfinement (the dash-dotted line) and
chiral (the dashed line) transition coincide at B ¼ 0 and split at
higher values of the magnetic field. A deconfined phase with
broken chiral symmetry appears. The green solid vertical line is
the magnitude of the magnetic field that is expected to be
realized at heavy-ion collisions at the LHC [7].
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agreement with our conclusion on the splitting of these
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[16] Á. Mócsy, I. N. Mishustin, and P. J. Ellis, Phys. Rev. C 70,
015204 (2004).

[17] C. E. Aguiar, E. S. Fraga, and T. Kodama, J. Phys. G 32,
179 (2006).

[18] B. J. Schaefer and J. Wambach, Phys. Rev. D 75, 085015
(2007).

[19] B. G. Taketani and E. S. Fraga, Phys. Rev. D 74, 085013
(2006).

[20] E. S. Fraga and G. Krein, Phys. Lett. B 614, 181 (2005).
[21] A. Dumitru and R.D. Pisarski, Phys. Lett. B 504, 282

(2001); O. Scavenius, A. Dumitru, and A.D. Jackson,
Phys. Rev. Lett. 87, 182302 (2001); O. Scavenius, A.
Dumitru, and J. T. Lenaghan, Phys. Rev. C 66, 034903
(2002); A. Dumitru, Y. Hatta, J. Lenaghan, K. Orginos,
and R.D. Pisarski, Phys. Rev. D 70, 034511 (2004); A.
Dumitru, J. Lenaghan, and R.D. Pisarski, Phys. Rev. D 71,
074004 (2005); A. Dumitru, R. D. Pisarski, and D.
Zschiesche, Phys. Rev. D 72, 065008 (2005).
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