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We consider aUð2ÞYang-Mills theory onM� S2F, whereM is an arbitrary noncommutative manifold,

and S2F is a fuzzy sphere spontaneously generated from a noncommutative UðN Þ Yang-Mills theory on

M, coupled to a triplet of scalars in the adjoint of UðN Þ. Employing the SUð2Þ-equivariant gauge field
constructed in [D. Harland and S. Kurkcuoglu, Nucl. Phys. B 821, 380 (2009).], we perform the

dimensional reduction of the theory over the fuzzy sphere. The emergent model is a noncommutative

Uð1Þ gauge theory coupled adjointly to a set of scalar fields. We study this model on the Groenewald-

Moyal plane M ¼ R2
� and find that, in certain limits, it admits noncommutative, non-Bogomol’nyi-

Prasad-Somerfield vortex as well as flux-tube (fluxon) solutions and discuss some of their properties.
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I. INTRODUCTION

Dimensional reduction of Yang-Mills theories over coset
spaces of the formG=H has long been an interesting theme
in modern particle physics. It was first formulated in a
systematic manner by Forgacs and Manton [1]. The essen-
tial idea in this context can be clearly illustrated by con-
sidering a Yang-Mills theory overM�G=H, whereM is
a given manifold. G has a natural action on its coset, and
requiring the Yang-Mills gauge fields to be invariant under
the G action up to a gauge transformation leads to the
dimensional reduction of the theory after integrating over
the coset space G=H. This technique is usually called
‘‘coset space dimensional reduction’’ (CSDR), and it has
been widely used as a method in attempts to obtain the
standard model on the Minkowski spaceM4 starting from a
Yang-Mills-Dirac theory on the higher dimensional
space M4 �G=H; for a review on this topic see [2]. The
widely known, prototype example of CSDR is the
SUð2Þ-equivariant reduction of the Yang-Mills theory
over R4 to an Abelian Higgs model on a two-dimensional
hyperbolic space H2, which was formulated by Witten [3]
prior to the development of the formal approach of [1], and
it lead to the construction of instanton solutions with
charge greater than 1. In this example, the coset space is
a two-sphere S2 � SUð2Þ=Uð1Þ, and H2 naturally appears
due to the conformal equivalence of R4nR2 to H2 � S2

together with the conformal invariance of the Yang-Mills
theory in four dimensions.

CSDR techniques have also been applied to Yang-Mills
theories over R2d

� � S2 [4], where R2d
� is the 2d dimen-

sional Groenewald-Moyal space; a prime example of a
noncommutative space. In this framework, Donaldson-
Uhlenbeck-Yau (DUY) equations of a Uð2kÞ Yang-Mills
theory have been reduced to a set of equations on R2d

� ,

whose solutions are given by Bogomol’nyi-Prasad-

Somerfield (BPS) vortices on R2d
� , and the properties of

the latter have been elaborated.
Another approach, parallel to the CSDR scheme, using

the language of vector bundles and quivers is also known in
the literature [5]. In recent times, this approach has been
employed in a wide variety of problems, including the
formulation of quiver gauge theory of non-Abelian vortices
over R2d

� corresponding to instantons on R2d
� � S2, R2d

� �
S2 � S2 [6,7], to the construction of vortex solutions over
Riemann surfaces, which become integrable for appropri-
ate choice of the parameters [8], and to the construction of
non-Abelian monopoles over R1;1 � S2 in [9]. In [10],
reduction of the Yang-Mills-Dirac theory on M� S2 is
considered with a particular emphasis on the effects of
the nontrivial monopole background on the physical parti-
cle spectrum of the reduced theory. Dimensional reduction
over quantum sphere is recently studied and lead to the
formulation of q-deformed quiver gauge theories and non-
Abelian q vortices [11].
On another front, there have been significant advances in

understanding the structure of gauge theories possessing
fuzzy extra dimensions (for a review on fuzzy spaces see
[12]). Gauge theories with fuzzy extra dimensions using
CSDR scheme were first studied in [13]. Later on this was
followed by [14], where it was shown that an SUðN Þ
Yang-Mills theory on the four dimensional Minkowski
space M4 coupled to an appropriate set of scalar fields
develops fuzzy extra dimensions in the form of fuzzy
spheres S2F via spontaneous symmetry breaking. The vac-
uum expectation values (VEV) for the scalar fields form
the fuzzy sphere, while the fluctuations around this vacuum
are interpreted as gauge fields over S2F. The resulting
theory can therefore be viewed as a gauge theory over
M4 � S2F with a smaller gauge group, which is further
corroborated by the expansion of a tower of Kaluza-
Klein modes of the gauge fields over M4 � S2F. Inclusion
of the fermions into this theory was considered in [15],
where an appropriate set of fermions in 6D allowed for an*kseckin@metu.edu.tr
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effective description of Dirac fermions onM4 � S2F, which
is further affirmed by a Kaluza-Klein modes expansion
over S2F. It was also found that a chirality constraint on
the fermions leads to a description in terms of ‘‘mirror
fermions’’ in which each chiral fermion comes with a
partner with opposite chirality and quantum numbers.
Gauge theory on M4 � S2F � S2F has recently been inves-
tigated in [16]. For this purpose, an SUðN Þ gauge theory
on M4, with the same field content as the N ¼ 4 SUSY
Yang-Mills theory, together with a potential breaking the
N ¼ 4 supersymmetry, is considered. The latter leads to
the identification of the VEV’s of the scalars with S2F � S2F
and the fluctuations around this vacuum as gauge fields on
S2F � S2F. More recently, it was shown that twisted fuzzy
spheres can be dynamically generated as extra dimensions
starting from a certain orbifold projection of aN ¼ 4 SYM
theory, whose consequences have been discussed in [17].
For a review on these results [18] can be consulted. We also
would like to mention that in [19], starting from a suitable
matrix gauge theory, noncommutative gauge theories on
R4

� possessing extra dimensions have been proposed. Extra

dimensions are interpreted as scalars on R4
� coupled to the

gauge fields, and it was shown that scalars could take
vacuum expectation values leading to their identification
as fuzzy spheres. Consequently, spontaneous symmetry
breaking in a particular gauge theory has been investigated,
and its content is compared with that of the standard model.

In a recent article together with D. Harland [20], we have
addressed the question of dimensional reduction of gauge
theories over fuzzy coset spaces. For this purpose, we have
considered a Uð2Þ Yang-Mills theory overM� S2F, where
M is a Riemannian manifold and S2F is the fuzzy sphere.
We performed the equivariant reduction of this model over
S2F by applying the well-known CSDR techniques and

obtaining the most general SUð2Þ-equivariant gauge field
over M� S2F. This allowed us to trace over the fuzzy
sphere and thereby reduce the theory over S2F in full. We
have shown that for M ¼ R2 the emergent theory has
vortex solutions depending on the parameters in the model,
which correspond to instantons in the original theory. We
have found that these vortices are non-BPS solutions and
discussed some of their properties.

In the present article, we continue our investigations
along the lines of [20] and explore a situation where the
space M is also noncommutative. In this framework, we
consider a Uð2Þ Yang-Mills theory M� S2F, where M is
an arbitrary noncommutative manifold, which later on will
be specified as the Groenewald-Moyal space R2

�.

Employing the SUð2Þ-equivariant gauge field construction
of [20], we perform the dimensional reduction of the
theory over the fuzzy sphere. The emergent model is a
noncommutative Uð1Þ gauge theory coupled adjointly to a
set of scalar fields, contrary to the initial expectations that
the model possesses Uð1Þ �Uð1Þ noncommutative gauge
symmetry together with a bi-fundemental matter field due

to the results obtained earlier in the equivariant reduction
of the Yang-Mills theories on R2d

� � S2 in [4]. In contrast,

we find that the presence of extra degrees of freedom in the
SUð2Þ-equivariant gauge field on S2F leads here to a further
symmetry breaking in the reduced action, which turns out
to be gauge invariant only if the left and the right gauge
fields are identified. We study the reduced model on the
Groenewald-Moyal planeM � R2

� and find that, in certain

limiting cases, it admits noncommutative vortex [21–23] as
well as flux-tube (fluxon) [24,25] solutions which are non-
BPS and devoid of a smooth commutative limit as � ! 0.
In particular, we find the leading order correction in the
fuzzy sphere level ‘ to the value of the noncommutative
vortex action on R2

� evaluated on the solutions (or to the

energy of the static vortex when considered on R2
� � R1,

withR1 standing for time) when the fuzzy gauge constraint
controlling the behavior of the radial component of the
gauge field on S2F is imposed in full and solved to leading
order for the extra scalar degrees of freedom, which may be
viewed as the decedents of the radial gauge field compo-
nent in the reduced action. It turns out that leading correc-
tions are of the order ‘�2 and contribute to increase the
vortex energy.
Our work in the rest of the paper is organized as follows.

In Sec. II, we give the basics of the gauge theory overM�
S2F and indicate how the gauge theory overM dynamically
develops fuzzy sphere as extra dimensions. This is fol-
lowed by a short account of the construction of the
SUð2Þ-equivariant gauge field on M ¼ R2. In Sec. IV,
we present the results of the equivariant reduction over
M� S2F and give the reduced action in full, which is
ensued by the discussion of the structure of the reduced
action and its gauge symmetry. In Sec. V, we present non-
trivial solutions of the reduced action on R2

� for two differ-

ent limiting cases and discuss their properties. Extensions
of our results to R2d

� are also briefly given. We close with

some conclusions and comments.

II. YANG-MILLS THEORY ON M� S2
F

In this section, we collect the essential features of gauge
theory on M� S2F. We start with considering the follow-
ing UðN Þ Yang-Mills theory over a suitable noncommu-
tative space M, which we leave unspecified for the time
being:

S ¼
Z
M

TrN

�
1

4g2
Fy
��F�� þ ðD��aÞyðD��aÞ

�

þ 1

~g2
V1ð�Þ þ a2V2ð�Þ: (2.1)

Here, A� are uðN Þ valued anti-Hermitian gauge fields,

�aða ¼ 1; 2; 3Þ are 3 anti-Hermitian scalars transforming
in the adjoint of SUðN Þ, and the covariant derivative is
D��a ¼ @��a þ ½A�;�a�. We take the potentials of the

form
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V1ð�Þ ¼ TrN ðFy
abFabÞ;

V2ð�Þ ¼ TrN ðð�a�a þ ~bÞ2Þ;
(2.2)

where in V1ð�Þ we have defined
Fab :¼ ½�a;�b� � "abc�c; (2.3)

whose purpose will become evident shortly.

In the expressions above, a, ~b, g, and ~g are constants,
and TrN ¼ N �1Tr denotes a normalized trace. We fur-
ther note that �a transform in the vector representation of
an additional global SOð3Þ symmetry and that V1 and V2

are invariant under this symmetry.
As its commutative counterpart [14], this theory sponta-

neously develops extra dimensions in the form of fuzzy
spheres. Following [14], let us very briefly see how this
actually comes about. We observe that the potential
~g�2V1 þ a2V2 is positive definite, and that solutions of

Fab ¼ ½�a;�b� � "abc�c ¼ 0; ��a�a ¼ ~b (2.4)

are evidently a global minima. Most general solution to
this equation is not known. However, depending on the

values taken by the parameter ~b, a large class of solutions
has been found in [14]. Here we restrict ourselves to the
simplest situation and refer the reader to [14] for a general
discussion and its physical consequences.

Taking the value of ~b as the quadratic Casimir of an

irreducible representation of SUð2Þ labeled by ‘, ~b ¼
‘ð‘þ 1Þ with 2‘ 2 Z, and assuming further that the di-
mensionN of the matrices�a is ð2‘þ 1Þn, (2.4) is solved
by the configurations of the form

�a ¼ Xð2‘þ1Þ
a � 1n; (2.5)

where Xð2‘þ1Þ
a are the (anti-Hermitian) generators of SUð2Þ

in the irreducible representation ‘, which has dimension
2‘þ 1. We observe that this vacuum configuration sponta-
neously breaks the UðN Þ down to UðnÞ, which is the
commutant of �a in (2.5).

Fluctuations about the vacuum (2.5) may be written as

�a ¼ Xa þ Aa; (2.6)

where Aa 2 uð2‘þ 1Þ � uðnÞ, and we have used the short-
hand notation Xð2‘þ1Þ

a � 1n ¼: Xa. Then Aa (a ¼ 1, 2, 3)
may be interpreted as three components of a UðnÞ gauge
field on the fuzzy sphere S2F. A short definition of the fuzzy
sphere and some of its properties are given in Appendix A.
Thus, �a are the ‘‘covariant coordinates’’ on S2F, and (2.3)
defines the associated curvature Fab. The latter may be
expressed in terms of the gauge fields Aa as:

Fab ¼ ½Xa; Ab� � ½Xb; Aa� þ ½Aa; Ab� � "abcAc: (2.7)

Obviously, the term V1 corresponds to the Yang-Mills
action on S2F. However, with this term alone, gauge theory
on the sphere is not recovered in the commutative limit,
since the fuzzy gauge field has three components rather

than two. Rather, one obtains gauge theory with an addi-
tional scalar; the scalar is more precisely the component of
the gauge field pointing in the radial direction when S2 is
embedded inR3. The purpose of the term V2 in the action is
to suppress this scalar. To see how this works, observe that

ið‘ð‘þ 1ÞÞ�1=2ððXa þ AaÞðXa þ AaÞ þ ‘ð‘þ 1ÞÞ
¼ fx̂a; Aag þ ið‘ð‘þ 1ÞÞ�1=2A2

a !
‘!1

2xaAa: (2.8)

The term xaAa is precisely the component of the gauge
field on the sphere associated with the radial direction, so

the term a2V2 gives a mass a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘ð‘þ 1Þp

to this component.
To summarize, with (2.6) the action in (2.1) takes the

form of a UðnÞ gauge theory onM� S2Fð2‘þ 1Þ with the
gauge field components AMðŷÞ ¼ ðA�ðŷÞ, AaðŷÞÞ 2
uðnÞ � uð2‘þ 1Þ, and field strength tensor (ŷ are a set of
coordinates for the noncommutative manifold M)

F�� ¼ @�A� � @�A� þ ½A�; A��
F�a ¼ D��a ¼ @��a þ ½A�;�a�
Fab ¼ ½�a;�b� � �abc�c:

(2.9)

For future use, we note that

TrN ¼ 1

nð2‘þ 1Þ TrMatð2‘þ1Þ � TrMatðnÞ ; (2.10)

where MatðkÞ denotes the algebra of k� k matrices.

III. THE SUð2Þ-EQUIVARIANT GAUGE FIELD

Let us focus on the case of a Uð2Þ gauge theory on
M� S2F. The construction of the most general
SUð2Þ-equivariant gauge field on S2F was given in a recent
article by the author with D. Harland [20]. This construc-
tion uses essentially the representation theory of SUð2Þ.
Here, we give a brief account for completeness and refer
the reader to [20] for further details.
We begin by selecting

!a ¼ Xð2‘þ1Þ
a � 12 � 12‘þ1 � i�a

2
;

!a 2 uð2Þ � uð2‘þ 1Þ; for a ¼ 1; 2; 3 :

(3.1)

These !a are the generators of the representation 1=2 � ‘

of SUð2Þ, where by m we denote the spin m representation
of SUð2Þ of dimension 2mþ 1. The two terms which make
up!a generate rotations and gauge transformations, there-
fore, imposing !-equivariance amounts to requiring that
rotations can be compensated by gauge transformations.
There are certainly more possible choices for !a; for

example, !a ¼ Xð2‘þ1Þ
a � 12 was studied in [13].

SUð2Þ equivariance of the theory requires the fulfillment
of the symmetry constraints

½!a; A�� ¼ 0; (3.2)

½!a;�b� ¼ �abc�c (3.3)
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on the gauge field. These constraints are consistent only if
!a satisfies

½!a;!b� ¼ "abc!c; (3.4)

which is readily satisfied by our choice of !a.
The left-hand side of both (3.2) and (3.3) require that A�

and �a transform under the adjoint action of !a, that is, in
the representation ð1=2 � ‘Þ � ð1=2 � ‘Þ of suð2Þ. The

right-hand side of (3.2) and (3.3) indicate that A� belongs

to the trivial subrepresentation and �a belongs to the
vector subrepresentation of the representation ð1=2 � ‘Þ �
ð1=2 � ‘Þ.

Using the Clebsch-Gordan formula to find the subrepre-
sentations for ‘ > 1=2, we get

ð1=2 � ‘Þ � ð1=2 � ‘Þ
¼ ð‘þ 1=2 � ‘� 1=2Þ � ð‘þ 1=2 � ‘� 1=2Þ
¼ ð‘þ 1=2 � ‘þ 1=2Þ � 2ð‘þ 1=2 � ‘� 1=2Þ

� ð‘� 1=2 � ‘� 1=2Þ
¼ 20 � 41 � . . . (3.5)

Thus, the set of solutions to (3.2) is two-dimensional and
that of (3.3) is four-dimensional. Convenient parametriza-
tions may be given by

A� ¼ 1

2
Qa�ðŷÞ þ 1

2
ib�ðŷÞ (3.6)

�a ¼ Xa þ Aa;

Aa ¼ 1

2
’1ðŷÞ½Xa;Q� þ 1

2
ð’2ðŷÞ � 1ÞQ½Xa;Q�

þ i
1

2
’3ðŷÞ 12 fX̂a; Qg þ 1

2
’4ðŷÞ!̂a; (3.7)

where a�, b� are Hermitian Uð1Þ gauge fields, ’i are

Hermitian scalar fields over M, the curly brackets denote
anticommutators throughout, and we have used

X̂ a :¼ 1

‘þ 1=2
Xa; !̂a :¼ 1

‘þ 1=2
!a: (3.8)

We have further introduced the anti-Hermitian matrix

Q :¼ Xa � �a � i=2

‘þ 1=2
; Qy ¼ �Q;

Q2 ¼ �12ð2‘þ1Þ:
(3.9)

Indeed, Q is the fuzzy version of q :¼ i� � x and con-
verges to it in the ‘ ! 1 limit.1

It is worthwhile to remark that in the commutative limit
M ! M, S2F ! S2 (3.7) becomes

Aa !
‘!1

i
1

2
’1ðyÞLaqþ i

1

2
ð’2ðyÞ � 1ÞqLaq

þ 1

2
’3ðyÞxaqþ 1

2
’4ðyÞxa: (3.10)

In this limit, the component of Aa normal to S2 can be
eliminated by imposing the constraint xaAa ¼ 0 on the
gauge field. This constraint is satisfied if and only if we
take ’3 ¼ 0, ’4 ¼ 0, as is easily observed from the above
expression. Thus, we recover then the well-known
expression for the spherically symmetric gauge field over
M� S2 [1,3].

IV. REDUCTION OF THE YANG-MILLS
ACTION OVER S2

F

Using the SUð2Þ-equivariant gauge field in the noncom-
mutative Uð2Þ Yang-Mills theory on M � S2F, we can
explicitly trace it over the fuzzy sphere to reduce it to a
theory on M. It is quite useful to note the following
identities

fQ; ½Xa;Q�g ¼ 0; fXa; ½Xa;Q�g ¼ 0;

ðsum over repeateda impliedÞ; (4.1)

½Q; fXa;Qg� ¼ 0; ½Xa; fXa;Qg� ¼ 0;

ðsum over repeateda is impliedÞ; (4.2)

which significantly simplify the calculations, since they
greatly reduce the number of traces to be computed.
The reduced action has the form

S ¼
Z
M

LF þLG þ 1

~g2
V1 þ a2V2: (4.3)

Each term in this expression is defined and evaluated
below, while some details are relegated to the Appendix B.

A. The field strength term

Let us define the combinations

c�� :¼ 1

2
ðb� � a�Þ; c�y

� ¼ c��;

a� ¼ cþ� � c��; b� ¼ cþ� þ c��: (4.4)

The associated field strengths are

F�
��¼@�c

�
� �@�c

�
�þ i½c��;c�� �; F�y

�� ¼F�
��: (4.5)

The corresponding contribution to the Lagrangian can then
be expressed as

1�iQ appears also in the context of monopoles and fermions
over S2F, where in the former it is the idempotent associated with
the projector describing the rank 1 monopole bundle over S2F,
while in the latter it serves as the chirality operator associated
with the Dirac operator on S2F. For further details on these, see
for instance [12] and the references therein.
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L F :¼ 1

4g2
TrN ðFy

��F��Þ

¼ 1

4g2
1

2‘þ 1
ð‘jFþ

��j2 þ ð‘þ 1ÞjF�
��j2Þ: (4.6)

B. The gradient term

The covariant derivative may be written as

D��a ¼ 1

4
ððD�’þD�’

yÞ � iQðD�’�D�’
yÞÞ

� ½Xa;Q� þ i��fX̂a; Qg þ ��!̂a; (4.7)

where

’¼’1þ i’2; ’y¼’1� i’2;

D�’¼@�’þ icþ�’� i’c��;

D�’
y¼@�’

yþ icþ�’y� i’yc��;

��¼1

4
@�’3þ i

8
½cþ�þc��;’3�

þ i

16

�
cþ��c��;

1

‘þ 1
2

’3�
ð‘þ 1

2Þ2� 5
2

ð‘þ 1
2Þ2�1

’4

�
;

��¼1

2
@�’4þ i

4
½cþ�þc��;’4�� i

4ð‘þ 1
2Þ

�
�
cþ��c��;

‘ð‘þ1Þ
‘þ 1

2

’3þ
ð‘þ 1

2Þ2� 5
8

ð‘þ 1
2Þ2�1

’4

�
: (4.8)

The gradient term takes the form

LG :¼ TrN ððD��aÞyðD��aÞÞ

¼ 1

4

‘2 þ ‘

ð‘þ 1=2Þ2 ðD�’D�’
y þD�’

yD�’Þ

þ 2
‘2 þ ‘

ð‘þ 1=2Þ2
�ð‘þ 3

2Þð‘� 1
2Þ

ð‘þ 1
2Þ2

þ 1

�
����

þ ‘2 þ ‘þ 3
4

ð‘þ 1
2Þ2

���� þ 2
‘2 þ ‘

ð‘þ 1
2Þ3

f��; ��g: (4.9)

C. The potential term

Working with the dual of the curvature Fab, we have

1

2
"abcFab¼1

2
�abc½�a;�b���c

¼1

2
ðfP1;’1þQ’2gþ i½S;Qð’1þQ’2Þ�Þ½Xc;Q�

þ i

4

�
’2

1þ’2
2þ

i

2ð‘þ 1
2Þ
½’1;’2��P2

�

� fXc;Qg
ð‘þ1=2Þþ

1

4

�
P3�2i‘ð‘þ1Þ

ð‘þ 1
2Þ

½’1;’2�
�

� !c

ð‘þ1=2Þ2 ; (4.10)

where P1;2;3 and S are given in the appendix. The potential

term in the action may then be expressed as

V1 ¼ 4
‘2 þ ‘

ð‘þ 1=2Þ2 ðT
2
1 þ T2

2Þ þ 4
‘2 þ ‘

ð‘þ 1=2Þ2

�
�ð‘þ 3

2Þð‘� 1
2Þ

ð‘þ 1
2Þ2

þ 1

�
T2
3 þ 2

‘2 þ ‘þ 3
4

ð‘þ 1
2Þ4

T2
4

þ 4
‘2 þ ‘

ð‘þ 1=2Þ4 fT3; T4g; (4.11)

and the explicit expressions for T1;2;3;4, in terms of P1;2;3

and S, are given in Appendix B.
In the large ‘ limit, we find

V1 ¼
‘!1

1

4
ðð’’yÞ2 þ ð’y’Þ2 þ f’’3; ’

y’3g
þ f’;’ygð’2

3 þ 2ð’3 � 1ÞÞ
þ 2ð’3 � 1Þ2f½’;’y�; ’4g þ 2’2

4Þ: (4.12)

Let us also note that in the commutative limit this
collapses to

1

2
ðj’j2 þ ’3 � 1Þ2 þ ’2

3j’j2 þ
1

2
’2

4; (4.13)

which is the expression found in [20].

D. The constraint term

Following the discussion in Sec. II, we take ~b ¼
‘ð‘þ 1Þ. We can then write

�a�a þ ‘ð‘þ 1Þ ¼ R1 þ R2iQ; (4.14)

where R1 and R2 are given in the appendix.
The constraint term in the action therefore takes the

form

V2 ¼
�
R2
1 þ R2

2 þ
1

2ð‘þ 1
2Þ
fR1; R2g

�
: (4.15)

E. Structure of the reduced action

Let us now inspect the reduced action more closely and
make some important remarks and observations that will
clarify the structure of the reduced theory. For definiteness,
from now on we will consider that M is the Groenewald-
Moyal (GM) plane R2

� (see Sec. VA for definitions and our

conventions on GM plane). First, we should understand the
gauge symmetry of the reduced action. In view of the
results obtained in the course of the equivariant reduction
of the Yang-Mills theories on R2d

� � S2 in [4], our initial

expectation before performing the dimensional reduction
has been to encounter a reduced theory with a Uð1Þ �Uð1Þ
gauge symmetry where ’, ’y are in the bi-fundamental
representation, and ’3, ’4 are neutral scalars and therefore
in the adjoint of both the left and the right Uð1Þ factor; in
fact the latter is the only option for ’3, ’4, since they can
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not be carrying any charges [except the same charges
ð1;�1Þ as ’ under the left and the right gauge groups,
respectively, which they certainly do not carry, as is clear
from the form of �� and ��] under the Uð1Þ �Uð1Þ gauge
group as the noncommutativity will prevent that from
happening [26], and from the form of �� and �� it is

also clear that they can not be transforming under the
trivial representation of Uð1Þ �Uð1Þ. Therefore, in con-
trast to the results of [4], where of course ’3, ’4 were
absent, we find that the presence of extra degrees of free-
dom, namely, ’3, ’4, in the SUð2Þ-equivariant gauge field
on S2F leads here to a further symmetry breaking in the
reduced action. Inspecting the expressions (4.8) making up
the ingredients of the gradient term in (4.9), we see that the
gauge symmetry is broken down to a diagonal noncommu-
tative Uð1Þ gauge group. We observe that �� and ��

transform covariantly, and the reduced action is invariant
only under the diagonal noncommutative Uð1Þ gauge
group, that is, only if the left and the right gauge fields
are identified: cþ� ¼ c�� ¼: c� (with this definition c� ¼
1
2 b�). We find that the reduced action then takes the form

S ¼
Z
M

1

4g2
jF��j2 þ 1

2

‘2 þ ‘

ð‘þ 1=2Þ2 D�’D�’
y

þ 1

8

‘2 þ ‘

ð‘þ 1=2Þ2
�ð‘þ 3

2Þð‘� 1
2Þ

ð‘þ 1
2Þ2

þ 1

�
ðD�’3Þ2

þ ‘2 þ ‘þ 3
4

4ð‘þ 1
2Þ2

ðD�’4Þ2 þ ‘2 þ ‘

4ð‘þ 1
2Þ3

� fD�’3; D�’4g þ 1

~g2
V1 þ a2V2; (4.16)

where now we have

D�� ¼ @� � þ½c�; ��;
F�� ¼ @�c� � @�c� þ i½c�; c��:

(4.17)

We note that the theory governed by the action (4.16)
does not have a commutative limit, since then all the
commutators vanish and the remaining terms no longer
form a gauge theory. This is a well-known behavior of
gauge theories with adjoint scalar fields [22,27], and it is
also encountered in the present model. However, it is also
useful to remark that taking the commutative limit in the
action (4.3) first using the expressions (4.6), (4.9), (4.11),
and (4.15) leads to the results found in [20].

V. SOLUTIONSOFTHEREDUCEDTHEORYONR2
�

We now wish to study the classical solutions of the
system governed by the action given in (4.16) on the
Groenewald-Moyal planeR2

�. As emphasized in [20], there

is no canonical choice for the coefficient a2 of the fuzzy
constraint term; we will consider the two extreme cases
of a2 ¼ 1 and a2 ¼ 0 corresponding, respectively, to
imposing the constraint �a�a þ ‘ð‘þ 1Þ ¼ 0 in full

(i.e. ‘‘by hand’’) and imposing no constraint at all. In
both cases, we consider the large ‘ limit; in the a ¼ 1
theory, we include only terms appearing at Oð‘�2Þ,
whereas for the case a ¼ 0, we assume ‘ ¼ 1.

A. Definitions and Conventions for the
Groenewald-Moyal Plane R2

�

Using the operator formalism, R2
� is defined by two

operators ŷ1, ŷ2 acting on the standard Harmonic oscillator
Fock space H . They fulfill the Heisenberg algebra com-
mutation relation

½ŷ1; ŷ2� ¼ i�; (5.1)

where � is the noncommutativity parameter.
It is often useful to switch to the complex basis, which

we take as

z ¼ 1ffiffiffi
2

p ðy1 þ iy2Þ; �z ¼ 1ffiffiffi
2

p ðy1 � iy2Þ; (5.2)

fulfilling

½z; �z� ¼ �: (5.3)

The derivatives on R2
� maybe expressed as

@��¼� i

�
"��½ŷ�;��; @z�¼�1

�
½�z;��; @�z�¼ 1

�
½z;��:

(5.4)

The integration over R2 becomes a trace over the Fock
space H on R2

�: Z
R2

d2y ! 2	�TrH : (5.5)

For further details on noncommutative spaces, see for
instance [27].

B. Case 1: The constraint fully imposed

The fuzzy constraint �a�a þ ‘ð‘þ 1Þ ¼ 0 is equiva-
lent to the two algebraic equations R1 ¼ 0, R2 ¼ 0, where
the expression for R1 and R2 are given in the Appendix B.
These equations can be solved order by order in powers of
the parameter 1

‘ to obtain ’3 and ’4 in terms of ’1 and ’2.

Substituting back into the action yields an action involving
only the scalar ’ ¼ ’1 þ i’2.
When ‘ ¼ 1, the solution to the constraint is simply

’3 ¼ 0,’4 ¼ 0, and substituting these into the action (4.3)
yields the model found in [4], where ’ is a bi-fundemental
scalar field, and there are distinct left and right gauge
fields, which are not required to be identified. When finite
‘ effects are taken into account, however, we should con-
sider the action (4.16), then gauge invariance of the actions
both before and after solving the constraint, and gauge
covariance of the solutions of the constraint are maintained
only if the left and the right gauge fields are identified.
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For large but finite ‘, one can solve the constraint
approximately by expanding it to leading order in powers
of ‘�1 around the ‘ ¼ 1. Performing this to orderOð‘�3Þ,
we find

’3¼�i
4

‘
½’1;’2�þ 1

2‘2
ð’2

1þ’2
2�1ÞþOð‘�3Þ; (5.6)

’4¼� 1

2‘
ð’2

1þ’2
2�1Þþ i

3

‘2
½’1;’2�þOð‘�3Þ: (5.7)

Note that these indeed preserve the gauge symmetry since
both sides transform covariantly under the action of the
gauge group.

Using these in (4.16), we find

S ¼ 2	�TrH

�
1

4g2
jF��j2 þ 1

2

�
1� 1

4‘2

�
D�’D�’

y

þ 1

‘2
ðD�½’;’y�Þ2 þ 1

32‘2
ðD�f’;’ygÞ2

þ 1

~g2

��
1

2
þ 1

4‘2

��
1

2
f’;’yg � 1

�
2

þ 1

8

�
1� 1

‘
� 3

4‘2

�
½’;’y�2

�
þOð‘�3Þ

�
: (5.8)

To obtain this result, we have also used the cyclicity
property of the trace TrH , under which the terms propor-
tional to ½’;’y� and ff’;’yg; ½’;’y�g vanish. The expres-
sion (5.8) is clearly invariant under the noncommutative
Uð1Þ gauge symmetry, as it should be.

It is possible to employ the solution generating tech-
niques introduced in [21] to find noncommutative vortex
type solutions of (5.8). To this end, we proceed as follows.
Let us first define the covariant coordinates

X ¼ � 1

�
�zþ icz; Xy ¼ � 1

�
z� ic�z; (5.9)

where we have used the complex combinations cz ¼ 1ffiffi
2

p �
ðc1 � ic2Þ, c�z ¼ 1ffiffi

2
p ðc1 þ ic2Þ. The covariant derivatives

and the field strength may be expressed as

Dz’ ¼ ½X;’�; D �z’ ¼ �½Xy; ’�; (5.10)

Fz�z ¼ @zc�z � @�zcz þ i½cz; c�z� ¼ i½X; Xy� þ i

�
: (5.11)

All the basic constituents of the action (5.8) transform
covariantly under the gauge symmetry

X ! UXUy; ’ ! U’Uy;

Dz’ ! UDz’U
y; Fz�z ! UFz�zU

y: (5.12)

It follows that the equations of motion will transform
covariantly, that is,


S


X
! U


S


X
Uy;


S


’
! U


S


’
Uy; (5.13)

under a partial isometry U satisfying

UyU ¼ 1; UUy ¼ P; (5.14)

where P is a projection operator [21]. Thus, the partial
isometries (5.14) generate solutions from a known solution.
A trivial solution to the equations of motion of (5.8) may

easily found to be X ¼ � 1
� �z, ’ ¼ 1. Taking U ¼ Sm,

where S is the usual shift operator S ¼ P1
k¼0 jkþ 1ihkj,

we can write a set of nontrivial solutions for the theory
governed by (5.8) as

’ ¼ SmSym ¼ 1� Pm; X ¼ � 1

�
Sm �zSym; (5.15)

where

Pn ¼
Xn�1

k¼0

jkihkj (5.16)

is the projection operator of rank m. The corresponding
field strength is F12 ¼ �iFz�z ¼ 1

� Pm. We can view these

solutions as noncommutative vortices carrying m units
of flux:

2	�TrF12 ¼ 2	m: (5.17)

It is useful to evaluate the value of the action (5.8) on
these solutions; we find

S ¼ 	�m

�
1

g2�2
þ 1

~g2

�
1þ 1

2‘2

��
þOð‘�3Þ: (5.18)

This corresponds to the energy of the static vortices in 2þ
1 dimensions, R2

� � R1 with R1 standing for time. We

observe that to leading order in ‘�1 there is a ‘�2 contri-
bution adding to the energy, which is a residue of the fact
that the present model has descended from a model with a
fuzzy sphere of order ‘, S2Fð‘Þ as extra dimensions.
Two limiting cases may also be easily recorded from

(5.18). For ~g ! 1, our solutions collapse to the flux-tube
(fluxon) solutions discussed in [24,25]; whereas, for
� ! 1, the action gets a contribution only from the poten-
tial term, and our vortex solution collapses to a noncommu-
tative soliton solution of the type first discussed in [28].

C. Case 2: No constraint

With a ¼ 0 and ‘ ¼ 1, the action reduces to

S ¼ 2	�TrH

�
1

4g2
jF��j2 þ 1

2
D�’D�’

y

þ 1

4
ðD�’3Þ2 þ 1

4
ðD�’4Þ2 þ 1

~g2
V1

�
; (5.19)

where V1 is as given in (4.12). We see that there are linear
terms in the potential (4.12) in ’3, which will prevent us
from applying the solution generating technique used in
the previous subsection since these lead to terms in the
equations of motion proportional to identity, and, there-
fore, they do not transform adjointly under the solution
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generating transformations [21]. However, in the present
model this situation can be remedied by defining a new
field ’0

3 ¼ ’3 � 1. In this manner, all the terms in the

potential are quadratic or higher order or a constant. We
have

V0
1 ¼
‘!1

1

4
ðð’’yÞ2 þ ð’y’Þ2 þ f’ð’0

3 þ 1Þ; ’yð’0
3 þ 1Þg

þ f’;’ygðð’0
3 þ 1Þ2 þ 2’0

3Þ
þ 2’02

3 f½’;’y�; ’4g þ 2’2
4Þ; (5.20)

while the gradient term involving ’3 is unaffected by this
substitution. The equations of motion are

ðDzD �z þD �zDzÞ�� @V0
1

@�
¼ 0; for �:’;’0

3; ’4;

1

g2
DzFz�z þ ið’D�z’

y �D�z’’
yÞ þ i½’0

3; D �z’
0
3�

þ i½’4; D�z’4� ¼ 0: (5.21)

We observe that a trivial solution to these equations is
given by ’ ¼ 1, ’0

3 ¼ �1, ’4 ¼ 0, X ¼ � 1
� �z. Applying

the solution generating technique with U ¼ Sm, we find

’ ¼ SmSym ¼ 1� Pm; ’0
3 ¼ �SmSym ¼ Pm � 1;

’4 ¼ 0; X ¼ � 1

�
Sm �zSym; (5.22)

where S and X are defined as in the previous subsection.
Evaluating the value of the action (5.19) on these solu-

tions, we find

S ¼ 	m

g2�
; (5.23)

and the flux carried by these solutions is again

2	�TrF12 ¼ 2	m: (5.24)

As it turns out, there is in fact no contribution to (5.23)
from the potential term. Thus, we can interpret (5.22) as
flux-tube solutions carrying m units of flux [24]. It is easy
to see that (5.22) satisfies the equations of motion (5.21), by
noting that

Dz� ¼ ½X;�� ¼ 0; D �z� ¼ �½Xy; �� ¼ 0; (5.25)

where � are the solutions for ’, ’0
3, ’4 given in (5.22).

We also wish to remark that the field redefinition for ’3

used above works only in the infinite ‘ limit. In fact, there
does not appear to be a field redefinition at finite ‘ or at
leading order around ‘ ¼ 1, which will allow the use of
solution generating transformations to construct nontrivial
solutions.

D. Generalization to R2d
�

Results of the previous sections can be generalized to
R2d

� in a rather straightforward manner. Defining relations

for R2d
� are

½ŷ�; ŷ�� ¼ i���; (5.26)

where it is assumed that ��� is brought to a block-diagonal
form with

�2a�12a ¼ ��2a2a�1 ¼: �a; ða ¼ 1; � � � ; dÞ: (5.27)

In complex coordinates

za¼ 1ffiffiffi
2

p ðy2a�1þ iy2aÞ; z �a¼ 1ffiffiffi
2

p ðy2a�1� iy2aÞ; (5.28)

these relations become

½za; z �b� ¼ 
a �b�a ¼ �a
�b ¼ ��

�ba; (5.29)

with �b �c�
�ca ¼ 
a

b, �a �b ¼ �� �ba ¼ � 1
�a 
a �b. We further

have

Z
R2d

d2dy !
�Yd
a¼1

2	�a
�
TrH : (5.30)

In order to write down the generalizations of our pre-
vious results, we can consider a Uð2kÞ Yang-Mills gauge
theory onR2d

� � S2F instead of theUð2Þ theory that we have
used in Sec. III. In this case, the gauge fields Aa are
elements of uð2kÞ � uð2‘þ 1Þ, and SUð2Þ equivariance
therefore leads to the gauge fields a�, b� taking values

in uðkÞ and to the scalar fields ’1, ’2, ’3, ’4, which are
k� k Hermitian matrices. Dimensional reduction over the
fuzzy sphere proceeds in the same manner as before.
To obtain the nontrivial solutions of the reduced theory,

we again make use of the covariant coordinates

Xa ¼ ica þ �a �bz
�b: (5.31)

For the case considered in (5.2), where the constraint term
is fully imposed, we find that the nontrivial solutions
generalize to

Xa¼�a �bTmz
�bTy

m; ’¼’y¼TmT
y
m¼1�Pm; (5.32)

where Tm, T
y
m are k� k matrices acting on Ck �H and

satisfying TmT
y
m ¼ 1� Pm, T

y
mTm ¼ 1. Pm is a rank m

projector on Ck �H . Explicit constructions of the opera-
tors Tm are given in terms of noncommutative Atiyah-
Bott-Shapiro construction, which is well known in the
literature [4,21].
Assuming for simplicity that �1 ¼ � � � �d ¼ �, we find

the generalized static noncommutative vortices have the
energy

ð2	�Þdm
�

d

2g2�2
þ 1

~g2

�
1þ 1

2‘2

��
þOð‘�3Þ: (5.33)

As for the case of Sec. VC, where the constraint term is
neglected by setting a ¼ 0, we have the nontrivial solu-
tions
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’ ¼ 1� Pm; ’0
3 ¼ Pm � 1;

’4 ¼ 0; Xa ¼ �a �bTmz
�bTy

m: (5.34)

Evaluating the action on these solutions, we get

S ¼ ð2	�Þd md

2g2�2
: (5.35)

Thus, these solutions are the generalized fluxons living on
R2d

� .

VI. CONCLUSIONS

In this article, we have studied the equivariant dimen-
sional reduction of a Uð2Þ Yang-Mills theory on M� S2F,
where M is considered as a noncommutative manifold.
We have employed SUð2Þ-equivariant gauge field con-
structed in [20] to perform the dimensional reduction of
the theory over the fuzzy sphere in full. Our results showed
that the reduced model is a noncommutative Uð1Þ gauge
theory, coupled adjointly to a set of scalar fields. We have
examined the reduced model on R2

� and found that, in

certain limits, it admits noncommutative vortex as well
as flux-tube solutions, which are non-BPS and devoid of
a smooth commutative limit. In particular, we have com-
puted the leading order correction in the fuzzy sphere level
‘ to the noncommutative static vortex energy when the
fuzzy gauge constraint is fully imposed. Generalizations of
our results toUð2kÞ gauge theories overR2d

� are also briefly

given.
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APPENDIX A: THE FUZZY SPHERE

The fuzzy sphere at level ‘ is defined to be the algebra of
ð2‘þ 1Þ � ð2‘þ 1Þ matrices Matð2‘þ 1Þ. The three
Hermitian ‘‘coordinate functions’’

x̂ a :¼ iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘ð‘þ 1Þp Xð2‘þ1Þ

a (A1)

satisfy

½x̂a; x̂b� ¼ iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘ð‘þ 1Þp "abcx̂c; x̂ax̂a ¼ 1 (A2)

and generate the full matrix algebra Matð2‘þ 1Þ. There
are three natural derivations of functions, defined by the
adjoint action of suð2Þ on S2F:

f ! adXð2‘þ1Þ
a f :¼ ½Xð2‘þ1Þ

a ; f�; f 2 Matð2‘þ 1Þ:
(A3)

In the limit ‘ ! 1, the functions x̂a are identified with the
standard coordinates xa onR

3, restricted to the unit sphere,

and the infinite-dimensional algebra C1ðS2Þ of functions on
the sphere is recovered. Also in this limit, the derivations

½Xð2‘þ1Þ
a ; �� become the vector fields �iLa ¼ "abcxa@b,

induced by the usual action of SOð3Þ.

APPENDIX B: EXPLICIT FORMULAE

In this appendix, we list the explicit expressions for P1,
P2,P3, S, T1, T2, T3, T4, and R1,R2, which were introduced
for brevity of notation in Sec. V. We have

P1 ¼ 1

2

‘2 þ ‘� 1=4

ð‘þ 1=2Þ2 ’3 þ 1

2

1

‘þ 1=2
’4; (B1)

P2 ¼ 1

2

�
1� ’3; 1þ ’4

‘þ 1=2
� ’3

2ð‘þ 1=2Þ2
�
; (B2)

P3 ¼ ‘2 þ ‘

ð‘þ 1=2Þ2 ð’
2
3 � 2’3Þ þ ’2

4 þ 2
‘2 þ ‘� 1=4

‘þ 1=2
’4;

(B3)

S ¼ 1

4ð‘þ 1
2Þ
’3 þ 1

2
’4: (B4)

In terms of P1;2;3 and S, we have

T1 ¼ 1

2
ðfP1; ’1g � i½S;’2�Þ; (B5)

T2 ¼ 1

2
ðfP1; ’2g þ i½S;’1�Þ; (B6)

T3 ¼ 1

4

�
’2

1 þ ’2
2 þ

i

2ð‘þ 1
2Þ
½’1; ’2� � P2

�
; (B7)

T4 ¼ 1

4

�
P3 � 2i‘ð‘þ 1Þ

ð‘þ 1
2Þ

½’1; ’2�
�
: (B8)

For R1 and R2, we have

R1 ¼ � 1

2
ð’2

1 þ ’2
2 � 1Þ þ 3i

‘þ 1
2

½’1; ’2� � 1

4ð‘þ 1
2Þ2

’3

�
��
‘þ 1

2

�
� 1

2ð‘þ 1
2Þ
�
’4 �

�
1

4
� 3

16ð‘þ 1
2Þ2

�
’2

3

� 1

8ð‘þ 1
2Þ
f’3; ’4g � 1

4
’2

4; (B9)

R2 ¼ 1

4ð‘þ 1
2Þ
ð’2

1 þ ’2
2 � 1Þ � i

4ð‘þ 1
2Þ2 � 1

2

ð‘þ 1
2Þ2

½’1; ’2�

�
��
‘þ 1

2

�
� 3

4ð‘þ 1
2Þ
�
’3 � 1

2
’4 � 1

16ð‘þ 1
2Þ3

’2
3

�
�
1

4
� 1

8ð‘þ 1
2Þ2

�
f’3; ’4g � 1

4ð‘þ 1
2Þ
’2

4: (B10)
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SEÇKIN KÜRKÇÜOĞLU PHYSICAL REVIEW D 82, 105010 (2010)

105010-10

http://dx.doi.org/10.1007/BF01200108
http://dx.doi.org/10.1007/BF01200108
http://dx.doi.org/10.1016/0370-1573(92)90101-5
http://dx.doi.org/10.1016/0370-1573(92)90101-5
http://dx.doi.org/10.1103/PhysRevLett.38.121
http://dx.doi.org/10.1088/1126-6708/2003/12/022
http://dx.doi.org/10.1088/1126-6708/2003/12/022
http://dx.doi.org/10.1007/BF02096862
http://dx.doi.org/10.1142/S0129167X94000024
http://dx.doi.org/10.1063/1.2157005
http://dx.doi.org/10.1063/1.2157005
http://dx.doi.org/10.1088/1126-6708/2006/09/054
http://dx.doi.org/10.1088/1126-6708/2006/09/054
http://dx.doi.org/10.1143/PTPS.171.258
http://dx.doi.org/10.1143/PTPS.171.258
http://dx.doi.org/10.1088/1126-6708/2008/08/093
http://dx.doi.org/10.1016/j.nuclphysb.2009.05.003
http://dx.doi.org/10.1007/s11005-008-0243-x
http://dx.doi.org/10.1007/s11005-008-0243-x
http://dx.doi.org/10.1103/PhysRevD.77.125026
http://dx.doi.org/10.1088/1126-6708/2009/03/059
http://dx.doi.org/10.1088/1126-6708/2009/03/059
http://arXiv.org/abs/1003.2100
http://dx.doi.org/10.1088/1126-6708/2004/04/034
http://arXiv.org/abs/hep-th/0503039
http://arXiv.org/abs/hep-th/0503039
http://dx.doi.org/10.1088/1126-6708/2006/09/026
http://dx.doi.org/10.1088/1126-6708/2007/09/017
http://dx.doi.org/10.1088/1126-6708/2007/09/017
http://dx.doi.org/10.1002/prop.201000018
http://dx.doi.org/10.1007/JHEP05(2010)100
http://dx.doi.org/10.1007/JHEP05(2010)100
http://dx.doi.org/10.3842/SIGMA.2010.063
http://dx.doi.org/10.3842/SIGMA.2010.063
http://dx.doi.org/10.1103/PhysRevD.81.085034
http://dx.doi.org/10.1103/PhysRevD.81.085034
http://dx.doi.org/10.1016/j.nuclphysb.2009.06.031
http://dx.doi.org/10.1016/j.nuclphysb.2009.06.031
http://dx.doi.org/10.1088/1126-6708/2000/12/024
http://dx.doi.org/10.1088/1126-6708/2000/12/024
http://arXiv.org/abs/hep-th/0102076
http://dx.doi.org/10.1088/1126-6708/2000/09/018
http://dx.doi.org/10.1088/1126-6708/2000/09/018
http://dx.doi.org/10.1103/PhysRevD.63.125010
http://dx.doi.org/10.1103/PhysRevD.63.125010
http://dx.doi.org/10.1016/S0370-2693(00)01226-0
http://dx.doi.org/10.1016/S0370-2693(00)01226-0
http://dx.doi.org/10.1016/S0370-2693(00)01270-3
http://dx.doi.org/10.1088/1126-6708/2001/04/001
http://dx.doi.org/10.1016/S0370-2693(01)01478-2
http://dx.doi.org/10.1103/RevModPhys.73.977
http://dx.doi.org/10.1103/RevModPhys.73.977
http://dx.doi.org/10.1088/1126-6708/2000/05/020
http://dx.doi.org/10.1088/1126-6708/2000/05/020

