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In D ¼ 2þ 1 dimensions there are two dual descriptions of parity singlets of helicity �1, namely, the

self-dual model of first order (in derivatives) and the Maxwell-Chern-Simons theory of second order.

Correspondingly, for helicity �2 there are four models SðrÞSD� describing parity singlets of helicities �2.

They are of first, second, third, and fourth order (r ¼ 1, 2, 3, 4), respectively. Here we show that the

generalized soldering of the opposite helicity models Sð4ÞSDþ and Sð4ÞSD� leads to the linearized form of the

new massive gravity suggested by Bergshoeff, Hohm, and Townsend (BHT) similarly to the soldering of

Sð3ÞSDþ and Sð3ÞSD�. We argue why in both cases we have the same result. We also find out a triple master

action which interpolates between the three dual models: linearized BHT theory, Sð3ÞSDþ þ Sð3ÞSD�, and
Sð4ÞSDþ þ Sð4ÞSD�. By comparing gauge invariant correlation functions we deduce dual maps between those

models. In particular, we learn how to decompose the field of the linearized BHT theory in helicity

eigenstates of the dual models up to gauge transformations.

DOI: 10.1103/PhysRevD.82.105009 PACS numbers: 11.10.Kk

I. INTRODUCTION

In D ¼ 2þ 1 dimensions it is possible to have a local
description of a massive spin-1 particle by means of one
vector field without breaking gauge invariance. Such a
theory is called Maxwell-Chern-Simons (MCS) and it
was introduced in [1]. It is a second-order (in derivatives)
model which describes a parity singlet of helicity þ1 or
�1, according to the sign in front of the Chern-Simons
term. The MCS theory is invariant under the usual Uð1Þ
gauge transformations ��A� ¼ @��. Another model,

named the self-dual (SD) model, was found later in [2].
It shares the particle content of the MCS theory but it is of
first order and it has no local symmetries. Part of the SD
model, namely, the Chern-Simons term, is invariant under
��A�. By means of a Noether embedment of this symme-

try it is possible to obtain the MCS theory from the SD
model (see [3]).

A similar picture applies for spin-2 particles in D ¼
2þ 1. A third-order model, the so-called topologically
massive gravity, was introduced in [1] to describe a
gravitational theory with a massive graviton of helicity
þ2 or �2, according to the sign in front of the gravita-
tional Chern-Simons term, without breaking the general
coordinate invariance of the Einstein-Hilbert action. The
linearized version of this model about a flat background

will be denoted here by Sð3ÞSD�, respectively. Later [4], a
self-dual model of first order Sð1ÞSD�, similar to its spin-1

counterpart [2], was introduced as well as a second-order

model (Sð2ÞSD�) analogous to the MCS theory (see [5]).

Recently, a new self-dual theory of fourth order (Sð4ÞSD�)
has been found [6,7]. In [6] we have shown that starting

with the lowest-order model Sð1ÞSD� there is a natural

sequence of Noether embedment of gauge symmetries

such that SðiÞSD� ! Sðiþ1Þ
SD� with i ¼ 1, 2, 3 culminates at

Sð4ÞSD�. The same reasoning applied on the spin-1 case

(SD ! MCS) terminates at the MCS theory. Both MCS

and Sð4ÞSD� consist of two terms invariant under the same

set of local symmetries. Thus, there is no symmetry left
for a further embedment. This indicates that those models
might be the highest-order models to describe particles of
helicity �1 and �2, respectively, in terms of only one
fundamental field.
On the other hand, in the spin-1 case, it is well known

that the Proca theory describes in D ¼ 2þ 1 a parity
doublet of helicitiesþ1 and�1 which is the same particle
content of two SDmodels of opposite helicities. Since both
models (pair of SD and Proca) have no local symmetries,
one might wonder whether they could be identified. In fact,
it is easy to show [8] that the pair of SD models of opposite
helicities corresponds to a first-order version of the Proca
model after some trivial rotation. However, regarding its
dual theory, a pair of MCS models of opposite helicities, it
is not so easy to identify it with the Proca theory due to the
local Uð1Þ symmetry of the MCS theory. An extra ‘‘inter-
ference term’’ between the opposite helicities is needed to
comply with the local symmetries. This extra term can be
produced by the soldering formalism [9] as shown in
[10,11]. The idea of fusing two fields representing com-
plementary aspects of some symmetry into one specific
combination of fields is the core of the soldering procedure
(see also [12,13]).
In the spin-2 case it is the Fierz-Pauli [14] theory which

plays the role of the Proca theory. Once again it is possible

to show [8] that the pair Sð1ÞSDþ þ Sð1ÞSD� is equivalent, after a

rotation, to a first-order version of the Fierz-Pauli (FP)

theory while the dual pair Sð2ÞSD� must be soldered in order
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to furnish the FP theory. Remarkably, the soldering of a

pair of third-order models Sð3ÞSD� does not reproduce the FP

theory and leads to a unitary [15] fourth-order theory
describing a parity doublet of helicities þ2 and �2 just
like the FP theory. This model corresponds precisely to the
linearized version of the recently proposed new massive
gravity theory [16], henceforth the linearized Bergshoeff,
Hohm, and Townsend (LBHT) theory. It is therefore
natural to try to solder also a pair of the top models

Sð4ÞSD�. In the next section we carry this out and end up

again with the LBHT theory. This suggests the uniqueness
of the LBHT model as a unitary higher-derivative model
describing a parity doublet of helicities �2 in D ¼ 2þ 1.

In previous examples of soldered second-order models
for spin-1 [10,11] and spin-2 [8] it turns out that the
theories before and after soldering can be shown to
be equivalent at quantum level. This has been shown in
[17–19] by means of the master action technique [20]. In
the second part of this work (Sec. III) we define a triple
master action which interpolates between the linearized

BHT theory, Sð3ÞSDþ þ Sð3ÞSD�, and Sð4ÞSDþ þ Sð4ÞSD�, thus prov-
ing the quantum equivalence of all three models in agree-
ment with the soldering predictions of [8] and Sec. II of the
present work. The introduction of convenient source terms
allows us to derive dual maps between gauge invariants of
those theories.

II. SOLDERING Sð4Þ
SDþ AND Sð4Þ

SD�
It is necessary to fix the notation before we go on.

Throughout this work indices are lowered and raised by
the flat metric: ��� ¼ diagð�;þ;þÞ. Inside integrals we

use a shorthand notation similar to differential forms:

Z
A � dB �

Z
d3xA����

�	@�B	�: (1)

Frequent usewill be made of the rank two tensor��

ðhÞ ¼

�
��½@�h�� � @�ðh�� þ h��Þ� and of the symmetric and

antisymmetric operators ��� ¼ ð��� � @�@�=hÞ and

E�� ¼ ����@�, respectively.
Some of the actions here can be interpreted as quadratic

truncations (linearized versions) about a flat background.
In particular, with g�� ¼ ��� þ h��, the linearized

Einstein-Hilbert action, linearized gravitational Chern-
Simons term, and linearized K term [16] can be written,
respectively, as

Z
d3x

ffiffiffiffiffiffiffi�g
p

Rjhh ¼
Z

d3xh��E
�	E�
h
	

¼ � 1

2

Z
d3xh � d�ðhÞ; (2)

1

2

Z
d3x

�
������

�


�
@��



�� þ 2

3
�

���

�
��

��
hh

¼ �
Z

d3xh��h���E��h�� ¼ 1

4

Z
d3x�ðhÞ � d�ðhÞ;

(3)

Z
d3x

� ffiffiffiffiffiffiffi�g
p �

R��R
�� � 3

8
R2

��
hh

¼ 1

2

Z
d3xh
�h

2ð2�

��� � �
���
Þh�


¼ � 1

8

Z
d3x�ðhÞ � d�ð�ðhÞÞ: (4)

Now we start with a couple of new self-dual models

recently obtained in [6,7]. Each model Sð4ÞSD� below, though

of fourth order in derivatives, is unitary [7,21] and de-
scribes one massive mode of mass m� and helicity �2 in
D ¼ 2þ 1 dimensions, respectively. In a convenient
notation for the soldering approach we write

Sð4ÞSDþðAÞ ¼
Z

d3x

�
1

4
A�
h

2ð2����
� � ��
���ÞA��

þmþ
2

A	�h�	�E��A��

�
; (5)

Sð4ÞSD�ðBÞ ¼
Z

d3x

�
1

4
B�
h

2ð2����
� � ��
���ÞB��

�m�
2

B	�h�	�E��B��

�
: (6)

The tensor fields are symmetric A�� ¼ A��, B�� ¼ B��.

The first term in both actions above corresponds exactly
to (4), and the second one is proportional to the quadratic
truncation of the gravitational Chern-Simons term (3). As
suggested in [1], the full nonlinear version of (3) together
with the Einstein-Hilbert action build up the so-called
topologically massive gravity. Since the Einstein-Hilbert

action is substituted by the fourth-orderK term in Sð4ÞSD�, we
may call such models a linearized higher-derivative topo-
logically massive gravity.
Now let us recall the basic idea of the soldering proce-

dure. The actions (5) and (6) are invariant under indepen-
dent global shifts �A�� ¼ !��; �B�� ¼ ~!��. In the

soldering procedure [8,10,11] one lifts the global shift
symmetry to a local one and ties the fields A�� and B��

together by imposing that their local symmetry transfor-
mations are proportional to each other:

�A�� ¼ !��; �B�� ¼ �!��; (7)

where � is so far an arbitrary constant. From (5)–(7) we
can write down

�ðSð4ÞSDþðAÞ þ Sð4ÞSD�ðBÞÞ ¼
Z

d3xJ
�h���!�
; (8)
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with the Noether-like current J
� given by

J
� ¼ h

2
ð2�
�C�� � �


��
��C��Þ þ E
�D��; (9)

where we have used the following field combinations:

C��¼A��þ�B��; D��¼mþA����m�B��: (10)

At this point we may try to cancel the variation (8) by the
introduction of an auxiliary field H�


 with a specific varia-
tion �H�


 ¼ �h���!�
 such that

�

�
Sð4ÞSDþðAÞ þ Sð4ÞSD�ðBÞ þ

Z
d3xJ
�H

�



�
¼

Z
d3x�J
�H

�

:

(11)

Since

�C�� ¼ ð1þ �2Þ!��; �D�� ¼ ðmþ � �2m�Þ!��;

(12)

we have

�J
� ¼ ð1þ �2Þ
2

ð2h�
�!�� � �

�h���!��Þ

þ ðmþ � �2m�ÞE
�!��

¼ �ð1þ �2Þ
2

ð2�H

� � �


��H
�
�Þ

þ ðmþ � �2m�ÞE
�!��: (13)

In order to write the Lagrangian density on the right-hand
side of (11) as a local function of the auxiliary fieldH�


 and
its variation �H�


, we are forced to choose

� ¼ �
ffiffiffiffiffiffiffiffi
mþ
m�

s
(14)

which leads to the soldering action SS invariant under
the local transformations (7),

SS ¼ Sð4ÞSDþðAÞ þ Sð4ÞSD�ðBÞ

þ
Z

d3x

�
H�


J


� þ ð1þ �2Þ

4
ð2H�


H


� �H2Þ

�
; (15)

where H ¼ H�
� . Solving the algebraic equations of motion

of H�
� we can invert them in terms of J
� and rewrite the

expression (15) as

SS ¼ Sð4ÞSDþðAÞ þ Sð4ÞSD�ðBÞ
� 1

2ð1þ �2Þ
Z

d3xðJ
�J�
 � J2Þ; (16)

where J ¼ J�� . The quadratic term in the Noether current is
interpreted [10,11] as an interference term between the
opposite helicity modes necessary to patch together the

actions Sð4ÞSDþ and Sð4ÞSD� into a local theory invariant under

(7). Replacing J�
 from (9) in (16) we find

SS ¼ Sð4ÞSDþðAÞ þ Sð4ÞSD�ðBÞ �
1

ð1þ �2Þ
�

Z
d3x

�
1

4
C��h

2ð2������ � ������ÞC��

þ C��h�
�E�
D

 � 1

2
D��E


�E�
D



�
: (17)

After some algebra it is possible to rewrite the soldered
Lagrangian density entirely in terms of the soldered field
h�� ¼ ð�A�� � B��Þ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mþm�
p

which is invariant under

the local shifts (7) with � being any of the two possibilities
given in (14), namely,

LS¼ 1

ð1þ�2Þ
�

1

4mþm�
h��h

2ð2�������������Þh��

�mþ�m�
2mþm�

h��h�
�E�
h

�1

2
h��E

��E�
h�


�
:

(18)

By using � ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mþ=m�

p
we can check that each of

the terms in (18) is invariant under the discrete sym-
metry ðmþ; m�Þ ! ð�m�;�mþÞ, which interchanges

Sð4ÞSDþ ⇋ Sð4ÞSD�. More importantly, up to an overall constant,

the Lagrangian LS corresponds precisely to the quadratic
truncation of the generalized (mþ � m�) new massive
gravity theory of [16]

2ð1þ �2ÞLS ¼
� ffiffiffiffiffiffiffi�g
p

R�mþ �m�
2mþm�

������
�


�
�
@��



�� þ 2

3
�

���

�
��

�
�

ffiffiffiffiffiffiffi�g
p
mþm�

�
R��R

�� � 3

8
R2

��
hh
:

(19)

This is a bit surprising, because we have found the same
soldered theory LS in [8] where we have started with two

third-order self-dual models Sð3ÞSDþ and Sð3ÞSD�. This seems to

indicate that the LBHT theory might be the highest-order
self-consistent (unitary) theory describing a parity doublet
of helicity �2.

In order to get some clue on why the soldering of Sð4ÞSDþ
and Sð4ÞSD� leads to the same theory obtained from Sð3ÞSDþ and

Sð3ÞSD�, we give below a rough argument dropping the fields’

indices. The key point is some freedom in defining the
Noether current due to an integration by parts. In both
cases we can write

�ðSðrÞSDþðAÞ þ SðrÞSDþðBÞÞ ¼
Z

d3xJðrÞ@p!: (20)

Where r ¼ 3, 4. The symbol @p stands for some differen-
tial operator of order p whose explicit form is not impor-
tant and may be different in each expression. So p simply
counts the order of some differential operator. Since the

SðrÞSD� model contains a term of order r plus another one of
order r� 1, the freedom to integrate by parts in (20) allows
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us to choose any integer value for p such that
p ¼ 0; 1; � � � ; r� 1 and redefine the Noether current
accordingly:

Jð3Þ ¼ @3�pDþ @2�pC; (21)

Jð4Þ ¼ @4�pCþ @3�pD; (22)

where C ¼ Aþ �B and D ¼ mþA� �m�B [see (10)].

The term with an odd number of derivatives in SðrÞSD� carries

the sign of the particle’s helicity and gives rise to the D
combination in (21) and (22). The formula (20) suggests
the auxiliary field variation �H ¼ �@p! which leads to
[see (11)]

�

�
SðrÞSDþðAÞ þ SðrÞSDþðBÞ þ

Z
d3xJðrÞH

�
¼

Z
d3x�JðrÞH:

(23)

However, using (12) in (21) and (22) we have

�Jð3Þ ¼�ðmþ��2m�Þ@3�2pH�ð1þ�2Þ@2�2pH; (24)

�Jð4Þ ¼�ð1þ�2Þ@4�2pH�ðmþ��2m�Þ@3�2pH: (25)

Therefore [see (23)] in order to avoid any dynamics for
the auxiliary field H we must choose �2 ¼ mþ=m� in
both cases r ¼ 3, 4 and p ¼ 1 for r ¼ 3 while p ¼ 2 if
r ¼ 4 as we have done in [8] and here, respectively. In
fact, the above argument holds also for the generalized

soldering of Sð2ÞSDþ and Sð2ÞSD� carried out in [8] (see also

[22]) and the generalized soldering of two MCS theories
of opposite helicities �1 with different masses [11] (see
also [10]); in such examples p ¼ 0. Finally, since in both

cases r ¼ 3, 4 we have �JðrÞ ¼ �ð1þ �2Þ�H and the
Noether currents will be the sum of a 1st-order and a 2nd-
order term, it is clear that the interference term obtained
after the elimination of the auxiliary field will be qua-
dratic in the current and can only contain terms of order
4, 3, and 2 which lead dimensionally to the generalized
BHT theory LS.

III. MASTER ACTION AND DUAL MAPS

In the soldering procedure there is a priori no guarantee
of quantum equivalence between the initial pair of field
theories describing the opposite helicity states and the final
soldered field theory. In the spin-1 case where a couple of
MCS theories of opposite helicities are soldered into a
Maxwell-Chern-Simons-Proca theory, even if mþ � m�,
it is possible to prove at quantum level the equivalence of
those theories before and after soldering by means of a
master action [17,18]. Likewise, in the spin-2 case one can
also solder [8] the opposite helicities’ second-order models

Sð2ÞSDþ and Sð2ÞSD� into a kind of spin-2 Maxwell-Chern-

Simons-Proca model where the role of the Maxwell-
Proca terms is played by the Fierz-Pauli theory. Once

again, those theories (before and after soldering) are
known to be quantum equivalent [19]. On one hand, such
results are not surprising since the particle content of both
theories before and after soldering is the same; however,
the local symmetries are in general not the same and the
existence of a local dual map between gauge invariant
objects is not trivial. From the above discussion and from
what we have learned in the last section it is quite sugges-
tive to think about a master action which interpolates

among a couple of Sð4ÞSD�, a couple of Sð3ÞSD�, and the

LBHT theory. For simplicity we assume hereafter mþ ¼
m� and suggest the following master action,

SM½h;H; A; B� ¼ 1

2

Z
h � d�ðhÞ

� 1

8m2

Z
�ðhÞ � d�ð�ðhÞÞ

þ 1

2

Z �
H þ�ðhÞ

2m

�
� d�

�
Hþ�ðhÞ

2m

�

þ 1

4m

Z
�ða� AÞ � d�ða� AÞ

� 1

4m

Z
�ðb� BÞ � d�ðb� BÞ; (26)

where all fields above are second-rank symmetric tensors
with a�� and b�� linear combinations of h and H (drop-

ping the indices):

a ¼ ðhþHÞffiffiffi
2

p ; b ¼ ðh�HÞffiffiffi
2

p : (27)

The first two terms in (26) correspond to the LBHT
theory. Next, there are three mixing terms. The first one
is a quadratic truncation of the Einstein-Hilbert term [see
(2)], while the last two are quadratic truncations of the
gravitational Chern-Simons term [see (3)]. All mixing
terms have no particle content and that feature plays a
fundamental role in the interpolation between the different
models [18,23]. In order to verify the equivalence between
correlation functions of gauge invariants, we are going to
add a source term to SM. At this point we can ask what is
the proper source term. The fourth-order self-dual model is
invariant under linearized general coordinate transforma-
tions ��h�� ¼ @��� þ @��� and a linearized local Weyl

symmetry ��h�� ¼ ����. On the other hand, the qua-

dratic Einstein-Hilbert term present in the LBHT and in

Sð3ÞSD� breaks the local Weyl symmetry. The basic idea is to

use a source term invariant under a set of symmetries
common to all models to be interpolated. The lowest-order
source term invariant under ��h�� is given by

Z
d3xj��F��ðhÞ �

Z
d3xj��E


�E	
�h
	

¼ � 1

2

Z
j � d�ðhÞ: (28)
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So for simplicity we first define the generating functional
with only one type of source:

W ½j� ¼
Z

Dh��DH��DA��DB��

� expi

�
SMðh;H; A; BÞ � 1

2

Z
j � d�ðhÞ

�
: (29)

It is easy to see that if we do the trivial shifts, dropping
the indices, A ! Aþ a, B ! Bþ b, and H !
H ��ðhÞ=2m in (29), the last three terms of SM decouple
completely into three terms without particle content.
Integrating over A��, B��, and H�� we obtain up to an

overall constant:

W ½j� ¼
Z

Dh�� expi

�
SLBHTðhÞ � 1

2

Z
j � d�ðhÞ

�
:

(30)

Therefore, the spectrum of SM coincides with the one of the
quadratic truncation of the BHT theory for equal masses,
i.e., a parity doublet of helicities�2 and mass ‘‘m.’’ In the
next two subsections we are going to derive the dual
models to LBHT from (29).

A. Duality between Sð3Þ
SDþ þ Sð3Þ

SD�
and the linearized BHT theory

For a demonstration of equivalence of LBHT with one

couple of third-order self-dual models Sð3ÞSD�, we rewrite the
first three terms of SM. The generating functional (29)
becomes

W ½j�¼
Z
Dh��DH��DA��DB��

�expi
Z �

1

2
h �d�ðhÞþ1

2
H �d�ðHÞ

þ 1

2m
�ðhÞ �d�ðHÞþ 1

4m
�ða�AÞ �d�ða�AÞ

� 1

4m
�ðb�BÞ �d�ðb�BÞ�1

2
j �d�ðhÞ

�
:

(31)

After the shifts A ! Aþ a and B ! Bþ b we can inte-
grate over A and B and get rid of the two third-order Chern-
Simons mixing terms which play no role in this subsection.
Then, inverting (27) we can decouple the fields in (31).
Thus, the generating functional, up to an overall constant,
can be rewritten as

W ½j� ¼
Z

Da��Db�� expi

�
Sð3ÞSDþðaÞ þ Sð3ÞSD�ðbÞ

� 1

23=2

Z
j � d�ðaþ bÞ

�
; (32)

where

Sð3ÞSD�ðaÞ ¼ �
Z

d3x

�
a��E

�	E�
a
	

� 1

m
a��h��
E��a
�

�
: (33)

The first term represents the quadratic truncation of the
Einstein-Hilbert action with a negative sign, while the
second one is a similar truncation of the gravitational
Chern-Simons action [see (2) and (3), respectively].
Differentiating (30) and (32) with respect to the source
j�� we have the following relationship between the corre-
lation functions:

hF�1�1½hðx1Þ����F�N�N
½hðxNÞ�iLBHT

¼
�
F�1�1

½ðaþbÞðx1Þ�ffiffiffi
2

p ���F�N�N
½ðaþbÞðxNÞ�ffiffiffi

2
p

�
Sð3Þ
SDþðaÞþSð3Þ

SD�ðbÞ
:

(34)

Consequently, the relevant gauge invariant quantity in
the LBHT theory F��½hðxÞ� is given in terms of a (gauge

invariant) specific combination of the fields with well

defined helicity: F�1�1
½ðaþ bÞðxNÞ�=

ffiffiffi
2

p
. However, for a

complete proof of equivalence between the decoupled pair

Sð3ÞSD� and the linearized BHT theory we should be able to

compute correlation functions of F��½aðxÞ� and F��½bðxÞ�
separately in terms of correlators of gauge invariant objects
in the LBHT theory. With this purpose in mind we define
a new generating function by changing the source term
in (29), i.e.,

W ½jþ; j�� ¼
Z

Dh��DH��DA��DB��

� expi

�
SMðh;H; A; BÞ

� 1

2

Z
½jþ � d�ðhÞ þ j� � d�ðHÞ�

	
: (35)

The next steps will be totally equivalent to those we have
done previously, except for the fact that the source terms
are now redefined. Therefore we are going to suppress
some details. Using the same sequence of shifts that we
have done from (29) to (30) we can verify that (35) after
some rearrangement is rewritten as

W ½jþ; j�� ¼
Z

Dh��DH�� expi

�
SLBHTðhÞ

� 1

2

Z �
jþ � d�ðhÞ � j� � d�ð�ðhÞÞ

2m

�

þ 1

2

Z �
H � j�

2

�
� d�

�
H � j�

2

�

� 1

8

Z
j� � d�ðj�Þ

	
; (36)

and shiftingH ! H þ j�=2 in (36), we can decouple H��

from the sources ðj�Þ�� and obtain an Einstein-Hilbert
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term for the field H�� which has no particle content.

Integrating over such a field we have, up to an overall
constant,

W ½jþ;j��¼
Z
Dh��expi

�
SLBHTðhÞ

�1

2

Z �
jþ �d�ðhÞ�j� ��ð�ðhÞÞ

2m

�
þOðj2Þ

	
:

(37)

On the other hand, similarly to what we have done from
(31) to (32) we can write the expression for the generating

functional W ½jþ; j�� in terms of the Sð3ÞSD� models as

W ½jþ;j��¼
Z
Da��Db��expi

�
Sð3ÞSDþðaÞþSð3ÞSD�ðbÞ

� 1

23=2

Z
½jþ �d�ðaþbÞþj� �d�ða�bÞ�

	
:

(38)

The source terms in (38) suggest the redefinition,

~jþ ¼ jþ þ j�ffiffiffi
2

p ; ~j� ¼ jþ � j�ffiffiffi
2

p ; (39)

which gives us

W ½jþ; j�� ¼
Z

Da��Db�� expi

�
Sð3ÞSDþðaÞ þ Sð3ÞSD�ðbÞ

� 1

2

Z
½~jþ � d�ðaÞ þ ~j� � d�ðbÞ�

	
: (40)

Back in (37) we have

W ½jþ; j�� ¼
Z

Dh�� expi

�
SLBHTðhÞ � 1

23=2m2

�
Z �

~jþ � d�
�
h��ðhÞ

2m

�
þ ~j� � d�

�
hþ�ðhÞ

2m

��

þOð~j2Þ
	
: (41)

Differentiating (40) and (41) with respect to the sources ~jþ
and ~j� it is possible to map correlations functions of the
gauge invariant objects F��½aðxÞ� and F��½bðxÞ� sepa-

rately in terms of gauge invariants from the LBHT theory
as follows,

2N=2hF�1�1
½aðx1Þ� � � �F�N�N

½aðxNÞ�iSð3Þ
SDþðaÞ

¼ hðF�1�1
�G�1�1

Þ½hðx1Þ� � � � ðF�N�N
�G�N�N

Þ
� ½hðxNÞ�iLBHT þ C:T; (42)

2N=2hF�1�1
½bðx1Þ� � � �F�N�N

½bðxNÞ�iSð3Þ
SD�ðbÞ

¼ hðF�1�1
þG�1�1

Þ½hðx1Þ� � � � ðF�N�N
þG�N�N

Þ
� ½hðxNÞ�iLBHT þ C:T; (43)

where C. T means contact terms which are due to the
quadratic terms in the sources while

G��½aðxÞ� ¼ �h

m
ðE�

���� þ E
�
��

�
�Þa��ðxÞ (44)

is invariant not only under linearized general coordinate
transformations ��a�� ¼ @��� þ @��� but also under lin-

earizedWeyl symmetry��a�� ¼ ���� (useE
�
���� ¼ E��).

From (42) and (43) the dual maps are

F��½aðxÞ�jSð3Þ
SDþðaÞ $

1ffiffiffi
2

p ðF�� �G��Þ½hðxÞ�jLBHT; (45)

F��½bðxÞ�jSð3Þ
SD�ðbÞ $

1ffiffiffi
2

p ðF�� þG��Þ½hðxÞ�jLBHT: (46)

They are clearly consistent with (34) and the decomposi-
tion of F��½hðxÞ� into the linear combination of gauge

invariant helicity eigenstates F��½ðaþ bÞðxÞ�= ffiffiffi
2

p
. The

reader might ask what happens when we subtract (45) from
(46). In this case we have F��½ða� bÞðxÞ� calculated in the
Sð3ÞSDþðaÞ þ Sð3ÞSD�ðbÞ theory in terms of G��½hðxÞ� calcu-

lated in the linearized BHT theory. If we recall thath�
�
� ¼

�E��E�� it is clear from (44) that G��½hðxÞ� can be

written as a first-order differential operator applied on
F��½hðxÞ�. Therefore correlation functions of F��½ða�
bÞðxÞ� are given in terms of correlation functions of

F��½ðaþ bÞðxÞ� both calculated in the Sð3ÞSDþðaÞ þ
Sð3ÞSD�ðbÞ theory, though a and b are independent helicity

eigenstates. There is in fact no contradiction since we have
a nontrivial first-order differential operator relating both
correlation functions. This is typical of self-dual theories
and it happens also when we have a pair of spin-1 MCS
theories of opposite helicities [see formulas (3.9) and
(3.10) of [18] for a simpler example].
In summary, we have a complete equivalence between

Sð3ÞSDþ þ Sð3ÞSD� and SLBHT. In the next subsection we show

how the third-order linearized gravitational Chern-Simons
mixing terms in the master action SM allow us to interpo-

late also between the fourth-order models Sð4ÞSDþ þ Sð4ÞSD�
and SLBHT.

B. Duality between Sð4Þ
SDþ þ Sð4Þ

SD�
and the linearized BHT theory

From (27) and the intermediate expression (31) we get

W ½j� ¼
Z

Da��Db��DA��DB��

� expi

�
Sð3ÞSDþðaÞ þ Sð3ÞSD�ðbÞ

þ 1

4m

Z
�ða� AÞ � d�ða� AÞ

� 1

4m

Z
�ðb� BÞ � d�ðb� BÞ

� 1

23=2

Z
j � d�ðaþ bÞ

	
: (47)
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The factors in front of the linearized gravitational Chern-
Simons mixing terms in SM have been fine-tuned to cancel

the third-order terms of Sð3ÞSDþðaÞ þ Sð3ÞSD�ðbÞ. After those
cancellations and some rearrangements we get

W ½j� ¼
Z

Da��Db��DA��DB��

� expi

�
Sð4ÞSDþðAÞ þ Sð4ÞSD�ðBÞ

þ 1

2

Z �
a��ðAÞ

2m

�
� d�

�
a��ðAÞ

2m

�

þ 1

2

Z �
bþ�ðBÞ

2m

�
� d�

�
bþ�ðBÞ

2m

�

� 1

23=2

Z
j � d�ðaþ bÞ

	
: (48)

It is easy to see that if we make a ! aþ�ðAÞ=2m and
b ! b��ðBÞ=2m we have

W ½j�¼
Z
Da��Db��DA��DB��

�expi

�
Sð4Þþ ðAÞþSð4Þ� ðBÞ

� 1

25=2m

Z
j �d�ð�ðA�BÞÞ

þ1

2

Z
ða� ffiffiffi

2
p

jÞ �d�ða� ffiffiffi
2

p
jÞ

þ1

2

Z
ðb� ffiffiffi

2
p

jÞ �d�ðb� ffiffiffi
2

p
jÞþOðj2Þ

�
: (49)

After trivial shifts and integrating over a�� and b�� fields

we deduce up to an overall constant:

W ½j�¼
Z
DA��DB��expi

�
Sð4ÞSDþðAÞþSð4ÞSD�ðBÞ

� 1

25=2m

Z
j �d�ð�ðA�BÞÞþOðj2Þ

�
: (50)

Differentiating (30) and (50) with respect to the source j
we obtain the following relationship between correlation
functions:

2N=2hF�1�1
½hðx1Þ� � � �F�N�N

½hðxNÞ�iLBHT
¼ hG�1�1½ðA� BÞðx1Þ� � � �G�N�N

½ðA� BÞ
� ðxNÞ�iSð4Þ

SDþðAÞþSð4Þ
SD�ðBÞ þ C:T: (51)

Now we go in the reverse direction and find correlation

functions mapping gauge invariant objects of Sð4ÞSDþðAÞ and
Sð4ÞSD�ðAÞ separately in gauge invariants of LBHT. Exactly

as in the previous subsection, we replace the source termR
j � d�ðhÞ in (29) by

R
jþ � d�ðhÞ þ R

j�d ��ðHÞ
which on one hand leads to (41) and on the other hand,
following our previous steps, amounts to replacing (50) by
the generating functional:

W ½jþ; j�� ¼
Z

DA��DB�� expi

�
Sð4ÞSDþðAÞ þ Sð4ÞSD�ðBÞ

� 1

4m

Z
~jþ � d�ð�ðAÞÞ

þ 1

4m

Z
~j� � d�ð�ðBÞÞ þOðj2Þ

�
: (52)

Finally, differentiating (41) and (52) with respect to the
sources ~jþ and ~j� we find

2N=2hG�1�1
½Aðx1Þ� � � �G�N�N

½AðxNÞ�iSð4Þ
SDþðAÞ

¼ hðF�1�1
þG�1�1

Þ½hðx1Þ� � � � ðF�N�N
þG�N�N Þ

� ½hðxNÞ�iLBHT þ C:T; (53)

ð�2ÞN=2hG�1�1
½Bðx1Þ� � � �G�N�N

½BðxNÞ�iSð4Þ
SD�ðBÞ

¼ hðF�1�1
�G�1�1

Þ½hðx1Þ� � � � ðF�N�N
�G�N�N Þ

� ½hðxNÞ�iLBHT þ C:T: (54)

The correlation functions (53) and (54) lead to the gauge
invariant maps

G��½AðxÞ�jSð4Þ
SDþðAÞ $

ðF�� þG��Þffiffiffi
2

p ½hðxÞ�jLBHT; (55)

G��½BðxÞ�jSð4Þ
SD�ðBÞ $ � ðF�� �G��Þffiffiffi

2
p ½hðxÞ�jLBHT; (56)

which are consistent with (51). Analogously to the dual
maps of the previous subsection, if instead of subtracting
we add (55) and (56) we get a relationship between corre-
lation functions of G��½ðAþ BÞðxÞ� in terms of correlation

functions of a first-order differential operator acting on
G��½ðA� BÞðxÞ� which is again typical of self-dual mod-

els. This completes the proof of quantum equivalence

between Sð4ÞSDþ þ Sð4ÞSD� and the LBHT theory. In particular,

we have learned how to decompose the gauge invariant
sector of the LBHT theory in terms of (gauge invariant)

helicity eigenstates of Sð4ÞSD�; namely, F��½hðxÞ� corres-

ponds to G��½ðA� BÞðxÞ� ffiffiffi
2

p
. We remark that each Sð4ÞSD�

theory is invariant under linearized general coordinate and
Weyl transformations, so it is not surprising that we have
the tensor G�� [see (44) and the comments below that

formula] on the left-hand side of (53) and (54).

IV. CONCLUSION

Although previous soldering of second-order Sð2ÞSD� and

third-order Sð3ÞSD� spin-2 parity singlets has led us to second-

order (Fierz-Pauli theory) and fourth-order (linearized
BHT theory) parity doublets, respectively, we have shown

in Sec. II that the soldering of fourth-order singlets Sð4ÞSD�
has brought us back to the linearized BHT model. We have
technically explained why this must be so. This is an
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indication that the linearized BHT model [16] is the
highest-order self-consistent (unitary) model which de-
scribes a parity doublet of helicitiesþ2 and�2. The reader
can check that, according to the argument given at the end

of Sec. II, if we had a higher-derivative model SðrÞSD� with

r > 4, then we could have after soldering another higher-
derivative (r > 4) description of parity doublets of spin-2
in D ¼ 2þ 1. However, the symmetry arguments given in

[6] indicate that Sð4ÞSD� might be the top (highest-order)

derivative model for parity singlets of spin-2. If this is
really the case the linearized BHT model is in fact the
highest-order description of parity doublets.

On the other hand, from the point of view of the local

symmetries the soldering of Sð3ÞSDþ þ Sð3ÞSD� into the linear-

ized BHT theory is more surprising than the soldering of

Sð4ÞSDþ þ Sð4ÞSD� into the same theory, since in the first case

the two theories (before and after soldering) are invariant
under the same set of local symmetries (linearized general
coordinate transformation) while in the second one the

models Sð4ÞSD� are also symmetric under linearized local

Weyl transformations which call for an extra term in the
soldering to get rid of the Weyl symmetry. In the first case

it should be possible to simply add Sð3ÞSDþ þ Sð3ÞSD� in order

to obtain the linearized BHT theory after eventually some
trivial manipulations without adding extra terms. This is
the case of the two first-order self-dual models of spin-1
and spin-2 which are known [8] to lead to its second-order
counterparts (Proca and Fierz-Pauli theories, respectively,

in the first-order form) after a simple addition followed by
a trivial rotation. So far we have not been able to do it in the

case of the models Sð3ÞSD�.
In Sec. III we have written down a triple master action

which interpolates between all three models, i.e., Sð3ÞSDþ þ
Sð3ÞSD�, linearized BHT, and Sð4ÞSDþ þ Sð4ÞSD�. By introducing

adequate source terms we have derived identities involving
correlation functions in the different models allowing us to
deduce a precise dual map [see (45), (46), (55), and (56)]
between the relevant gauge invariants of the different dual
theories. No specific gauge condition has ever been used.
In particular, we have been able to decompose a gauge
invariant of the linearized BHT model in terms of helicity

eigenstates of both Sð3ÞSD� and Sð4ÞSD�. Putting our master

action (26) together with the one defined in [16] relating
the Fierz-Pauli theory to the linearized BHT model, as well
as using the decomposition of the Fierz-Pauli model in

terms of a couple of Sð1ÞSD� models as given in [8], we can

build a unifying description of all known dual versions of
field theories describing parity doublets of helicities þ2
and �2 in D ¼ 2þ 1. As remarked in [23], the key
ingredient in the master action approach is the use of
mixing terms without particle content.
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