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We construct a class of quantum critical points with non-mean-field critical exponents via holography.

Our approach is phenomenological. Beginning with the D3/D5 system at nonzero density and magnetic

field which has a chiral phase transition, we simulate the addition of a third control parameter. We then

identify a line of quantum critical points in the phase diagram of this theory, provided that the simulated

control parameter has dimension less than two. This line smoothly interpolates between a second-order

transition with mean-field exponents at zero magnetic field to a holographic Berezinskii-Kosterlitz-

Thouless transition at larger magnetic fields. The critical exponents of these transitions only depend upon

the parameters of an emergent infrared theory. Moreover, the non-mean-field scaling is destroyed at any

nonzero temperature. We discuss how generic these transitions are.
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I. INTRODUCTION AND SUMMARY

The anti–de Sitter/conformal field theory (AdS/CFT)
correspondence [1–3] describes a class of strongly coupled
gauge theories in terms of weakly coupled gravitational
systems. It has proved an extremely versatile tool for the
study of strong coupling phenomena over the last ten years.
For example, the correspondence has been used to study
the physics of deconfined plasmas, including transport [4]
and energy loss [5,6]. Recently there has been much inter-
est in the use of AdS/CFT to realize condensed matter
phenomena. Much of this work has been dedicated to the
study of non-Fermi liquids [7–9] and holographic super-
fluids [10,11] in the hope of better understanding the phase
diagram of high-temperature superconductors. Another
route to the same goal involves the study of quantum
critical points in strongly interacting theories. These zero
temperature transitions are interesting in their own right, as
they tend to govern the physics of large swaths of the phase
diagram at nonzero temperature. Indeed, the ‘‘strange
metal’’ phases observed in high-temperature superconduc-
tors may originate from a quantum critical point [12].

The study of critical phenomena is of central importance
in the condensed matter community. At any continuous
phase transition there is an emergent infrared fixed point
[13]. Of particular interest are transitions where the infra-
red theory is itself an interacting quantum field theory.
These transitions are characterized by non-mean-field criti-
cal exponents. It would be extremely interesting if holog-
raphy could be used to study these transitions or perhaps
even transitions beyond the Landau-Ginzburg-Wilson
paradigm altogether [14]. Unfortunately, most continuous
transitions in holographic models are second order with

mean-field exponents [15]. In fact, the mean-field expo-
nents should be expected rather than surprising. They
appear because of the large N parameter in these theories,
which allows us to study them via their holographic duals.
In this limit quantum fluctuations are suppressed in both
the field [16] and gravitational theories. As a result,
examples of non-mean-field exponents in large N theories
are doubly interesting. Moreover some justification for
their non-mean-field behavior should be given in the sense
of [17].
These questions are not only useful for the condensed

matter community. The study of phase transitions in large
N theories necessarily sheds light on the physics of non-
Abelian gauge theories. A general classification of transi-
tions in the phase diagram of such theories is important.
Such a dictionary will help in our understanding of QCD-
like gauge theories in (3þ 1) dimensions as well as in
condensed matter systems in (2þ 1) dimensions. Much
is already known. For example, the finite temperature
deconfinement transitions of these gauge theories with
holographic duals are first order [18] and map onto
Hawking-Page [19] phase transitions in the gravity descrip-
tion. Additional transitions have been identified in systems
with quarks [20–27]—there are meson-melting transitions
in a thermal [28–36] or high-density bath [37–40]. Chiral
symmetry is also broken in the systemwith a magnetic field
[41–49] and there is a chiral restoration transition at large
densities that occurs in addition to the meson-melting
transition. All of these transitions are typically first order
at finite temperature and low quark density but continuous
at large density (see [50–52] for the full phase diagrams of
the D3/D5 and D3/D7 systems with magnetic field which
we will study here. For thermodynamics see [53,54]).
Flavored gauge theories are also natural to study from

the critical phenomena perspective. Flavor sectors carry
new symmetries, leading to a richer phase diagram. At
large N, we also get the expansion parameter Nf=N and
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so the quenched limit is simultaneously rich and tractable.
The holographic description of these theories involves
probe D-branes minimizing their worldvolume in the
dual geometry [20].

The first example of a holographic quantum critical
point separating two nonzero density phases was obtained
in the D3/D7 system [50,51]. The dual field theory is
simply strongly coupled N ¼ 4 super Yang-Mills
(SYM) coupled to a small number of massless fundamental
hypermultiplets. The chiral transition in this theory is
triggered by large magnetic fields and is second order
with mean-field critical exponents. In fact, there are related
chiral transitions at nonzero density and magnetic field for
almost all of the supersymmetric probe brane systems [55].
Most of these are second-order transitions with mean-field
exponents, but a handful are not.

In particular, the first example of a non-second-order,
non-mean-field transition in holography was identified in
the D3/D5 system [56]. The dual field theory is the same as
in the D3/D7 setup, but the flavor fields are confined to a
(2þ 1)-dimensional defect. The chiral transition in this
theory exhibits exponential scaling and so is reminiscent
of the celebrated Berezinskii-Kosterlitz-Thouless (BKT)
transition [57–59]. This is the first known instance of
exponential scaling at zero temperature in (2þ 1) dimen-
sions. Indeed, one of us helped term this new transition a
holographic BKT transition, as it occurs in a different
context than the original BKT transition. Since then holo-
graphic BKT transitions have also been found in the con-
text of extremal asymptotically AdS4 dyonic black holes
[60] as well as in two other probe brane setups, namely,
flavored Aharony-Bergman-Jaeris-Maldacena theory and
flavored (1, 1) little string theory [55,61,62]. They have
also been identified in noncritical string setups in [63].

The existence and properties of the BKT transition are
intimately related to the Coleman-Mermin-Wagner theo-
rem [64–66]. Recall that transitions of the BKT type are
between disordered and quasiordered phases in two
dimensions. In the quasiordered phase, two-point functions
of symmetry-breaking operators have polynomial falloff
at long distances while the correlation length in the dis-
ordered phases scales as expðc= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T � Tc

p Þ near the critical
temperature Tc [58]. Holographic BKT transitions are
novel in that they exhibit exponential scaling in an ordered
phase. Correspondingly, their existence is entirely unre-
lated to the long-distance restoration of continuous sym-
metry in two dimensions. On the gravity side, holographic
BKT transitions occur due to the violation of the
Breitenlohner-Freedman (BF) [67] bound in the infrared
region of the dual geometry by a scalar field dual to an
order parameter. In the field theory, this amounts to con-
sidering a theory with an emergent CFT in the infrared.
The transition is driven by taking an operator dimension in
the emergent theory into the complex plane. On general
grounds presented in [68] this violation was expected to

produce BKT scaling, but the D3/D5 system was the first
example of a setting where the BF bound is violated
controllably.
In all known examples of holographic BKT transitions

the dual geometry has an effective infrared AdS2 region. In
the case of extremal asymptotically AdS4 dyonic black
holes, the near-horizon geometry is of the form AdS2 �
R2 [9]. For the probe brane systems, there is no physical
AdS2 region at the bottom of the geometry, but worldvo-
lume fields obey the equations of motion for fields in an
AdS2-like region there [69]. For the dyonic black holes the
emergent CFT is important: it governs much of the low-
frequency form of correlation functions at zero and small
temperatures [9]. In this work, the emergent CFTwill also
be of critical importance.
With all of this background in mind, there is an impor-

tant open question: can we use the holographic technique
to study second-order quantum critical points with non-
mean-field exponents?1 If so, can we explain the exponents
at large N? In this work we answer both questions in the
affirmative.2

Our philosophy is to obtain the most general quantum
critical point in a probe brane system (in the strict N ! 1
limit). We do this by considering a theory with three
relevant control parameters at zero temperature, one that
tends to preserve a symmetry (nonzero density) and the
other two to break it (one of them is a magnetic field).
Ideally to explore this one should use explicit examples
of such a theory. However, the gravitational description of
the probe branes is rather restrictive since only a very few
operators have their dimensions protected and appear as
modes in the Dirac-Born-Infeld (DBI) action of the
brane—the rest are stringy modes and have very large
dimension. We therefore take a phenomenological ap-
proach in this paper and begin with the D3/D5 system at
nonzero density and magnetic field. We simply include our
third control parameterO into the brane action by hand in a
natural fashion. It becomes a magnetic field when its
dimension is two and otherwise we tune its dimension.
As long as O has dimension less than two,3the resulting
phase diagram of the theory is quite rich; we plot it in
Fig. 1. At fixed density and magnetic field, we find a
chiral quantum critical point as we vary O. Varying the
magnetic field leads to a line of second-order transitions

1At nonzero temperature, there are two known classes for
these transitions. In the first, there is a curvature singularity at
the transition [70,71]. The second class is phenomenological,
where the non-mean-field exponents arise from an effective
bulk action [72] whose terms presumably originate from 1=N
corrections.

2As we were finishing this work, the authors of [73] released a
paper that studies holographic superfluids in the presence of
double-trace deformations. They obtain quantum critical points
with non-mean-field scalings that precisely match our results.

3When O has a larger dimension than the density, chiral
symmetry is broken for any nonzero O as in [41]
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that connects to a line of holographic BKT transitions at
critical magnetic fields.

In general the exact phase diagram differs depending on
our exact choice for the dimension of O. However, the
critical exponents of the chiral transition do not. We refer
the reader to Figs. 1 and 2, which illustrate these points.
This ‘‘universality’’ is one of our central results. In fact, the
critical exponents only depend upon the dimension of the
scalar field dual to the order parameter in the effective
AdS2 region�IR. For example, near the transition the order
parameter scales as �� ðO�OcÞ�, where

�ð�IRÞ ¼

8>>><
>>>:

1
2 ; �IR 2

�
3
4 ; 1

�
;

1��IR

2�IR�1 ; �IR 2
�
1
2 ;

3
4

�
:

(1)

In the D3/D5 system, �IR depends on the ratio of magnetic
field to density (14)

�IR ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffi
~d2�7B2

~d2þB2

q
2

;

where B is the magnetic field and ~d is proportional to the
density. This dimension goes to unity at zero magnetic field

and to 1=2 at the holographic BKT transition Bc ¼ ~d=
ffiffiffi
7

p
(from where it then enters the complex plane). This
is a nice result: our line of transitions not only exhibits
non-mean-field exponents, but it also continuously con-
nects a transition with mean-field exponents at �IR ¼ 1
to a holographic BKT transition at �IR ¼ 1=2. See
also (62).
To understand this interpolation we describe the effec-

tive potential of the theory near the line of second-order
transitions. We do this numerically, finding that both the
order parameter and free energy in the broken phase follow
from a modified Landau-Ginzburg model with a potential
of the form

Veffð�Þ ¼ �2ðOc �OÞ�2 þ �4�
4 þ �IR�

1=ð1��IRÞ; (2)

where the �’s are positive couplings and �IR is bigger than
1=2 and less than 1. When O is tuned past its critical value
Oc, the �4 dominates for �IR > 3=4 and the last term
dominates for �IR < 3=4. In the second regime, the
static critical exponent � takes on a non-mean-field value.
The nonanalytic term in the potential has a natural form
given that there is an emergent (0þ 1)-dimensional infra-
red theory under which the condensate has dimension
1��IR. The term is just that required on dimensional
grounds in the infrared theory. We justify this further in
Sec. IV.
Our thermodynamic results are obtained numerically.

However, we do obtain some analytic results for fluctua-
tions in the symmetric phase of the theory. Following [9],
we perform a matching computation to obtain the
low-energy limit of the two-point function of the order

FIG. 2 (color online). The critical exponent � in the deformed
D3/D5 system as a function of magnetic field at � ¼ 1 and � ¼
5=4. For small magnetic fields—such that �IR > 3=4—the ex-
ponent � assumes a mean-field value, while for larger magnetic
fields it does not. The exponents for � ¼ 1 (blue circle) and � ¼
5=4 (red cross) match each other and our prediction (dotted line),
Eq. (62), within our numerical accuracy.

FIG. 1 (color online). The zero temperature phase diagram of
our phenomenologically deformed D3/D5 system at nonzero
(fixed) density, magnetic field, and simulated control parameter
O of dimension �. The shaded region indicates the chirally
symmetric phase and the white region the broken phase. For
�< 2, there is a line of holographic BKT transitions at the
critical magnetic field Bc ¼ ~d=

ffiffiffi
7

p
. There is also a line of

second-order quantum critical points triggered by O that con-
nects to the line of BKT transitions. The position of the line
depends on the precise manner we introduce O. Indeed, the left
line corresponds to the choice � ¼ 5=4 and the right to � ¼ 1.
However, the critical exponents are only a function of the
magnetic field and density (Fig. 2). The static critical exponent
� takes the mean-field value 1=2 for the solid portion of the
lines, but takes on a non-mean-field value for the dotted section
as in Eq. (1). The line of critical points then interpolates between
a second-order mean-field transition and a holographic BKT
transition.
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parameter. The result for the brane system is essentially the
same there. Assuming some basic analyticity constraints,
we compute both the correlation length and the dynamical
critical exponent near our transitions. The former diverges
with mean-field scaling while the latter assumes a non-
mean-field value for all nonzero values of the magnetic
field. As with �, it only depends on �IR.

What happens at nonzero temperature? In the previous
examples with both probe branes and holographic super-
fluids, the transitions are universally second order with
mean-field exponents [56]. Even BKT scaling is destroyed
at any nonzero temperature. For this reason, we also expect
the non-mean-field scaling of our transitions to be lost
away from zero temperature. Indeed we find that this is
the case below.

Our general conclusion then is that a conformal theory,
perturbed by three control parameters Os, O1;2 with di-

mensions �s ¼ �1 > �2 may lead to a phase diagram
qualitatively similar to that represented in Fig. 1. In this
general picture we require that Os tends to restore a sym-
metry and O1;2 to break it. The constraint that �s ¼ �1

amounts to the freedom to change the emergent infrared
theory in these systems. Meanwhile, the �1 > �2 condi-
tion allows us to trigger an ordinary second-order transition
without altering the infrared theory. Since our results
crucially depend upon an emergent CFT, we expect that
they extend beyond probe branes to all systems with such
an emergent theory.

We further test this picture phenomenologically by per-
forming a similar analysis of the D3/D7 system. In that
theory, the magnetic field has dimension two and the
baryon density dimension three. We show that if a chiral
symmetry-breaking dimension-three operator O is also
introduced, then the theory realizes a holographic BKT
transition at largeO. As in the D3/D5 system, introducing a
control parameter with the same dimension as the density
leads to an emergent theory where the dimension of a
scalar operator depends on the density and O. Moreover,
at intermediate O the magnetic field can be used to trigger
a second-order non-mean-field transition. While we have
not computed it numerically, we expect that the phase
diagram qualitatively matches our results for the D3/D5
system.

The outline of this work follows. In Sec. II we review the
D3/D5 and D3/D7 systems at nonzero density and mag-
netic field [50–52,56]. We go on to present our phenome-
nological models and our holographic regularization. The
bulk of our results are presented in Sec. III, beginning
with the thermodynamics of the D3/D5 system at zero
and nonzero temperature. Next, we study fluctuations
using a matching procedure. In Sec. IV we present our
effective theory of the transition and critically test it.
We apply our analysis briefly to the D3/D7 system with-
out numerics in Sec. V. Finally, we discuss our results
in Sec. VI.

II. HOLOGRAPHIC SETUPS

A. The D3/D5 system

Strongly coupled SUðNÞ N ¼ 4 super Yang-Mills
(SYM) theory at large N and zero temperature is dual to
type IIB supergravity on AdS5 � S5 (with N D3 branes at
its core). The geometry can be written as

ds2 ¼ w2

R2
dx23;1 þ

R2

w2
ðd�2 þ �2d�2

2 þ dL2 þ L2d ��2
2Þ;
(3)

where w2 ¼ �2 þ L2, d�2
2, d ��2

2 are the metrics for
two unit two-spheres, and R4 ¼ 4�gsN�02. In these
coordinates the Poincáre horizon of AdS is located at � ¼
L ¼ 0 and the boundary as �2 þ L2 ! 1.
We now add Nf flavor hypermultiplets to the gauge

theory along a (2þ 1)-dimensional defect by placing a
probe D5 brane in this geometry. The probe limit corre-
sponds to the quenched limit of the gauge theory. The D5
probes are described by their DBI action

SDBI ¼ �NfT5

Z
d6�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� detðP½G�ab þ FabÞ

q
; (4)

where a; b ¼ 0; . . . ; 5 are worldvolume indices, P½G�ab is
the pullback of the metric to the brane, and F is the field
strength for the diagonal Uð1Þ gauge field living on the D5
worldvolume. The field theory has a SOð3Þ1 � SOð3Þ2 �
Uð1ÞB global symmetry, where the two SOð3Þ’s are chiral
R-symmetries and theUð1ÞB is a baryon number symmetry
which only rotates the flavor fields. The baryon symmetry
current is dual to the Uð1Þ gauge field on the brane
while the chiral symmetries correspond to the rotational
symmetry of the two two-spheres. We now consider an
ansatz wherein our brane embeddings are translationally
invariant in the wrapped field theory directions x0–x2

while wrapping the first two-sphere and the ‘‘radial coor-
dinate’’ �. We also consider the theory with no source for
the baryon current, that is with F ¼ 0. There are then a
family of embeddings L ¼ m and x3, �2, �2 constant
(where �2, �2 are coordinates on the unwrapped two-
sphere). These are supersymmetric embeddings that
correspond to the theory with a hypermultiplet of mass
m. The second SOð3Þ chiral symmetry is then explicitly
broken by a hypermass and spontaneously broken by a
vacuum expectation value (VEV) for the corresponding
operator �c c (plus operators related by supersymmetry)
[23]. It is this chiral symmetry that is spontaneously broken
in our chiral transitions.
We now extend our ansatz to include nonzero baryon

density and magnetic field. To do this, we need to let the
embedding function L depend on � as L ¼ Lð�Þ as well as
turn on a nontrivial field strength [15,41],

F ¼ A0
0ð�Þd� ^ dx0 þ Bdx1 ^ dx2; (5)
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where the field A0 will determine both the chemical
potential and density of baryon charge [37,38,74,75] and
B is the magnetic field. The radial electric field A0

0 is

sourced by charge at the bottom of AdS, and so the
brane ends there. This amounts to the boundary condition
Lð0Þ ¼ 0. For this ansatz we can consistently neglect the
Wess-Zumino pieces of the brane action and write

S5 ¼ �NfT5R
6vol½S2�|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

�N

vol½R2;1�

�
Z

d��2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ L02 � A02

0

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ B2

w4

s
; (6)

where we have defined w2 ¼ �2 þ L2 as well as rescaled x

and � by powers of R. The normalization is given byN ¼ffiffiffiffi
�

p
N=2�3 where � ¼ 4�g2YMN is the ’t Hooft coupling of

the SYM theory. From here onward, we will refer to the
action density S5=vol½R2;1�, describing it with the same
notation S5.

Notably, the action only depends on A0 through its radial
derivative. Thus there is a conserved quantity

d ¼ 	S5
	A0

0ð�; xÞ
¼ N �2A0

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ B2

w4

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ L02 � A02

0

q : (7)

In fact, d is the baryon density in the dual theory. Solving

for A0
0 in terms of a rescaled density ~d ¼ d=N , we find

A02
0 ¼

~d2ð1þ L02Þ
~d2 þ �4ð1þ B2

w4Þ
: (8)

We obtain the brane action at fixed density by substituting
this result into the action Eq. (6) and Legendre transform-
ing with respect to A0

0. The result is

~S 5 ¼ �N
Z

d�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ L02

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~d2 þ �4

�
1þ B2

w4

�s
: (9)

Field configurations Lð�Þ that extremize this action corre-
spond to field theory ensembles that extremize the effective
potential of the theory in the canonical ensemble. In gen-
eral, these configurations can only be obtained numeri-
cally. However there is an exact solution to the equation

of motion for all ~d and B, L ¼ 0, which corresponds to the
dual theory with zero hypermass and zero condensate. This
solution corresponds to the chirally symmetric phase of
the theory.

We continue by reviewing the origin of the chiral BKT
transition in this system. The onset of the transition can be
understood by studying the stability of the symmetric
embedding. Small fluctuations around L ¼ 0 are described
by the quadratic piece of Eq. (9),

~L 5��N
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~d2þB2þ�4

q
L02þ N B2L2

�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~d2þB2þ�4

q : (10)

This Lagrangian has two distinct limits.4 At large � �ffiffiffiffi
B

p
,

ffiffiffi
~d

p
, the field L=� fluctuates as a stable m2 ¼ �2

scalar field in AdS4. However, at small � � ffiffiffiffi
B

p
,

ffiffiffi
~d

p
,

L=� fluctuates as a m2 ¼ �2B2=ð~d2 þ B2Þ scalar in

AdS2. Thus for ~d=B >
ffiffiffi
7

p
the field is stable but for ~d=B <ffiffiffi

7
p

the mass drops below the BF bound [67] in AdS2,
m2

BF ¼ �1=4. There is therefore a chiral transition at the
critical filling fraction


c ¼ d

Bc

¼
ffiffiffiffiffiffi
7�

p
NfN

2�3
: (13)

Further analysis reveals that the order parameter scales
exponentially at smaller densities, so that the transition is
of the holographic BKT type. This behavior is the result
of the violation of the BF bound in the infrared region
which implies that an infinite number of tachyons form at
the transition, an extremely unnatural situation within the
Landau-Ginzburg-Wilson paradigm. Because it will be
important in the rest of this paper, we also note that in
the effectiveAdS2 region L=� is dual to a scalar operator in
the emergent CFT of dimension

�IR ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffi
~d2�7B2

~d2þB2

q
2

: (14)

As usual in AdS/CFT there are two solutions to the equa-
tion of motion for the scalar in AdS [see Eq. (12)] which
describe an operator in the field theory and its source. The
second solution here corresponds to an object of dimen-
sion of 1� �IR. We will see below when we discuss
the effective theory for our transitions that the three-
dimensional condensate corresponds to a dimension
1��IR operator in the infrared theory.
At zero magnetic field we have �IR ¼ 1, which de-

creases to�IR ¼ 1=2 at the transition. In the broken phase,
�IR is driven into the complex plane. In this way the
scaling symmetry of the infrared theory is broken to a
discrete subgroup (which is broken further to a self-similar

4In our analysis we use the results for a scalar in AdSpþ1. The
solution of the equation of motion is

L

�
�

�
1

�

�
�
; (11)

�� ¼ p

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
p

2

�
2 þm2

s
(12)

and the Breitenlohner-Freedman bound [67] is given by �p2=4.
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subset by higher energy physics), which relates the various
tachyons of the symmetric phase.

B. The D3/D7 system

In the same way we can consider strongly coupled
N ¼ 4 SYM at large N coupled to (3þ 1)-dimensional
fundamental hypermultiplets. In the quenched limit the
flavor fields are well described by probe D7 branes in the
AdS5 � S5 geometry. The global symmetry of this theory
is SOð4Þ �Uð1Þ� �Uð1ÞB, where the Uð1Þ� is a chiral

symmetry and the Uð1ÞB is the usual baryon number sym-
metry. This chiral symmetry is explicitly broken by a
hypermass and spontaneously broken by a condensate of
the hypermass operator.

On the gravity side, the D7 branes wrap a three-sphere
rather than a two-sphere. The Uð1Þ� chiral symmetry is

dual to the SOð2Þ isometry of an R2 transverse to both
stacks of D3 and D7 branes. The baryon symmetry current
is dual to the diagonal Uð1Þ gauge field on the D7 branes
as before. We then consider a translationally invariant,
SOð4Þ-preserving ansatz as before with a density and mag-
netic field. For such an ansatz the brane action at fixed
density is

~S 7 ¼ �N 7

Z
d�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ L02

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~d2 þ �6

�
1þ B2

w4

�s
: (15)

As above, we can study the onset of the chiral transition
by studying the stability of small fluctuations around the
chirally symmetric embedding L ¼ 0. These are described
by the quadratic part of Eq. (15),

~L 7 ��N 7

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~d2 þ �2B2 þ �6

q
L02 þ N 7B

2L2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~d2 þ �2B2 þ �6

q :

(16)

As with the D3/D5 system, this Lagrangian has two distinct

limits. For � � ~d1=3,
ffiffiffiffi
B

p
, L=� fluctuates as a stable m2 ¼

�3 scalar field in AdS5. On the other hand, for � � ~d1=3,ffiffiffiffi
B

p
, L=� fluctuates as a stable massless scalar in AdS2. As

originally pointed out in [55], there is an emergent CFT in
this theory as well. Moreover, L=� is dual to a scalar
operator in the infrared theory of dimension �IR ¼ 1.

There is no holographic BKT transition in this system.
Rather, the chiral transition is second order with mean-field
exponents. A single tachyon forms at the transition, which
is effectively modeled by a Landau-Ginzburg model with a
quartic potential. Later, we will see that the mean-field
exponents are crucially related to the fact that�IR ¼ 1. For
the majority of this paper we will work in the D3/D5
system that does have a BKT transition but we will return
at the end to produce similar phenomena in a phenomeno-
logical deformed version of this D3/D7 system.

C. Phenomenological models

We seek to extend the brane systems above by turning on
a third control parameter. For computational simplicity, we
seek to deform our setups in such a way that the brane
action depends only upon a single worldvolume field and a
number of constants of the motion. For the D3/D5 system,
there are several candidates. The first is an electric field
along the brane [76] and the second a flux on the wrapped
two-sphere [77]. Neither deformation breaks chiral sym-
metry at zero magnetic field and zero hypermass, but the
electric field may yet lead to interesting results. Other
deformations involve additional worldvolume fields whose
equations of motion are not integrable.
In favor of solving a more complicated brane problem

with at least two worldvolume fields, we elect to take a
phenomenological approach. We will simulate a chiral
symmetry-breaking control parameter whose dimension
we dial. At first, this approach may seem cavalier: in
contrast with the ‘‘bottom-up’’ holographic superfluid
and non-Fermi liquid analyses, there are many different
ways that control parameters emerge in a probe brane
action. There are few a priori reasons to believe that
phenomenology will accurately predict features of transi-
tions in consistent ‘‘top-down’’ brane setups with three
control parameters.
The best justification for our method comes ex post

facto. Ultimately, we find that the critical exponents we
measure do not depend upon the details of our simulated
deformation. This result is crucial and we will return to it
extensively later. For now, we will simply describe our
phenomenological choice. We simulate a control parame-
ter O of dimension � (taken to be relevant) in the D3/D5
system by considering a modified brane action

~S 5 ¼ �N
Z

d�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ L02

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~d2 þ �4

�
1þ B2

w4
þ O2

w2�

�s
:

(17)

Note that when O has dimension two, it is effectively a
magnetic field.
Earlier we studied both the onset of the chiral transition

as well as the emergent infrared theory by studying small
fluctuations around the symmetric L ¼ 0 embedding.
These are now described by the quadratic Lagrangian,

~L5��N
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~d2þB2þ�4�2�O2þ�4

q
L02

þ
�
B2

�2
þ O2�

2�2ð��1Þ

�
N L2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~d2þB2þ�4�2�O2þ�4
q : (18)

This system has two different infrared limits depending
upon the value of �. For �> 2, the new control parameter
dominates the infrared, so that L=� fluctuates as an un-
stable scalar there. Then for any nonzero O the symmetric
embedding is unstable and the stable phase will break
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chiral symmetry. For �< 2 the magnetic field and density

together dominate the infrared. As before, at small � �ffiffiffiffi
B

p
,

ffiffiffi
~d

p
, the field L=� fluctuates as a m2 ¼ �2B2=ð~d2 þ

B2Þ scalar in an effective AdS2 region at the bottom of the
brane. Finally, the introduction of O tends to break chiral
symmetry. We see this by studying small fluctuations at
nonzeroO but vanishing density and magnetic field. In this
limit, the radial equation of motion for the field L=�
at small � is that of a m2 ¼ �� 3 scalar in AdS4 � �.
Provided thatO is not marginal with� ¼ 3, L=� fluctuates
unstably in the infrared and so the true ground state breaks
chiral symmetry as claimed.

We can make a similar phenomenological deformation
to introduce an operator O of arbitrary dimension into the
D3/D7 system. Just as in the D3/D5 system, we introduce a
simulated control parameter into the brane action as

~S 7 ¼ �N 7

Z
d�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ L02

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~d2 þ �6

�
1þ B2

w4
þ O2

w2�

�s
:

(19)

We will discuss the physics of this model in the later
Sec. V.

D. Holographic regularization

The phenomenological brane actions Eq. (17) and (19)
contain a number of near-boundary divergences [78]. In a
genuine ‘‘top-down’’ construction, these correspond to
ultraviolet divergences of the dual theory. In the bulk,
they can be diffeomorphism-invariantly regulated by in-
troducing a near-boundary cutoff slice and adding local
counterterms on the slice. This process is known as holo-
graphic renormalization and is crucial: once we have an
appropriately renormalized bulk action, we may sensibly
take derivatives to obtain correlation functions.

In our phenomenological constructions, however, we
cannot be sure that we diffeomorphism-invariantly regulate
the bulk theory. Rather we choose to regularize our theories
in a manner inspired by holographic renormalization. We
introduce a cutoff slice, add counterterms, and then take
the cutoff to infinity. To illustrate the idea, we consider
the modified D3/D5 system of Eq. (17), where O has
dimension � ¼ 1. A general solution Lð�Þ has the near-
boundary solution

Lð�Þ ¼ mþ X1
n¼1

Ln

�n ; (20)

where the Ln for n > 1 are recursively determined by m
and L1. The parameter m is simply the hypermass. Then
the brane action, integrated up to a cutoff � ¼ �, evaluated
on such a solution has the near-boundary divergence
structure

~S 5;� ¼ �N
Z

d3x

�
�3

3
þO2�

2

�
þ finite: (21)

The exact divergences depend upon �; for �> 3=4
there is only a single counterterm required, while for � ¼
3=ð2nÞ for n a positive integer there is also a logarithmic
divergence. These logarithmic divergences correspond to
Weyl anomalies of the dual theory [79]. In this case of
� ¼ 1, we add simple counterterms on the cutoff slice,

~S CT ¼ N
Z
�¼�

d3x
ffiffiffiffiffiffiffiffi��

p �
1

3
þ O2

2�2

�
; (22)

where � is the induced metric on the slice. When there are
logarithmic divergences, we subtract them with counter-
terms of the form

ffiffiffiffiffiffiffiffi��
p

Oj=ð�j log�Þ. In general, we define
a regularized action by

~S 5;reg � lim
�!1

½~S5;� þ SCT�: (23)

We now define correlation functions of the dual theory
through functional derivatives.
For �> 1=2 there are no divergences that depend on m

or L1. Consequently in this region the one-point function
of the operator dual to L, the hypermass operator OL, is
simply

� ¼ hOLi ¼ �	~S5;reg
	m

¼ �N L1: (24)

On the other hand, for � 	 1=2 there are additional con-
tributions to hOyi that arise from extra L-dependent coun-

terterms. These counterterms are proportional to Lð�Þ2
and so lead to a contribution to the condensate proportional
to m. These contributions vanish in the chiral limit we
consider.
A similar analysis can be performed for the D3/D7

system. Since we do not use the results in this work, we
simply quote the highlights. For the choice � ¼ 3 that we
consider in this work, there are only two divergences:
the first corresponds to the infinite volume on the cutoff
slice and the second to a logarithmic divergence propor-
tional to F

F



 evaulated on the slice. The regularization

is then identical to the holographic renormalization per-
formed in [51]. Notably, the logarithmic divergence corre-
sponds to a Weyl anomaly of the dual theory: the trace of
the stress tensor of the dual theory is proportional to F2.

III. RESULTS

In this section we report the bulk of our numerical
results. We begin by studying the zero temperature tran-
sitions of our deformed D3/D5 system. As a first numerical
check we reproduce the BKT transition in the D3/D5
system with a magnetic field and density. Next, we study
this system with the control parameter O present but at
zero magnetic field and show that it triggers a mean-field
chiral transition. Next, we study the zero temperature
phase diagram in the ðO;BÞ plane and identify the line of
quantum critical points. We go on to study the non-
zero temperature transitions, for which the non-mean-field
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scaling is destroyed. Finally we compute the low-energy
behavior of the two-point function of the order parameter
in the symmetric phase.

A. Zero temperature transitions

1. BKT transition

We begin by studying the D3/D5 system with magnetic
field and density to reproduce the BKT transition [56]. To
do so we must solve the equation of motion for Lð�Þ that
follows from varying Eq. (17) with O zero. This equation
can be solved numerically. We do so with the shooting
method, generally shooting from large �.

Recall that the radial electric field on the brane is
sourced by charge at the bottom of the geometry. This is
equivalent to setting the infrared boundary condition
Lð0Þ ¼ 0. At small � there is then a series solution for L

Lð�Þ ¼ �0 þ �1�þ X1
n¼2

�n�
n; (25)

where the higher �n are recursively determined by �0

and �1.
Near the AdS4 boundary we impose the boundary con-

dition that our dual flavor is massless. This amounts to
choosing the leading term in the near-boundary solution
Eq. (20) to vanish. For our shooting we use the large �
series solution as initial data (having computed the first
dozen or so Lns) upon which we numerically integrate the
corresponding solution to small �. We then match this
solution onto the small � solution. By dialing the field
theory condensate we shoot for solutions that extend to
the bottom of AdS with �0 ¼ 0. It is numerically difficult
to match onto a small � series solution. A similar problem
emerges in the small � embeddings in the flavored
little string theory studied in [55]: in each case, there
is a nonanalyticity in the equation of motion for L at
� ¼ 0. For the D3/D5 system, embeddings consequently
‘‘spike’’ to � ¼ 0, infinitely so at infinitesimally small �.
Nonetheless, with care, we have managed to successfully
shoot to the infrared boundary condition with high
accuracy.

Generically with large B the solutions bend off the L ¼
0 axis. The chemical potential then forces the solution to
spike to the origin at � ¼ L ¼ 0. At some critical value of
B the embeddings smoothly transition to the L ¼ 0 embed-
ding. These embeddings are shown in Fig. 3 for varying

B=~d. We also plot the value of the quark condensate c
across the embedding to show the BKT exponential
scaling.

Note that at yet larger B there is a second transition to a

phase with ~d ¼ 0 and stable mesons described by embed-
dings that curve off the axis but do not spike to the origin.
That transition is described for this theory in [52] but we
will not explore it further in this paper.

2. The phenomenological operator O

Next we study the deformed D3/D5 system at zero
magnetic field. As we discussed in Sec. II C when the
dimension ofO is greater than two we find that the chirally
broken phase is preferred for all values of the density. This
matches the prediction above that the L ¼ 0 embedding is

unstable for all ~d.
When the dimension of O is less than two, we expect

large O at fixed density to trigger a chiral transition. We
seek to locate this transition for many different dimensions
� and to measure the associated critical exponents. To do
so we must solve the equation of motion for Lð�Þ that
follows from varying Eq. (17) with B ¼ 0. Again we use
the numerical techniques discussed in Sec. III A 1 above.

We find that for large O � ~d�=2, the solutions corre-
sponding to zero mass bend away from the symmetric
embedding L ¼ 0. Near the AdS4 boundary they neces-
sarily asymptote to the symmetric embedding, but at small
� they spike to the bottom of AdS. Thus chiral symmetry is
indeed broken at large O as expected.
For fixed � 	 2, there is a critical Oc where the embed-

dings smoothly transition to the symmetric embedding.
This is the location of the chiral transition. We locate the

FIG. 3. The BKT transition in the D3/D5 system with quark
density and magnetic field present. (a) The embedding L of a D5
brane in the D3 geometry for various B ¼ ~d showing the BKT
transition. (b) A plot of the quark condensate c versus B across
the D3/D5 BKT transition.
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transition for many different �, for which we must also
scan through O. This is somewhat laborious, as we have to
shoot for each value ofO and �. The net result is shown in
Fig. 4. For �< 2 we identify a second-order transition
with mean-field exponents as promised. At� ¼ 2 there is a
holographic BKT transition, asO then acts like a magnetic
field. We plot the condensate near the transition for the
particular case � ¼ 1 in Fig. 5 to display that mean-field
behavior.

3. The general case

Now we turn on the magnetic field and O together. This
will tune the dimension �IR of the operator dual to L=� in

the emergent theory as we discussed in Sec. II C. As above,
we can only solve the equation of motion for L numeri-
cally. Our procedure is essentially the same as the one
described above in Sec. III A 1.
We studied two different dimensions � for O in great

detail, � ¼ 1 and � ¼ 5=4. The choice of a noninteger
dimension explicitly shows the independence of our results
on that dimension. In each case, we studied the chiral
transition at many different magnetic fields and conse-
quently at many values of O as well. For each such choice
of O and B we must shoot to find the correct vacuum. As
expected, we find a line of second-order chiral transitions.
The resulting phase diagram as a function of O and mag-
netic field was already plotted in Fig. 1. We also plot the
critical exponent� as a function of magnetic field in Fig. 2.
Recall that � is the scaling of the order parameter in the
broken phase, c� ðO�OcÞ�.
The combined results are very interesting. First, the line

of transitions is second-order as expected. Moreover, for
small magnetic fields such that �IR > 3=4, the exponent �
takes on the mean-field value 1=2. Once the infrared
dimension dips below 3=4, however, the exponent � is
no longer 1=2 and moreover is independent of the dimen-
sion of O. The simplest way to interpret this result is that
the effective potential of the theory near the transition has
the usual quartic term as well as a second term that depends
upon �IR but not �. We will show how this occurs explic-
itly in Sec. IV, where we construct a modified Landau-
Ginzburg model for the transition.

B. Nonzero temperature thermodynamics

It is interesting to also study the behavior of our model at
nonzero temperature. At nonzero temperature, theN ¼ 4
SYM theory is holographically described by IIB super-
gravity on an AdS5 black brane geometry (with N hot D3
branes at its core). The geometry can be written as

ds2 ¼ w2

R2
ð�fðwÞðdx0Þ2 þ d~x2Þ þ R2

fðwÞw2
dw2 þ R2d�2

5;

(26)

where

fðwÞ ¼ 1� w4
h

w2
;

d�2
5 ¼ d�2 þ cos2�d�2

2 þ sin2�d ��2
2;

(27)

and we definewh ¼ �T=R2 with T the temperature of both
the field and gravitational theories. This coordinate system
is related to the one we employ at zero temperature by
L ¼ w sin�, � ¼ w cos�. Both � and L are dual to the
hypermass operator. We change coordinates simply be-
cause we have found the numerics easier for this analysis.
As before, we embed Nf D5 branes in this geometry. We

consider embeddings that are translationally invariant
in the wrapped x0–x2 directions, wrap the first two-sphere

FIG. 4. The zero temperature ‘‘phase diagram’’ of the de-
formed D3/D5 theory at zero magnetic field as a function of
the dimension and value of the deformation O. The shaded
region is the chirally symmetric phase and the white is the
broken phase. The line of transitions is second-order with
mean-field exponents, excepting a holographic BKT transition
at � ¼ 2.

FIG. 5. The condensate in the deformed D3/D5 theory at zero
magnetic field and � ¼ 1. The solid line is numerical data and
the dotted line a fit. Near the transition the condensate scales
with a mean-field exponent, c� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

O�Oc

p
.
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and w, and possess no angular momentum on either two-
sphere. The embedding is parametrized by the worldvo-
lume field � ¼ �ðwÞ. After adding a charge density and
magnetic field, the D5 action at fixed density is

~S 5 ¼ �N
Z

dw
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ fw2�02

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~d2 þ w4cos4�

�
1þ B2

w2

�s
:

(28)

Now we add our third control parameter O. There is yet
further ambiguity in how we phenomenologically intro-
duce O. We elect to add it in such a way that it again
becomes a contribution to the magnetic field when the
dimension of O approaches two. Our deformed
Lagrangian is

~L 5 ¼ �N
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ fw2�02

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~d2 þw4cos4�

�
1þ B2

w4
þ O2

w2�

�s
:

(29)

At zero temperature the holographic BKT transition was
triggered by driving the mass of L in the effective AdS2
region below the BF bound. At any nonzero temperature
this exponential scaling is lost [52,56]. The infrared region
becomes an AdS2-like space with a black hole, which has a
Rindler near-horizon limit. Driving the mass below the BF
bound then corresponds to a UV instability (but not an IR
instability) from the point of view of the infrared theory.
This instability is tamed by the ultraviolet completion to
AdS4 physics. The absence of such an IR instability pre-
sumably leads to the resulting second-order mean-field
transition observed at extremely small temperatures in
the D3/D5 system.

By the same logic we expect the non-mean-field scaling
of our second-order transitions to be destroyed at any
nonzero temperature. Indeed, we find this result numeri-
cally. To do this, we extremize the modified action Eq. (29)
and regularize the bulk action in such a way that we
measure the field theory condensate from our embeddings.
As at zero temperature, we employ a shooting technique.
This time we elect to shoot from the infrared near the black
brane horizon. The charge on the brane indicates that the
embedding extends down to the horizon. Our infrared
boundary condition is then simply that the embedding is
regular there.

We plot the condensate near the nonzero temperature

transition with small temperature�T ¼ 10�5
ffiffiffi
~d

p
, magnetic

field B ¼ 0:98Bc, and the choice � ¼ 1 in Fig. 6. At zero
temperature and this magnetic field the condensate scales
with an exponent � ¼ 2:18, noticeably different from the
mean-field value obtained at the small temperature shown
in the figure.

C. Fluctuations

We now move on to consider dynamics. In particular we
will obtain the structure of the retarded two-point function
of the order parameter at low frequency. This computation
essentially mimics the scaling and matching methods em-
ployed in [9], so we will only quote the highlights.
We begin by considering a fluctuation of the worldvo-

lume field � around the symmetric embedding � ¼ 0.
There is an infinite tower of AdS4 modes corresponding
to the Kaluza-Klein harmonics of � reduced on the
wrapped two-sphere; we only consider the s-wave, as
this is the lightest mode in the tower. The chiral transition
destabilizes it.
After a straightforward, if frustrating, computation we

obtain the full Lagrangian for a time and spatially depen-
dent embedding � ¼ �ðx0; xi; wÞ. Denoting

�0 ¼ @w�; _� ¼ @x0�; ðr�Þ2 ¼ ð@i�Þð@i�Þ; (30)

where i ¼ 1; 2, we find

~L5 ¼ �N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1þ B2

w4

1þ B2

w4 þ ðr�Þ2
w2

�
w2f�02 �

_�2

w2f

�vuuut

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ w4cos4�

�
1þ B2

w4
þ ðr�Þ2

w2

�s
: (31)

Now we must choose how to implement our deformation
for the system with a spatially varying �. As before,
we make the choice that O becomes a magnetic field for
� ¼ 2. This amounts to taking

1.8 1.9 2.0 2.1 2.2 2.3
0.0

0.1

0.2

0.3

0.4

0.5

O

d
2

c d

FIG. 6 (color online). The condensate in the deformed D3/D5
system at zero (solid line) and small (dashed line) temperature

�T ¼ 10�5
ffiffiffi
~d

p
, large magnetic field B ¼ 0:98Bc, and the choice

� ¼ 1. The non-mean-field scaling at zero temperature is de-
stroyed even at this small temperature. The nonzero temperature
condensate asymptotes to the zero temperature value far away
from the transition.
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B2

w4
�

B2

w4
þ O2

w2�
: (32)

The two-point function of the condensate may be com-
puted by solving the bulk action to second order in the
variation. That is, by solving the linearized problem
around � ¼ 0,

D� ¼ 0; (33)

where D is a nasty second-order differential operator. We
also Fourier transform in the x
 directions and impose the
incoming boundary condition at the horizon. The resulting
solution will have a near-boundary expansion

� ¼ �1ð!; kÞ
w

þ �3ð!; kÞ
w3

þOðw�4Þ: (34)

Moreover, the two-point function of the condensate is
computed by varying the regularized bulk action twice
with respect to �1,

Gð!; kÞ ¼ hOð!; kÞOð�!;�kÞi ¼ K
�3ð!; kÞ
�1ð!; kÞ ; (35)

for K a positive constant. Solving forG at low energies is a
bit tricky as the correct infrared behavior of � depends on
! at leading order. We therefore solve � in the infrared
region and match it to the outer region.

In order to solve for � near the bottom of the brane we
employ a scaling limit. Consider

w ¼ �

�
; t ¼ ��1�; (36)

in the � ! 0 limit with �, � finite. At zero temperature,

the equation of motion of � becomes that of a m2 ¼
�2B2=ð~d2 þ B2Þ scalar field in AdS2,

@2��þ
�
!2 þ 2B2

~d2 þ B2

1

�2

�
� ¼ 0: (37)

At nonzero temperature, however, we supplement the scal-
ing limit Eq. (36) with

wh ¼ �

�0

; �0 finite: (38)

The equation of motion in the infrared is then

@2��þ @�h

h
@��þ

�
!2

h2
þ 2B2

~d2 þ B2

1

h�2

�
� ¼ 0; (39)

where

h ¼ 1� �4
0

�4
: (40)

At zero temperature, the scaling limit Eq. (36) amounts to

the ! �
ffiffiffi
~d

p
,

ffiffiffiffi
B

p
limit. At nonzero temperature Eq. (38) is

the !, T �
ffiffiffi
~d

p
,

ffiffiffiffi
B

p
limit with !� T. Notably we can

solve for � in this region at both zero and nonzero tem-
perature. Even more importantly, these equations of
motion are (i) independent of both O and its dimension
� and (ii) those of a scalar in either AdS2 or an AdS2 space
with a black hole.
Unfortunately the scaling limits Eq. (36) and (38) do not

give rise to a systematic matching program. As noted in
[9], a proper matching divides the w axis into two regions

inner : w ¼ !

�
; for � 2 ð�;1Þ; (41)

outer :
!

�
<w; (42)

in the limits

! ! 0; � ¼ finite; � ! 0;
!

�
! 0: (43)

Small ! perturbations can be treated systematically in
each region, employing � as the coordinate in the inner
one and r for the outer. The result has the form

inner : �Ið�Þ ¼ �ð0ÞI ð�Þ þ!�ð1ÞI ð�Þ þ 
 
 
 (44)

outer : �OðrÞ ¼ �ð0ÞO ðwÞ þ!�ð1ÞO ðwÞ þ 
 
 
 : (45)

The domain of these solutions overlaps in the region
defined by � ! 0 with w ¼ !=� ! 0; the full solution is
obtained by matching �I and �O there.
Now we solve for � in the inner region. The leading

order equation of motion for �Ið�Þ is identical to the one we
found after the scaling limit, Eq. (39). Near the boundary of
the AdS2 region (that is, � ! 0), the leading order term in
�I can be expanded as

�ð0ÞI ð!; k; �Þ ¼ ’þð�Þ þG�IR
ð!Þ’�ð�Þ; (46)

where ’�ð�Þ are the non-normalizable/normalizable solu-
tions to Eq. (39) and GIRð!Þ is the retarded Green’s func-
tion of the operator dual to � in the infrared theory. It takes
on two vastly different forms depending on whether we are
at exactly zero or nonzero temperature. For the first, it is [9]

G �IR
ð!Þ / ði!Þ2�IR�1; (47)

while at nonzero temperature it is

G �IR
ð!Þ / ði!ÞT2�IR�1: (48)

The precise form of G can be found in [9].
The bottom of the outer region corresponds to the near-

boundary region on the infrared AdS2. The solution to �O
therefore has the same functional form there, and so we
can choose a basis where the linearly independent solu-
tions for �O match precisely to ’� in the infrared. That is,

�ð0ÞO ðwÞ ¼ �ð0Þ
þ ðwÞ þ G�IR

ð!Þ�ð0Þ� ðwÞ; (49)
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where �ð0Þ
� ðwÞ is our (zeroth-order) basis in the outer

region. At higher order in ! the matching can be system-
atically employed, effectively correcting the basis at each
order so that

�OðwÞ ¼ �þðwÞ þ G�IR
ð!Þ��ðwÞ (50)

is satisfied.
Near the AdS4 boundary the nth order corrections to ��

will have an expansion

�ðnÞ
� ðwÞ ¼ aðnÞ� ð!; kÞ

w
ð1þ 
 
 
Þ þ bðnÞ� ð!; kÞ

w3
ð1þ 
 
 
Þ:

(51)

This together with Eq. (35) leads to the desired result,
namely, the form of the retarded two-point function

Gð!; kÞ ¼ K
bð0Þþ þOð!Þ þ G�IR

ð!Þðbð0Þ0 þOð!ÞÞ
að0Þþ þOð!Þ þG�IR

ðað0Þ� þOð!ÞÞ :

(52)

Moreover, by expanding the a’s and b’s about k ¼ 0, we
find that G assumes the small !, k form

Gð!; kÞ � g0 þ g1ði!Þ2�IR�1 þ g2k
2

f0 þ f1ði!Þ2�IR�1 þ f2k
2
; (53)

as long as �IR < 1. For �IR > 1, the low-energy limit is
instead

Gð!; kÞ � ~g0 þ ~g1!þ ~g2k
2

~f0 þ ~f1!þ ~f2k
2
: (54)

On the reasonable assumption that the matching coef-
ficients, gi and fi, are analytic in O�Oc, then the chiral
transition corresponds to a root in f0. That is, near the
transition f0 is proportional to Oc �O. We then find that
for�IR < 1 the mode that drives the transition obeys a zero
temperature dispersion relation

f1ði!Þ2�IR�1 þ f2k
2 / Oc �O: (55)

From this relation we simultaneously obtain the dynami-
cal critical exponent z at the transition,

z ¼ 2

2�IR � 1
; (56)

and the divergence of the correlation length,

h�ðxÞ�ð0Þi � e�jxj=�; �� ðOc �OÞ�
; 
 ¼ 1

2
:

(57)

Thus the dynamical exponent takes a non-mean-field value
while 
 takes the mean-field one. At nonzero temperature,
however, the dispersion relation becomes

f0ði!ÞT2��1 þ f1k
2 ¼ Oc �O; (58)

so that the dynamical critical exponent takes on a mean-
field value z ¼ 2. As with the condensate, the non-mean-
field scaling is destroyed at any nonzero temperature.

IV. AN EFFECTIVE MODEL

We have shown that in the D3/D5 system with a mag-
netic field, density and a phenomenological operator O
there is a rich phase structure. The chiral restoration tran-
sition is of the holographic BKT type at large B but second
order at large O with a region in between with non-mean-
field behavior. Our results provide a rich array of numerical
data that we will show can be completely matched by a
simple effective theory.
Based on [80], we have been able to guess the form of

the effective potential. For �IR > 3=4, the mean-field scal-
ing of static exponents is reproduced by the potential

Veffð�Þ ¼ V0 þ �2ðOc �OÞ�2 þ �4�
4 þOð�6Þ; (59)

where the couplings �i are presumed to be positive and V0

is the free energy in the symmetric phase. This generates
the expectation value �� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

O�Oc

p
. This is just a stan-

dard Landau-Ginzburg model.
The crucial ingredient when we move away from mean-

field scaling is that the gravity dual reveals that the infrared
dynamics is governed by a lower dimensional AdSpþ1

theory (for the probe brane systems, p ¼ 1). We have
also learned that the order parameter in this low-energy
regime acts as an operator of either dimension �IR or
p��IR [see Eq. (14) for the D3/D5 case]. It is not
immediately clear which case holds true; however, we
have tried each possibility and find success with our effec-
tive model if the dimension of the condensing operator is
taken as p� �IR.
Now it is natural, on dimensional grounds, to include an

additional term in the potential for our order parameter �
coming from the p-dimensional theory

�Veffð�Þ ¼ �IR�
p=ðp��IRÞ; (60)

Again �IR is assumed to be positive.
If 3

4p < �IR < p, then the quartic contribution to the

effective potential dominates over the term from the infra-
red theory. In this case, minimizing the potential yields the
standard mean-field critical exponent. However, if 1

2p <

�IR < 3
4p, then we find the non-mean-field exponent

�0 � ðO�OcÞ� � ðO�OcÞðp��IR=2�IR�pÞ: (61)

When the bound �IR <�c ¼ 3=4p is satisfied, the con-
densate scales with a non-mean-field exponent.
For the example of the magnetic field competing with

our operator O in the D3/D5 system. We can find the
expected critical exponent
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� ¼ 1��IR

2�IR � 1
¼ 1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~d2 þ B2

~d2 � 7B2

s
� 1

�
;

� ffiffiffiffiffiffi
3

29

s
~d < B<

ffiffiffi
1

7

s
~d

�
;

(62)

where we set p ¼ 1 and the B range comes from 1=2<

�IR < 3=4. As a result 1=2<�<1. For B<
ffiffiffiffi
3
29

q
~d, � ¼

1=2. We have plotted the result Eq. (62) over our numerical
results in Fig. 2 and they match the numerical results
perfectly.

In many ways Eq. (60) is the primary result of this work.
The nontrivial emergent theory leaves a fingerprint on the
effective potential which can lead to rich phase diagrams
even in the strict N ! 1 limit. For example, if �IR < 5=6
then a non-mean-field tricritical point is realized by driving
either �4 (for �IR > 3=4) or �IR (for �IR < 3=4) negative
while keeping the other positive. In the first case, the
terminating line of second-order transitions has mean-field
exponents while in the second it does not.

We can further test our effective potential by measuring
the free energy near the transitions we identified in
Sec. III A 3, if we write the effective potential as

Veffð�Þ ¼ V0 þ �2ðOc �OÞ�2 þ �IR�
2þð1=�Þ: (63)

In the broken phase this gives

�� ðO�OcÞ�; �F� ðO�OcÞ1þ2�; (64)

giving a prediction for how the free energy should scale
across the transition.

Recall that in order to measure the free energy, we
compute (minus) the regularized bulk action. We do this
numerically, employing the methods of [51]. We plot some
representative results at relatively large magnetic field,
B ¼ 0:95Bc and the choice � ¼ 1 in Fig. 7. Numerically,
we find that the condensate scales with exponent � ¼ 1:20
and the free energy in the broken phase as �F=N �
�ðO�OcÞ3:38. which indeed reproduces the scaling of
the free energy for � ¼ 1:20 to within 1%. We repeated
this analysis for many different values of�IR and found the
same basic result. The scaling of the free energy is repro-
duced by the effective potential Eq. (63) for the corre-
sponding exponent �. This shows the strength of the
effective potential analysis which does not need to know
even the dimension of the operator O.

The effective potential Eq. (60) can be generalized for
cases where the emergent theory has different scaling
symmetries than in the deformed D3/D5 system. The
structure is essentially the same: a Landau-Ginzburg po-
tential analytic in �2 and a nonanalytic piece stemming
from the infrared theory. In the next section we will show
such an application to the D3/D7 system.

V. BKTAND NON-MEAN-FIELD TRANSITIONS
IN THE D3/D7 SYSTEM

As another example of our phenomenological analysis
and effective theory methods let us finally return briefly to
the D3/D7 system in Eq. (19). That system has a magnetic
field, density, and a phenomenological operator O present.
Looking at linearized fluctuations around the symmetric

L ¼ 0 embedding, there are three different infrared limits
depending on the value of �. At large �> 3, the field L=�
fluctuates unstably in the infrared. For �< 3, L=�
fluctuates as a stable massless scalar in AdS2. However,

for the particular case � ¼ 3, L=� fluctuates as a m2 ¼
�3O2=ð~d2 þO2Þ scalar in AdS2. Adjusting the ratio O=~d
then tunes the dimension of the scalar operator dual to L in
the infrared theory to be

�IR ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~d2�11O2

~d2þO2

q
2

: (65)

This last case is perhaps the most interesting. Notably, it
corresponds to the case where the density and simulated
deformation have the same dimension. As with the D3/D5
system at nonzero magnetic field and density, increasingO
at fixed density will trigger a chiral holographic BKT

transition at ~d=Oc ¼
ffiffiffiffiffiffi
11

p
as the field L=� violates the

BF bound in the effective AdS2 region. On the other
hand, at smaller values of O we can presumably drive a
second-order chiral transition with the magnetic field.
There will be a regime of non-mean-field transitions for
some intermediate values of O. The choice � ¼ 3 is there-
fore analogous to our phenomenological D3/D5 system
with the roles of the magnetic field and O reversed.
We can apply our effective field theory Eq. (2) to this

case too. It predicts the critical exponents

11.4 11.2 11.0 10.8 10.6

40.0

39.5

39.0

38.5

38.0

37.5

37.0

log
O Oc

d
1 2

lo
g

F

d
3

2

FIG. 7 (color online). A log-log plot of the difference of free
energy �F in the broken phase at zero temperature as a function
of O. The dots indicate numerical data at magnetic field B ¼
0:95Bc and the choice � ¼ 1, and the line a numerical fit. The
free energy scales as �F��ðO�OcÞ3:38 in the broken phase.
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� ¼ 1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þO2

d2 � 11O2

s
� 1

�
;

� ffiffiffiffiffiffi
3

43

s
d < O<

ffiffiffiffiffiffi
1

11

s
d

�
:

(66)

VI. DISCUSSION

We now summarize our results. For our phenomenologi-
cal D3/D5 setup with magnetic field, density, and a third
control parameter we find the nontrivial phase diagram in
Fig. 1. The new ingredient is that tuning a third control
parameter can lead to a line of second-order transitions.
Moreover, the critical exponents of these transitions do not
appear to depend on the details of the deformation. Rather
they are functions of the dimension �IR of the operator
dual to the embedding function in an emergent infrared
theory. This dimension is tuned by the equal-dimension
(in the UV theory) control parameters, density and mag-
netic field.

We have measured or computed four of the critical
exponents along this line. In Sec. III A 3, we numerically
measured the condensate in the broken phase and found
agreement with an analytic function of the infrared dimen-
sion as in Eq. (1). In terms of the magnetic field and
density, the exponent � is given by Eq. (62). At smaller

B=~d (below
ffiffiffiffiffiffiffiffiffiffiffi
3=29

p
), � is simply 1=2. We also computed

the free energy in the broken phase and found that both its
scaling and � follow from an effective potential Eq. (2).
From this we can also compute the critical exponent �,
which is related to the scaling of the susceptibility,

@�

@m
� ðO�OcÞ��; (67)

since the hypermass m is conjugate to the condensate �.
The effective potential with a mass becomes

Vm;effð�Þ ¼ Veffð�Þ þm�: (68)

The exponent � is computed from the effective potential to
be the mean-field value � ¼ 1.

At nonzero temperature, however, all non-mean-field
scaling is lost and the effective potential becomes an
ordinary quartic polynomial. The exponents � and � are
1=2 and 1, respectively. The temperature destroys the
non-mean-field scaling, just as in the holographic BKT
transitions.
We also computed the low-energy behavior of the two-

point function of the condensate in Sec. III C. Fluctuations
of the condensate correspond to time and spatially depen-

dent fluctuations of the bulk field L. At small w � ffiffiffiffi
B

p
,ffiffiffi

~d
p

, the equation of motion for �� L=� resembles that of a
scalar in AdS2. The equation is solvable there and we
match it to the physics outside the infrared region. This
enables us to show that at T ¼ 0 the dynamical critical
exponent is non-mean-field,

z ¼ 2

2�IR � 1
;

dependent only upon �IR. Moreover it returns to the mean-
field value z ¼ 2 at finite temperature.
In the end, our main results are dependent upon the

details of the emergent infrared theory. As a result we
expect them to hold in a much wider class of problems,
including conformal theories with three control parameters
as discussed. It would be nice to test this picture in a purely
field theoretic context. In particular, it would be extremely
interesting to realize both the emergent theory as well as
the sort of phase diagram we identify in a conformal theory
without a holographic dual.
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