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We study k-defects—topological defects in theories with more than two derivatives and second-order

equations of motion—and describe some striking ways in which these defects both resemble and differ

from their analogues in canonical scalar field theories. We show that, for some models, the homotopy

structure of the vacuum manifold is insufficient to establish the existence of k-defects, in contrast to the

canonical case. These results also constrain certain families of Dirac-Born-Infeld instanton solutions in

the 4-dimensional effective theory. We then describe a class of k-defect solutions, which we dub

‘‘doppelgängers,’’ that precisely match the field profile and energy density of their canonical scalar field

theory counterparts. We give a complete characterization of Lagrangians which admit doppelgänger

domain walls. By numerically computing the fluctuation eigenmodes about domain wall solutions, we find

different spectra for doppelgängers and canonical walls, allowing us to distinguish between k-defects and

the canonical walls they mimic. We search for doppelgängers for cosmic strings by numerically

constructing solutions of Dirac-Born-Infeld and canonical scalar field theories. Despite investigating

several examples, we are unable to find doppelgänger cosmic strings, hence the existence of doppel-

gängers for defects with codimension >1 remains an open question.
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I. INTRODUCTION

Topological defect solutions to classical field theories
have applications in many areas in physics, and, in par-
ticular, may have important implications for the evolution
of the Universe [1–4]. In the early Universe, such defects
may have formed as the Universe cooled and various gauge
or global symmetry groups were broken. Some defects,
such as grand unified theory monopoles, can lead to po-
tential cosmological problems which historically inspired
the development of the theory of cosmic inflation. Other
defects, such as cosmic strings, are potentially observable
in the present day, for example, by affecting the spectrum
of perturbations observed in the microwave background
and matter distributions (although defects cannot play the
dominant role in structure formation). Further, the micro-
physics of such objects may be important in some circum-
stances, such as weak scale baryogenesis [5–8]. Another
interesting possibility arises if the strings are supercon-
ducting, as originally pointed out by Witten [9], since the
evolution of a network of such superconducting cosmic
strings can differ from a nonsuperconducting one. In par-
ticular, the supercurrent along loops of string can build up
as the loop radiates away its energy, affecting the endpoint
of loop evolution. This supercurrent can become large
enough to destabilize the loop or may compete with the
tension of the string loop and result in stable remnants,

known as vortons [10], with potentially important conse-
quences for cosmology [11,12].
In this article, we investigate new features of topological

defects in scalar field theories with noncanonical kinetic
terms. In particular, we study kinetic terms with more than
two derivatives, but which lead to second-order equations
of motion. These scalar field theories are similar to those
employed in k-essence models which have been studied in
the context of cosmic acceleration and were introduced in
[13–15]. Kinetic terms of this general type also play an
important role in other interesting models, such as those of
ghost condensation [16] or Galileon [17] fields. The topo-
logical defects present in this general class of theories are
often termed ‘‘k-defects,’’ and some aspects of these
objects have been studied in earlier works [18–27].
In this work we report on some surprising aspects of

k-defects, especially k-domain walls and their associated
instantons. We find that there are very reasonable choices
for the k-defect kinetic term—such as the Dirac-Born-
Infeld (DBI) form—for which there are no static defect
solutions in a range of parameters, despite the fact that the
potential may have multiple minima. Thus, unlike canoni-
cal scalar field theories, knowledge of the homotopy
groups of the vacuum manifold is sometimes insufficient
to classify the spectrum of topological defects. Because of
the close connection between domain walls and instantons,
this result also constrains certain instanton solutions to
noncanonical 4-dimensional effective theories.
Perhaps more surprisingly, it is also possible for

k-defects to masquerade as canonical scalar field domain
walls. By this, we mean the following: given a scalar field
� with a canonical kinetic term and potential Vð�Þ, then,
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up to rigid translations x ! xþ c, the field profile �ðxÞ
and energy density EðxÞ are uniquely determined for a
solution containing a single wall. We show that there al-
ways exists a class of k-defect Lagrangians which generate
precisely the same field profile and energy density profile
as the unique canonical defect. To an observer who mea-
sures the field profile and energy density of the configura-
tion, any k-defect in this class precisely mimics the
canonical domain wall. Nevertheless, despite having iden-
tical defect solutions, we show that these two theories are
not reparametrizations of each other, since the fluctuation
spectra about the walls are different.

Most of our analytical work is carried out for scalar field
theories with domain wall solutions. In order to study the
generalization to other topological defects, we carry out a
numerical investigation of global cosmic string k-defect
solutions. For the natural generalization of the DBI kinetic
term, we show that it is possible to match either the field
profile or energy density of the canonical global string, but
not both simultaneously. Thus, while we are unable to find
an analogue of the doppelgänger domain walls in this case,
we cannot conclusively show they do not exist.

This paper is organized as follows. In Sec. II we describe
the general theory of k-defects and use the specific ex-
ample of the DBI action to illustrate how the question of
the existence of defects is more complicated than the
canonical case. We also discuss instanton solutions to the
DBI action and compare our conclusions to existing dis-
cussions in the literature. Section III introduces the idea of
doppelgänger domain walls, which can precisely mimic
the field profile and energy density of a canonical domain
wall. We establish conditions for the existence of doppel-
gängers, and discuss the fluctuation spectra about doppel-
gänger and canonical walls. In Sec. IV we employ
numerical methods to search for doppelgänger cosmic
strings, but are unsuccessful. We conclude in Sec. V.

II. EXISTENCE AND PROPERTIES OF k
-DEFECTS AND INSTANTONS

Our discussion focuses on two families of models in-
volving a scalar field. The first family consists of canonical
scalar field theories is of the form

S ¼
Z �

� 1

2
ð@�Þ2 � Vð�Þ

�
d4x; (1)

where we use the (�þþþ) metric signature, set ℏ ¼
c ¼ 1, and define ð@�Þ2 � ���ð@��Þ@��. Although we

focus our discussion on four spacetime dimensions, essen-
tially all of our conclusions regarding domain walls apply
in any spacetime dimension >2 since all but one of the
spatial dimensions are spectators.

The second family of models generalizes the canonical
scalar field theory by including additional derivatives of�.
This family is described by actions of the form

S ¼
Z
½PðXÞ � Vð�Þ�d4x; (2)

where we define

X ¼ ð@�Þ2 ¼ � _�2 þ ðr�Þ2: (3)

We refer to a Lagrangian of the form (2) as a ‘‘PðXÞ
Lagrangian.’’ (Note that there are multiple conventions
for the definition of X in the literature.) The canonical
scalar field theory corresponds to PðXÞ ¼ �X=2. While
there are more than two derivatives of� in the Lagrangian,
by assuming that the Lagrangian depends only on X and �
as in (2) we guarantee that the resulting equations of
motion are second order.
In this section, we show that static domain walls need

not exist for all parameter ranges of a wide variety of PðXÞ
theories, even when the potential in (2) possesses multiple
disconnected minima. We demonstrate this result using a
specific form of PðXÞ, corresponding to the DBI kinetic
term. We then adapt these results to study the properties of
Coleman-de Luccia–type instantons in 4-dimensional ef-
fective theories with DBI kinetic terms.

A. Domain walls in naive DBI

A simple and well-motivated form of PðXÞ is contained
in the DBI action, given by

PðXÞ ¼ M4 �M2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M4 þ ð@�Þ2

q
; (4)

where M is a mass scale associated with the kinetic term,
which we will refer to as the ‘‘DBI mass scale.’’ When
ð@�Þ2 � M4, this kinetic term reduces to the canonical
one. In what follows, we set M ¼ 1, and hence normalize
all mass scales to the DBI mass scale. A kinetic term of the
form (4) can arise naturally in various ways: for example, it
is the four-dimensional effective theory describing the
motion of a brane with position � in an extra dimension.
Often these kinetic terms appear along with additional
functions of �, known as ‘‘warp factors.’’ These do not
influence our conclusions in an essential way and so, for
now, we will use the simple form (4) to illustrate our
conclusions, and return to the case with warp factors in
Sec. II B.
We refer to the PðXÞ Lagrangian defined by (4) as the

‘‘naive’’ DBI theory since one is merely adding a potential
function Vð�Þ to the DBI kinetic term (4). There are other,
and in some respects better, ways to generalize a pure DBI
term and include interactions. We will discuss one such
extension extensively in Sec. III. Nonetheless, the PðXÞ
Lagrangian defined by (4) is commonly employed in the
literature, and will provide an instructive example of
k-defects possessing a number of interesting properties,
as we now discuss.
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1. The canonical wall

As a warm-up, we first study the canonical domain wall
profile. We assume that all fields depend on only one
spatial coordinate z, and are independent of time. With
these assumptions, there exists a conserved quantity J with
dJ=dz ¼ 0, defined by

J ¼ �0 @L
@�0 � L ¼ � 1

2
�02 þ Vð�Þ; (5)

where L is the Lagrangian density. We assume that the
potential is positive semidefinite and has discrete zero-
energy minima at � ¼ ��, such that Vð��Þ ¼ 0, with
�� <�þ. Assuming boundary conditions where � ¼
�� at z ¼ �1, we have that V ¼ �0 ¼ 0 at z ¼ �1.
Therefore, J ¼ 0 at infinity, and since it is conserved, it
vanishes everywhere. This implies that (5) can be rewrit-
ten as

�02 ¼ 2Vð�Þ; (6)

which can be straightforwardly integrated to yield the
usual domain wall solution.

To compute the energy density of the solution, we use
the fact that

H ¼ _�
@L

@ _�
� L ¼ �L; (7)

where H is the Hamiltonian density and the second equal-
ity follows from our assumption that the configuration is
static. Using (6) we have that the energy density Eð�Þ is
given by

H ¼ Eð�Þ ¼ 2Vð�Þ: (8)

In general, the energy density cannot be expressed as a
function of the field only, but must include the gradient. A
relation like (8) is only true because we have a conserved
quantity for static configurations, which relates the field
value and its gradient. Thus, all of the physics of the
static canonical domain wall is encoded in the conserved
quantity J.

2. The naive DBI wall

We can carry out a similar derivation for the DBI wall in
a PðXÞ theory defined by (2) and (4). Recalling we have set
M ¼ 1, the conserved quantity J is given by

J ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ�02p � 1þ Vð�Þ: (9)

As in the canonical case described in Sec. II A 1, we
assume that the potential is positive semidefinite and has
discrete zero-energy minima at � ¼ ��, such that
Vð��Þ ¼ 0, with �� <�þ. We also assume the same
boundary conditions, so that � ¼ �� at z ¼ �1. Since
V ¼ �0 ¼ 0 at z ¼ �1, J must vanish everywhere.
Hence, inverting (9) yields

�02 ¼ 1

½1� Vð�Þ�2 � 1: (10)

This expression is the analogue of (6), and can be inte-
grated to give the field profile once Vð�Þ is specified.
Given a static configuration, the energy density is then
given by

Eð�Þ ¼ Vð�Þ½2� Vð�Þ�
1� Vð�Þ ; (11)

where we have used (9) and the fact that J ¼ 0 everywhere.
Unlike the canonical case, it is apparent that problems

may arise when integrating (10). In the canonical case, so
long as Vð�Þ is bounded for � 2 ½��; �þ�, we have �0
finite everywhere. This is no longer the case with (10). If
there is any�1 2 ½��; �þ� such that Vð�1Þ> 1, then (10)
implies that �0 is undefined. The problem can be traced
back to (9), in which the first two terms on the right-hand
side can sum to any number between zero (when �0
vanishes) and�1 (when j�0j is infinite). Thus, at any point
where Vð�Þ> 1, there is simply no value of �0 which
will allow the requirement that J ¼ 0 everywhere to be
satisfied. We conclude that there are no nontrivial static
solutions to the theory defined by (4) if Vð�Þ> 1 at any
� 2 ½��; �þ�.
To study the nature of the singularity, suppose we have

integrated (10) from � ¼ �� at z ¼ �1 and have en-
countered a value � ¼ �1 at which Vð�1Þ ¼ 1. Assume
that this value is reached at z ¼ z1. For a generic function
Vð�Þ we have

Vð�1 þ��Þ ¼ 1þ v0��þOð��2Þ; (12)

where v0 ¼ V0ð�Þj�¼�1
. Retaining only terms up to first

order in �� and using (10) leads to

�0 ¼ � 1

v0��
; (13)

which has the solution

�ðzÞ ¼ �1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 2ðz� z1Þ

v0

s
: (14)

Hence, � is well defined when z < z1, before the singu-
larity is reached. It is not defined for z > z1, and at z ¼ z1
there is cusp-type singularity in the field, at which the field
value is finite but the gradient and all higher derivatives
become infinite.
It is natural to ask whether this singularity is integrable;

that is, whether the solution can be continued past the
singular point at z ¼ z1. We now show that the solution
cannot be continued, and hence there are no global solu-
tions to (4) with the desired boundary conditions. We prove
this claim for the simple case in which there is only one
connected interval of field space between the minima for
which Vð�Þ> 1 [the generalization to the case where there
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are multiple disconnected regions where Vð�Þ> 1 is
straightforward].

The relevant region of field space is naturally divided
into three intervals

I� � ½��; �1Þ; I0 � ð�1; �2Þ; Iþ � ð�2; �þ�:
The intervals I� include the minima of Vð�Þ and all field
values for which Vð�Þ< 1. The interval I0 includes the
field values for which Vð�Þ> 1. At the boundary points
�1 and �2 of I0, Vð�Þ ¼ 1 and �0 reaches �1. We have
shown that solutions of (4) with the desired boundary
conditions can be constructed which take values in I�,
but now claim that these solutions cannot be continued
into I0.

The key to proving our claim is to employ the quantity J,
which must be conserved by the equations of motion, and
is well-defined for any value of �0 (even �0 ¼ �1). First,
suppose that we have a candidate continuation of the
solution on I� into I0. Using this continuation, we choose
any point z� for which �ðz�Þ 2 I0, and use �ðz�Þ and
�0ðz�Þ to evaluate J. Since Vð�Þ> 1 at z�, then by in-
spection of (9), we conclude that J > 0 at z�. Since J is
conserved by the equations of motion, then J must assume
this same positive definite value for all points in I0.
Inspection of (9) reveals that, when J > 0, �0 is finite
when Vð�Þ ¼ 1. Hence, if we approach �1 while remain-
ing in I0, then the limiting value of�0 at�1 is finite. On the
other hand, we have already shown that J ¼ 0 in I�, and
when J ¼ 0 we have that �0 ¼ �1 when Vð�Þ ¼ 1.
Thus, if we approach �1 while remaining in I� we have
�0 ¼ �1 at � ¼ �1.

Thus, if there were a global solution, then �0 would
approach a finite value from one side of �1, and an infinite
value from the other side. This means that the purported
global solution would not match smoothly across the sin-
gularity at �1; a contradiction. Hence we conclude that
global solutions do not exist.

While the above statements are strictly correct within
the context of the specific Lagrangian we have used, there
are potential problems in treating the DBI Lagrangian as an
effective field theory near the singularity at �1. Expanding
the Lagrangian L about a static background solution �ðzÞ
gives terms of the form

�2L � � ��0ðzÞ2
2ð1þ�0ðzÞ2Þ3=2 (15)

at quadratic order in the fluctuation ��ðzÞ. Hence the
kinetic term for fluctuations vanishes as we approach the
point z1 where � ¼ �1 and �0ðzÞ ! 1. Near the singu-
larity, the effective theory is strongly coupled, quantum
corrections to (4) are large, and the precise functional form
of (4) is not trustworthy. Whether these corrections invali-
date our conclusions is an open question. Nonetheless, our
analysis shows that the topological structure of the vacuum

is not enough to guarantee the existence of topological
defects in models with extra derivatives.

B. Application to instantons

Domain wall solutions are closely related to the solu-
tions to Euclidean field theories employed in constructing
instantons. This is because the lowest-energy Euclidean
configurations typically depend on a single coordinate, and
thus have essentially the same structure as domain wall
solutions. Although there are some differences, the corre-
spondence becomes exact in the thin-wall limit. For ex-
ample, to study the Coleman-de Luccia instanton occurring
in a canonical field theory one considers the Euclidean
action

SE ¼ 2�2
Z �

1

2
�02 þ Vð�Þ

�
�3d�; (16)

where � is the Euclidean radial coordinate, and in this
subsection only we take �0 � @�=@�. Instantons are so-
lutions of the equations of motion of this action. The main
difference between the action (16) and the canonical do-
main wall action is the presence of the �3 factor in the
integration measure. When the thickness of the wall is
much smaller than �—the ‘‘thin-wall limit’’—the measure
factor can be neglected, and the instanton problem reduces
to the domain wall problem. Thanks to this correspon-
dence, we can apply some of our domain wall techniques
to the study of instantons in higher-derivative theories.
The properties of instanton solutions for DBI actions of

the form (4) have been studied previously. In particular, in
[28] a generalization of (4) was considered, of the form

S¼
Z
½fð�Þ�1ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þfð�Þð@�Þ2

q
Þ�Vð�Þ�d4x; (17)

where the function fð�Þ is the ‘‘warp factor.’’ The corre-
sponding Euclidean action is

SE ¼ 2�2
Z
½fð�Þ�1ð�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ fð�Þ�02

q
Þ

þ Vð�Þ��3d�: (18)

The authors of [28] pointed out that solutions for � de-
velop cusplike behavior once Vð�Þ became large. It was
argued that this corresponded to instantons where the field
profile is multivalued, and the graph of ðz; �ðzÞÞ traces
out an S curve, as illustrated in Fig. 2 of [28,29].
Geometrically, if � is interpreted as the position of a brane
in an extra dimension, this would correspond to the brane
doubling back upon itself. However, if we treat the action
(18) as a 4-dimensional effective theory, then, as we shall
explain below, these solutions only exist for special choices
of the functions fð�Þ and Vð�Þ.
To apply our previous results, we must generalize them

to include the measure factor and the warp factor. Since we
are concerned entirely with the Euclidean equations of
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motion arising from (18), which are not affected by con-
stants multiplying the Lagrangian, it is convenient to ab-
sorb a factor of �2�2 into SE, and thus consider the
Euclidean Lagrangian

LE ¼ ½fð�Þ�1ð1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ fð�Þ�02

q
Þ � Vð�Þ��3 � L̂E�

3:

(19)

The Lagrangian LE incorporates the effects of the warp

factor and the measure factor, while L̂E incorporates warp
factor effects alone. For static solutions, the conserved

quantity corresponding to L̂E is

Ĵ ¼ fð�Þ�1

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ�02fð�Þp � 1þ Vð�Þ
�
; (20)

which may be compared to (9). It is important to stress

that (20) is not precisely conserved: Ĵ arises from L̂E,
whereas the full equations of motion arise from LE, which
contains the measure factor �3. The full equations of
motion imply that

@Ĵ

@z
¼

�
3

�

�
�02ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ fð�Þ�02p ; (21)

and this nonconservation of Ĵ describes important physics.
Just as in the canonical instanton, this is what enables
tunneling between minima of Vð�Þ with different vacuum
energies, an essential feature of the Coleman-de Luccia
instanton. However, in the thin-wall limit, where the width
of the instanton solution is much less than �, the total

change in Ĵ will be very small across the instanton wall.

Hence, if we focus only on the instanton wall itself, Ĵ is
effectively conserved.

The approximate conservation of Ĵ enables us to employ
some of our domain wall techniques from Sec. II A 2 to the
instanton problem, and to show that there is no solution to
the Euclidean equations of motion in which � curls back
on itself. Suppose such a solution did, in fact, exist. Folding
back upon itself would occur when�0 ¼ 1, and we denote
the value of � at which this occurs as ��, and the
corresponding value of � by ��. Using (20) and working

backwards, we find this defines a value of Ĵ given by

Ĵ � ¼ Vð��Þ � 1

fð��Þ : (22)

Approximate conservation of Ĵ means that we can take

Ĵ ¼ Ĵ� when dealing with physics in the vicinity of the
wall. Despite the fact that the point� ¼ �� is in some sense

singular, Ĵmust be the same on either side of this point. This

is because, clearly, Ĵ is approximately conserved away from

singular points (such as��). If we denote Ĵ� as the value of

Ĵ for �<�� and �>��, respectively, then the only way
to ensure thatLim�!�þ� ¼ 1 and Lim�!��� ¼ 1 is to have

Ĵþ ¼ Ĵ� ¼ Ĵ�.

We now focus on a closed interval I� in �, of radius �,
and centered on � ¼ ��, so I� ¼ ½�� � �;�� þ ��.
Assuming fð�Þ is smooth, given any � > 0 we can choose
� > 0 so that

1

fð�Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ�02fð�Þp � �; 8 � 2 I�: (23)

Conservation of Ĵ then implies��������Vð�Þ � 1

fð�Þ � Ĵ�
��������� �; 8 � 2 I: (24)

Using the definition (22) and taking the � ! 0 limit, we
can rewrite this condition as

f0ð��Þ
fð��Þ

¼ V0ð��Þ
Vð��Þ � 1

: (25)

If this condition is not satisfied, it is impossible to continue
the solution through the singular point. Any deviation from
(25) leads to a singular solution, and no fold is possible. For
generic functions f and V, the condition (25) is not
satisfied, and hence the required instanton solutions do
not exist.
To illustrate these results, we can consider the case

fð�Þ ¼ 1, corresponding to the naive DBI action studied
in Sec. II A. The cusp is located at � ¼ �� where

Vð��Þ ¼ 1, and hence Ĵ� ¼ 0. In order to fold back
upon itself, � must be greater than �� on one branch
of the solution, and less than �� on the other. Hence
Vð�Þ> 1 on one branch, and Vð�Þ< 1 on the other, for
generic Vð�Þ. However, from (20) it is clear that there is
no solution for �0 when Vð�Þ> 1, and hence the solution
cannot be continued through the fold. This ultimately
arises because the condition (25) cannot be satisfied if
we take fð�Þ ¼ 1.

III. DOPPELGÄNGER DOMAIN WALLS

In Sec. II A 2, we showed that domain walls in PðXÞ
theories can be very different from those in canonical
scalar field theories. However, in this section, we show
that in a particular class of higher-derivative theories, the
walls can actually be remarkably similar to their canonical
counterparts. Indeed, the background solution for these
walls is completely indistinguishable from the canonical
wall, with the same energy density and field profile. As we
shall see, the two solutions differ only in their fluctuation
spectra.

A. An example: Masquerading DBI

1. Motivating the action

Rather than diving immediately into a general analysis,
it is instructive to begin with a simple and physically
motivated example—the DBI action. One way of deriving
the DBI kinetic term is to consider � to be the coordinate
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of an extended object in an extra-dimensional space. Such
objects can be described by the Nambu-Goto (NG) action,
which is simply their surface area multiplied by the ten-
sion. If we take the higher-dimensional space to have
coordinates XN with N ¼ 0; . . . 4 then the action is

SNG ¼ �T
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� det

�
�MN

@XM

@x�
@XN

@x�

�s
d4x; (26)

where T is the tension, and �MN is the metric in the full
five-dimensional space, which we take to be Minkowskian.
Taking the embedding defined by

XN ¼ xN; N ¼ 0; . . . :3; X4 ¼ �ðx�Þ; (27)

leads precisely to the PðXÞ in (4), modulo a constant which
only serves to set the energy of the vacuum to zero.

This extra-dimensional setup provides a useful geomet-
rical picture for the origin of the DBI kinetic term.
However, it is not clear how the simple addition of a
potential Vð�Þ, as we have done in Sec. II A 2, can be
interpreted in this picture. If we hew to the extra-
dimensional picture, it would seem that any new terms
we add to the DBI action should correspond to geometrical
quantities, such as the surface area of the membrane in the
higher-dimensional space. Such an approach also ensures
that these additional terms will be compatible with the
coordinate reparametrization symmetry of the action (26).

Guided by these considerations, we study actions in
which the tension T is promoted to a function of the
spacetime coordinates XM, so that (26) becomes

SNG ¼ �
Z

TðXÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� det

�
�MN

@XM

@x�
@XN

@x�

�s
d4x: (28)

Descending to the four-dimensional theory, we find that
such a system cannot be described by a PðXÞ-type
Lagrangian (2) because of the way in which X and � are
coupled. The resulting action is

S ¼
Z
½1� ð1þUð�ÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð@�Þ2

q
�d4x; (29)

where, as in Sec. II A 2, we have setM ¼ 1, whereM is the
mass scale associated with the DBI kinetic term. We have
also added a constant to the Lagrangian density in order to
ensure that the energy density vanishes when �0 ¼ 0 and
Uð�Þ ¼ 0. When gradients are small and ð@�Þ2 � M4, the
Lagrangian is approximately

L ¼ 1� ð1þUð�ÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð@�Þ2

q
	 1

2
_�2

� 1

2
ðr�Þ2 �Uð�Þ; (30)

and hence Uð�Þ is analogous to the potential in the ca-
nonical theory. However, as we shall see below, it plays a
somewhat different role in the full theory.

2. Dirac-Born-Infeld doppelgängers

We are now ready to study defect solutions correspond-
ing to the action (29). For this action, the conserved
quantity J is

J ¼ 1þUð�Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ�02p � 1: (31)

As before, we assume that Uð�Þ has two discrete minima
�� where Uð��Þ ¼ 0 and take boundary conditions
where � ¼ �� at z ¼ �1. Thanks to the boundary
conditions, J ¼ 0 at infinity, and therefore J vanishes
everywhere because it is conserved. Inverting (31) gives

�02 ¼ Uð�Þ½Uð�Þ þ 2�; (32)

which can be integrated to find the field profile for the
defect. The Hamiltonian energy density of the defect is
given by

Eð�Þ ¼ �1þ ½1þUð�Þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ�02

q
¼ Uð�Þ½Uð�Þ þ 2�;

(33)

where in the second equality we have used the expression
(31) and the fact that J vanishes.
The curious properties of the doppelgänger walls arise

from the fact that the right-hand sides of (32) and (33) are
identical: the energy density is equal to�02. The only other
case we have seen thus far with this property was the
canonical domain wall, as seen in (6) and (8). This property
was not shared by the naive DBI domain wall, as can be
seen from (10) and (11). This means that, for static
solutions arising from the action (29), we can define an

effective potential function V̂ð�Þ for the DBI wall by
V̂ð�Þ � 1

2Uð�Þ½Uð�Þ þ 2�: (34)

Note that minima of Uð�Þ where Uð�Þ ¼ 0 are also min-

ima of V̂ð�Þ where V̂ð�Þ ¼ 0. With the identification (34)
Eqs. (32) and (33) are precisely the same as the analogous
equations for the canonical domain wall (6) and (8), but

with the substitution V ! V̂. By inverting (34), we find

Uð�Þ ¼ �1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2V̂ð�Þ

q
: (35)

So, we conclude with the somewhat surprising result, given
below.
Given a canonical scalar field theory with a positive

semidefinite potential Vð�Þ 
 0 which supports domain
wall solutions, there exists a choice for Uð�Þ in the DBI

theory (29), given by setting V̂ ¼ V in (35), which guar-
antees domain walls with precisely the same field profile
and energy density.
In the next two subsections, we present two pieces of

evidence which support the idea that our claim is somewhat
surprising. First, we show that a claim of this nature cannot
be made for arbitrary theories with extra derivatives: ge-
nerically, there is no way to choose a potential function so
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that the higher-derivative wall mimics the canonical one.
We reinforce this argument by deriving an explicit condi-
tion for the existence of doppelgänger defects. Second, we
numerically compute the fluctuation spectra about the
background domain wall solution, and find they are very
different for the canonical wall and the DBI one. This
shows that the DBI theory (29) is not a rewriting of the
canonical scalar field theory, despite having solutions with
identical field profiles and energy density.

B. When do doppelgänger defects exist?

1. A Counter example—other PðXÞ theories
While we have shown that the action (29) possesses

doppelgänger solutions, this is not a generic property of
theories with higher derivatives. The PðXÞ theory with a
DBI kinetic term studied in Sec. II A already provides one
example where a PðXÞ-type theory always leads to domain
wall solutions which differ from those of a canonical field
theory, with either a different field profile or a different
energy density (or both). The DBI wall with a PðXÞ action
of the type (4) can never mimic a canonical domain wall
because, for a canonical wall, we always have that

�02 ¼ Eð�Þ: (36)

In the PðXÞDBI case, this would require the expressions on
the right-hand side of (10) and (11) to be equal. A quick
calculation shows that this can only happen if Vð�Þ ¼ 0,
and hence the PðXÞ DBI wall can never mimic a canonical
wall.

As another example, we consider a different PðXÞ theory
defined by

PðXÞ ¼ �1
2X þ 	X2; (37)

where 	 is a real parameter with dimensions of ½mass��4.
When X � 	, this reduces to the canonical scalar field
theory. Following the techniques used previously, we find
that this theory possesses a conserved quantity J given by

J ¼ �1
2�

02 þ 3	�04 þ Vð�Þ; (38)

where Vð�Þ is the potential associated with the theory. One
might suppose that, since this theory is a deformation of the
canonical one, a deformation of the potential would suffice
to mimic the canonical wall. Again assuming that the
potential is positive semidefinite and has discrete zero-
energy minima at � ¼ ��, with �� <�þ, so that
Vð��Þ ¼ 0, and assuming boundary conditions where
� ¼ �� at �1, we find the first integral

�02 ¼ 1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 48	Vð�Þp
12	

; (39)

whereas

Eð�Þ ¼ �02 � 4	�04: (40)

Since Eð�Þ � �02, we see that there is no choice of the
potential for which the theory defined by (37) mimics a
canonical wall, so long as 	 � 0.

2. Conditions for doppelgänger defects in
more general actions

The discussion in the previous section does not imply
the absence of other doppelgänger actions. As we now
show, there are infinitely many higher-derivative actions
which can mimic canonical domain walls. However, these
other actions are ‘‘rare’’ in the sense that they are techni-
cally nongeneric in the space of all scalar field actions. We
make this statement more precise below.
Consider the family of scalar field actions which have

second-order equations of motion. Such an action is
defined by a Lagrangian which is a function of both
X ¼ ð@�Þ2 and �,

L ¼ LðX;�Þ; (41)

containing the much smaller family of PðXÞ actions as a
special case. We denote the canonical action by L0, so that

L0ðX;�Þ ¼ �1
2X � Vð�Þ: (42)

The conserved quantity for the general Lagrangian (41) is
given by

J ¼ 2X
@L

@X
� L; (43)

whereas for the canonical action J0 ¼ �Xþ Vð�Þ.
Without loss of generality we assume that the domain
wall boundary conditions are such that J ¼ 0 everywhere.
This can always be enforced by shifting L by a constant
LðX;�Þ ! LðX;�Þ þ c, which does not affect the equa-
tions of motion and only shifts the zero point of the energy
density. For the canonical action, this implies that we can
impose Vð�minÞ ¼ 0 for the global minima �min of V.
What is required of a higher-derivative action so that it

can mimic a canonical scalar field action? The first require-
ment is that both actions must have the same field profile
�0ðzÞ as a solution to their respective equations of motion.
The second requirement is that the energy density of this
field profile be the same when evaluated using the
Hamiltonians associated with their respective actions.
We employ a geometrical construction to investigate

these requirements. Instead of viewing L and L0 as func-
tions, it is helpful to think of them as surfaces hovering
over the ðX;�Þ plane, with a height given by LðX;�Þ or
L0ðX;�Þ, respectively. These surfaces are referred to as the
‘‘graphs’’ of the functions L and L0.
We first consider the second requirement, that the field

profile �0ðzÞ has the same Hamiltonian energy densities in
the two theories. Suppose we have already established that
the same field profile�0ðzÞ is a solution to both actions. We
denote by �� the value of � at z ¼ �1 and by �þ the
value at z ¼ þ1 for this solution. The specified solution
traces out a curveC on the ðX;�Þ plane given in parametric
form by

C: z � ðX0ðzÞ; �0ðzÞÞ: (44)
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Since the configurations are static, the energy density is
simply �L. Hence we can satisfy the first requirement if
and only if

LðX;�Þ ¼ L0ðX;�Þ on C: (45)

L and L0 need not agree everywhere, but they must agree
when evaluated on points on C. Geometrically, (45)
means that the graphs of L and L0 must intersect, and the
projection of this intersection on to the ðX;�Þ plane must
contain C.

We next consider the first requirement, that the equa-
tions of motion for either action admit the specified field
profile �0ðzÞ as a solution. We assume that �0ðzÞ is a
solution to the canonical theory, and derive the requirement
that it also be a solution to L. Recall that, for static
configurations, actions of the form (41) always admit a
first integral obtained by solving the equation J ¼ 0 for
�02. Hence, J must vanish when evaluated on the solution
to the canonical theory. That is, �0ðzÞ will be a solution to
the higher-derivative scalar field theory if and only if

2X
@L

@X
� L ¼ 2X

@L0

@X
� L0 on C (46)

which, using (45), yields

@L

@X
¼ @L0

@X
on C: (47)

Hence, we require that the derivatives of L and L0 with
respect to X agree on C. Note that we never need to match
derivatives with respect to�—while @L=@� does enter the
equations of motion, it does not enter our conserved quan-
tity and hence is not required to find a solution.

We conclude that:
An action LðX;�Þ mimics a domain wall �0ðzÞ of the

canonical scalar field theory L0 (that is, has the same field
profile and energy density) if and only if the graphs of L
and L0 intersect above the curve C: z � ðX0ðzÞ; �0ðzÞÞ in
the ðX;�Þ plane, and if @L=@X ¼ @L0=@X along the
intersection.

This geometrical picture, when combined with the two
constraints (45) and (47), allows us to make a powerful
statement about how rare doppelgänger actions are. The
graphs of L and L0 are codimension-1 surfaces in the same
three-dimensional space. Hence, they will generically in-
tersect along a one-dimensional curve. Thus, we should
not be surprised if two actions satisfy the constraint (45),
which is essentially the statement that the graphs inter-
sect along a one-dimensional curve. However, two
codimension-1 manifolds will generically intersect ‘‘trans-
versely’’—the span of their tangent spaces will equal the
tangent space of the manifold at the intersection (R3 in this
case). The condition (47) implies that the graphs of L and
L0 do not intersect transversely. Thus, the existence of
doppelgänger walls depends on constructing graphs in
R3 which intersect nongenerically. This geometrical inter-
pretation is illustrated in Fig. 1, where we have compared a

canonical action with Vð�Þ ¼ ð1=4Þð�2 � 1Þ2 and its dop-
pelgänger Lagrangian.
Another way of putting this result is that, given any

function �LðX;�Þ, such that

�LðX;�Þ ¼ 0 on C and
@�L

@X
¼ 0 on C; (48)

then we can construct another action

LðX;�Þ ¼ L0ðX;�Þ þ �LðX;�Þ; (49)

which will have the same domain wall solution as L0.
Clearly there are infinitely many functions �L satisfying
(48), though they are nongeneric in the same sense as non-
transversely intersecting pairs of surfaces are nongeneric.

C. DNA tests for defects: Fluctuation
spectra for doppelgängers

The existence of doppelgänger defects raises the ques-
tion of whether such objects are merely a reparametrization
of the original, canonical scalar field wall. As we shall
demonstrate here, the fluctuation spectra of the doppel-
gänger walls are distinctly different from those of can-
onical walls. Among other differences, when the doppel-
gänger walls are deeply in the DBI regime (V0=M

4 large),

0.0

0.2

0.4

X

1.0

0.5

0.0

0.5

1.0

0.02

0.01

0.00

�L

FIG. 1 (color online). An illustration of the geometrical inter-
pretation of doppelgänger actions. The graphs of LðX;�Þ and
L0ðX;�Þ intersect along a single curve, whose projection on to
the ðX;�Þ plane is the curve C discussed in the text. Here we plot
the graph of L0 � L for the DBI action and the curve C (in
black). The intersection of the graphs of L and L0 is nongeneric,
since the first derivatives of the L� L0 surface vanish along C.
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they have far more bound states than the canonical wall.
Since the fluctuation spectra are different, the two theories
cannot be reparametrizations of each other.

We find the action and equation of motion for the
fluctuations by taking

�ðt; zÞ ¼ �0ðzÞ þ ��ðt; zÞ; (50)

where �0ðzÞ is a static background solution to the equa-
tions of motion and ��ðt; zÞ the fluctuation. We then ex-
pand the Lagrangian to quadratic order in ��. The term
linear in �� vanishes since �0ðzÞ satisfies the equations of
motion, and the purely quadratic piece is of the form

�2L ¼ AðzÞ� _�2 þ BðzÞ��2 þ CðzÞ��02 þDðzÞ����0:
(51)

For the canonical action, A ¼ 1=2, B ¼ �V 00ð�0ðzÞÞ=2,
C ¼ �1=2, and D ¼ 0. For other cases, these coefficients
depend on the particular background solution�0ðzÞ and on
the specific action used.

Since the action is independent of t, different frequen-
cies do not mix and we can study an individual mode with
frequency ! by taking

��ðt; zÞ ¼ e�i!t��ðzÞ: (52)

This leads to the quadratic action

�2L ¼ ð!2AðzÞ þ BðzÞÞ��2 þ CðzÞ��02 þDðzÞ����0;
(53)

yielding the equation of motion

C

A
��00 þ C0

A
��0 þ

�
D0 � 2B

2A

�
�� ¼ !2��: (54)

Finding the energies of the fluctuation modes amounts to
finding values of ! so that (54) is satisfied by a normal-
izable function ��.

The problem (54) is an eigenvalue problem of the Sturm-
Liouville–type. Ideally, it would be in the form of a
Schrödinger equation, which would allow us to readily
identify free and bound states by analogy to the corre-
sponding quantum mechanical system. Unfortunately, in
general (54) is not of Schrödinger-type, thanks to the
presence of the ��0 term. However, in many interesting
cases the quantity

E0 � D0 � 2B

2A
(55)

tends to a constant far away from the wall. Hence, evaluat-
ing (55) far away from the wall defines an analogue to the
‘‘binding energy’’ of various fluctuation modes. We call
modes with !2 < E0 the ‘‘bound states,’’ and modes with
!2 > E0 ‘‘free states.’’ This definition gives reasonable
agreement with our expectations for bound and free states,
as we discuss below.
The eigenvalue problem (54) can be solved numerically

using a simple finite element approach. We have computed
the lowest-lying eigenmodes for a canonical wall with
potential

Vð�Þ ¼ V0

4
ð�2 ��2

0Þ2 (56)

and some of its doppelgänger walls, assuming periodic
boundary conditions with periodicity much larger than
the wall width. Some of these solutions are shown in
Fig. 2. These figures show the energies !2 of these fluc-
tuation modes, normalized to the binding energy E0 de-
fined in (55), which is itself shown by the black horizontal
line in the figure. As can be seen, our definition of bound
states is reasonable, since the eigenmodes possess the
properties one would expect of bound states (such as
compact support) when their energies are below E0, and
the properties of free states (such as oscillatory behavior)

0

E0

2
V0 M4 0

0

E0

2
V0 M4 0.1

0

E0

2
V0 M4 1

0

E0

2
V0 M4 10

FIG. 2 (color online). The lowest-lying fluctuation eigenmodes for various domain walls. The vertical position of each eigenmode is
the eigenvalue !2 normalized by the binding energy E0. Shown are the spectra for a canonical scalar field wall with V0=M

4 ¼ 0
(leftmost panel) and then some of its doppelgängers with V0=M

4 ¼ 0:1, 1, and 10, respectively. As the ratio V0=M
4 increases, the wall

possesses more bound states. The lowest-lying state is identical for each wall, reflecting the fact that these walls share a background
field profile.
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when their energies are above E0. Since the eigenspectra
are different, we can conclude that the two theories, while
possessing an identical background solution, are in fact
distinct theories.

The figures also show that there are many more bound
states for the doppelgänger wall when we increase the mass
scale of the potential relative to the DBI scale. These bound
states are possible because the DBI action ‘‘weights’’
gradient energy much less in the interior of the domain
wall, and hence even highly oscillatory fluctuation modes
can remain as bound states. Physically, the presence of
these bound states means that the doppelgänger wall pos-
sesses additional oscillation modes which the canonical
wall does not.

IV. k-STRINGS

It is natural to ask whether it is also possible to find
doppelgängers of other defect solutions, such as global
strings or monopoles. This question is somewhat difficult
to answer since higher codimension defects are generally
less analytically tractable than the domain wall. In parti-
cular, the existence of the conserved quantity J in the
codimension-one (domain wall) case allowed us to find
the field profile and energy density and construct a dop-
pelgänger existence proof. No analogous quantity is avail-
able for higher codimension defects, such as global strings
or monopoles.

In this section, we generalize the one-field DBI action to
a two-field system, and investigate some properties of the
correponding global string solutions. Since we have no
conserved quantity, we take a numerical approach and
directly integrate the equations of motion. Using our
two-field DBI model, we find no doppelgänger global
string solutions. Nevertheless, since we cannot treat the
two-field system analytically, we cannot prove a ‘‘no-go’’
theorem and hence the existence of higher codimension
doppelgänger defects remains an open question.

The canonical global string solution can be found by
starting from the action with two real scalar fields

S ¼
Z �

� 1

2
ð@�1Þ2 � 1

2
ð@�2Þ2 � Vð�1; �2Þ

�
d4x; (57)

where the potential Vð�1; �2Þ respects a global Oð2Þ sym-
metry, corresponding to rotations in the ð�1; �2Þ plane. To
study string solutions, we assume the field configuration is
static and cylindrically symmetric, employ polar coordi-
nates ðr; 
Þ in real space, and use the rotational symmetry
to decompose the fields in terms of new functions� and�
as

�1ðr; 
Þ ¼ �ðrÞ cos�ðN
Þ;
�2ðr; 
Þ ¼ �ðrÞ sin�ðN
Þ; (58)

where N 2 Z is the winding number of the string.
Restricting ourselves to strings of unit winding number

N ¼ 1, the entire action may then be written in terms of
the single function �ðrÞ. The equation of motion for this
field is

�00 þ�0

r
� �

r2
� @V

@�
¼ 0; (59)

where �0 ¼ @�=@r. Given a potential Vð�Þ which admits
a defect solution, that is, Vð0Þ � 0 and there exists �0 > 0
such that Vð�0Þ ¼ 0 is a minimum, the string solution is
subject to the boundary conditions that �ð0Þ ¼ 0 and � !
�0 as r ! 1. It is then straightforward to solve for the
string field profile using the relaxation method.
There are many multifield generalizations of the basic

DBI kinetic term (4) which appear in the literature.
Typically these generalizations reduce to the usual DBI
kinetic term when there is only a single field. Based on our
experience with the doppelgänger solutions, the best-
motivated generalization is analogous to (28), based on a
generalization of the Nambu-Goto action with two extra
dimensions given by

SNG ¼ �
Z

TðXÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� det

�
�MN

@XM

@x�
@XN

@x�

�s
d4x; (60)

where, as before, the tension T is a function of the embed-
ding coordinates. We depart from (28) by taking six-
dimensional embedding coordinates XN , with N ¼ 0 . . . 5
and

XN ¼ xN: N ¼ 0; . . . 3; X4 ¼ �1ðx�Þ;
X5 ¼ �2ðx�Þ: (61)

Hence, the four-dimensional theory contains two real
scalar fields �1;2 with an Oð2Þ global symmetry. With a

suitable choice of tension TðXÞ, we can construct DBI
generalizations of the usual global string.
At this point, we can follow a similar procedure to that

carried out in the case of the canonical global string. The
reduction of the fields in the case of the unit winding
number string proceeds exactly as before, with the same
decomposition defined by (58). If we use this decomposi-
tion in (60) we find

SNG ¼ 2�
Z
½r� ð1þUð�ÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2 þ�2Þð1þ�02Þ

q
�dr;
(62)

where, as before, we have rewritten T ¼ 1þUð�Þ and
added a constant to the Lagrangian so that the energy is
zero when �0 ¼ 0 and Uð�Þ ¼ 0. Note that there is no
factor of r next to the differential, since the action (60)
already correctly accounts for the volume measure in four
dimensions.
To investigate whether doppelgänger strings can be con-

structed, we assume a symmetry-breaking potential
Uð�Þ ¼ U0ð�2 � 1Þ2 in the DBI theory and solve via the
relaxation method for the DBI field profile. Given the field

ANDREWS et al. PHYSICAL REVIEW D 82, 105006 (2010)

105006-10



profile�ðrÞ of the DBI string, we solve numerically for the
potential in the canonical scalar field theory which gives
the same field profile. With this potential function, we
compute the energy density in the canonical theory. In
the examples we study, we find that the energy densities
are different in the two theories. Analogous results hold if
we match energy densities between the DBI and canonical
theory—we find the field profile does not match. Hence we
do not find any doppelgänger defects.

When taking the field profiles to be equal, we can
construct a potential such that the DBI field profile is a
solution to the canonical equations of motion by integrat-
ing the canonical equation of motion for �, setting the
potential to be 0 at large r:

Vð�Þ ¼
Z �0

�

�
~�00 þ

~�0

r
�

~�

r2

�
d ~� (63)

For the examples we have studied, this leads to a total
energy density which differs from the DBI energy density,
as shown in Fig. 3.

We also consider the case where the energy densities are
constrained to be equal. In this case, after solving for the
field profile and energy density of the DBI string, we then
similarly solve for the field profile of the canonical string

while maintaining the canonical potential as V ¼ EDBI �
1
2 ð�02

canonical þ �2
canonical

r2
Þ. The results are shown in Fig. 4.

The two approaches, both constraining the field profiles
to be equal and constraining the energy densities to be
equal, yield a DBI string which is observably different
from the canonical string for the examples we have studied.
Thus we have found no examples of doppelgänger solu-
tions for cosmic strings.

V. DISCUSSION

Nonperturbative field configurations such as topological
defects may be formed during phase transitions in the early
Universe, and their interactions and dynamics can have
significant effects on cosmic evolution. In the case of a
scalar field with a canonical kinetic term, the behavior of
such configurations has been understood for some time.
The resulting constraints on the types and scales of sym-
metry breaking are well understood, and the possibilities
for interesting cosmological phenomena have been thor-
oughly investigated.
However, in recent years, particle physicists and

cosmologists have become interested in noncanonical
theories, such as those that might drive k inflation and k
essence. Ghost-free and stable examples of such theories
can be constructed, and as such one may take them seri-
ously as microphysical models. Several authors have then
studied the extent to which the properties of topological
defects are modified by the presence of a more complicated
kinetic term.
In this paper we have studied k-defect solutions to the

DBI theory in some detail, discussing walls and strings,
and clarifying the existence criteria and the behavior of
instantons in these theories. Furthermore, we have ad-
dressed the question of whether k-defects, and in particular
k walls and global k strings, can mimic canonical defects.
We have demonstrated that given a classical theory with
a canonical kinetic term and a spontaneously broken
symmetry with a vacuum manifold admitting domain
wall solution, there exists a large family of general
Lagrangians of the Pð�;XÞ form which admit domain
wall solutions with the same field profiles and same energy
per unit area. These doppelgänger defects can mimic the
field profile and energy density of canonical domain walls.
Nevertheless, we have also shown that the fluctuation
spectrum of a doppelgänger is different from its canonical
counterpart, allowing one in principle to distinguish a
canonical defect from its doppelgänger.
In the case of cosmic strings we have been unable to

prove a similar result. Despite investigating several ex-
amples for the potential function in the DBI theory, we

FIG. 3 (color online). Energy density as a function of radius
for a DBI string and a canonical string with identical field
profiles. The DBI potential is given by Uð�Þ ¼ 10ð�2 � 1Þ2.

FIG. 4. The difference in field values for a DBI string and a
canonical string with identical energy densities. The DBI poten-
tial is given by Uð�Þ ¼ 1

4 ð�2 � 1Þ2.
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have been unable to find cases where there is a canonical
theory which results in a matching energy density and field
profile. However, since we have less analytic control in the
case of defects of higher codimension, we have not been
able to prove a no-go theorem. Hence the existence of
doppelgänger defects for strings or monopoles remains
an open question.
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