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It is usually believed that there are no perturbative anomalies in supersymmetric gauge theories beyond

the well-known chiral anomaly. In this paper we revisit this issue, because previously given arguments are

incomplete. Specifically, we rule out the existence of soft anomalies, i.e., quantum violations of super-

symmetric Ward identities proportional to a mass parameter in a classically supersymmetric theory. We do

this by combining a previously proven theorem on the absence of hard anomalies with a spurion analysis,

using the methods of algebraic renormalization. We work in the on-shell component formalism through-

out. In order to deal with the nonlinearity of on-shell supersymmetry transformations, we take the spurions

to be dynamical, and show how they nevertheless can be decoupled.
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I. INTRODUCTION

Supersymmetry plays a prominent role in the search for
a more fundamental theory that underlies the standard
model. Phenomenological treatments usually incorporate
soft supersymmetry-breaking terms into the Lagrangian at
the electro-weak scale from the outset, on the premise that
these are the low-energy manifestation of spontaneous
supersymmetry breaking. The spontaneous breaking, in
turn, is presumed to have occurred at some higher energy
scale, in a gauge theory that is supersymmetric at both the
classical and quantum levels.

In this paper we address the question of whether a
classically supersymmetric gauge theory can always be
renormalized such that both the gauge symmetry and su-
persymmetry are preserved by the quantum theory.1 For
the gauge symmetry alone, the answer is well known:
Provided that the fermion content satisfies a certain
algebraic condition—the so called anomaly-cancellation
condition—there is no Adler-Bell-Jackiw (ABJ) anomaly
at the one-loop level, and moreover, by the Adler-Bardeen
theorem [1,2], the gauge symmetry is not anomalous to all
orders in perturbation theory. In this paper we will always
assume that the anomaly-cancellation condition is satis-
fied. The question is, thus, whether supersymmetry can be
preserved simultaneously with the gauge symmetry at the
quantum level.

No consistent regularization method preserves super-
symmetry and gauge invariance simultaneously. The situ-
ation is similar to that with chiral symmetry, where also no
symmetry-preserving regulator exists. Indeed, this is for
good reason: chiral symmetry is anomalous, unless non-
trivial anomaly-cancellation conditions are met. Likewise,

supersymmetry anomalies constitute a logical possibility
that must be studied in detail.
Working within the on-shell component formalism, this

subject was addressed using algebraic-renormalization
techniques in Ref. [3], henceforth denoted MPW. The
main result of MPW is the following theorem: A super-
symmetric gauge theory whose Lagrangian contains only
dimensionless parameters is free of supersymmetry
anomalies. In other words, there are no ‘‘hard’’ supersym-
metry anomalies. The practical implication is the
following. A consistent regularization method (such as
dimensional regularization) must be used to remove the
infinities (e.g. by minimal subtraction) order-by-order in
perturbation theory. The resulting renormalized diagrams
will in general fail to preserve supersymmetry and/or
(chiral) gauge invariance. MPW’s theorem then assures
us that finite, ‘‘symmetry-restoring,’’ counterterms can al-
ways be found to restore gauge invariance and supersym-
metry simultaneously up to any given order.
This result leaves open the question of what happens in

supersymmetric gauge theories with mass parameters,
which appear through the superpotential in a generic super-
symmetric gauge theory. It turns out that this is a nontrivial
issue: it is possible to find operators that might occur as
supersymmetry anomalies in certain theories, including
those that are relevant for constructing supersymmetric
versions of the standard model, when the theory contains
a Uð1Þ factor in the gauge group. The operators that may
constitute an anomalous divergence of the supersymmetry
current have the generic form

m3P��; (1.1)

in which � is the Uð1Þ gaugino field, P� ¼ ð1=2Þð1� �5Þ,
and m3 stands for a product of mass parameters of total
dimension equal to three. Wewill refer to examples such as
Eq. (1.1) as ‘‘soft’’ anomalies, because they obviously
require the presence of mass parameters in the theory.
Apart from the presence of a Uð1Þ factor, for these soft

1In this paper we assume that supersymmetry is a global
symmetry, and that the theory under consideration is power-
counting renormalizable.
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anomalies to occur the theory must not have charge-
conjugation symmetry. In supersymmetric extensions of
the standard model this would exclude such anomalies at
one loop, but not at higher loops, where diagrams ‘‘know’’
about the presence of all these ingredients.

The renormalization of supersymmetric theories with
masses has been considered before, with emphasis on the
role of ‘‘soft supersymmetry-breaking terms’’ [4–6]. These
terms are built from operators with mass dimension
(strictly) smaller than 4, and break supersymmetry explic-
itly (though ‘‘softly’’) at the classical level. However, the
possible existence of soft anomalies in a classically super-
symmetric theory has not been excluded.

In this paper we limit ourselves to the following ques-
tion. Can a massive supersymmetric gauge theory that is
exactly supersymmetric at the classical level generate an
anomaly at the quantum level that would vanish if all
masses in the theory are taken to zero? In other words,
do massive supersymmetric theories exist in which soft
explicit breaking of supersymmetry cannot be avoided
after quantization?

For massive theories that are exactly supersymmetric at
the classical level, the proof given in Ref. [5] turns out to be
incomplete. Specifically, an anomalous divergence of the
supersymmetry current with the generic form of Eq. (1.1)
is not excluded by the spurion methods of Ref. [5]. This is
true even though, technically, with the spurions of Ref. [5]
all breaking terms are cohomologically exact.

In this paper, then, we prove that the most general
supersymmetric gauge theory in four dimensions, with
arbitrary superpotential, has no anomalies to all orders in
perturbation theory, if the fermion representation satisfies
the usual ABJ anomaly-cancellation condition. The central
idea is to promote each mass parameterm in the theory to a
full gauge-neutral, chiral supermultiplet ð�s; c sÞ that cou-
ples to the fields of the original theory through a Yukawa
coupling w. The original theory is recovered by sending
w ! 0, keeping m ¼ wh�si fixed.2 MPW’s theorem can
then be applied to the theory that contains the spurious
fields �s and c s, and this allows us to prove our general-
ization of their theorem to massive supersymmetric gauge
theories. Since MPW worked in the on-shell formulation,
in which all fields in the theory are physical, we make the
same choice for our analysis. This leads to certain technical
complications with regard to the use of spurion techniques.
Our solution is to promote the spurions to new dynamical
fields, thereby bringing the ‘‘spurionized’’ theory under the
scope of MPW’s theorem. While at first sight this may
appear unusual, it will turn out to be quite natural to do so.
Using the mathematical techniques of filtration we are then

able to establish the desired results in the limit that the
dynamical-spurion fields are decoupled.
Our outline is as follows. In Sec. II we review the

necessary elements of the algebraic-renormalization
framework needed to understand both MPW’s theorem,
and its application to massive supersymmetric gauge theo-
ries. The algebraic framework is based on the existence of
a generalized Becchi-Rouet-Stora-Tyutin (BRST) opera-
tor, which, in our case, covers gauge and translation in-
variance, R symmetry and supersymmetry. Any anomaly
must satisfy certain algebraic conditions—the Wess-
Zumino consistency conditions [7]. As explained in
Sec. II, these can be formulated in the algebraic framework
with the help of the BRST operator. In Sec. III we review
the on-shell formulation of supersymmetric gauge theories
with arbitrary superpotential, including the gauge-fixing
terms and the on-shell form of BRST transformations. We
also review MPW’s theorem in Sec. III B.
Our new results are contained in Sec. IV, which is the

main part of this paper. In Sec. IVA we explain in detail
why, in a massive supersymmetric gauge theory, operators
such as Eq. (1.1) are indeed candidate anomalies that
satisfy the relevant Wess-Zumino consistency conditions.
We then give an intuitive description of our setup and proof
in Secs. IVB and IVC. Section IVD states our main result,
and the rest of Sec. IV is devoted to the technical details of
the proof, with Sec. IVH giving a technical summary. Our
conclusion is contained in Sec. V.
A relatively quick overview of the main ideas of our

analysis can be obtained by reading only Sec. III, the first
three subsections of Sec. IV, and the conclusion, while
skimming elements of Sec. II, depending on the back-
ground of the reader.
A number of appendices take care of some technical

details, as well as some issues peripheral to the main point
of this paper. Appendix A summarizes notation and con-
ventions, while Appendix B discusses the relation of the
on-shell formalism we employ in the paper to the off-shell
component formulation of the theory. Appendix C takes
care of the special case of linear terms in the superpoten-
tial, which leads to the presence of parameters with mass
dimension two in the theory. Appendices D and E provide
proofs for technical lemmas used in the proof of Sec. IV.
Appendix F discusses the superspace origin of candidate
anomalies such as Eq. (1.1), showing that in superspace
they would take the shape of supergauge anomalies.
The last two appendices explain why an anomalous

divergence such as Eq. (1.1) is not ruled out by the method
of Ref. [5]. In Appendix G we derive the continuity equa-
tion for the renormalized supersymmetry current when the
Slavnov-Taylor (ST) identity is satisfied at the quantum
level. The derivation applies in the absence of external
(spurion) fields. In Appendix H we contrast the appearance
of anomalies in the algebraic-renormalization approach
with their original role of an anomalous divergence in the

2Linear terms in the superpotential, if present, lead to parame-
ters with mass dimension two, which, moreover, have different
properties with respect to the symmetry transformations. It turns
out to be straightforward to deal with such parameters separately.
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continuity equation. We conclude that the spurions intro-
duced in Ref. [5] do allow an anomalous divergence such
as Eq. (1.1), despite the fact that, technically speaking, that
anomalous divergence becomes cohomologically trivial in
the presence of these spurions.3

II. ALGEBRAIC-RENORMALIZATION REVIEW

To keep the paper self-contained, this section provides a
brief review of algebraic renormalization. We begin with
the classical theory. At a formal level, a Euclidean quantum
field theory is defined by the partition function

Z ¼
Z Y

I

D�I expð�SclÞ: (2.1)

Here�IðxÞ stands for all fields we will be integrating over.
These include bosons, fermions, ghosts, and, possibly,
auxiliary fields. With a slight abuse of language, we will
refer to them collectively as the dynamical fields. The
classical action consists of two parts

Scl ¼ S0ð�IðxÞ; �iÞ þ Sextð�IðxÞ; KIðxÞ; �i; kiÞ: (2.2)

Here S0 is the usual classical action of the theory. The
second part, Sext, depends on both the dynamical fields and
on a set of external sources KIðxÞ, one for each dynamical
field �IðxÞ. For on-shell supersymmetry one has Sext ¼
Slinext þ Sbilext, where Slinext (S

bil
ext) is linear (bilinear) in the K

sources. The explicit form of the linear part is

Slinext ¼
X
I

Z
d4xKIðxÞs�IðxÞ þ

X
j

kjs�j: (2.3)

The coefficient of KIðxÞ, namely s�IðxÞ, is the BRST
variation of �IðxÞ. Following Ref. [3], the BRST operator
s simultaneously encodes gauge transformations, transla-
tions, supersymmetry, and R-symmetry transformations
(see Sec. III). While at this point we are still dealing with
the classical theory, the ultimate goal of introducing the
source terms is to handle nonlinear field transformations in
the quantum theory. BRST transformations make use of
opposite-statistics parameters, and thus the statistics of
s�IðxÞ are opposite to that of �iðxÞ, and the same is true
for KIðxÞ. In this paper, the sum on the right-hand side of
Eq. (2.3) extends over all the dynamical fields, including
those that transform linearly.4

In addition to fields, the classical action depends on a set
of global parameters �j. These come in two types. There

are the Lagrangian parameters that occur in S0: the gauge
coupling, and the parameters of the superpotential. In
addition, there are global opposite-statistics BRST parame-
ters associated with translations, supersymmetry transfor-

mations, and R-symmetry transformations. Some global
parameters have nontrivial BRST transformation rules,
and we find it convenient to add to Slinext a term kjs�j for

each global parameter.
The transformations encoded in the BRST operator cor-

respond to the symmetries of the original action S0, which,
in turn, is BRST invariant by construction: sS0 ¼ 0.5 The
trick of using opposite-statistics parameters is motivated by
the goal of having a nilpotent BRST operator, i.e., s2

vanishes when applied to any dynamical field or parameter.
If we now extend the BRST transformation trivially to the
sources: sKIðxÞ ¼ skj ¼ 0, and set Sbilext ¼ 0, it follows that

the complete classical action, including the source terms, is
BRST invariant: sScl ¼ 0. This is, in fact, the whole story
for the off-shell component formalism of supersymmetric
theories. As we will discuss below, the situation in the on-
shell formalism is more involved, and this is related to the
need to introduce bilinear terms in the KI in Sext.
The effective-action functional � ¼ �ð�IðxÞ; KIðxÞ;

�i; kiÞ is the generator of 1PI (one-particle irreducible)
functions. It depends on a set of fields and parameters
similar to those appearing in the action, except that each
dynamical field �IðxÞ is traded for a corresponding effec-
tive field �IðxÞ. Of prime interest is the renormalized 1PI
functional �r, whose order-by-order construction is dis-
cussed below. Its tree approximation coincides with the
classical action, and we will write

�r ¼ Scl þ �q; (2.4)

where �q includes all the loop corrections.

The ST operator is a nonlinear operator acting on
effective-action functionals, given by

S ð�Þ ¼ X
I

Z
d4x

��

��IðxÞ
��

�KIðxÞ þ
X
j

@�

@�j

@�

@kj
: (2.5)

For both the off-shell and on-shell supersymmetry formu-
lations, the classical action satisfies the ST identity,
SðSclÞ ¼ 0.6 Let us elaborate on this statement. In the off-
shell formalism it is easy to see that SðSclÞ ¼ sScl ¼ 0. The
last equality has been discussed above, and requires the
nilpotency of the BRST operator s. In the on-shell formal-
ism the situation is more involved. Once the auxiliary fields
are integrated out, s2 does not vanish when applied to a
fermion field. Instead, the result is proportional to the
fermion’s equations of motion. As explained in detail
in Appendix B, the classical on-shell action Scl ¼ S0 þ
Slinext þ Sbilext nevertheless satisfies the ST identity.

3A similar statement applies to the spurions introduced in
Ref. [6].

4It will be convenient to do so, even if this differs from the
choice made in Ref. [3].

5As described in Sec. III, dimensionful parameters that
occur in S0 will be taken to transform nontrivially under the
R symmetry, and they are thus to be varied as well when
computing sS0.

6When the ST operator acts on the classical action we make
the natural identification �I $ �I .
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We will also need the linearized ST operator. For any
functional �, the associated linearized ST operator

S� ¼ X
I

Z
d4x

�
��

��IðxÞ
�

�KIðxÞ þ
��

�KIðxÞ
�

��IðxÞ
�

þX
j

�
@�

@�j

@

@kj
þ @�

@kj

@

@�j

�
(2.6)

is an anticommuting first-order differential operator. Its
basic properties are7

S �Sð�Þ ¼ 0; 8 �; (2.7)

and

S 2
� ¼ 0; if Sð�Þ ¼ 0: (2.8)

A special role is played by the linearized ST operator
associated with the classical action,

B ¼ SScl : (2.9)

Since SðSclÞ ¼ 0 both on- and off-shell, it follows from
Eq. (2.8) that in both cases B is nilpotent: B2 ¼ 0. One
could say that the loss of nilpotency of s in the on-shell
formalism is ‘‘remedied’’ by using instead the linearized
ST operator B. As we will see below, this is the nilpotent
operator in terms of which the Wess-Zumino consistency
conditions are formulated.

From Eq. (2.6) it follows that the transformation rules of
individual fields are

B�IðxÞ ¼ �Scl
�KIðxÞ ; BKIðxÞ ¼ �Scl

��IðxÞ : (2.10)

If Sbilext is independent of a particular KIðxÞ field, one has
B�IðxÞ ¼ s�IðxÞ. The same is true for all parameters:
B�i ¼ s�i. The exceptions are the fermion transformation
rules in the on-shell formalism. For the explicit form of the
difference B� s when acting on a fermion field, see
Eq. (B10). Regarding the transformation rules of the source
fields, it is worth noting that BKIðxÞ always contains an
inhomogeneous term which is the (classical) equation of
motion of �IðxÞ.

Let us turn to the quantum theory. While the methods of
algebraic renormalization are largely independent of the
particulars of the renormalization procedure, to make it
more concrete we will consider dimensional regularization
[8,9]. The first step is to extend the four-dimensional
classical action to a suitable tree-level, d-dimensional ac-

tion Sð0Þt;d ¼ Sð0Þd þ Sð0Þext;d. The subscript ‘‘t’’ stands for total,

i.e., it accounts for both source-independent and source-
dependent terms. The quantum action is constructed recur-
sively as

SðnÞt;d ¼ Sðn�1Þ
t;d þ S½n�t;s þ S½n�t;f ; (2.11)

where SðnÞt;d is the action with all counterterms up to, and

including, order n. There are two types of counterterms.

The n-th order singular counterterms, S½n�t;s , are chosen so as

to make all n-loop diagrams finite. For simplicity we will

assume that S½n�t;s corresponds to minimal subtraction. The

role of the n-th order finite counterterms, S½n�t;f , is explained

as follows. Let �ðnÞ
d be the n-loop 1PI functional of the

d-dimensional theory. After minimal subtraction at order n

[i.e., after adding S½n�t;s , but not yet S
½n�
t;f , to Sðn�1Þ

t;d ] we may

take the limit d ! 4, obtaining a renormalized n-loop 1PI
functional,

�ðnÞ
r ¼ lim

d!4
�ðnÞ
d : (2.12)

Let us introduce the breaking term by applying the ST
operator to the n-th order renormalized 1PI functional

�ðnÞ ¼ Sð�ðnÞ
r Þ: (2.13)

Were it not for the need to regularize and renormalize a
field theory, the classical invariance could be used to infer

that �ðnÞ vanishes to all order. In reality, some of the
classical symmetries will not be respected by the regulari-
zation. As a result, the minimally subtracted 1PI functional
may fail to preserve some of the classical symmetries, and
this failure is quantified by the nonvanishing of the break-

ing term �ðnÞ.
Assuming we have achieved �ðkÞ ¼ 0 for 1 � k �

n� 1, and that �ðnÞ � 0 after minimal subtraction, we
use the freedom to adjust the n-th order finite counterterms

S½n�t;f , seeking to cancel the breaking term at order n as

well. If we succeed in enforcing �ðnÞ ¼ 0, the theory is
free of anomalies to this order, and we may proceed to the
next order.
Let us discuss the basic properties of the breaking-term.

The regularized action principle implies that, in the
d-dimensional theory8

S ð�ðnÞ
d Þ ¼ ~sðnÞd SðnÞt;d � �ðnÞ

d : (2.14)

The dot notation on the right-hand side stands for an

insertion of the variation of the quantum action, ~sðnÞd SðnÞt;d ,

into 1PI diagrams. The quantum transformation of the
dynamical fields is defined by

~s ðnÞ
d �IðxÞ �

�SðnÞext;d

�KIðxÞ : (2.15)

7It is straightforward to check that S2
� contains no second-

derivative terms, hence S2
� is a commuting first-order differential

operator. Both Eqs. (2.7) and (2.8) can be derived by working out
the explicit expression for S2

�. The relation Sð�Þ ¼ 1
2S�� is also

used in the derivation of Eq. (2.7).

8For a proof and references to the original literature see, e.g.,
the appendix of Ref. [10]. The proof given therein simplifies
considerably for our specific choice of the quantum transforma-
tion (2.15).
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Note that, if Sbilext � 0, then ~sðnÞd �IðxÞwill contain terms that

depend on K-source fields. In the classical theory, i.e., if

we set n ¼ 0 and d ¼ 4, then ~sðnÞd reduces to the linearized

ST operator B of Eq. (2.9), when the latter acts on a
dynamical field.

If the BRST variation of a field s�IðxÞ happens to be
linear in the dynamical fields, then the operator
KIðxÞs�IðxÞ cannot occur as an insertion in any 1PI dia-
gram. Therefore no singular counterterm / KIðxÞs�IðxÞ is
needed, and we elect to avoid any finite counterterms that
depend on KIðxÞ as well. The result is that, when s�IðxÞ is
linear in the dynamical fields,

��ðnÞ
r

�KIðxÞ
¼ �Scl

�KIðxÞ ; (2.16)

to all orders. The BRST transformation of the global
parameters is similarly unrenormalized: @�r=@kj ¼
@Scl=@kj ¼ s�j.

Using the regularized action principle, Eq. (2.14), and
the defining equation (2.13), we obtain the following ex-
pression for the breaking term:

�ðnÞ ¼ lim
d!4

~sðnÞd SðnÞt;d � �ðnÞ
d : (2.17)

To verify that the operator insertion on the right-hand side
is finite we may again use the regularized action principle,
but now at the level of connected functions. For any
(renormalized) operator O, one has

h~sðnÞd Oi ¼ hO ~sðnÞd SðnÞt;d i: (2.18)

The left-hand side is finite because it involves the renor-

malized transformation ~sðnÞd . Therefore, the right-hand side

is finite, too.
The second crucial property of the breaking term is

locality. Assume as before that we have adjusted the
symmetry-restoring (finite) counterterms to achieve

�ðkÞ ¼ 0 for k ¼ 1; 2; . . . ; n� 1. Moving on to order n,
after performing minimal subtraction we will in general
obtain a nonzero breaking term that can be expressed as

�ðnÞ ¼
Z

d4x�ðnÞðxÞ; (2.19)

where �ðnÞðxÞ is a local operator. Thanks to the vanishing

of �ðkÞ for 1 � k � n� 1, the operator ~sðn�1Þ
d Sðn�1Þ

t;d is

evanescent. It follows that, at the next order, the sum of
all minimally subtracted n-loop diagrams with an insertion
of that evanescent operator collapses to a contact term for
d ! 4 (see, e.g., Ref. [11] and references therein).9

The algebraic consistency conditions are derived by

applying Eq. (2.7) to the minimally subtracted �ðnÞ
r .

Ignoring terms of order ℏnþ1 we find

0 ¼ S
�ðnÞ
r
Sð�ðnÞ

r Þ ¼ B
Z

d4x�ðnÞðxÞ: (2.20)

The assumed vanishing of Sð�ðkÞ
r Þ for 1 � k � n� 1

implies that Sð�ðnÞ
r Þ is of order ℏn, and this allows us to

replace S
�ðnÞ
r

with SScl ¼ B to the given accuracy. In

mathematical parlance, the consistency conditions (2.20)

state that �ðnÞ ¼ Sð�ðnÞ
r Þ is cohomologically closed;

it belongs to the cohomology space of the nilpotent opera-
tor B.10

The breaking term may turn out to be cohomologically

exact. This means that there exists a local operatorQðnÞðxÞ
such that

�ðnÞðxÞ ¼ BQðnÞðxÞ þ total derivative: (2.21)

If we now choose the n-th order symmetry-restoring coun-

terterm action as S½n�t;f ¼ �R
ddxQðnÞðxÞ, the result will be

a vanishing breaking term, �ðnÞ ¼ 0. Equivalently, the
quantum theory now satisfies all the ST identities encoded

in Sð�ðnÞ
r Þ ¼ 0, up to terms of order ℏnþ1. At this point we

have succeeded in renormalizing the theory while preserv-
ing all its classical symmetries up to, and including,
order n.

If there does not exist any local operator QðnÞðxÞ that
satisfies Eq. (2.21) then we have an anomaly; starting at
order n it is impossible to simultaneously satisfy all the
classical symmetries in the quantum theory.
Imposing (when possible) the vanishing of the breaking

term does not uniquely determine the finite counterterms,
and the remaining freedom is fixed by a set of renormal-
ization conditions.
In the next section we turn to the concrete algebraic-

renormalization framework for on-shell supersymmetry.

III. ON-SHELL FORMALISM

In this section we review the on-shell component for-
mulation of supersymmetric gauge theories. Section III A
introduces the on-shell framework as adapted to the
algebraic-renormalization methodology by MPW [3]. In
Sec. III B we review MPW’s main result—the absence of
hard supersymmetry anomalies—which is the starting
point for the present work. Appendix A contains our nota-
tion, while Appendix B provides a brief review of the off-
shell formalism, and elaborates on the transition from the
off-shell to the on-shell formalism.

9Explicitly, the operator that is being inserted on the right-
hand side of Eq. (2.14) at this point is ð~sðn�1Þ

d þ ~s½n�s ÞðSðn�1Þ
t;d þ

S½n�t;s Þ, because no finite counterterms have been introduced at
order n yet.

10The mathematical framework is discussed in more detail in
Sec. IVE. Additional algebraic constraints on the breaking term
are discussed in Sec. III.
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A. Repository of on-shell supersymmetry

The source-independent part of the classical action S0
[see Eq. (2.2)] is the sum of the gauge-invariant and gauge-
fixing actions,

S0 ¼
Z

d4xðLðxÞ þLegfðxÞÞ: (3.1)

The ‘‘extended’’ gauge-fixing Lagrangian Legf will be

discussed later on. The physical-field content of a super-
symmetric theory consists of a set of (on-shell) chiral
multiplets ð�i; c iÞ, as well as of a set of gauge multiplets
ðA�a; �aÞ, where A�a denotes the gauge fields and �a the

gauginos. To avoid cumbersome notation we will mostly
consider a single gauge group and thus a single gauge
coupling g. The generalization to an arbitrary gauge group,
containing both Abelian and non-Abelian factors, is usu-
ally trivial. More details on the gauge group will be dis-
cussed as needed.

The gauge-invariant, on-shell supersymmetric
Lagrangian is

L ¼ 1

4
F2
��a þ 1

2
��a 6Dab�b þ ðD��Þ�j ðD��Þj

þ 1

2
�c i 6D5ijc j � ig

ffiffiffi
2

p
��a�

�
5iT5aijc j

þ g2

2
ð��

i Taij�jÞ2 þW�
;iW;i þ 1

2
�c iW5;i;jc j: (3.2)

Our notation puts together each two-component Weyl
fermion and its antifermion into a four-component
Majorana-like spinor. Its definition, along with the all the

definitions of related objects (such as, e.g., 6D5), is given in
Appendix A. Repeated and ‘‘squared’’ indices are summed
over. The gauge-invariant superpotentialW has the general
form

W ¼ �i�i þ 1
2Mij�i�j þ 1

6Yijk�i�j�k: (3.3)

The mass dimensions of �i and Mij are two and one,

respectively. These dimensionful parameters play center
stage in this paper. The Yijk are (dimensionless) Yukawa

couplings. Mij and Yijk are symmetric in all indices. The

shorthand W;i ¼ @W=@�i, etc. is used in Eq. (3.2).

The BRST transformations depend on several opposite-
statistics global parameters: anticommuting parameters ��

for translations and 	 for R-symmetry transformations, and
a commuting spinor 
 for supersymmetry transformations.
In each of the transformation rules given below, we may
split the BRST operator s as

s ¼ sg þ s� þ s
 þ s	: (3.4)

First, s	 generates theR transformations, and contains all the

	-dependent terms of each transformation rule. The R sym-
metry is the ‘‘canonical’’ one, where all the scalar fields �i

have a common R charge equal to 2=3.11 Of the remaining
terms, s
 consists of the 
-dependent terms, and generates

the supersymmetry transformations. The terms that are in-
dependent of both 	 and 
 but depend on �� constitute the

translation part s�. The remaining terms, that do not depend

on any of the global BRST parameters, constitute sg.

We next give the explicit form of the BRST transforma-
tion rules. The physical fields transform according to12

sA�a ¼ �
���a þD�abcb þ ��@�A�a; (3.5a)

s�a ¼ ðði=2ÞF��a��� � ig�5�
�
i Taij�jÞ
þ gfabccb�c þ ��@��a þ i	�5�a; (3.5b)

s�i ¼
ffiffiffi
2

p
�
Pþc i � igcaTaij�j þ ��@��i þ ið2=3Þ	�i; (3.5c)

s��
i ¼

ffiffiffi
2

p
�
P�c i þ igcaT

�
aij�

�
j þ ��@��

�
i � ið2=3Þ	��

i ; (3.5d)

sc i ¼
ffiffiffi
2

p ð 6D�
5ij�

�
5j �W�

5;iÞ
� igcaT5aijc j þ ��@�c i � ið1=3Þ	�5c i: (3.5e)

The ghost-sector fields transform as

sca ¼ �
��
A�a þ g

2
fabccbcc þ ��@�ca; (3.6a)

s �ca ¼ �iba þ ��@� �ca; (3.6b)

sba ¼ i �
��
@� �ca þ ��@�ba: (3.6c)

The parameters transform according to

s�� ¼ � �
��
; (3.7a)

s
 ¼ i	�5
; (3.7b)

s	 ¼ 0; (3.7c)

s�i ¼ ið4=3Þ	�i; (3.7d)

sMij ¼ ið2=3Þ	Mij: (3.7e)

In Eq. (3.7) the first three lines describe the transformation
properties of the BRST parameters themselves. Of the
Lagrangian parameters, the dimensionless ones are BRST
invariant. The last two lines of Eq. (3.7) give the BRST
transformation rules of the dimensionful superpotential
parameters. These transformation rules promote the di-
mensionful parameters to global spurions by assigning to
them a nonzero R charge: Mij has the same charge as a
scalar field, and �i as the product of two scalar fields.

11Any other R symmetry is the sum of the canonical R sym-
metry and a flavor rotation.

12Our convention is to write the part of Slinext that involves sc i as
�Kc
i sc i, and �K�

as�a for the gauginos.
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The on-shell BRST transformations are nilpotent when
applied to bosons, ghost-sector fields, and parameters, but
not when applied to fermions. Further explanations on the
structure of the on-shell classical action and BRST trans-
formations may be found in Appendix B. In particular we
explain there how, in spite of the failure of s2 to vanish
when acting on fermions, the on-shell action nevertheless
satisfies the ST identity. We also give the explicit form of
the terms that are bilinear in the K-source fields, which are
crucial for the validity of the on-shell ST identity, as well as
theB transformation rules for fermion fields, withB being
nilpotent on all fields (and sources).

Next, we turn to the gauge-fixing action, given by

Segf ¼ s
Z

d4x

�
�ca

�
i�

2
ba þ Ga

��

¼
Z

d4x

�
�

2
ðb2a þ ð �
��
Þ �ca@� �caÞ

� ibaGa � �caðsg þ s
ÞGa

�
: (3.8)

Here � is the gauge parameter, and Ga is the gauge
condition, which we will take to be the Lorenz gauge,

G a ¼ @�A�a: (3.9)

Compared to its textbook form, Eq. (3.8) is an extended
gauge-fixing action that contains extra terms coming from
the application of s
 to ba and to Ga. If the supersymme-

try–BRST parameter 
 is set to zero, Sext reduces to the
standard gauge-fixing action. The idea behind this ex-
tended form is to maintain BRST exactness. Since s is
nilpotent when acting on boson and on ghost-sector fields,
the extended gauge-fixing action is BRST invariant:
sSegf ¼ 0.

We will take the canonical dimension of the ghost-sector
fields cðxÞ and �cðxÞ to be one.13 This implies that the mass
dimension of the BRST operator is one, and that the local
breaking term �ðxÞ has mass dimension equal to 5. The
global BRST parameters ��, 
, and 	, have mass dimen-

sions 0, 12 , and 1, respectively. The mass dimension of the

K-source fields is determined from the requirement that
Sext be dimensionless.

Finally, we introduce the ghost number. For the ghost
field cðxÞ as well as the global BRST parameters ��,
, and

	 it is equal to one. �cðxÞ has ghost-number �1, while the
remaining dynamical fields have zero ghost number. The
ghost number of the K sources is determined by the re-
quirement that the total action have zero ghost number.

B. Review of the work of MPW

In Ref. [3], MPW proved the absence of hard supersym-
metry anomalies in the on-shell component formalism.

They considered a general supersymmetric gauge theory
whose Lagrangian contains dimensionless parameters
only. They proved that, except for a supersymmetric ex-
tension of the ABJ anomaly, which we will assume to be
absent, no other anomalies occur. The proof consists of two
elements. First they established that, apart from the Wess-
Zumino consistency conditions (2.20), several additional
algebraic constraints may be imposed on the breaking term
�. They then showed that any solution of the complete set
of algebraic constraints is cohomologically exact (with
exception of the ABJ anomaly); it can be removed by finite
symmetry-restoring counterterms.
We now list these additional restrictions. The constraints

are first established for the quantum part of the 1PI func-
tional, �q ¼ �r � Scl, and then extended to the breaking

term �. Regarding the global BRST parameters, it can be
shown that �q is independent of the translation and

R-symmetry parameters �� and 	. Independence of ��

is automatically satisfied by � as well, whereas the inde-
pendence of 	 can always be achieved by adding
R-symmetry–restoring counterterms.
As for the dependence on ghost-sector fields, �q and �

are independent of the auxiliary field b, and can depend on
�c only through the linear combination KA

� � @� �c, where

we recall that KA
� is the source field coupled to the BRST

variation of the gauge field. Moreover, if we adopt the
Landau gauge, i.e., we take the limit � ! 0 in Eq. (3.8),
then �q and � can depend on c only through its derivatives

@�c.

Let us briefly explain how these constraints arise. The
constraints satisfied by �q can be shown to follow auto-

matically from elementary properties of the diagrammatic
expansion.14 The terms in the classical action (i.e., in Sext)
that depend on the BRST parameters �� and 	 are all

linear in the dynamical fields. Such terms cannot appear as
insertions in 1PI diagrams. Therefore, �q is independent of

�� and	. Similarly, �q is independent of the auxiliary field

b, because Scl contains no interaction vertices that depend
on b.
That the dependence of �q on �c can be only via the linear

combination KA
� � @� �c follows from the following obser-

vation. Acting on the generating functional of 1PI dia-
grams with �=� �ca corresponds to making an insertion of
the source term in the ca equation of motion, namely, an
insertion of fabc@�ðA�bccÞ. This, in turn, is equal to @�
acting on an insertion of the nonlinear part of sA�a, to

which the KA
�a source field couples.

13This convention is different from Ref. [3] where the canonical
dimensions of these fields are 0 and 2, respectively.

14The (finite) counterterms that will be introduced to eliminate
the breaking term will be chosen to respect the same constraints
as well. Since rigorous proofs have been given elsewhere (see
Ref. [3] and references therein), our emphasis is on explaining
the physical origin of the constraints.
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To constrain the dependence on ca we observe that
acting on a 1PI diagram with �=�ca produces an inse-
rtion of

fabcð@� �cbÞA�c¼fabc@�ð �cbA�cÞ�fabc �cb@�A�c: (3.10)

The first term on the right-hand side is a total derivative,
and will generate dependence on @�ca only. The last term

involves the longitudinal part of the gauge field, @�A�c.

Having adopted the Landau gauge, the gauge-field propa-
gator is transversal, and thus an insertion of @�A�c into any

diagram vanishes. The conclusion is that �q can only

depend on @�ca.

We next turn to the breaking term. Because �q is inde-

pendent of �� and of 	, and since in itself the classical

action satisfies the ST identity, any dependence of the
breaking term � ¼ Sð�rÞ on �� or 	 can only arise from

diagrams that violate the conservation of, respectively,
momentum and R charge. Momentum is conserved in
virtually all regularization methods, ruling out any depen-
dence of � on ��.

The R-charge conservation is often violated by the regu-
larization (e.g. dimensional regularization). Because �q is

independent of 	, the 	-dependent terms in � originate
from regularized diagrams that violate the R charge con-
servation, whose sum collapses to a contact term when the
regularization is removed. When the ST operator is ap-
plied, the R-charge violating contact terms present in �r

will give rise to 	-dependent terms in � [see Eq. (2.13)],
which, therefore, must take the form of 	

P
q�0 qOq, where

q, the R charge ofOq, cannot vanish. It follows that adding

the R-symmetry–restoring counterterms i
P

q�0 Oq re-

moves all the 	 dependent terms from �, along with any
terms that have a nonzero R charge, by removing all
(contact) terms with nonzero R charge from �q.

Finally, a set of algebraic identities analogous to the
Wess-Zumino consistency conditions can be used to
show that the dependence of � on the ghost-sector fields
is subject to the same restrictions as �q [3].

Armed with the Wess-Zumino consistency conditions,
and all the additional constraints that must be satisfied by
the breaking term, MPW proved the following result. In a
supersymmetric gauge theory that contains dimensionless
couplings only, barring a supersymmetric extension of the
ABJ anomaly, the most general breaking term allowed by
the complete set of algebraic constraints is B exact. This
implies that all the symmetries, and supersymmetry, in
particular, can be simultaneously restored order-by-order.

In more detail, suppose we have adjusted to zero the
breaking term at all orders up to n� 1. MPW then estab-
lish that, at order n (after removing the divergences via e.g.
minimal subtraction), there exists some local operator

QðnÞ ¼ R
d4xQðnÞðxÞ whose B variation reproduces the

breaking term: �ðnÞ ¼ BQðnÞ. The ghost number of

QðnÞðxÞ is zero, and its mass dimension is equal to four.

Since B is nilpotent, the breaking term is made to vanish
by any symmetry-restoring counterterm of the form

�QðnÞ þBXðnÞ. Here XðnÞ ¼ R
d4xXðnÞðxÞ with XðnÞðxÞ of

dimension three and ghost number �1. It is to be fixed by
imposing some renormalization conditions.
We conclude with a few technical comments. First, our

bookkeeping is slightly different from that of MPW in the
following sense. Our source action (2.3) contains a term
associated with the BRST transformation rule of every ‘‘dy-
namical field,’’ i.e., every field that is integrated over in the
partition function. In contrast, MPW [3] do not introduce
source fields that couple to the BRST variation of the b and �c
fields, which is possible because these BRST variations are
linear in the dynamical fields. Their definition of the ST
operator accommodates this difference. Denoting objects
pertaining to Ref. [3] with a prime, we have Scl ¼ S0cl þ
K �cs �cþ Kbsb, and likewise, �r ¼ �0

r þ K �cs �cþ Kbsb [see
Eq. (2.16)]. It is then straightforward to check that Sð�rÞ ¼
S0ð�0

rÞ. In particular, our Sð�rÞ is always independent of K �c

and Kb. As for the linearized ST operator, our B contains
derivatives with respect to K �c and Kb, whereas theirB0 does
not. But since Sð�rÞ is independent of these source fields, it
follows thatB0S0ð�0

rÞ ¼ BSð�rÞ ¼ 0 as well. In conclusion,
the slight difference in setting up the starting-point classical
theory has no effect on the quantum theory.
The absence of hard supersymmetry anomalies was

directly established by MPW only in the Landau gauge.
But since the supersymmetry current is a gauge-invariant
operator, were a supersymmetry anomaly to exist for any
nonzero value of the gauge parameter� (or for a difference
gauge condition), this would automatically constitute a
violation of gauge invariance too. Since the only known
gauge anomaly is the ABJ anomaly (which we assume to
be absent throughout), we expect, based on MPW’s work,
that no hard supersymmetry anomaly should arise for any
other gauge parameter or gauge condition as well.
MPW’s derivation was done using the on-shell formal-

ism. While one expects the off-shell formalism to have the
same physical content, no explicit proof of the absence of
hard supersymmetry anomalies was given for the off-shell
formalism. If we are to make use of MPW’s result, we are
thus bound to use the on-shell formalism, too.

IV. ABSENCE OF SOFT
SUPERSYMMETRYANOMALIES

In this section we turn to the subject of this paper, which
is the study of soft supersymmetry anomalies. In effect, the
presence of dimensionful parameters in the Lagrangian
means that the anomaly could be a lower-dimension op-
erator. We begin in Sec. IVAwith the observation that, in a
supersymmetric gauge theory containing an Abelian
group, indeed there are new, cohomologically nontrivial,
lower-dimensional candidate anomalies.
We will prove that, nevertheless, these lower-dimension

anomalies never occur. Our derivation is based on the
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following construction. Starting from the original, or ‘‘tar-
get,’’ theory, we trade each mass parameter Mij of the

superpotential (3.3) with a new, dynamical, chiral multiplet
controlled by a new Yukawa coupling. The theory thus
obtained is amenable to the analysis of MPW [3], and can
be renormalized to all orders while preserving all the
classical symmetries, including, in particular, supersym-
metry. The quantum target theory will be recovered from
the extended theory in the limit where all the new Yukawa
couplings are sent to zero. The dynamical effects of the
new multiplets then vanish, while the original mass pa-
rameters emerge as the vacuum expectation values (VEVs)
of the ‘‘frozen out’’ scalar fields. The quantum target
theory reconstructed this way preserves all of its classical
symmetries to all orders, and is thus free of anomalies.

An outline of the construction is given in Sec. IVB, and
the rest of this section is devoted to its details. A brief
summary is given in Sec. IVH. Appendix C deals with the
generalization to the case that the superpotential contains
dimension-two parameters �i.

A. Abelian gaugino anomalies

The breaking term will in general contain an 
 depen-
dent part, �
 ¼ @�=@
, which is responsible for the

violations of supersymmetric Ward identities. The mass
dimension of �
 is 9=2. In more detail, we may write

�
 ¼ P
CiOi, where the coefficients Ci are built from the

parameters of the theory (and, possibly, global BRST
parameters), and the Oi are operators made up of the
dynamical fields and sources.

Apart from dimensionless Yukawa couplings, the most
general superpotential depends on parameters Mij with

mass dimension one, as well as on parameters �i with
mass dimension two. If these dimensionful parameters
occur in one of the coefficients Ci, the operator Oi that
multiplies it has mass dimension lower than 9=2. Thus,
allowing for the most general superpotential could give rise
to new supersymmetry anomalies that were not considered
in Ref. [3].

In a supersymmetric gauge theory that contains an
Abelian gauge field, there are in fact new cohomologically
nontrivial solutions. Denoting by �ðxÞ the Abelian gaugino
field, the superpartner of the Abelian A�ðxÞ, these new

solutions are given by �2 ¼
R
d4x�2ðxÞ, where

�2ðxÞ ¼ C �
P��ðxÞ þ C� �
Pþ�ðxÞ; (4.1a)

C ¼ aijklmnMijMklMmn þ bijkMij�k; (4.1b)

and where the coefficients aijklmn and bijk depend on the

dimensionless coupling constants only. The subscript 2 is
to remind us of the mass dimension of the operator
�
P��.

15

Let us prove that �2 is a cohomologically nontrivial
solution of the Wess-Zumino consistency conditions
(2.20), i.e., that �2 is B closed but not B exact.16

Closedness, B�2 ¼ 0, is equivalent to verifying that
B�2ðxÞ is a total derivative. Writing B ¼ sþ ðB� sÞ
we will show that s�2ðxÞ is a total derivative, and
ðB� sÞ�2ðxÞ ¼ 0. To prove the former we split up the
on-shell BRST operator s according to Eq. (3.4), and con-
sider each term on the right-hand side. The Abelian gau-
gino field �ðxÞ is gauge invariant, and so sg�2ðxÞ ¼ 0. As

for the supersymmetry part of the BRST transformation,
since 
 is commuting the (on-shell) D term in the trans-
formation rule (3.5b) drops out, and we have s
 �
P��ðxÞ /
�
P����F��ðxÞ
. This is a total derivative since the

Abelian field strength is F�� ¼ @�A� � @�A�.
17 Also,

s��ðxÞ is trivially a total derivative. Turning to the

R-transformations part s	 we notice that, in this case, not

just �ðxÞ and 
 but also the parameters Mij and �i trans-

form nontrivially. The R charge assignments encoded in
the transformation rules of Sec. III A imply that �2 has
zero R charge, hence s	�2 ¼ 0. Finally, we have to take

into account the difference between B and s when acting
on �ðxÞ. Contracting the right-hand side of Eq. (B10a) with
�
P� yields zero. This completes the demonstration that
B�2 ¼ 0, i.e., that �2 is closed.
We next show that �2 is not exact, i.e., that there does

not exist any local operator QðxÞ such that �2 ¼ BQ,
with Q ¼ R

d4xQðxÞ. In a nut shell, the reason is that

�
P��ðxÞ is not the supersymmetry variation of anything.
From the simple structure of �2 it follows that if a Q
existed, then it would have to satisfy s
Q ¼ �2, as well as

sgQ ¼ s�Q ¼ s	Q ¼ ðB� sÞQ ¼ 0 [e.g., if it was

not true that sgQ ¼ 0 then �2 would depend on the ghost

field cðxÞ].
The coefficients of �
P��ðxÞ have the generic form of

‘‘M3,’’ for the first term on the right-hand side of Eq. (4.1b),
and ‘‘M�’’ for the second term. Let us consider first theM3

part. The mass parameters Mij do not occur alone in the

transformation rule of any field [only the combination
Mij�jðxÞ occurs in the transformation rule of c iðxÞ]. This
means that QðxÞ would have to have the form
aijklmnMijMklMmnXðxÞ þ H:c:, where XðxÞ is linear in the

fields, has R charge equal to �2, and satisfies s
XðxÞ ¼
�
P��ðxÞ up to a total derivative. Since no (dynamical or
source) field has these properties, theM3 part of Eq. (4.1) is
not exact.
The situation for theM� term is slightly more involved,

since in this case we may obtain �k
 from the supersym-
metry variation of P�c kðxÞ. This means that we have to

15For our conventions, see Sec. III A.

16For further discussion of the divergence of the supersymme-
try current in the presence of the anomaly (4.1), see Appendix H.
17While closedness requires that B�2ðxÞ ¼ @�J � for some
J �, the latter need not be a gauge-invariant operator. Of course,
�2 itself is gauge invariant.
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consider the candidate QðxÞ ¼ bijkMij
�c kðxÞP��ðxÞ þ

H:c:. While the last term on the right-hand side of
Eq. (4.1b) does occur in the B variation of this QðxÞ,
there are of course additional terms in the variation. In
particular, it can be checked that the operator
bijkMij

�c kðxÞP����F��ðxÞ
, that comes from applying

s
 to �ðxÞ, does not occur in the variation of any other

operator except the above QðxÞ. This proves that the M�
term is not exact, too. The only difference is that, in the
case that aijklmn ¼ 0, it would be possible to ‘‘maneuver’’

the anomaly into other forms using the above counterterm.
In particular, by tuning the coefficient of that counterterm
it would be possible to construct representatives of the
same cohomologically nontrivial solution that do not con-
tain any part linear in the Abelian gaugino field.

The behavior of the candidate supersymmetry anomaly
�2 under discrete symmetries is also important, because
such symmetries, which usually survive regularization, can
therefore be used to constrain the possibilities. Under
charge conjugation, the Abelian gaugino field flips sign,
as does the Abelian gauge field itself, whereas the super-
symmetry parameter 
 is invariant. Therefore, �
P�� is
charge-conjugation odd. This rules out the existence of the
anomaly�2 in theories where charge conjugation is a good
symmetry.

The standard model lacks charge-conjugation symmetry.
It also has an Abelian gauge field, the hypercharge field,
and a corresponding Abelian gaugino. The occurrence of
the ‘‘Abelian gaugino’’ anomaly �2 in supersymmetric
extensions of the standard model therefore cannot be ruled
out by invoking charge conjugation. We observe that also
in supersymmetric gauge theories with a vectorlike matter
content, charge conjugation could be explicitly broken by
the superpotential, in which case the occurrence of �2

would again be allowed if an Abelian gauge group is
present. As for parity, the linear combinations �
� and
�
�5� are parity even and odd, respectively, and thus they
are CP odd and CP even, respectively. A CP-even anom-
aly would not be suppressed by the smallness of the
CP-violating phase.

Both the CP-even and CP-odd parts of �2 could not
arise at one loop. The reason is that any diagram that
contributes to them would have to know both about the
absence of charge-conjugation symmetry, which, in the
case of the standard model, comes from the gauge inter-
actions, and about the dimensionful parameters them-
selves, which originate from the superpotential.18 In
addition, any flavor symmetry that is broken by the massive
part of the superpotential would constrain the structure of
the coefficients aijklmn and bijk.

So far, we have seen nothing that would rule out the
occurrence of these candidate supersymmetry anomalies
starting from some order in the loop expansion in super-
symmetric extensions of the standard model. It is therefore
imperative to determine whether they can actually show
up, or alternatively, to rule them out to all orders by some
other reasoning. As it turns out, a proof that these super-
symmetry anomalies never occur can be given.

B. Outline

In the rest of this paper we prove the absence of soft
supersymmetry anomalies. In field theory, masses are often
related to the VEVs of scalar fields. This motivates us to
reconstruct our target theory from an extended theory that
contains additional scalar and fermion spurion fields, and
no dimensionful parameters. In this extended theory, a
special limit is then taken, in which the new scalar fields
are frozen out at chosen VEVs that recover the target
theory’s dimensionful parameters.
This idea applies to all mass parameters with dimension

one, i.e., the parametersMij in Eq. (3.3), in a rather natural

way. The most general superpotential also contains pa-
rameters of dimension two, the �i, and we will deal with
these separately. Any potential soft supersymmetry anom-
aly can contain only one factor of�, leading to an operator
of dimension three, or one factor of� and one factor ofM,
leading to an operator of dimension two. The list of poten-
tial anomalies with dimension three is rather restricted, and
we show that all such candidate anomalies can be removed
by counterterms in Appendix C, by considering all candi-
dates explicitly. Those with an extra factor of M can then
be excluded as an application of the general theorem we
develop in this section.19

We will thus trade each mass parameterMij of the target

theory with a new chiral multiplet and a new Yukawa
coupling. This approach leads to a technical, but important,
complication. The on-shell supersymmetry transformation
of the fermion member of the new chiral multiplet will be
nonlinear, and, furthermore, will depend on the fields of the
original theory. We must ensure the order-by-order locality
of the breaking term under these circumstances. The natu-
ral way to do that is to rely on the regularized action
principle (see Sec. II). But since the regularized action
principle is an expression of the quantum equations of
motion, this requires that all fields in the extended theory
be dynamical.
Our solution is thus to promote the spurions fields

themselves from external fields to new dynamical fields.
What we regain is the locality of the breaking term, and the
applicability of MPW’s theorem. As a result, it will be
possible to renormalize the extended theory such that all

18Recall that we are only considering classically supersymmet-
ric theories, and that a Higgs mechanism requires the existence
of dimensionful parameters in the superpotential.

19We leave aside the question whether also the case of soft
candidate anomalies with a factor of� can be treated by spurion
techniques.
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the classical symmetries, including supersymmetry, are
restored order-by-order.

The price we pay is that the extended theory now con-
tains dynamical degrees of freedom not present in the
target theory. As a consequence, there are new diagrams
with internal ‘‘dynamical-spurion’’ lines with no parallel in
the target theory. However, the unwanted new diagrams
can be suppressed in a natural way. Each dynamical-
spurion multiplet comes with a new Yukawa coupling
constant. This Yukawa coupling controls its dynamical
effects, and allows us to suppress those by taking the limit
where that coupling is sent to zero, while keeping the
corresponding mass parameter of the target theory fixed.

Establishing all-orders supersymmetry in the extended
theory does not necessarily imply the same for the target
theory, because the extended theory contains fields not
present in the target theory. When the spurion fields are
‘‘turned off,’’ we must show that the counterterms that are
needed to restore supersymmetry at each order can be
constructed using only the original fields and parameters
present in the target theory. The role of the extended theory
will be only as a device, used at intermediate stages, that
ultimately allows us to prescribe the symmetry-restoring
counterterms within the target theory itself.

In the next subsection we introduce the ‘‘dynamical-
spurion’’ fields and discuss the classical action of the
extended, or spurionized, theory in some detail. The ab-
sence of hard supersymmetry anomalies is used to restore
all the symmetries of the spurionized theory. The new
crucial element is despurionization, whose precise defini-
tion will be given in the next subsection. Loosely speaking,
despurionization is the operation of ‘‘turning off’’ the
spurion fields by sending the new Yukawa couplings to
zero, while holding the VEVs of the scalar-spurion fields at
the desired values. We will show that, upon despurioniza-
tion, the counterterms of the spurionized theory reduce to a
set of counterterms that depend only on the fields and
parameters of the target theory, and that the renormalized
target theory defined by these counterterms preserves all
the classical symmetries to all orders.

The rest of this section is devoted to the details of the
proof. In Sec. IVD we state the main theorem to be proven
more precisely. In Sec. IVE we introduce the notion of
filtration as it will be used in this paper, and derive some
technical results. In Sec. IV F we discuss the renormaliza-
tion of the spurionized theory. Sec. IVG deals with the
construction of the quantum target theory, and completes
the main part of the proof. Finally, in Appendix C we deal
with the case that some �i are nonzero, while
Appendices D and E provide proofs of two technical
lemmas.

C. Dynamical-spurion theory

It is instructive to first work out a simple example. Let us
consider a supersymmetric theory with the superpotential

Wm ¼ m�þ�� þ . . . : (4.2)

The fields �� are the scalar members of on-shell chiral
multiplets ð��; c�Þ. They belong to complex-conjugate
representations of the gauge group. The ellipses stand for
unspecified additional terms that in principle depend on all
other (scalar) fields of the target theory, and that may or
may not depend on ��. At this stage we assume that the
rest of the superpotential involves (dimensionless) Yukawa
couplings only. As an example, in supersymmetric QCD,
the�� can play the role of the two squarks associated with
a given quark field, all having the same mass m.
Spurionization proceeds by trading the mass parameter

m with a new chiral multiplet ð�s; c sÞ and a new Yukawa
coupling w.20 The dynamical-spurion fields �s and c s are
gauge singlets. The spurionized Lagrangian is still given
by Eq. (3.2), where now the matter content includes both
the original fields of the target theory, and the new spurion
multiplet. There are kinetic terms for all fields, including
the spurions. Since the spurions are gauge singlets, their
kinetic terms contain no interaction terms, and there is no
Yukawa-gauge coupling between the spurions and any of
the gauginos. With the replacement m ! w�s the spur-
ionized superpotential becomes

Ws ¼ w�s�þ�� þ . . . : (4.3)

This superpotential gives rise to new interactions that we
will discuss shortly. The BRST transformation rules, given
by the general formulae of Sec. III A, now depend on the
superpotential (4.3). Likewise, Sext, including both its
K-linear andK-bilinear terms, is constructed while treating
the original dynamical fields, and the new spurion fields,
on equal footing.
The target theory is to be recovered by despurionization.

By definition, this is the process of taking the limit w ! 0,
while holding the VEVof the scalar spurion at

hw�si ¼ m: (4.4)

For the fermionic partner we will have, of course,
hc si ¼ 0. Let us examine the effect of this operation
at the classical level, starting with S0 [see Eq. (2.2)].
Despurionization is facilitated by expanding the scalar-
spurion field as

�s ¼ m=wþ ��s; (4.5)

with ��s being the fluctuating part, and then sending
w ! 0. The fluctuating part ��s decouples in this limit,21

and the classical action of the target theory is recovered
from that of the spurionized theory.

20Without loss of generality we may assume that w is real.
21More precisely, the kinetic terms in the spurion sector turn
into a decoupled, free, massless Wess-Zumino model.
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The spurionized Lagrangian contains new interactions,
some of which are wanted, and some unwanted. The
wanted interactions are those that, under despurionization,
reduce to m-dependent terms of the target theory’s
Lagrangian. The unwanted interactions include all other
w-dependent interactions. In the purely bosonic sector the
new interactions are

j@W=@�sj2 ¼ jw�þ��j2; (4.6a)

j@W=@��j2 ¼ jw�s�� þ � � � j2; (4.6b)

where the ellipses in Eq. (4.6b) come from any additional
�� dependent terms that may be present in the original
superpotential (4.2). Of the new interactions, jw�s�� þ
� � � j2 is wanted, as it reduces to jm�� þ � � � j2. The other
interaction, jw�þ��j2, is unwanted, since there is no
matching term in the original Lagrangian, and indeed it
vanishes in the limit w ! 0. In the fermion sector, we
have the wanted interaction w �cþð�sPþ þ��

sP�Þc�
that reduces to the mass term �cþðmPþ þm�P�Þc�
upon despurionization, and the unwanted interactions
w �c s��Pþc� þ H:c:, that once again vanish in the limit
w ! 0.

Turning to the source action Sext, we need to specify
what is to be done with the source fields that couple to the
BRST variations of the spurion-sector fields. The fermi-
onic spurion source �Kc s is simply set to zero. For the scalar
spurion’s sourceK�s , we choose the despurionized value to
be ðw=VÞkm, where V is the space-time volume, and km is
the (global) source for the BRST variation of the mass
parameterm.22 Recall that the transformation rule for mass
parameters, Eq. (3.7e), means that we treat m as a global
spurion, because of R symmetry. The despurionization rule
for K�sðxÞ has the effect that the source term for the (local
spurion) field �sðxÞ reduces to the source term for the
(global-spurion) parameter m. Explicitly, using Eq. (3.5c)
we have

Z
d4xK�sðxÞs�sðxÞ ¼

Z
d4xK�sðxÞð ffiffiffi

2
p

�
Pþc sðxÞ
þ ��@��sðxÞ þ ið2=3Þ	�sðxÞÞ
! Vðwkm=VÞið2=3Þ	m=wþ . . .

¼ kmið2=3Þ	mþ . . . ; (4.7)

where the arrow indicates the substitutions performed dur-
ing the despurionization process, and the ellipses stand for
terms that will vanish once we take the limit w ! 0. Note
that the factor of 1=w originating from the right-hand side
of Eq. (4.5) is cancelled by the factor of w coming from the
despurionization rule of K�sðxÞ.

Looking ahead, our task will be to extend the scope of
despurionization consistently from the classical to the

quantum theory. In the remainder of this subsection we
touch upon some of the issues we will encounter.
The quantum spurionized theory may require symmetry-

restoring counterterms that depend on the fermionic
spurion field c s, whose supersymmetry variation contains
the nonlinear terms w�þ��P�
 and w��þ���Pþ
. The
worry is that these terms, which depend only on the fields
of the target theory, would be needed in order to restore
supersymmetry Ward identities of the target theory as well.
This would be a problem, because in the target theory the
spurion field c s does not exist, and thus no counterterm
that depends on it can ever be constructed.
Taking thew ! 0 limit ensures that such an impasse will

not arise. Consider a Feynman diagram of the spurionized
theory containing an insertion of a nonlinear term coming
from the c s transformation rule. When we send w ! 0, all
such diagrams vanish, for the simple reason that an inser-
tion of w�þ�� entails a factor of w. What this means is
that c s-dependent counterterms may be needed to restore
supersymmetry Ward identities in the extended theory, but
never in the target theory. As for �s-dependent counter-
terms, we will show that they reproduce the m-dependent
counterterms of the target theory upon despurionization.23

Another subset of diagrams of the spurionized theory
that vanishes in the w ! 0 limit includes any diagram
containing an internal dynamical-spurion line. The reason
is that spurion interactions always involve the coupling
constant w. Adding a dynamical-spurion propagator to a
Feynman diagram adds a factor of w2. All diagrams with a
propagating spurion line are thus suppressed in the limit
w ! 0. As a result, the promotion of the spurions from
external to dynamical fields does not prevent us from
reconstructing the target theory. This, of course, is a key
point of the whole construction: we need spurions to be
dynamical in order to invoke MPW’s theorem, but we then
need to get rid of this dynamics when we return to the
target theory.
The example we have presented in detail above contains

a single mass parameter m. The discussion generalizes
straightforwardly to a general Mij. The spurionization

process amounts to trading each nonzero entry Mij with

a separate spurion multiplet, along with its own Yukawa
coupling. MPW’s theorem applies to the fully spurionized
theory, which, as before, contains no dimensionful parame-
ters. We may thus renormalize the fully spurionized theory
to all orders while preserving all of its symmetries. We then
‘‘descend’’ back to the target theory by applying the de-
spurionization process to all spurion multiplets. The new
Yukawa couplings are all sent to zero, while the associated

22Similarly we set K��
s ¼ ðw=VÞkm�

.

23The supersymmetry variation of c s also contains a term
linear in @��s. Since this term involves a derivative, the VEV
of �s drops out. This is important, because the VEV of �s is
designed to survive despurionization [cf. Eq. (4.4)], and thus it
better not occur in the transformation rule of a field that does not
survive despurionization.
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scalar-spurion VEVs are held fixed at the desired values.
Since a general Mij does not lead to any new issues,

and only requires a more elaborate bookkeeping, we will
formulate the rest of this section in terms of the example
given above that contains the single dimensionful parame-
ter m.

Similarly, the case of a candidate anomaly quadratic or
cubic in the Mij is covered by our extension of the MPW

theorem. Our detailed study will be concerned with the
descent from dimension-five breaking terms (the case to
which MPW’s theorem applies) to dimension-four break-
ing terms, i.e., breaking terms linear in Mij. But, our

theorem then also applies to the further descent to breaking
terms cubic or quadratic in theMij. As already mentioned,

an exception is the case that an�k appears in the breaking
term. This case is covered by the analysis of Appendix C.

D. Statement of main result

The spurionized theory has no dimensionful parameters.
By MPW’s theorem [3], its counterterm action can be
chosen such that the renormalized 1PI functional satisfies
the ST identity to all orders in perturbation theory, i.e., such
that the quantum spurionized theory preserves all classical
symmetries.

Our strategy is to use the spurionized theory as a device
that helps us prescribe how the target theory will be re-
normalized. In a specific regularization scheme, such as
dimensional regularization, constructing the quantum tar-
get theory amounts to prescribing the complete counter-
term action order-by-order. It goes without saying that,
whatever role we envisage for the spurionized theory, the
counterterm action we select for the target theory must
depend only on the fields and the parameters present in that
theory; we have designed despurionization to effect this
constraint.

Let us denote objects pertaining to the spurionized the-
ory by a check mark, while objects without a check mark
will belong to the target theory. The main result of this
paper is the following theorem.

Theorem 1. Reconstruction of the quantum target
theory—Let us fix the counterterm action of the target
theory to be that obtained by despurionization from the
spurionized theory’s one. The following statements are
then true order-by-order in perturbation theory:

1(a) After the removal of infinities via minimal subtrac-

tion, the quantum 1PI functional of the target theory �ðnÞ
q

is the despurionized limit of the spurionized theory’s

one, ��ðnÞ
q .

1(b) The breaking term of the target theory �ðnÞ may be

obtained by despurionization from the breaking term ��ðnÞ

of the spurionized theory.
1(c) Closedness of the breaking term in the spurionized

theory, �B ��ðnÞ ¼ 0, implies the same in the target theory,

B�ðnÞ ¼ 0.

1(d) The symmetry-restoring counterterm action �S½n�t;f of

the spurionized theory, which satisfies ��ðnÞ ¼ � �B �S½n�t;f , can

be chosen such that it reduces upon despurionization to a
symmetry-restoring counterterm action for the target the-

ory S½n�t;f that satisfies �ðnÞ ¼ �BS½n�t;f .

The outcome is an all-orders renormalized target theory
that preserves all of its classical symmetries also at the
quantum level. The technical ingredients needed for
the proof of Theorem 1 will be gradually developed in
the following subsections. The proof itself, which puts
together all these ingredients, is given in Sec. IVG.
Before delving into the technical details let us make a

few comments. First, it is intuitively clear that the opera-
tion of removing the infinities via minimal subtraction
commutes with despurionization. A detailed justification
of this observation will be given below.
We will renormalize the spurionized theory by develop-

ing the perturbative expansion around the classical vacuum
where all scalar VEVs are zero. This is a supersymmetric
minimum of the classical potential. The spurionized theory
is massless on the chosen vacuum, and, by construction,
free of any dimensionful parameters. We may thus impose
renormalization conditions at some nonzero but otherwise
arbitrary p2 ¼ �2 [9].
With our definition of the quantum target theory, the

despurionization process extends straightforwardly to in-
dividual Feynman diagrams. To this end, we simply have to
develop perturbation theory in the spurionized theory
around a different classical vacuum: the one specified by
Eq. (4.4). This involves splitting the scalar-spurion field
into a classical and a fluctuating part according to
Eq. (4.5).24 We will keep using precisely the same set of
counterterms that were previously determined on the mass-
less vacuum. Here we are making the standard assumption
that, being the divergence of a Noether current, an anomaly
is a local operator. As such, it is independent of the
particular vacuum state chosen to develop perturbation
theory. It follows that those (symmetry-restoring) counter-
terms that eliminate the breaking term, and restore all the
symmetries of the spurionized theory on the massless
vacuum, will do so on any other vacuum state as well.
We will not need to explicitly specify the renormaliza-

tion conditions. However, certain choices of the symmetry-
restoring counterterms of the spurionized theory would
hamper the despurionization process, and must therefore
be avoided; that the (renormalization conditions and the)
symmetry-restoring counterterms can be chosen to comply
with this requirement will be proved later on.

24It is not required that the classical vacuum with h�si ¼ m=w
will be a (local) minimum of the classical potential. Adding the
usual source terms

P
I

R
d4xJIðxÞ�IðxÞ to the generating func-

tional for connected diagrams, we enforce the desired �s VEV
by adjusting the (constant mode of the) corresponding source Js
to the needed, in general nonzero, value.
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The target theory may in general contain massless par-
ticles, and may in general contain super-renormalizable
couplings.25 This is the generic situation where infrared
divergences could possibly interfere with the renormaliza-
tion process. We will assume that our target theory is well
defined in the infrared, so that this situation is avoided. For
a discussion of this issue in the context of supersymmetric
extensions of the standard model, see Ref. [12].

E. Filtrations

Let us use the generic name B for any of the nilpotent
operators of interest in this paper. The cohomology space
of B is constructed from the space of all integrated local
operators X ¼ R

d4xXðxÞ that satisfy closedness, BX ¼ 0.
Two elements X1 and X2 in that space belong to the same
equivalence class if their difference is B exact: X1 � X2 ¼
BQ, for some Q ¼ R

d4xQðxÞ. The cohomology space is
defined as the space of all equivalence classes. The coho-
mology space is a linear vector space, in which the zero
vector is the zero equivalence class consisting of all
B-exact elements. Wewill often refer to any element which
is not B exact as B nontrivial.

Without any further restrictions, the complete cohomol-
ogy space will typically be infinite dimensional. Finite-
dimensional cohomology spaces can be defined by pre-
scribing a set of quantum numbers. A quantum-number
operator, denotedQ, will be by definition any operator for
which ½Q; B� / B. In general both fields and parameters
may have nonzero quantum numbers; concrete examples
of quantum numbers will be encountered below. The com-
mutation relation above means that B moves between
spaces with definite quantum numbers, and that the full
cohomology space may be divided into subspaces with
definite quantum numbers.

Filtrations are a standard part of the mathematician’s
toolkit for dealing with cohomology spaces. Like a
quantum-number operator, a filtrationN assigns a certain
charge to every field and parameter. The basic difference is
that B does not satisfy any particular commutation rela-

tions with N . The filtrations we will encounter have in
common that B splits into terms that either maintain or
raise, but never lower, the filtration number N . In other
words, we have

B ¼ B0 þ � � � þ Bm; (4.8)

where Bn denotes that part of B that raises the filtration

number N by n units: ½N ; Bn� ¼ nBn. An immediate

consequence of these definitions is that B0, the part of B

that maintains the filtration number, must be nilpotent too.
To see this, we substitute Eq. (4.8) into the nilpotency
relation satisfied by B, namely B2 ¼ 0. Each part of B2

that raises N by some fixed amount must vanish sepa-
rately. In particular, the vanishing of the part that does not
raise N gives rise to B2

0 ¼ 0.

We next prove a lemma on the relation between coho-
mology spaces induced by a filtration.
Lemma 2. Filtration as embedding of cohomologies—

Consider a nilpotent operator B and a filtration N such
that B ¼ B0 þ � � � þ Bm where m<1. Assume also that

the cohomology space of Bwith given quantum numbers is
finite dimensional. For an element X of the cohomology
space, the filtration is X ¼ Xk þ Xkþ1 þ � � � þ Xl, where

N Xn ¼ nXn. To set the conventions unambiguously, we

assume that the parts of X with filtration numberN < k or
N > l vanish. In addition, there exist nmin and nmax that
depend only on the quantum numbers of the cohomology
space, such that �1< nmin � k � l � nmax <1. Under
these assumptions, if X is B nontrivial, then it has a
representative X0 ¼ X þ BQ whose lowest filtration part
X0
k0 has k � k0 � nmax, and is B0 nontrivial.

Although Lemma 2 is a standard result (see e.g.
Ref. [13]) we give its proof in Appendix D. The reason is
that we will be applying it to a filtration with somewhat
unusual properties, and thus it is important to see precisely
how the assumptions of the lemma enter the proof.
We now introduce the specific quantum-number opera-

tors and filtrations that we will need. We begin with the
quantum numbers. Two of them were already encountered
in Sec. III A. These are the ghost number Qgh, and the

operator that counts the mass dimension, Qd. Referring to
the linearized ST operator of the spurionized theory, the

action of �B increase Qgh by one, and, with our conven-

tions, the same is true for the mass dimensionQd. (As will
be seen shortly, the other nilpotent operators of interest are

contained in �B, and thus they change the quantum numbers
by the same amount.)
A third quantum number that will play a role in our

discussion has its obvious origin in the diagrammatic
expansion. It is the loop(-counting) number Q‘. The Q‘

assignments are given in Table I, and they are designed
such that the classical action has Q‘ ¼ �2, while n-loop
terms in the 1PI functional have Q‘ ¼ �2þ 2n. It can be
checked that Q‘ commutes with B.

TABLE I. Loop-number assignments, referring to the general
superpotential (3.3). All dimensionless coupling constants have
Q‘ ¼ 1. All fields have Q‘ ¼ �1. This includes the dynamical
fields, the corresponding effective fields on which the 1PI func-
tional depends, and the K source fields. The global BRST
parameters have Q‘ ¼ 0.

Q‘ Objects

þ1 Yijk, all gauge couplings

0 Mij, 
, ��, 	.
�1 �i, all fields

25When more than one spurion multiplet is needed, a similar
statement applies to the theories encountered at intermediate
steps of the despurionization process.
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We next introduce two filtrations that are both related to
the Yukawa coupling w introduced in Sec. IVC to control
the spurion sector. The first one will be called the
w-number filtration, and it is defined by the assignments
of the w number, orN w, given in Table II. A glance at the
table reveals that the target theory contains no objects with
nonzero w number. This tells us that the target theory will
have to be recovered from the N w ¼ 0 sector of the
spurionized theory. TheN w > 0 sector of the spurionized
theory will vanish when we apply the despurionization
process, because of the involved w ! 0 limit. The spur-
ionized action also contains terms with a negative w num-
ber, but, as we will see, they occur only at the classical
level, and do not disrupt the construction of the quantum
target theory.

Under the w-number filtration, the decomposition of the
classical action and the linearized ST operator of the
spurionized theory is26

�Scl ¼ ðSclÞ�2 þ ðSclÞ0 þ ðSclÞ2; (4.9a)

�B ¼ B0 þB2: (4.9b)

In the classical action, the bilinear terms that depend on
spurion-sector fields have N w ¼ �2. This includes the
kinetic terms, the terms in Sext that account for the linear
part of the spurion-field transformation rules, and the term
bilinear in �Kc s . As for the remaining terms, it is easy to
keep track of the w number if we remember that the
superpotential has N w ¼ 0. Most other terms in the clas-
sical action haveN w ¼ 0. The only term withN w ¼ 2 is
shown in Eq. (4.6a).

As for the linearized ST operator �B, it has a partB0 that

does not changeN w, and a partB2 that increasesN w by

two units. Terms that contribute to B2 occur in the trans-

formation rule of c s; these are the w�þ��P�
 and
w��þ���Pþ
 terms mentioned already. Such terms also
occur in the equation of motion part [see Eq. (2.10)] of the
transformation rules of some of the K sources.

The second filtration is defined by simply counting
powers of w itself. It assigns a unit filtration number to
w, and zero to everything else. While just being a sophis-
ticated name for the Taylor series in w, it will nevertheless
be useful to think about the Taylor series as a filtration.

Using an overlined superscript to label the power of w, we
then have the following expansions:

B0 ¼ B�0
0 þ wB�1

0 þ w2B�2
0; (4.10a)

B2 ¼ wB�1
2 þ w2B�2

2: (4.10b)

An immediate consequence is that B�0
0 ¼ �Bjw¼0. In words,

B�0
0 is just the linearized SToperator of the spurionic theory

for the special case that w ¼ 0.
Our main interest will be in the breaking-term cohomol-

ogy spaces of the three nilpotent operators �B, B0, and B
�0
0.

We recall that a breaking-term space is the cohomology
space of closed integrated local operators with ghost-
number Qgh ¼ 1 and mass dimension Qd ¼ 1. We now

argue that the breaking-term space of all three operators is
cohomologically trivial.27

To begin with, MPW’s theorem directly applies to �B,
which is the linearized ST operator associated with the
classical action of the spurionized theory. Hence its
breaking-term cohomology is trivial. Next, according to
the observation we have made below Eq. (4.10), the

breaking-term cohomology of B�0
0 is trivial, too, because

B�0
0 is merely the linearized ST operator derived from the

spurionized classical action in the special case that w ¼ 0.
Establishing the same result for the breaking-term space

ofB0 requires some work, because unlike the previous two

cases, B0 is not the linearized ST operator associated with

any classical action. Having ‘‘bracketed’’ B0 between �B
and B�0

0, both of which are directly under the scope of

MPW’s theorem, we prove the same result for B0 using

the embedding lemma, Lemma 2.
Lemma 3.
The breaking-term cohomology of B0 is trivial.

We will prove this statement by applying Lemma 2 to
the powers-of-w filtration. Before we can do that, we must
make sure that the conditions of the lemma are satisfied. In
particular, the powers of w that we may encounter must
belong to a bounded range. This requirement is tricky,
because w itself does not transform under B0. Therefore,

a B0-closed element Xk (i.e., a solution of the equation

B0Xk ¼ 0 with N w ¼ k) remains B0 closed if we multi-

ply it by an arbitrary power of w. The solution is to invoke
the loop-counting number Ql. At order n in perturbation

theory the breaking term �ðnÞ must have Ql ¼ �2þ 2n.
Prescribing Ql on top of Qgh and Qd ensures that arbi-

trarily large powers of w cannot occur,28 as well as that the
breaking-term cohomology space of B0 is finite

dimensional.

TABLE II. w-number assignments.

N w Objects

þ1 w
�1 �s, �

�
s , c s, K

�s , K��
s , �Kc s .

0 everything else

26We drop the check mark from objects with an underlined
subscript since that subscript automatically identifies them as
belonging to the spurionized theory.

27Recall we are assuming the absence of the ABJ anomaly.
28Negative powers of w never occur in the diagrammatic
expansion.
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In order to prove Lemma 3, we now assume on the
contrary that the breaking-term cohomology of B0 in-

cludes a nontrivial element Xk. Applying Lemma 2 it

follows that Xk has a representative whose leading term

in the Taylor series in w is B�0
0 nontrivial. This, however, is

impossible, because MPW’s theorem applies toB�0
0, and its

breaking-term cohomology is trivial.
In the next subsection we will use the triviality of the

breaking-term cohomology of B0 to construct a set of

symmetry-restoring counterterms for the spurionized the-
ory that, after despurionization, will be adequate for the
target theory as well.

F. Renormalization of the spurionized theory

After the preparatory steps of the previous subsection we
now turn to a key feature of the spurionized theory.

Theorem 4. Avoiding N w < 0 counterterms—In the
spurionized theory the following is true order-by-order:

4(a) The minimal-subtraction counterterms have
N w 	 0.

4(b) The breaking term has N w 	 0.
4(c) The symmetry-restoring counterterms can be

chosen to have N w 	 0.
What Theorem 4 tells us is that the complete counter-

term action of the spurionized theory can be chosen to have
N w 	 0. Likewise, the renormalized quantum 1PI func-

tional ��ðnÞ
q will have N w 	 0.

As a preliminary step let us consider the regularized 1PI
functional before the introduction of any counterterms.
Disregarding its tree-level part it is easy to see that this
functional hasN w 	 0. Indeed the only fields that carry a
negative w number are the spurion-sector fields (see
Table II). But K�s cannot occur in loop diagrams since
there is no interaction vertex that depends on it. The
remaining spurion-sector fields �s, c s, and �Kc s always
occur in the interaction Lagrangian multiplied by w.
Hence, before the introduction of any counterterms, the
quantum part of the 1PI functional can be expressed as a
functional of w�s, wc s, and w �Kc s , and positive powers
of w.

Turning to the inductive proof, we assume that
Theorem 4 is true up to order n� 1. An insertion of a
counterterm with N w 	 0 into any diagram can either
maintain or raise, but not lower, the w number of the
diagram. Therefore, before any n-th order counterterms
are included, the OðℏnÞ regularized 1PI diagrams, both
with and without lower-order counterterm insertions, all
have N w 	 0.

The first counterterms that we introduce are the n-th
order minimal-subtraction counterterms, which remove the
overall divergences of the regularized OðℏnÞ diagrams.
Evidently, a minimal-subtraction counterterm has the
same w number as the (sum of) diagrams whose diver-
gence is being subtracted. It follows that the n-th order

minimal-subtraction counterterms have N w 	 0. The

same is true for the OðℏnÞ quantum 1PI functional, ��ðnÞ
q ¼

��ðnÞ
r � �S0, obtained at this intermediate step in the limit in

which the regulator is removed (in dimensional regulari-
zation, the limit d ! 4).
We next show that after minimal subtraction, and before

the introduction of any symmetry-restoring counterterms,

the breaking term ��ðnÞ has N w 	 0. We have established

that at this point the only part of ��ðnÞ
r with a negative

w number consists of the N w ¼ �2 spurion-dependent

bilinear terms in the classical action �S0. Let us now
substitute the definition of the ST operator (2.5) into that
of the breaking term (2.13), and consider separately the
terms that involve differentiation with respect to spurion-
sector fields, and the rest. In the latter case, when we
differentiate with respect to any other field or parameter,

the N w ¼ �2 part of �S0 drops out. The rest of ��ðnÞ
r has

N w 	 0, and the same will be true for the contribution to
the breaking term.
As for the terms that arise from differentiation with

respect to spurion-sector fields, the most dangerous ones

are ð� �S0=��IÞð� ��ðnÞ
q =�KIÞ and ð� ��ðnÞ

q =��IÞð� �S0=�KIÞ,
where here �I stands for �s, �

�
s , or c s, and KI is the

corresponding source field.29 Differentiation with respect
to a spurion-sector field raises N w by one unit, and so

� �S0=��I and � �S0=�KI have N w 	 �1, whereas

� ��ðnÞ
q =��I and � ��ðnÞ

q =�KI have N w 	 1. It follows that

both ð� �S0=��IÞð� ��ðnÞ
q =�KIÞ and ð� ��ðnÞ

q =��IÞð� �S0=�KIÞ
have N w 	 0. By a similar reasoning, the remaining

contribution ð� ��ðnÞ
q =��IÞð� ��ðnÞ

q =�KIÞ has N w 	 2. This

completes the proof that ��ðnÞ has N w 	 0.
The last step is to show that, given a breaking term with

N w 	 0, the symmetry-restoring counterterms can be
chosen to have N w 	 0 as well. The proof, which rests
on Lemma 3, is given in Appendix E.
The outcome is that the singular and the finite n-th order

counterterms all have N w 	 0, and thus the same is true

for the renormalized, quantum 1PI functional ��ðnÞ
q at this

order. This completes the inductive proof.
As a corollary, we may establish the statement, men-

tioned already in Sec. IVC, that any renormalized 1PI
diagram with an internal spurion-sector line must have
N w 	 2. The vertices at which the two ends of the
(dynamical-)spurion propagator are attached give rise to
a factor of w2 (with no compensating factors of the effec-
tive fields�s or c s). In addition, from Theorem 4 we know
that all other interaction vertices and counterterm inser-
tions cannot lower the w number of the diagram.

29The classical terms ð� �S0=��IÞð� �S0=�KIÞ vanish when
summed over all fields and parameters because the classical
action satisfies the ST identity.
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G. Reconstruction of the quantum target-theory

As announced in Sec. IVD, the target theory’s counter-
term action is obtained by despurionization. In the previous
subsection we have established that the counterterm action
of the spurionized theory can be chosen to have N w 	 0.
This is the prerequisite that will allow us to prove
Theorem 1.

Let us begin with Theorem 1(a). Since the quantum 1PI

functional ��q of the spurionized theory has N w 	 0, and

since diagrams with internal spurion lines have N w 	 2,
it is clear that the (diagrammatic expansion of the) target
theory emerges from the N w ¼ 0 sector of the spurion-
ized theory. Also, the minimal-subtraction counterterms
of the spurionized theory obviously remove its infinities
for any set of values of the coupling constants, including,
in particular, w. Therefore the same is true after despurio-
nization, i.e., the minimally subtracted 1PI functionals
satisfy

�� qjdespur ¼ �q: (4.11)

Generating functionals of 1PI diagrams depend on effec-
tive fields, to which any desired value can be assigned.
Accordingly, ð�Þjdespur means that the spurion sector’s

effective fields are set to �s ¼ m=w for the scalar, and
c s ¼ 0 for the fermion.30

Proving the claims of Theorem 1(b) through 1(d)
requires us to show that the algebraic steps needed for
the successful construction of the symmetry-restoring
counterterm action commute with despurionization. In
more detail, Theorem 1(b) will follow by showing that
despurionization commutes with the action of the ST op-
erator, whereas Theorem 1(c,d) will follow by showing that
despurionization commutes with the action of the linear-
ized ST operator.

We consider Theorem 1(b) first. At each order, the
breaking term is defined to be the result of acting with
the SToperator on the minimally subtracted 1PI functional.
Therefore, Theorem 1(b) amounts to the following
equation31:

S ð ��rÞjdespur ¼ Sð�rÞ: (4.12)

As in the case of Theorem 4 we will prove Eq. (4.12) by
substituting the definition of the ST operator (2.5) into the
definition of the breaking term (2.13), and considering the
various contributions one by one.32

When �I is (an effective field associated with) a dy-
namical field of the target theory, we must show that

� ��r

��IðxÞ
� ��r

�KIðxÞ
��������despur

¼ ��r

��IðxÞ
��r

�KIðxÞ : (4.13a)

Because Eq. (4.13a) does not involve differentiation with
respect to any spurion-sector field, its validity follows
immediately from the definition of despurionization and
Theorem 4. A similar result holds for the terms associated
with the transformation rules of the global BRST parame-
ters ��, 
, and 	.

As for the spurion-sector fields, we must show that

Z
d4x

� ��r

��sðxÞ
� ��r

�K�sðxÞ
��������despur

¼ ��r

�m

��r

�km

¼ ið2=3Þ	m��r

�m
; (4.13b)

� ��r

�c sðxÞ
� ��r

� �Kc sðxÞ
��������despur

¼ 0: (4.13c)

Considering Eq. (4.13c) first, we break up the left-hand

side into four terms by writing ��r ¼ �S0 þ ��q. The

functional derivatives of the classical action are given
explicitly by

� �S0
� �Kc s

¼ ffiffiffi
2

p
Pþð@�s�w��þ���Þ


þ ffiffiffi
2

p
P�ð@��

s�w�þ��Þ
þ��@�c s

� ið1=3Þ	�5c sþ2Pþ
ð �Kc sP�
Þ
þ2P�
ð �Kc sPþ
Þ; (4.14a)

� �S0
�c s

¼@� �c s���wð �c��þþ �cþ��ÞPþ

�wð �c���þþ �cþ���ÞP�
� ffiffiffi

2
p

�
ðK�sPþþK��
sP�Þþ��@� �Kc s

þ ið1=3Þ	 �Kc s�5: (4.14b)

Once the prescribed values are assigned to the (effective
and source) spurion-sector fields, the right-hand sides be-
come OðwÞ, and so they vanish for w ! 0. We stress that
these values are assigned only after having performed the
functional differentiations indicated on the left-hand sides.

It follows that the terms that involve � �S0=� �Kc s and/or

� �S0=�c s on the left-hand side of Eq. (4.13c) vanish. In
addition, because each differentiation with respect to a
spurion-sector field adds one unit of the w number, the

purely quantum term ð� ��ðnÞ
q =�c sÞð� ��ðnÞ

q =� �Kc sÞ has

N w 	 2, and so it vanishes upon despurionization as well.

It remains to prove Eq. (4.13b). The quantum part ��q is

independent of K�s , whereas � �S0=�K
�s ¼ �s�s produces

the (unrenormalized) BRST variation of �s. By consider-
ations similar to those made in Eq. (4.7) (in particular,
regarding the w dependence of the various factors) it is
now straightforward to establish Eq. (4.13b): varying the

30The values assigned to the spurion sector’s source fields are
those specified in Sec. IVC.
31The breaking term of the spurionized theory is local (Sec. II),
and, by Eq. (4.12), the same is true for the target theory.
32As noted in the previous subsection, the classical action
always satisfies the ST identity, and thus the purely classical
terms vanish on both sides of Eq. (4.12) as well.
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spurionized 1PI functional with respect to the local spurion
field�s, and then despurionizing, produces the same result
as first despurionizing, and then varying the global-spurion
parameter m. This completes the proof of Eq. (4.12), and
thus, of Theorem 1(b).

The final task is to prove that despurionization com-
mutes with the linearized ST operator. The spaces of
(integrated) local operators on which we must demonstrate
this commutativity correspond to the breaking term and to
the (symmetry-restoring) counterterm action. In the spur-
ionized theory, Theorem 4 tells us that these spaces are
constrained by N w 	 0. Any operator with N w 	 0 can

be expressed as �O ¼ �Oðw�s; wc s; w �Kc s ;wÞ.33 This no-

tation means that �O depends on the spurion-sector fields
only through w�s etc., and that, on top of that, any explicit

w dependence must be polynomial. Of course, �O is al-
lowed to depend on all the fields, the K sources, and the
dimensionless parameters of the target theory as well (this

dependence will be suppressed). Given any operator �O
with these properties, we have

ð �B �Oðw�s; wc s; w �Kc s ;wÞÞjdespur ¼ BOðmÞ; (4.15a)

where the despurionized form of �O is given explicitly by

O ðmÞ ¼ �Oðm; 0; 0; 0Þ: (4.15b)

Note that on the left-hand side of Eq. (4.15a) we act with

the linearized ST operator �B before despurionization,
whereas on the right-hand side we follow the opposite
order.

Since �B and B are both linear functional differential
operators, Eq. (4.15) follows using the Leibniz rule from a
corresponding relation that holds at the level of the ele-
mentary fields. When �IðxÞ is one of the (effective) fields
of the target theory, the basic despurionization relation is

ð �B�IðxÞÞjdespur ¼ B�IðxÞ; (4.16a)

with a similar relation for the K sources of the target
theory. For the spurion-sector fields, the basic relations are

ð �Bw�sðxÞÞjdespur ¼ Bm ¼ ið2=3Þ	m; (4.16b)

ð �Bc sðxÞÞjdespur ¼ 0; ð �B �Kc sðxÞÞjdespur ¼ 0: (4.16c)

Relations (4.16) are established by exhausting all cases. As

an example, one has �Bc s ¼ � �S0=� �Kc s and �B �Kc s ¼
� �S0=�c s, and these expressions, given in Eq. (4.14),
were shown to vanish upon despurionization.

With Eq. (4.15) in hand, Theorem 1(c) follows by using
Theorem 1(b) and noting that when the left-hand side of
Eq. (4.15a) vanishes, the same is true for the right-hand
side. Likewise, Theorem 1(d) follows directly from
Eq. (4.15) and Theorem 1(b). This completes the proof of
our main result, Theorem 1.
As a final comment we would like to point out the

crucial role of the vanishing right-hand side of
Eq. (4.16c). The spurion-sector fields c s and �Kc s leave
behind no remnant in the target theory. A nonvanishing
right-hand side for Eq. (4.16c) would leave room for the
impossible situation, mentioned in Sec. IVC, of a needed
symmetry-restoring counterterm in the target theory that
depends on fields that do not exist in the theory. As an

example, the variation �Bc s involves the nonlinear term
w�þ�� that depends on the target theory’s fields only. But
thanks to the factor of w, this term disappears when the
w ! 0 limit is taken as part of the despurionization
process.

H. Summary

MPW’s theorem [3] establishes that massless supersym-
metric gauge theories are free of anomalies, including, in
particular, supersymmetry anomalies, provided that the
chiral gauge symmetry of the theory (if it has one) is not
anomalous. We have expanded the scope of the theorem to
cover the most general N ¼ 1 supersymmetric gauge
theory, where the superpotential (3.3) can contain parame-
ters with mass dimension one or two. Each mass parameter
Mij was promoted to a dynamical-spurion multiplet. The

spurionized theory is under the scope of MPW’s original
theorem, and symmetry-restoring counterterms can always
be found order-by-order. The generalization to the case that
the dimension-two parameters �i are present was handled
in Appendix C by exhausting all possibilities.
The renormalized target theory is recovered by despur-

ionization: the new coupling constants that control the
coupling of the (dynamical) spurions to the original fields
of the target theory are sent to zero, while the VEVs of the
(scalar) spurions are kept at values that reproduce the
original mass parameters. With the renormalized action
of the spurionized theory in hand, we showed that despur-
ionization produces a renormalized action that—as
required—depends only on the fields and parameters of
the target theory, and which satisfies all the ST identities
order-by-order in the quantum target theory.
Referring to the example theory with a single mass

parameter introduced in Sec. IVC, when dealing with the
effective fields on which the spurionized 1PI functional
depends, we have, in particular, set the scalar-spurion field
to m=w. In comparison to Eq. (4.5), which deals with the
dynamical field, this amounts to dropping the quantum
part, ��s. The consistency of our treatment of dynamical
and effective spurion fields follows from the physics of the
w ! 0 limit. In this limit not only do diagrams with33Recall that both ��q and �� are independent of K�s .
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internal spurion lines vanish; the same is true for all
diagrams with (the quantum part of) the scalar, or the
fermion, spurion fields on an external leg. In short, for
w ! 0 the spurion sector turns into a decoupled, free,
massless Wess-Zumino model. In Sec. IVC we already
made this observation when discussing the classical the-
ory; now we have extended it to all orders in perturbation
theory. The only remnant the spurions leave behind is the
mass parameter m, which comes from the VEVof �s.

Our construction has the following implication for the
candidate anomaly of Eq. (4.1). The dimensionful coeffi-
cients are comprised of two pieces. We have shown in
Sec. IVA that the part cubic in the mass parameters,
aijklmnMijMklMmn, cannot be altered by any counterterm.

But we have now also proved that a choice of counterterms
always exists such that any breaking terms in the target
theory are eliminated. Therefore, any concrete diagram-
matic calculation must give rise to a vanishing aijklmn, at

every order. The details regarding the bijkMij�k part of the

dimensionful coefficient are somewhat different. Unlike
aijklmn, the value of bijk can be modified by a counterterm

whose structure was discussed in Sec. IVA. Thus, it is not
ruled out that a nonzero bijk is found in a concrete calcu-

lation at some order, but, in that case, �ðnÞ would neces-

sarily contain additional terms such that, altogether, �ðnÞ is
B exact.

The algebraic mechanism by which the spurionized
theory ‘‘deals’’ with the candidate anomaly (4.1) is inves-
tigated in Appendix F. The spurionized theory’s cohomol-
ogy space contains a nontrivial element, given explicitly by
Eq. (F3), which reduces to Eq. (4.1) upon despurionization.
That the candidate anomaly (F3) will actually never occur
in the spurionized theory then follows from its dependence
on the ghost field cðxÞ. In the case of a vectorlike theory,
where a gauge-invariant regulator is available, such an
anomalous divergence of the supersymmetry current evi-
dently cannot arise, because the supersymmetry current is
gauge invariant. In a chiral gauge theory, too, the candidate
anomaly (F3) is ruled out by invoking the Landau gauge
(see Sec. III B), where the breaking term can only depend
on @�cðxÞ. The absence of the candidate anomaly (4.1)

from the target theory is a consequence of the absence of
the candidate anomaly (F3) from the spurionized theory.

The off-shell and on-shell component formalisms differ
only in that additional auxiliary fields are present in the
former case. Their physical contents should be identical.
Nevertheless, in our proof, we had to make use of the on-
shell formalism, because only in that case is an explicit
proof available for the massless case [3]. In comparison to
the spurions used in Refs. [5,6], an important algebraic
difference is that we retrieve a dimensionful parameter of
the original theory from the VEVof the lowest, rather than
the highest, component of the spurion supermultiplet. A
consequence is that the on-shell supersymmetry transfor-
mation rules of our spurion multiplet, which is just an

ordinary chiral supermultiplet, are no longer linear.
As explained in Sec. IVB, in order that standard results,
and, in particular, the locality of the breaking terms, will
hold under these circumstances, we have promoted the
spurions to new dynamical fields.34 As it turns out, the
target theory can still be recovered, essentially because
the new Yukawa couplings we have introduced provide
enough control over the coupling between the dynamical-
spurion sector and the physical fields of the original mas-
sive theory.

V. CONCLUSION

In this paper we completed the proof that no anomalies
occur in supersymmetric gauge theories to all orders in
perturbation theory, if their fermion representation is
anomaly-free with respect to the chiral gauge symmetries
in the theory. The proof was given in the on-shell compo-
nent formulation, with all auxiliary fields removed.
Such a proof was given before in Ref. [3] for massless

theories, i.e., theories containing only dimensionless pa-
rameters, also in the on-shell component formalism.
MPW’s proof [3] relies on the existence of a generalized
BRST symmetry, which encompasses gauge symmetry,
supersymmetry, translation invariance, and R symmetry.
This makes it possible to turn the subject into a cohomol-
ogy problem, which was then solved by MPW for the
massless case, with the result that no anomalies other
than the standard chiral anomaly can occur to all orders
in perturbation theory.
The extension of this proof to the most general super-

symmetric gauge theory containing also parameters with
positive mass dimension is not trivial for several reasons.
To begin with, we showed that candidate anomalies exist
that would vanish in the massless case, simply because
they are proportional to dimensionful parameters of the
theory. Technically, this means that operators with all the
right quantum numbers exist that are closed with respect to
the generalized BRST operator, but not exact: They satisfy
the Wess-Zumino consistency conditions, Eq. (2.20), but
are not removable by counterterms. The task is thus to
show that such operators simply never occur, even if the
regulator breaks the symmetries of the classical theory.
Our strategy was to promote the massive theory to a

theory in which the mass parameters are replaced by
spurion multiplets. The spurionized theory is then a mass-
less theory, to which MPW’s theorem applies. Usually,
spurion fields are kept external; they appear only on
the external legs of diagrams. In contrast, a key new

34Had a proof been available for the off-shell massless theory,
our task would have been easier in that an off-shell chiral
multiplet transforms linearly, and this would have allowed us
to keep the spurions as external fields. See, however, Ref. [14]
for complications of renormalizing supersymmetric theories in
the off-shell formalism.
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element of our construction is that the spurions are made
into dynamical fields. The order-by-order proof of MPW’s
theorem relies on the locality of the breaking term that
exhibits the violations of Slavnov-Taylor identities.
Locality is a consequence of the regularized action princi-
ple, Eq. (2.17), which in turn is a manifestation of the
quantum equations of motion. When all fields transforming
under the BRST operator are dynamical, i.e., integration
variables in the path integral, the necessary conditions for
MPW’s theorem are naturally satisfied.

The theory with dynamical-spurion fields contains dia-
grams that are not present in the target theory, because
spurion fields can appear on internal lines. The question is
how to ‘‘despurionize,’’ in order to return to the massive
target theory. Using filtration techniques, we showed that
this can be done by taking the couplings of the spurion
sector to the physical sector (of the target theory) to zero.
In the process, the scalar spurions’ VEVs are adjusted so as
to reproduce the original mass parameters.

Our analysis establishes that all terms that may break the
generalized BRST symmetry in the quantum theory can, in
fact, be removed by counterterms. Cohomologically non-
trivial operators of the target theory, which naively could
appear as anomalies, will in fact never arise in any concrete
calculation. Their presence is ruled out by the larger sym-
metry group of the spurionized theory, where the full set of
algebraic constraints that are to be satisfied by the breaking
term becomes more powerful.

By construction, we obtain the counterterms in the target
theory as descendants from counterterms in the spurion-
ized theory. An obvious, but nontrivial, point here is that all
the counterterms needed in the target theory will survive
the process of despurionization. Technically, the violations
of Slavnov-Taylor identities are removable if and only if
they can be reproduced by applying the linearized Slavnov-
Taylor operator to some counterterms. What makes our
construction work is that the application of the Slavnov-
Taylor operator (to the renormalized 1PI functional) and of
the linearized Slavnov-Taylor operator (to the counterterm
action or to the breaking term) both commute with the
process of despurionization, cf. Sec. IVG. Therefore, the
violations of Slavnov-Taylor identities in the target theory
are completely removed by counterterms that depend only
on the fields and parameters of the target theory itself.

Our construction gives rise to a conserved supersymme-
try current in the target theory, as well as in the spurionized
theory, because the spurions are dynamical fields. By con-
trast, the spurion fields of Refs. [5,6] are external, and,
while one can formally use them to make a breaking term
cohomologically exact, still the supersymmetry current
may not be conserved. As we explain in detail in
Appendix H, the basic reason is that the continuity equa-
tion is derived by varying dynamical fields only.

In our proof, we did not consider soft explicit supersym-
metry breaking. Rather, starting from a classically super-

symmetric theory, we dealt exclusively with the restoration
of supersymmetry along with all other classical symmetries
in the quantum theory. Once this chapter is accomplished,
the usual spurionic techniques of Refs. [4–6] can then be
used in order to deal with the renormalization of the soft
supersymmetry-breaking terms that are induced in the low-
energy theory as a consequence of the spontaneous breaking
of supersymmetry at a high scale.
With this paper, the proof that there are no perturbative

anomalies in supersymmetric gauge theories other than the
usual chiral anomaly is now complete.
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APPENDIX A: NOTATION

The Euclidean Dirac matrices are Hermitian. We use the
chiral representation

�k ¼ 0 i�k

�i�k 0

� �
; �4 ¼ 0 1

1 0

� �
; (A1)

with �k, k ¼ 1, 2, 3, the Pauli matrices. The chiral projec-
tors are P� ¼ ð1� �5Þ=2, where

�5 ¼ ��1�2�3�4 ¼ 1 0
0 �1

� �
; (A2)

and

��� ¼ i

2
½��; ���: (A3)

The charge-conjugation matrix C ¼ ��2�4 satisfies

C�� ¼ ��T
�C: (A4)

In this paper we use the following Majorana(-like) no-
tation. Given a two-component Weyl fermion � we
construct the four-component spinors

c � �

 ��T

� �
; �c � ð��T
 ��Þ; (A5)

satisfying the identity

�c ¼ c TC: (A6)

The following related shorthands are used. Given a com-
plex scalar field �i, we let

�5i � Pþ�i þ P���
i ¼ �i 0

0 ��
i

� �
:

For the group generators and covariant derivatives we
similarly set
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T5a � Ta 0
0 �T�

a

� �
¼ Ta 0

0 �TT
a

� �
;

D5� � ð@� þ igA�aT5aÞ ¼ D� 0
0 D�

�

� �
:

For example, D5��5 sandwiched between two spinors is

D�� orD�
��

�, depending on the chirality of the spinors. If
W ¼ Wð�iÞ is a polynomial in a set of complex scalar
fields �i, we similarly define W5 ¼ PþW þ P�W�, as
well as W5;i ¼ Pþ@W=@�i þ P�@W�=@��

i , and so on.

Because of the presence of �5, the Dirac matrices do not
commute with D5�, and, in particular, ��D5� ¼ D�

5���.

We will also use the shorthands

6D5 � ��D5�; 6D�
5 � ��D

�
5�; (A7)

in which the Dirac matrix always occurs to the left of the
derivative operator.

APPENDIX B: OFF-SHELL FORMALISM

In this appendix we discuss the BRST operator for the
off-shell component formalism. We elaborate on the con-
nection with the on-shell classical action, including, in
particular, its K source terms, and show that the on-shell
action satisfies the ST identity.

In the off-shell framework, the gauge multiplet consists
of ðA�a; �a; DaÞ and the matter multiplet of ð�i; c i; FiÞ,
where Da and Fi are auxiliary fields. The off-shell
Lagrangian consists of separate kinetic terms for the gauge
multiplet35

L g ¼ 1
4F

2
��a þ 1

2
��a 6Dab�b þD2

a; (B1)

and for each matter multiplet,

L k ¼ ðD��Þ�j ðD��Þj þ igDa�
�
i Taij�j þ F�

i Fi

þ 1
2
�c i 6D5ijc j � ig

ffiffiffi
2

p
��a�

�
5iT5aijc j; (B2)

as well as a superpotential-dependent term

L p ¼ �iW;iFi � iW�
;iF

�
i þ 1

2
�c iW5;i;jc j: (B3)

The gauge-fixing action (3.8) remains the same as in the
on-shell case.

The supersymmetry transformations are linear in super-
space.36 In the off-shell component formalism they
become nonlinear: the original, linear supersymmetry
transformation is accompanied by a supergauge transfor-
mation. The latter restores the Wess-Zumino gauge, where
unphysical components of the vector superfields are elim-
inated algebraically. This entails several changes: Ordinary
derivatives turn into covariant ones, and the transformation
rule of any nonsinglet Fi picks up an additional, nonlinear

term that involves the gaugino. Explicitly, the off-shell
transformation rules of the gauge multiplet are

sA�a ¼ �
���a þD�abcb þ ��@�A�a;

s�a ¼ ðði=2ÞF��a��� þDa�5Þ
þ gfabccb�c

þ ��@��a þ i	�5�a;

sDa ¼ � �
�5 6Dab�b þ gfabccbDc þ ��@�Da: (B4)

For the matter multiplets they are

s�i¼
ffiffiffi
2

p
�
Pþc i� igcaTaij�jþ��@��iþ ið2=3Þ	�i;

s��
i ¼

ffiffiffi
2

p
�
P�c iþ igcaT

�
aij�

�
j þ��@��

�
i � ið2=3Þ	��

i ;

sc i¼
ffiffiffi
2

p ð 6D�
5ij�

�
5jþ iF5iÞ
� igcaT5aijc jþ��@�c i

� ið1=3Þ	�5c i;

sFi¼�i
ffiffiffi
2

p
�
P� 6Dijc jþ2g �
P��aTaij�j� igcaTaijFj

þ��@�Fi� ið4=3Þ	Fi;

sF�
i ¼�i

ffiffiffi
2

p
�
Pþ 6D�

ijc j�2g �
Pþ�aT
�
aij�

�
j

þ igcaT
�
aijF

�
j þ��@�F

�
i þ ið4=3Þ	F�

i : (B5)

Note that the off-shell transformation rules of the boson
fields A� and �i remain the same as in Sec. III A. The

transformation rules of the ghost-sector fields and of pa-
rameters are unchanged, too.
The off-shell BRST operator is nilpotent, s2 ¼ 0.

Splitting up the off-shell operator similarly to Eq. (3.4)
we have

0 ¼ s2g ¼ s2� ¼ s2	 ¼ fsg; s�g
¼ fsg; s	g ¼ fs�; s	g ¼ fs
; s	g: (B6)

In addition we have ðsg þ s� þ s
Þ2 ¼ 0, which, together

with the above relations, may be rewritten as

s2
 ¼ �fs
; sgg � fs
; s�g; (B7)

showing that two off-shell supersymmetry transformations
close on the sum of a translation and a gauge transforma-
tion. The local parameter of this gauge transformation is
/ �
A
, making the sum of the two terms on the right-hand
side a covariant translation with parameter �
��
.

As mentioned in Sec. II, in the off-shell formalism the
K-source action takes the form of Eq. (2.3), and no terms
bilinear in the K sources exist. That the off-shell classical
action satisfies the ST identity follows from nilpotency of
the off-shell transformation.
We next discuss the transition from the off-shell to the

on-shell formalism. In the rest of this appendix, we use
superscripts to distinguish objects pertaining to the on- or
off-shell formalisms. The transition is facilitated by inte-
grating out the auxiliary fields Fi, F

�
i , and Da, while turn-

ing off their sources KF
i , K

F�
i , and KD

a . The full on-shell
classical action is thus obtained as

35See Appendix A for notation.
36For a discussion of the superspace cohomology see
Appendix F.
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expð�Soncl Þ ¼
Z Y

a

DDa

Y
i

DFiDF�
i


 expð�Soffcl Þ
��������KF

i ¼KF�
i ¼KD

a ¼0
: (B8)

Integrating out the auxiliary fields has several effects. The
auxiliary fields occurring in the off-shell supersymmetric
action and in the supersymmetry transformation rules of
the fermions are replaced by the expressions they are equal
to by their equations of motion. In particular, terms bilinear
in the fermionic K sources are generated. Their explicit
form is

Son;bilext ¼ 2ð �Kc
i Pþ
Þð �Kc

i P�
Þ � 1
2ð �K�

a�5
Þ2: (B9)

This leads to a difference between the on-shellBon and son,
when acting on a fermion field:

ðBon � sonÞ�a ¼ ��5
ð �K�
a�5
Þ; (B10a)

ðBon � sonÞc i ¼ 2Pþ
ð �Kc
i P�
Þ

þ 2P�
ð �Kc
i Pþ
Þ: (B10b)

Using its definition (B8) one can show that Soncl satisfies the
ST identity, SðSoncl Þ ¼ 0. First, consider the term in the on-

shell ST identity that corresponds to a scalar field �i. With
expectation values that refer to the auxiliary-field partition
function (B8) we have

�Soncl
��i

�Soncl

�K�
i

¼
�
�Soffcl

��i

��
�Soffcl

�K�
i

�
; (B11a)

¼
�
�Soffcl

��i

�Soffcl

�K�
i

�
; (B11b)

¼
�
soff�i

�Soffcl

��i

�
: (B11c)

The transition from the first to the second line works as

follows. On the first line, because �Soffcl =�K
�
i is indepen-

dent of the auxiliary fields, we can drop the expectation

value surrounding it: h�Soffcl =�K
�
i i ¼ �Soffcl =�K

�
i . For the

same reason, �Soffcl =�K
�
i can now be brought inside the

expectation value h�Soffcl =��ii, obtaining Eq. (B11b). The

last equality follows by noting that �Soffcl =�K
�
i ¼ soff�i. A

similar equality holds for every dynamical field present in
the on-shell formalism. Which term can be moved inside
and outside of the expectation values varies, but the out-
come is the same. In addition, one can check that
hsoffFið�Soffcl =�FiÞi ¼ 0, with a similar result for Da,

which is true because the auxiliary-field equations of mo-
tion can be used inside the averages of Eq. (B8). Finally, by
summing hsoff�Ið�Soffcl =��IÞi over all of the dynamical

fields, now those of the off-shell formulation, we find that
SðSoncl Þ ¼ hsoffSoffcl i ¼ 0, as claimed.

The construction can be generalized to relate off-shell
and on-shell cohomologically closed solutions. This is

based on the following trick. Assume that the commuting
functional � satisfies the ST identity, Sð�Þ ¼ 0, and that
the anticommuting functional � is closed relative to the
corresponding linearized ST operator, namely, S�� ¼ 0.
Introducing a Grassmann variable � we then have

S ð�þ ��Þ ¼ Sð�Þ þ �S�� ¼ 0; (B12)

where we used that �2 ¼ 0. We now assume that
Boff�off ¼ 0, and seek the corresponding on-shell closed
solution that satisfies Bon�on ¼ 0. (Recall Boff ¼ SSoff

cl

and Bon ¼ SSon
cl
.) Augmenting the auxiliary-field partition

function (B8) by the Grassmann variable � , we define

Zð�Þ � Y
a

DDa

Y
i

DFiDF�
i expð�Soffcl � ��offÞ

¼ expð�Soncl � ��onÞ; (B13)

which implies

�on ¼ � @

@�
logZð�Þ ¼ h�offi; (B14)

where �2 ¼ 0was used. The expectation value in Eq. (B14)
is with respect to the partition function (B8), i.e., with
respect to Zð� ¼ 0Þ. Equation (B14) has the intuitively
expected structure, namely, the on-shell solution is ob-
tained from the off-shell one by substituting for the auxil-
iary fields using their equations of motion [in the presence
of K sources for the (bosons and) fermions].
In order to show that the definition (B14) satisfies

Bon�on ¼ 0 one uses Eq. (B12) as well as equalities
similar to Eq. (B11) in which Scl is replaced with Scl þ
��, and expectation values are now with respect to Zð�Þ.
However, a word of caution is that the necessary inter-
mediate steps depend on the detailed form of �off , and
must be verified on a case by case basis. This refers to the
ability to maneuver at least one of �ðSoffcl þ ��offÞ=��I or

�ðSoffcl þ ��offÞ=�KI inside and outside of the expectation

values.

APPENDIX C: RULING OUT
�-DEPENDENT ANOMALIES

A soft anomaly that is linear in the dimension-two
parameters �k will have mass dimension three, when it
is independent of all mass parameters, or mass dimension
two, when in addition it is linear in the mass parameters
Mij.

37 Most of this appendix is devoted to excluding the

dimension-three case. But first let us consider the
dimension-two case.
The dimension-two operator must have the form of 


times a fermion field. Both �
P�c i, with c i a neutral

37No operators with mass dimension one and the right quantum
numbers exists.
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matter fermion, and �
P��, with � an Abelian gaugino, are
cohomologically closed.38 The first is exact, being the
supersymmetry transformation of the corresponding scalar,
�i or �

�
i .

The operators �
P�� are not exact, but they are ruled out
by generalizing the construction of Sec. IV. We spurionize
the mass parameters, then renormalize the spurionized
theory such that its breaking term vanishes to all orders,
and finally, via despurionization, we reconstruct the quan-
tum target theory while preserving all of its classical
symmetries. This procedure will be successful provided
that we can handle the case where the only dimensionful
parameters present are the �k’s.

With no mass parameters Mij in the superpotential, the

most general form of the breaking term is

�0 ¼ ~�þ ð�kX
0
k þ H:c:Þ; (C1)

where the�k dependence is explicitly shown, and summa-
tion over k is implied. Turning off momentarily all the�’s,
it follows from MPW’s theorem that there exists a counter-
term Q (which in itself is independent of �k) such that
~� ¼ �Bj�k¼0Q. Turning the �’s back on, it follows that
~�þBQ ¼ ðB�Bj�k¼0ÞQ is linear in �k. The breaking

term thus has another representative � ¼ �0 þBQ
such that

� ¼ �kXk þ H:c: ¼
Z

d4x�kXkðxÞ þ H:c:; (C2)

which now contains no �-independent terms.
In the rest of this appendix we show that there exists

no cohomologically nontrivial solution with the form of
Eq. (C2) that also satisfies all the other required con-
straints. We begin by listing these constraints.

In order that � would qualify as a candidate breaking
term, XkðxÞ must have mass dimension Qd ¼ 3, R charge
QR ¼ �4=3, and ghost number Qgh ¼ 1. The latter re-

quirement implies that XkðxÞ should be (at least) linear in 

or cðxÞ. However, as reviewed in Sec. III B, any cðxÞ
dependence can be only through @�cðxÞ. Therefore, we
must have XkðxÞ ¼ Yk�ðxÞ@�cðxÞ, where Yk�ðxÞ has

Qd ¼ 1, and QR ¼ �4=3. Such an object does not exist,
ruling out anything depending on cðxÞ.

Below we will write Xk, suppressing the dependence on
x. Whether we refer to the local operator or to the inte-
grated one will be clear from the context.

Operators with more than one object with nonzero ghost
number (for a complete list, see Sec. III A) are ruled out. As
an example, we consider the case of terms with two 
’s. A
bilinear in 
must contain �� or ���. In the latter case, the

only Qd ¼ 3 operator is ð �
���
ÞF��, which has the

wrong ghost number and R charge. For the other case,

we can have ð �
��
ÞKA
�, where KA

� is the source coupled

to the variation of an Abelian gauge field. Now the ghost
number is correct, but the R charge is wrong.
Having concluded that Xk must be linear in 
 we may

write Xk ¼ �
ðPþYkþ þ P�Yk�Þ. Then QdðYk�Þ ¼ 5=2
while the R charge is QRðYkþÞ ¼ �7=3 and QRðYk�Þ ¼
�1=3. Either way, Yk� must contain a field with half-
integer dimension, i.e., a matter fermion c , a gaugino �,
or theK source for one of them. This must be multiplied by
an object with Qd ¼ 1, which can be the gauge field, a
scalar field, or a derivative. These possibilities do not sum
up to anything with QR ¼ �7=3, thereby ruling out Ykþ.
Dropping the minus subscript from now on, it follows that
Xk ¼ �
P�Yk for some Yk.
Taking into account all possibilities for the operator Yk,

we arrive at the most general expression allowed by di-
mensionality, ghost number, etc.:

Xk ¼ c1;ik �
P� Aijc j þ c2;ijk�
�
i ð �
P�c jÞ

þ c3;iak�ið �
P��aÞ; (C3)

where the indices i, j run over the matter supermultiplets.
We have dropped terms / �
P�@c i since they are total
derivatives.
Because Xk is independent of the ghost-sector fields, B

closedness implies that BgXk vanishes separately for each

k, and so does B
ð�kXkÞ after the k summation. The

breakup of B is defined analogously to Eq. (3.4). In par-
ticular, B
 consists of the 
-dependent terms in the varia-

tion of each field. For the operators that occur in Eq. (C3),
Bg ¼ sg. Note that B
 � s
 when acting on a fermion

field.
We start from the requirement that BgXk ¼ sgXk ¼ 0.

Once again, since X is independent of the ghost-sector
fields, sgXk ¼ 0 implies that Xk is gauge invariant.

39 This

rules out the first term in Eq. (C3). We comment that, by
adding a total-derivative term, one can replace A� by a

covariant derivative D� in that term. While the resulting

operator would transform covariantly, it will never be
gauge invariant.
For the last two terms, we find that c2;ijk can be nonzero

only when i, j correspond to two complex-conjugate rep-
resentations. As for c3;iak, it can be nonzero only if �i

belongs to the adjoint representation in the non-Abelian
case, or is neutral in the Abelian case.
We next turn to B
. The variation of the last term in

Eq. (C3) gives rise to c3;iakð �
P��aÞð �
Pþc iÞ, among

other terms. This does not vanish by fierzing, and cannot
cancel against any other term in B
�, ruling out this

possibility.

38Provided that they are multiplied by dimensionful coefficients
with an appropriate R charge, as in Eq. (4.1).

39Recall that, by gauge invariance of the superpotential (3.3),
�k can be nonzero only if �k is a gauge singlet.
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It remains to consider the c2 term. Explicitly, we have

B
c2;ijk�
�
i ð �
P�c jÞ¼

ffiffiffi
2

p
c2;ijkðð �
P�c iÞð �
P�c jÞ

þ��
i ð �
P�ð 6D�Þ�j
ÞÞ

¼ ffiffiffi
2

p
c2;ijk

�
ð �
P�c iÞð �
P�c jÞ

þ1

4
ð �
��
Þ@�ð��

i �
�
j Þ

þ1

4
ð �
��
Þð�iðD��jÞ

��jðD��iÞÞ�
�
: (C4)

Disregarding the total derivative, the expression in square
brackets on the last line is antisymmetric in the indices
i and j. The required vanishing of the left-hand side thus
imposes the constraint that c2;ijk is symmetric in the indices

i, j. This, in turn, implies

c2;ijk�k�
�
i ð �
P�c jÞ ¼ 2�3=2c2;ijk�kB
ð��

i �
�
j Þ

¼ 2�3=2c2;ijkBð�k�
�
i �

�
j Þ; (C5)

hence the only allowed term is B exact.

APPENDIX D: EMBEDDING LEMMA

Here we give the proof of Lemma 2. We start by apply-
ing the filtration N to the closedness relation BX ¼ 0.
From the lowest-N term it follows that B0Xk ¼ 0, i.e., Xk

belongs to the cohomology of B0 with the same quantum

numbers. If Xk is B0 nontrivial, we are done. If not, there

exists Qk such that B0Qk ¼ Xk. It follows that X
ð1Þ ¼ X �

BQk is a representative of the same B equivalence class and

that, moreover, Xð1Þ has a lowest-N value equal to (or

greater than) kþ 1. Note that Xð1Þ may have a largest N
higher than that of X, but under the assumptions of
Lemma 2 we are assured that the highest-N value is
always bounded by nmax.

Now the process is repeated. Again, the new lowest-N
part, Xð1Þ

kþ1, is B0 closed.
40 If it is also B0 nontrivial then we

are done. If not, there exists Qkþ1 such that Xð1Þ
kþ1 ¼

B0Qkþ1 and we may repeat the process once more.

Since, at each step, the lowest-N part of the representative
is raised by one, and since the maximal value we may
encounter is nmax, the process must stop. If it did not stop
earlier, we would have constructed Q ¼ Qk þQkþ1 þ
� � � þQnmax

such that X � BQ ¼ 0. But this would imply

that X was B exact, contrary to our assumption that it is
nontrivial. Therefore the process had to stop earlier, when

the lowest-N part of X � BðQk þQkþ1 þ � � � þQmÞ is
B0 nontrivial (and, necessarily, m< nmax).

APPENDIX E: AVOIDING N w < 0 SYMMETRY-
RESTORING COUNTERTERMS

In this appendix we prove the following result. Consider

the breaking term �� obtained in the spurionized theory at

some order in the loop expansion. We assume that ��
contains no part with N w < 0, i.e., with negative w num-

ber.41 Then, a symmetry-restoring counterterm �Q can be

chosen such that �� ¼ �B �Q , and �Q has no N w < 0 part.
We start with the w-number filtration of the nilpotency

relation, �B2 ¼ 0. Using Eq. (4.9b) we obtain

B2
0 ¼ 0; (E1a)

fB0;B2g ¼ 0; (E1b)

B2
2 ¼ 0: (E1c)

The w-number filtration of the breaking term is �� ¼ �0 þ
�2 þ � � � þ�2n. Since even and odd values ofN w do not

mix under the action of �B, we have assumed that ��
contains only even powers. (For odd powers only, the proof
would go the same.) Our assumptions rule out that � has
any N w < 0 part. Also, allowing for the possibility that
individual terms in the expansion vanish, we may assume
without loss of generality that 2n ¼ 2nmax is the maximal
(even) value of N w that is allowed by the quantum num-
bers Qd ¼ 1, Qgh ¼ 1 and the given loop number Q‘.

We now proceed to the construction of the symmetry-

restoring counterterm. Filtering �B �� ¼ 0, we have

B0�0 ¼ 0; (E2a)

B0�2 þB2�0 ¼ 0; (E2b)

B0�4 þB2�2 ¼ 0; (E2c)

..

. ¼ ..
.

B0�2nmax
þB2�2nmax�2 ¼ 0; (E2d)

B2�2nmax
¼ 0: (E2e)

By Lemma 3, the breaking-term cohomology of B0 is

trivial. It follows from Eq. (E2a) that there is Q0 such that

�0 ¼ B0Q0: (E3)

Next, plugging it into Eq. (E2b) we have

0 ¼ B0�2 þB2�0 ¼ B0�2 þB2B0Q0

¼ B0ð�2 �B2Q0Þ; (E4)

40If Xð1Þ
kþ1 ¼ 0 then, trivially, Qkþ1 ¼ 0 and we may proceed to

Xð1Þ
kþ2.

41That this assumption is true order-by-order is proved in
Sec. IVG.
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where in the last step we used Eq. (E1b). Again using the
triviality of the B0 cohomology, there exists Q2 such that

B 0Q2 ¼ �2 �B2Q0; (E5a)

or equivalently,

�2 ¼ B2Q0 þB0Q2: (E5b)

The next step is to plug Eq. (E5b) into Eq. (E2c). We find
that �4 �B2Q2 is closed, and thus, by Lemma 3, equal to

B0Q4 for some Q4. This time we have made use of

Eq. (E1c) to obtain B2
2�0 ¼ 0.

This goes on iteratively, until we reach

B 0Q2nmax
¼ �2nmax

�B2Q2nmax�2: (E6)

At this point we have made use of all of the relations (E2)

except the last one, Eq. (E2e). Letting �Q ¼ Q0 þQ2 þ
� � � þQ2nmax

we now have

�B �Q ¼ ��þB2Q2nmax
: (E7)

But B2Q2nmax
must in fact vanish. The reason is that it has

N w ¼ 2nmax þ 2, whereas by assumption the highest

possible N allowed for the quantum numbers of �� is
2nmax. Hence,

�B �Q ¼ ��; (E8)

and we have succeeded in constructing the desired
counterterm.

APPENDIX F: SUPERSPACE ORIGIN OF THE
ABELIAN GAUGINO COHOMOLOGY CLASS

In this appendix we elaborate on the algebraic origin of
the Abelian gaugino (candidate) anomaly found in
Sec. IVA. We show that, in superspace, it can be traced
back to a class of Abelian supergauge anomalies. We then
explore what shape these cohomologically nontrivial solu-
tions take in the off-shell component formalism. This
clarifies the crucial role of the constraint on cðxÞ depen-
dence, reviewed in Sec. III B, in excluding the Abelian
gaugino anomaly via spurion methods.

The advantage of superspace is that the supersymmetry
transformations are linear, and close on an ordinary trans-
lation. The price is that local gauge transformations must
be promoted to a larger local symmetry, parametrized by a
chiral superfield. Consequently, the superspace formula-
tion contains many new unphysical degrees of freedom.

The BRST setup is likewise simpler in superspace.
Following the notation of Sec. III we denote by s
 and

s� the (anticommuting) operators that effect supersymme-

try transformations and translations, respectively. The op-
erator s
 þ s� is nilpotent.42

Supergauge transformations are effected by another nil-
potent BRST operator, denoted sSG [15]. Its action on any
superfield that occurs in the invariant superspace
Lagrangian is obtained from the ordinary supergauge
transformation rules by simply replacing the usual gauge-
transformation superfield by the ghost superfield, hereby
denoted �. For what concerns us, we only need to know
that the action of sSG on a chiral (matter) superfield has the
same form as an ordinary infinitesimal gauge transforma-
tion, namely, sSG�i ¼ �ig�aTaij�j [compare the second

term on the right-hand side of Eq. (3.5c)]. Also, in the
Abelian case, the ghost superfield itself is BRST invariant,
sSG� ¼ 0.
Based on this information we can immediately write

down a family of cohomologically nontrivial solutions,
each constituting a (candidate) supergauge anomaly,
given by

� ¼
Z

d4xd2���: (F1)

Here � is the Abelian ghost chiral superfield and � is any
(super)gauge-invariant chiral superfield with zero ghost
number. The ghost number of �, inherited from �, is
one, as it should.
Let us verify that � of Eq. (F1) is cohomologically

nontrivial.43 Since � involves a (chiral) superspace inte-
gral, it is supersymmetry invariant. Also, from the BRST
supergauge transformation rules discussed above and the
gauge invariance of � it follows that sSG� ¼ 0 as well.
This shows that � is cohomologically closed. That it is not
exact basically follows from the fact that � is gauge
invariant, and thus the action of sSG on � gives zero, and
not ��.
There are various possibilities for the chiral superfield

�. It can be a composite superfield which is the (gauge-
invariant) product of two or three matter superfields.
Another possibility is that � is an elementary, gauge-
singlet matter superfield.
We may also set� to a (�-independent) constant. In that

case, � collapses to the F component of the ghost super-
field, denoted ���. Moreover, the cohomology class (F1)
with� ¼ 1 has another representative which is nothing but
�
P�� [see Eq. (4.1)]. It is obtained as �þ ðs
 þ sSGÞQ,

where the counterterm Q is related to the scalar and
pseudoscalar �� components of the (Abelian) vector super-
field V. In the notation of Ref. [16],44 we have Q / M�
iN. Since sSGðM� iNÞ / ���, and s
ðM� iNÞ / �
P��,

42As in Sec. III one has s
�� ¼ � �
��
, cf. Eq. (3.7a).
43In this appendix we disregard the R-symmetry part of the
BRST operator.
44Where the relevant components of the vector superfield read
V ¼ � � � � ði=2Þð ���5�ÞM� ð1=2Þð ���ÞN þ . . . , see Chapter 26
therein.
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we may choose the coefficient of Q such that the ��� term
vanishes, and the new representative of � becomes a
purely supersymmetry anomaly.

To our knowledge, the most serious attempt to construct
a consistent regularization method in superspace was car-
ried out in Ref. [17]. Its starting point is the higher-
derivative regularization of the Wess-Zumino model [18].
However, the gauge theory case is significantly more com-
plicated. Apart from higher (covariant) derivatives, one
must introduce a set of Pauli-Villars fields. Furthermore,
the regularization proposed in Ref. [17] is actually a two-
cutoff method, where the fully regularized theory (the
‘‘preregulator’’ level) does not preserve gauge invariance.
Therefore, a supergauge anomaly is in fact a logical
possibility in this context.

We next discuss how the cohomology classes of Eq. (F1)
are realized within the off-shell component formalism of
Appendix B. Expanding the ghost superfield as � ¼
ð��; c �; F�Þ, we replace the components

�� ) c; ��
� ) c; (F2a)

c � ) ffiffiffi
2

p
A
; (F2b)

F� ) 2i �
P��; F�
� ) 2i �
Pþ�: (F2c)

The virtue of this replacement is that, under the action of
the off-shell BRST operator soff , the fields on the right-
hand side of Eq. (F2) transform into each other in the same
way as the components of a gauge-singlet matter super-
multiplet do, according to Eq. (B5).45

Having found what shape the ghost superfield takes in
the off-shell formalism, it is now straightforward to obtain
the highest component of the product superfield ��, as-
suming � ¼ ð�; c ; FÞ is a gauge singlet. Explicitly, it
reads

�off ¼ 2� �
P��þ ffiffiffi
2

p
�
APþc � ði=gÞFc: (F3)

This object transforms into a total derivative under the
action of soff , which is expected since it is the highest
component of a composite chiral supermultiplet that be-
haves as a gauge singlet. The further transition to the on-
shell formalism is done using Eq. (B14).46

Once again, we may take � in Eq. (F3) to be a (dimen-
sionful) constant. For ð�; c ; FÞ ¼ ðC=2; 0; 0Þ, where C is
given by Eq. (4.1b), we reproduce the first term on the
right-hand side of Eq. (4.1a).

Equation (F3) is the key to understanding why spurio-
nization helps us rule out the Abelian gaugino anomaly.

The reason is not that the cohomology becomes trivial;
indeed, Eq. (F3) represents a nontrivial cohomology class
in the spurionized theory. What rules out Eq. (F3) in the
spurionized theory is that it depends on cðxÞ [and not on
@�cðxÞ], and such dependence is not allowed, as reviewed

in Sec. III B.

APPENDIX G: SUPERSYMMETRIC
LOCALWARD IDENTITIES

In this appendix we derive the local version of super-
symmetric Ward identities. As usual, this is done by pro-
moting the global supersymmetry parameter 
 to a local
field. We assume that, when 
 is still a global parameter, a
choice of the symmetry-restoring counterterms exists such
that the breaking term (2.13) vanishes to all orders in
perturbation theory.
We begin by reexpressing the ST identity47 in terms

of the renormalized connected functional W ðnÞ
r ¼

W ðnÞ
r ðJI; KIÞ,

�X
I

Z
d4xJIðxÞ�W

ðnÞ
r

�KIðxÞ þ
X
j

@W ðnÞ
r

@�j

@W ðnÞ
r

@kj
¼ 0:

(G1)

We have used the fact that each field �IðxÞ is an effective
field associated with the dynamical field �IðxÞ, with

JIðxÞ ¼ ���ðnÞ
r =��IðxÞ being the corresponding source

field. While this is entirely standard, it is important to
notice that Eq. (G1) would not be valid in the presence
of external spurion fields. The J sources couple to dynami-
cal fields, and the Legendre transform back to the con-
nected functional exists for dynamical fields only.
We now promote the supersymmetry parameter to a

local field 
ðxÞ. This leads to the appearance of a new
term / @�
ðxÞ that we will discuss shortly. We differen-

tiate the new identity with respect to 
ðxÞ, followed by
setting to zero 
ðxÞ, as well as the other BRST parameters
	 and ��, and the K sources that couple to the BRST

variations. The result is

@�S
ðnÞ
��ðxÞ �W ðnÞ

r ¼ X
I

Z
d4yJIðyÞ �

� �
�ðxÞ
�W ðnÞ

r

�KIðyÞ (G2a)

¼ �X
I

Z
d4yJIðyÞ


 �

� �
�ðxÞ
~sðnÞd �IðyÞ �W ðnÞ

r : (G2b)

The notationO �W r now stands for an insertion ofO into
a connected diagram if O is composite, whereas if O is
linear in the dynamical fields, it means thatO is an external
leg of the connected diagram. It is understood that we set

45The reader may recognize Eq. (F2) as the values assigned to
the components of the ghost superfield when a linear supersym-
metry transformation is accompanied by a supergauge trans-
formation to restore the Wess-Zumino gauge. The value assigned
to Im��ðxÞ is zero, and no particular value is assigned to
Re��ðxÞ, which is merely renamed as cðxÞ.
46It can be checked that all the steps needed to verify on-shell
closedness go through [see discussion below Eq. (B14)].

47For a related and more detailed discussion, see the Appendix
of Ref. [10].
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ðxÞ ¼ 	 ¼ �� ¼ KIðxÞ ¼ 0 after taking the functional

derivatives. Using Eq. (3.7), it follows that the term con-
taining the variation of the parameters �i in Eq. (G1) drops
out. In arriving at Eq. (G2b) we have made use of the
regularized action principle, where the renormalized trans-

formation ~sðnÞd is still defined by Eq. (2.15). Having per-

formed the functional differentiation with respect to the K

sources, we may set SðnÞext;d ¼ 0 in Eq. (G2b).

The insertion of the renormalized supersymmetry cur-

rent SðnÞ�� on the left-hand side of Eq. (G2) originates from

an insertion of ~sðnÞd SðnÞd in the regularized theory. At the

classical level, when 
 is promoted to a local field the
variation of the action gives rise to �@�
 times the clas-

sical supersymmetry current. In the hypothetical case that
the regularization preserved all the classical symmetries,

~sðnÞd SðnÞd would still take the form of �@�
 times a (regu-

larized) current. In reality, ~sðnÞd SðnÞd includes terms that do

not vanish for constant 
, originating from the explicit
breaking of (some of) the classical symmetries by the
regularization. We have assumed that, after removing the
cutoff, the breaking term is cancelled by symmetry-
restoring counterterms. Namely, when 
 is a global pa-
rameter, after adding the symmetry-restoring counterterms
the breaking term is the integral of a total derivative. When
the supersymmetry parameter is promoted to a local field,
any such total-derivative terms become proportional to
@�
, and are absorbed into the renormalized supersymme-

try current.
We next perform the functional variation with respect to


ðxÞ on the right-hand side of Eq. (G2), followed by setting

ðxÞ ¼ 0. This gives

@�S
ðnÞ
��ðxÞ �W ðnÞ

r ¼ X
I

�
�JIðxÞ ��ðnÞ

� �IðxÞ þ XðnÞ
� ðxÞ



Z

d4yJIðyÞ~sðnÞg �IðyÞ
�
�W ðnÞ

r ;

(G3)

where

XðnÞ
� ¼ ZðnÞ

�c� ð@� �caÞð���aÞ�; (G4)

and ZðnÞ
�c� is a wave-function renormalization constant.48

Now W ðnÞ
r ¼ W ðnÞ

r ðJIÞ, as all other external fields and
BRST parameters have been set to zero. The parameterless
renormalized supersymmetry transformation is defined by

�� ðnÞ
� �IðxÞ ¼ @

@ �
�

~sðnÞd �IðxÞ; (G5)

(in this equation we take 
 to be global).49

The first term on the right-hand side of Eq. (G3) is the
familiar contact term that generates the (renormalized,
parameterless) supersymmetry transformation of each dy-
namical field. The last term is unusual. It arises because of
the explicit dependence of the extended gauge-fixing ac-
tion (3.8) on the supersymmetry parameter. Since the factor
of 
 is here provided by the extended gauge-fixing action,

we pick up from ~sðnÞd only the part that survives when

setting 
ðxÞ ¼ �� ¼ 	 ¼ 0. By definition, this is ~sðnÞg .

Finally, we perform the functional differentiations with
respect to the J sources and then set them to zero, obtaining
the supersymmetric local Ward identity50

@

@x�
hSðnÞ��ðxÞ�I1ðy1Þ � � ��IkðykÞi

¼ Xk
j¼1

�4ðx� yjÞh�I1ðy1Þ � � � ��ðnÞ
� �IjðyjÞ � � ��IkðykÞi

þ hð~sðnÞg XðnÞ
� ðxÞÞ�I1ðy1Þ � � ��IkðykÞi: (G6)

In going from the last term of Eq. (G3) to the last term of
Eq. (G6) we used the invariance of the theory under the

renormalized gauge-BRST transformation ~sðnÞg . The last
term in Eq. (G6) vanishes when applying Lehman-
Symanzik-Zimmermann reduction, leading to the familiar
result that the perturbative S matrix is supersymmetric.
We conclude by stressing an obvious but important fact.

All terms in the local Ward identity originate from varying
dynamical fields. There are no terms that arise from vary-
ing parameters and/or external fields. This is as it should
be, since a Ward identity is derived from the invariance of
the path integral under a change of integration variables,
i.e., under a transformation of the dynamical fields only.

APPENDIX H: THE MPW2 SPURIONS

In this appendix we show that by introducing the spurion
fields of Ref. [5] (henceforth denoted MPW2) one cannot
rule out the Abelian gaugino anomaly of Sec. IVA. We
will use the example of the superpotential introduced in
Eq. (4.2), which involves a single mass parameter m. We
refer to Sec. IVC for notation specific to that example.
MPW2 introduce a doublet ðu; vÞ of external spurion

fields with transformation rules that, in our notation, read51

48 �
XðnÞ is the only source-field independent term in the renor-
malized action that is linear in 
. To show this, we use, in
addition to the ghost number and dimensions of the fields, that
the renormalized action depends on �c only through @� �c, which,
in turn, follows from a shift symmetry, �c ! �cþ const, of the
classical action (see also Sec. III B).

49The classical transformation ��ð0Þ
� vanishes when acting on

ghost-sector fields, because there are no terms linear in 
 in
Eq. (3.6).
50Generalizations that involve composite operators may be
found in the literature.
51Notice that if we disregard the R transformation part, this is
the same structure as found for the ghost-sector doublet ð �c;�ibÞ.
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su ¼ vþ ��@�uþ ið2=3Þ	u; (H1a)

sv ¼ �
��
@�uþ ��@�vþ ið2=3Þ	v: (H1b)

We require that the spurionized action reduces to the
original action when the spurion fields take the constant
values uðxÞ ¼ 0 and vðxÞ ¼ m. This correspondence dic-
tates that v is bosonic, with mass dimension one and ghost
number zero, whereas u is Grassmann, with mass dimen-
sion zero and ghost number �1. In addition, u and v must
both have the same R charge as m.

As a warm-up, let us discuss the construction of the
spurionized classical action. It should be remembered
that, unlike in Ref. [5], here the classical action is super-
symmetric from the outset; without any spurions, the on-
shell action satisfies the ST identity. Of course, we require
that this remains true after the introduction of the spurion
fields.

In Appendix B, given an off-shell BRST invariant clas-
sical action, we have shown how to construct the corre-
sponding on-shell action that satisfies the classical ST
identity. It is therefore enough to construct the spurionized
off-shell action. This case is simple, because the m depen-
dence is contained in Sm, where

Sm ¼ �i
Z

d4xðmF þm�F �Þ; (H2a)

F ¼ �þF� þ��Fþ þ i �cþPþc�; (H2b)

F � ¼ ��þF�� þ���F�þ þ i �cþP�c�; (H2c)

which is BRST invariant all by itself. The corresponding
spurionized off-shell action is

Sðu;vÞ ¼ �isoff
Z

d4xðuF þ u�F �Þ (H3a)

¼
Z

d4xð�ivF � iv�F �

þ ffiffiffi
2

p
�
u�5@ð�5þc� þ�5�cþÞÞ: (H3b)

Since the off-shell BRST operator soff is nilpotent, this
action is manifestly BRST invariant. From Eq. (H3b) it
follows that Sðu;vÞ indeed reduces to Sm when the spurions

take the constant values prescribed above.
The spurionized on-shell action is obtained as usual via

Eq. (B8). Observe that the dependence of Eq. (H3b) on the
auxiliary fields F� is the same as in Eq. (H2a), except for
the replacementm ! v. It follows that the spurionized on-
shell action is obtained by substituting v form everywhere,
and adding the u-dependent terms from Eq. (H3b).

We now turn to the main point of this appendix.
According to Appendix G, the continuity equation for a
conserved supersymmetry current is

@�S
ðnÞ
�� ¼ ~sðnÞg XðnÞ

� : (H4)

The right-hand side, which originates from the gauge-
fixing procedure, is gauge-BRST exact, and vanishes on
the physical Hilbert space.

Let us now assume the existence of an Abelian gaugino
anomaly. For definiteness we assume that, at order n in
perturbation theory, there is a choice of the counterterms
that brings the breaking-term into the following form:

�ðnÞ ¼ c
Z

d4x �
m�
5�

�
5�; (H5)

with c ¼ c� � 0. The parametermwas introduced already,
while the dimension-two parameter � originates from the
linear part of the superpotential. By repeating the steps of
Appendix G in the presence of the breaking term (H5), we
find the anomalous-divergence equation

@�S
ðnÞ
�� ¼ ~sðnÞg XðnÞ

� þ cm�
5�

�
5�: (H6)

Of course, it may be that the assumption we have just
made is false. In fact, in the main text we proved that the
Abelian gaugino anomaly (4.1) will never arise. However,
the question here is whether the same conclusion can be
drawn by introducing the spurion doublet ðu; vÞ.
As we will now show, already at the one-loop level the

answer is on the negative. To avoid irrelevant technical
issues, we assume that the spurions have constant but
otherwise arbitrary values uðxÞ ¼ u0, vðxÞ ¼ v0.

52 We
start with a set of one-loop counterterms for the spurion-
ized theory obtained by substituting m ! v0 in the one-
loop counterterms of the original theory. At this point, none
of the counterterms depend on u0. Now, according to
MPW2, in the theory with the external spurion doublet
the breaking term must always be B exact. In the case at
hand, we must therefore have53

�ðnÞ ¼ c
Z

d4xð �
v�
5�

�
5�� u�5�

�
5B�Þ

¼ cB
Z

d4x �
u�5�
�
5�; (H7)

with now u5 ¼ Pþu0 þ P�u�0, etc., which reduces to

Eq. (H5) if we set u0 ¼ 0 and v0 ¼ m. In agreement with
the observations of MPW2, we may now eliminate the
remaining breaking term by adding the further counterterm:

Q ¼ �c
Z

d4x �
u�5�
�
5�; (H8)

thereby restoring the ST identity.
Nevertheless, the introduction of the countertermQ does

not remove the anomalous divergence of the supersymme-
try current. Adding a counterterm bQ, with Q given by
Eq. (H8) and b arbitrary, leads to the following anomalous-
divergence equation in the spurionized theory:

52Clearly, any counterterm that depends on @�u and/or @�v
cannot eliminate the anomalous-divergence term cv�

5�
�
5� in

Eq. (H9) below.
53We use that, as follows from Eq. (H1b), the transformation
rule of the constant mode v0 is the same as that ofm [Eq. (3.7e)].
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@�S
ðnÞ
�� ¼ sðnÞg XðnÞ

� þ cv�
5�

�
5�þ ðb� 1Þcu�5��

5B�: (H9)

We see that the coefficient of u�5�
�
5B� is affected by the

counterterm, whereas the coefficient of v�
5�

�
5� is not. As

already noted in Appendix G, the reason is that Ward
identities are derived by varying only the dynamical fields.
The only dynamical field on which Q depends is �, and by
varying � we obtain the b-dependent term on the

right-hand side. When we despurionize by setting uðxÞ ¼
u0 ¼ 0, vðxÞ ¼ v0 ¼ m, Eq. (H9) reduces back to the
original anomalous-divergence equation (H6).
The conclusion is that, by introducing the spurion dou-

blet ðu; vÞ, one cannot rule out the existence of an Abelian
gaugino anomaly. In contrast, in Sec. IV we introduced a
different spurion framework with which such an anomaly
can, in fact, be ruled out.
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