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We describe in detail full numerical and perturbative techniques to compute the gravitational radiation
from intermediate-mass-ratio black-hole-binary inspirals and mergers. We perform a series of full
numerical simulations of nonspinning black holes with mass ratios ¢ = 1/10 and ¢ = 1/15 from different
initial separations and for different finite-difference resolutions. In order to perform those full numerical
runs, we adapt the gauge of the moving punctures approach with a variable damping term for the shift. We
also derive an extrapolation (to infinite radius) formula for the waveform extracted at finite radius. For the
perturbative evolutions we use the full numerical tracks, transformed into the Schwarzschild gauge, in the
source terms of the Regge-Wheller-Zerilli Schwarzschild perturbations formalism. We then extend this
perturbative formalism to take into account small intrinsic spins of the large black hole, and validate it by
computing the quasinormal mode frequencies, where we find good agreement for spins |a/M| < 0.3.
Including the final spins improves the overlap functions when comparing full numerical and perturbative
waveforms, reaching 99.5% for the leading (€, m) = (2, 2) and (3, 3) modes, and 98.3% for the nonleading
(2, 1) mode in the ¢ = 1/10 case, which includes 8 orbits before merger. For the ¢ = 1/15 case, we obtain
overlaps near 99.7% for all three modes. We discuss the modeling of the full inspiral and merger based on

a combined matching of post-Newtonian, full numerical, and geodesic trajectories.
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I. INTRODUCTION

There is strong indirect evidence for the existence of
black holes (BHs) of a few solar masses (M) residing in
galaxies and for supermassive BHs (SMBHs), with masses
10°-10'°M,, in the central cores of active galaxies. These
BHs can form binaries, and the mergers of black-hole
binaries (BHBs) are expected to be the strongest sources
of gravitational radiation and the most energetic event in
the Universe. The current generation of ground-based in-
terferometric gravitational wave detectors, such as LIGO,
VIRGO, and GEO, are most sensitive to BHB mergers with
total masses of a few tens to hundreds of solar masses,
while the space-based LISA detector will be sensitive to
mergers of BHBs with a few million solar masses.

The existence of intermediate-mass BHs (IMBH), from
a few hundred to tens of thousand of solar masses, is still
uncertain. If they exist, then these IMBH can form binaries
with solar-mass-sized objects, leading to compact-object
mergers with mass ratios in the range 0.001 < g =
m;/m, < 0.1, which could be detected by advanced
LIGO. The detection of gravitational waves from these
encounters, as well as the correct modeling of the wave-
form as a function of the BHBs’ physical parameters,
would allow us to estimate the population of such objects
in the Universe. Likewise, encounters of IMBH with
SMBHEs in the centers of galaxies would lead to mergers
with mass ratios in the range 0.001 < g < 0.1, detectable
by LISA. On the other hand, theoretical N-body simula-
tions [1], assuming direct cosmological collisions of
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galaxies with central SMBHs, set the most likely SMBH
binary-mass ratios in the range 0.01 < ¢ <0.1.

In Refs. [2,3], the prospects of detecting IMBH binary
(IMBHB) inspirals with advanced LIGO was discussed,
and in Ref. [4], it was shown that intermediate-mass-ratio
(IMR) inspirals of IMBHs plunging into supermassive BHs
would be relevant to LISA, while IMR mergers of IMBHs
with stellar objects can be detected by LIGO/VIRGO. In
both cases the accuracy of the post-Newtonian (PN) ap-
proach (which was used to model the gravitational radia-
tion) was questioned and the need for more accurate
waveforms was stressed.

After the 2005 breakthroughs in numerical relativity
[5-7], simulations of BHBs became routine. The explora-
tion of generic binaries [8] led to the discovery of large
recoils acquired by the remnant BH. While long-term
generic BHB evolutions are possible, including the last
few tens of orbits [9,10], two very interesting corners of
the intrinsic parameter space of the BHBs remain largely
unexplored: maximally spinning binaries and the small
mass ratio limit.

In a previous paper [11], we introduced a new technique
that makes use of nonlinear numerical trajectories and
efficient perturbative evolutions to compute waveforms at
large radii for the leading and nonleading modes. As a
proof-of-concept, we computed waveforms for a relatively
close binary with ¢ = 1/10. In this paper we will describe
these techniques in detail, extend them to slowly spinning
black holes, and reach smaller mass ratios, to the ¢ = 1/15
case, with full numerical simulations.
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The paper is organized as follows. In Sec. II we describe
the full numerical techniques employed in the evolution of
BHBs. Those are based in the moving puncture approach
[5,6] with a gauge choice that allows a spatial and time
variation of the gamma-driver parameter 7(x%, ). We de-
scribe the results of the simulations for two different mass
ratios ¢ = 1/10, 1/15 and two different initial separations
leading to evolutions with BHs performing between 4 and
8 orbits prior to merger, the latter representing the longest
waveform published so far in the small g regime. The
gauge has also been shown to work for evolutions of a
nonspinning ¢ = 1/100 BHB [12]. In Sec. III we describe
the perturbative techniques used to evolve a particle around
a massive black hole. We extend the Regge-Wheeler-
Zerilli (RWZ) techniques to include, perturbatively, a
term linear in the spin of the larger black hole. This takes
the form of second-order perturbations and adds a source
term to the usual Schwarzschild perturbations (spin RWZ,
noted hereafter as SRWZ). We also study the asymptotic
behavior of the perturbative solutions for large r and come
up with a practical way of correcting finite observer loca-
tion effects perturbatively on the numerical waveforms. In
Sec. IV we describe the results of comparing full numerical
waveforms with perturbative ones that use the full numeri-
cal tracks for the particle motion. We compute matching
overlaps for the leading modes (€, m) = (2,2); (2, 1);
(3, 3). We verify the scaling of the waveform amplitudes
with the reduced mass u for the mass ratios ¢ = 1/10,
1/15. We also quantify the effects of adding the spin of the
final black hole into the perturbative integrations. In Sec. V
we discuss the properties of the full numerical trajectories
in the two cases studied, g = 1/10, 1/15, that can be
generalized to smaller mass ratios and hence can help in
providing a modeling for the tracks used in the perturbative
integrations, in particular, the final “‘universal plunge” and
the use of resummed PN trajectories for the stages prior to
the full numerical simulation. Finally, in the Appendix we
give further evidence of the accuracy and validity of the
SRWZ formalism here developed by computing the quasi-
normal modes and comparing them with the exact Kerr
black-hole modes for different values of the spin
parameter.

II. NUMERICAL RELATIVITY TECHNIQUES

To compute the numerical initial data, we use the punc-
ture approach [13] along with the TWO PUNCTURES [14]
thorn. In this approach the 3-metric on the initial slice has
the form vy,, = (Y. + u)*8,,, where g is the Brill-
Lindquist conformal factor, &, is the Euclidean metric,
and u is (at least) C? on the punctures. The Brill-Lindquist
conformal factor is given by ¢g, = 1 + X7, ml/2|F —
7il), where n is the total number of “punctures”, m?! is the
mass parameter of puncture i (m?! is not the horizon mass
associated with puncture i), and 7; is the coordinate loca-
tion of puncture i. We evolve these black-hole-binary
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data-sets using the LAZEV [15] implementation of the
moving puncture approach [5,6] with the conformal factor
W = /x = exp(—2¢) suggested by [16]. For the runs
presented here we use centered, eighth-order finite differ-
encing in space [17] and an RK4 time integrator. (Note that
we do not upwind the advection terms.)

We use the CARPET [18] mesh refinement driver to
provide a “moving-boxes” style of mesh refinement. In
this approach, refined grids of fixed size are arranged about
the coordinate centers of both holes. The CARPET code then
moves these fine grids about the computational domain by
following the trajectories of the two black holes.

We use AHFINDERDIRECT [19] to locate apparent hori-
zons. We measure the magnitude of the horizon spin using
the isolated horizon algorithm detailed in [20]. This algo-
rithm is based on finding an approximate rotational Killing
vector (i.e., an approximate rotational symmetry) on the
horizon ¢“. Given this approximate Killing vector ¢, the
spin magnitude is

1
St =gz [ (@"RKWEV. M

where K, is the extrinsic curvature of the 3D-slice, d*V is
the natural volume element intrinsic to the horizon, and R¢
is the outward pointing unit vector normal to the horizon
on the 3D-slice. We measure the direction of the spin by
finding the coordinate line joining the poles of this Killing
vector field using the technique introduced in [21]. Our
algorithm for finding the poles of the Killing vector field
has an accuracy of ~2° (see [21] for details). Note that
once we have the horizon spin, we can calculate the
horizon mass via the Christodoulou formula,

mt = \/mlzrr + SZ/(4mi2rr), (2)

where m;,, = /A/(1677) and A is the surface area of the
horizon. We measure radiated energy, linear momentum,
and angular momentum, in terms of ¢4, using the formulae
provided in Refs. [22,23]. However, rather than using
the full ¢4, we decompose it into € and m modes and
solve for the radiated linear momentum, dropping terms
with € = 5. The formulae in Refs. [22,23] are valid at
r = oo. Typically, we would extract the radiated energy-
momentum at finite radius and extrapolate to r = oo.
However, for the smaller mass ratios examined here, noise
in the waveform introduces spurious effects that make
these extrapolations inaccurate. We therefore use the aver-
age of these quantities extracted at radii r = 70, 80, 90,
100 and use the difference between these quantities at
different radii as a measure of the error. We found that
extrapolating the waveform itself to r = oo introduced
phase errors due to uncertainties in the areal radius of
the observers, as well as numerical noise. Thus when
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comparing perturbative to numerical waveforms, we use
the waveform extracted at r = 100M. In Sec. IIIB7 we
provide an alternative method of extrapolation of wave-
forms based on a perturbative propagation of the asymp-
totic form of 4 at large distances from the sources leading
to the following simple expression:

im0 = [ gt = 02
X ﬁ) ‘dta,bﬁm(r, t)] + ORGL), (3)

I=T0bs

where rqp, 1s the approximate areal radius of the sphere
Rops = const. [Add a factor (1/2 — M /r) multiplying the
square bracket to correct for a difference in normalization
between the Psikadelia and Kinnersley tetrads at large
distances.] We have found that this formula gives reliable
extrapolations for Rqps = 100M.

A. Gauge

We obtain accurate, convergent waveforms and horizon
parameters by evolving this system in conjunction with
a modified 1 + log lapse and a modified Gamma-driver
shift condition [5,24], and an initial lapse a(t = 0) =
2/(1 + ;). The lapse and shift are evolved with

(0, — B'd;)a = —2aKk,
3,8 = (3/4I — n(x, N,

where different functional dependences for 7(x?, r) have
been proposed in [15,25-29]. Here we use a modification
of the form proposed in [25],

‘/aiwajww

(1—we)

(4a)
(4b)

n(x?, 1) = Ry , (&)

where we chose R, = 1.31. The above gauge condition is
inspired by, but differs from Ref. [25] between the BHs

and in the outer zones when a # 1 and b # 2. Once the

TABLE 1.
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conformal factor settles down to its asymptotic ¢ =
C/\/r + O(1) form near the puncture, 1 will have the form
n = (Ry/C?)(1 + b(r/C?)?) near the puncture and 7 =
Ror*2M /(aM)? as r — 0. In practice we used a = 2
and b = 2, which reduces 7 by a factor of 4 at infinity
when compared to the original version of this gauge pro-
posed by [25]. We note that, if we set b = 1, then n will
have a 1/r falloff at r = oo as suggested by [26]. Our
tests indicate that the choices (¢ =2, b = 1) and (a = 1,
b = 1) lead to more noise in the waveform than (¢ = 2,
b =2).

B. Simulations and results

In order to obtain low-eccentricity initial data parame-
ters, we started with quasicircular post-Newtonian initial
data parameters for the momenta and particle positions. We
then evolved for 1-2 orbits, and used the procedure de-
tailed in [30] to obtain lower eccentricity parameters. In
practice we performed between 3 and 4 iterations of the
above procedure. In Table I we show the initial data
parameters, horizon masses and mass ratio, and initial
orbital eccentricities for the three configurations consid-
ered here.

In all the simulations presented here, the outer bounda-
ries were placed at 400M. We performed runs with three
resolutions, with a global refinement factor of 1.2 between
resolutions. For the ¢ = 1/10 runs, we used 11 levels of
refinement around the smaller BH, with a central resolution
of h = M /307.2 for the coarsest runs, while for the g =
1/15 run we used 12 levels of refinement, with a central
resolution of M/614.4. In Table II we show the radiated
energy-momentum and remnant BH parameters for these
configurations. In the figures and tables below we refer to
the different resolution runs using the grid spacing on the
coarsest grid relative to hy, = 10/3M.

In Fig. 1 we show the orbital separation as a function of
time for the ¢10r8.4 and ¢10r7.3 configurations, as well as
a high-eccentricity configuration obtained by directly us-
ing PN parameters in the initial data (¢10r7.3PN) that we

Initial data parameters. The punctures are located on the x-axis at positions x; and x,, with puncture mass parameters (not

horizon masses) m; and m,, and momentum = p. In all cases, the punctures have zero spin. Configuration ¢10r7.3PN is based on the
original PN parameters, prior to any eccentricity removal iteration. The lower part of the table shows the horizon masses my, and my,,

the mass ratio ¢, the ADM mass, and the eccentricity e.

Config X X2 Px Py n, 1y
q10r8.4 7.633129 —0.753 1758 —0.000 168519 0.036 698 8 0.085 23727 0.907 396 86
q10r7.3 6.604 383 —0.6715184 —0.000219713 0.0410386 0.084 38951 0.907 038 55
g10r7.3PN 6.604 383 —0.6715184 —0.000326708 0.0404057 0.084 38951 0.907 038 55
ql15r7.3 6.806 173 —0.4438775 —0.000 160518 0.0290721 0.05756623 0.936224 18
Config my, my, q M xpm e

q10r8.4 0.091 289 0.912545 0.100 04 1.000042 8 0.0004

q10r7.3 0.091 378 0.913010 0.10008 1.000 258 82 0.0017

q10r7.3PN 0.091 329 0.912990 0.10003 1.000 000 00 0.008

q15r7.3 0.062 536 0.940421 0.066 50 1.000 050 83 <0.0015
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TABLE II. Remnant horizon parameters and radiated energy-momentum.
Conﬁg Erad de MH - MADM SADM - SH o Kick km Sil
q10r8.4 0.00446 = 0.0001 0.0517 = 0.001  0.00046 = 0.00003 0.05028 = 0.00001 0.25986 = 0.00001 59.4 = 3.0
q10r7.3 0.00400 = 0.00001  0.0386 = 0.003  0.004 15 = 0.00001 0.04028 = 0.00001 0.26034 = 0.00001 65.8 = 2.0
q15r7.3 0.00216 = 0.00001  0.0235 £ 0.0004 0.00225 = 0.00001 0.02289 = 0.0004 0.18872 = 0.00001 33.5 = 2.1

used for the proof of concept in Ref. [11]. Note that
the highly eccentric ¢1077.3PN binary merges sooner
than the lower eccentricity ¢10r7.3. From the plot we
can also see that the initial jump in the orbit is not a
function of either initial separation or eccentricity. In
Fig. 2 we compare the orbital separation for the ¢10r7.3
and ¢15r7.3 configurations. From the plot it is clear that
the initial jump in the orbit is not a strong function of mass
ratio either. This indicates that the initial jump will become
more problematic as the mass ratio is reduced (and hence
the inspiral becomes weaker). We also observe that, quite
independent of the initial separation and the initial eccen-
tricity, the track displays a universal behavior during the
final plunge. This confirms that the tracks are gravitational
radiation driven and we are numerically resolving this
radiation accurately.

In Fig. 3 we show the orbital trajectories of the ¢g10r7.3
and ¢1577.3 configuration. In the plot the curves have been
rotated to maximize the overlap during the plunge. From
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FIG. 1 (color online). The puncture separation as a function of
time for three ¢ = 1/10 simulations. The solid curve shows a
high-eccentricity simulation obtained from PN quasicircular
parameters (with particle limit corrections); the dotted curve
shows the results for a binary with the same initial separation
after a few iterations to reduce eccentricity; the dot-dashed curve
shows an even further separated binary with still smaller eccen-
tricity. Note that the initial jump in the orbit does not appear to
be a strong function of the eccentricity or initial separation.

the plot we see a “‘universal” plunge behavior at small
separations, with distinctly different orbital dynamics at
larger separations. As expected, the small mass ratio binary
merges more slowly. In Fig. 4 we show the real part of the
(€ =2, m = 2) mode of ¢, for the ¢10r7.3 and ¢15+7.3
configurations. Here the we rescaled ¢, for g15r7.3 by a
factor of 1.5. Note that the good overlap of the rescaled ¢4
indicates that the amplitude of ¢4 scales with g (before the
different orbital dynamics of ¢ = 1/10 and ¢ = 1/15
cause the ¢10r7.3 to merge sooner). In Fig. 5 we show
the convergence of the g10r7.3PN configuration for three
resolutions. Note that in this plot, the low resolution ac-
tually corresponds to a grid spacing 1.2 times larger than
the low resolutions for the other configurations. From the
plot we can see that at later time the convergence is eighth
order. The earlier time fourth-order convergence is due to
finite-difference and interpolation errors in the extraction
routines. At later times, the phase error dominates the
errors in the waveform, and this error converges to eighth
order. Finally, in Fig. 6 we show the phase of the waveform
for q15r7.3 for three resolutions. The phase errors near the
plunge are reported in Table III.

puncture separation

n 1 n 1 n
0 200 400 600
M

FIG. 2 (color online). The magnitude of the puncture separa-
tion (|X; — X,|) as a function of time for a ¢ = 1/10 and ¢ =
1/15 binary at similar initial separations. Note that the initial
jump in the orbit appears to be independent of g. Also note that
the ¢ = 1/15 run inspirals more slowly.
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FIG. 3 (color online). An (xy) projection of the puncture
separation (X; — X,) for a ¢ = 1/10 and g = 1/15 binary at
similar initial separations. The trajectories have been rotated so
that they overlap during the plunge and merger. Note the
“universal” plunge trajectory.
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FIG. 4 (color online). The real part of the (€ =2, m = 2)
mode of ¢, for a ¢ = 1/10 and ¢ = 1/15 binaries starting at

similar separations. The waveform from the ¢ = 1/15 binary
was rescaled by a factor of 1.5 (15/10).

III. PERTURBATIVE TECHNIQUES

In this section we describe in some detail the use of
perturbative techniques to produce BHB waveforms from a
small mass ratio system. We summarize the key formulae
used (for more details see, for instance, [31]), and extend
the formalism to add the spin of the large black hole as a
second-order perturbation, coupling it to the radiative first-
order perturbations. We neglect quadratic terms in the
radiative modes of the order O(g?). The resulting equations
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FIG. 5 (color online). The convergence of the phase and am-
plitude of the (€ = 2, m = 2) mode of ¢, for the ¢10r7.3PN
configuration. Note that here the three resolutions consist of a
low resolution with grid spacing 1.2 times larger than the low
resolution runs for ¢g10r7.3, ¢10r8.4, g15r7.3 configurations.
Eighth-order convergence implies  4(1.2hg) — ¥ 4(hgy) =
4.299 82(1fr4(hg) — t4(hy/1.2)), while fourth-order convergence
implies  4(1.2h0) — ¥4(ho) = 2.0736(if4(ho) — Pra(ho/1.2)).
Initially, the error in ¢, is very small and dominated by grid
noise. Eighth-order convergence in the amplitude is apparent
beginning at + = 320M, while eighth-order convergence in the
phase becomes apparent at t = 420M. The dashed vertical line
shows the time when the wave frequency is Mw = 0.2. The
phase error at this frequency is ¢ = 0.2 rad.

are still of the Regge-Wheeler and Zerilli form (we are still
doing perturbations around a Schwarzschild background),
but they now include extended source terms with linear
dependence on the spin in addition to the local (Dirac’s
deltas) source terms already present in the first-order
formalism. We plug into these latter terms the full numeri-
cal trajectories (hence indirectly also adding a spin
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FIG. 6 (color online). (Top) The phase of ({ =2, m =2)
mode of ¢4 for a ¢ = 1/15 BHB for three resolutions. Note
that the phase error only converges to fourth order and that the
highest resolution is refined by a factor of 1.2? rather than 1.2
with respect to the medium resolution. (Bottom) A convergence
plot showing the initial (better than) fourth-order convergence of
the waveform. Note here that the differences 4(1.2h,) —
Wa(hg) = 1.39895(1f 4(hy) — 4(hy/1.2%)) if the waveform is
fourth-order convergent.

TABLE III. The phase error in the (¢ = 2, m = 2) mode of ¢4
[extracted at R = 100M and extrapolated to oo using Eq. (3)]
when the waveform frequency is M w = 0.2 for the medium- and
high-resolution runs. The table shows the predicted phase errors
extrapolating to infinite resolution and assuming eighth- and
fourth-order convergence.

Config Eighth order Fourth order
q10r8.4 (h = hy) 0.205 133 0.630496
q10r8.4 (h = hy/1.2, pred) 0.0477073 0.304 058
q10r8.4 (h = hy/1.22, pred) 0.0110952 0.146 633
q15r7.25 (h = hy/1.2%) 0.1406 0.762
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dependence). We denote the resulting formalism as spin-
Regge-Wheeler-Zerilli (SRWZ).

A. Metric perturbations and particle’s orbit
1. Spin as a perturbation

We consider the Kerr metric up to O(a'). Here a denotes
the spin of the black hole which has the dimension of mass.
In the usual Boyer-Lindquist coordinates, this is given by

_ )
d? — — r ZMdtz B 4Masm 0dodt LT e
r r r—2M
+ r2d6? + r’sin’0d > + O(a?). (6)

In the above metric, the terms which depend on a
are treated as the perturbation in the background
Schwarzschild spacetime.

-
Cup = &0+ hUP", (7)

For the above metric perturbations, we consider the tensor
harmonics expansion defined using the tensor harmonics
of [32]. We find that the first-order perturbation, O(a'), is
related to the € =1, m = 0 odd parity mode, and the
coefficient of the tensor harmonics is given by

; ’47725
1,spin) -
h(()l(s)p (t,r) = 3 ®)

where S = Ma. The other components are zero.

2. Second-order formulation

In the following, we treat spin-radiation couplings in the
second-order perturbation. Therefore, we consider the
Einstein equation in the second perturbative order.

Gi[h V] + GL[h®] + GR[AM, K]
= 8m(Ty) + T\2)) = 8T, 9)

According to [33], and the fact that we use the numerical
relativity (NR) trajectory, we do not separate the first- and
second-order energy-momentum tensor of the particle.
And the second-order metric perturbation, h@wave) g cre-
ated by the spin, h("P"_radiation, h("¥*¢) couplings. In
this case, we may solve

G [nv9] = 8T, (10)

ng}[h(lwave)] — _ngj[h(l,wave), h(l,spin)l (11)

up to O(a'), where we ignore the square of the first-order
wave functions.

As discussed below, we solve Eqgs. (10) and (11) for
the even parity perturbation of the Regge-Wheeler-Zerilli
formalism in the following form:
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Ggl[h(l,wave) + h(2,wave)] + G%L[h(l,wave)’ h(l,spin)]
= Gi})V[h(wave)] + G%L[h(wave)’ h(l,spin)] — 877Ty,w

12)

where h(Vave) = pl.wave) 4 p@wave) O the other hand, for
the odd parity perturbation, Eqgs. (10) and (11) are solved
for each perturbative order.

Here we consider intermediate mass ratio binaries. As
discussed in [34], we can introduce some second-order
effects that arise purely from the particle’s first-order
perturbation, if we treat the particle as a reduced mass
M = mymy/(m; + m,) orbiting around a black hole with
the total mass M = m; + m,.

3. Orbit for inspiral

First, we should note that the coordinates used in NR
simulations are chosen to produce stable evolutions and
correspond, initially, to isotropic coordinates. Perturbative
calculations, on the other hand, regularly make use of the
standard Schwarzschild coordinates. The easiest way to
relate the two is to translate the numerical tracks into the
Schwarzschild coordinates. This can be achieved by con-
sidering the late-time numerical coordinates that corre-
spond to radial isotropic ‘‘trumpet” stationary 1 + log
slices of the Schwarzschild spacetime [35]. We obtain
the explicit time and radial coordinate transformations
following the procedure detailed in Ref. [36].

Thus, we consider the NR trajectory as an orbit pro-
jected on the Schwarzschild background. Therefore, we
calculate the particle’s energy, angular momentum etc. by
using the Schwarzschild metric. Here, since we have only
the three velocity v(¢) from the data of the NR trajectory,
the time component of the four velocity u* is derived by
assuming the “‘instantaneous” Schwarzschild geodesic
approximation.

In this approximation, the energy and angular momen-
tum are given by

oM

E= (1 — —)uf, (13)
R

L, = R?u?, (14)

where u* = dx* /dr is the four velocity, R = R(f) denotes
the orbital radius, and we are considering the equatorial
orbit (@, = 77/2). To evaluate U(z) = u', we use

guoutu” = —1
= wor[-(1-5) * (1~ 7)) ®@0OP
+ ROV @) ] (15)

Here, R = u’/u’ = dR/dt and & = u®/u' = d®/dr are
the three velocity of the particle.
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We note that the energy E derived from the above U(r)
does not decrease monotonically, and also in the end of
the orbital evolution, we cannot calculate U(r) appropri-
ately by using Eq. (15), because U(r) — o or becomes
complex. U(f) — oo is, in practice, not inconsistent
because U(t) ~ (1 —2M/R(¢))"! for Schwarzschild
geodesics.

Therefore, we fix the energy at some orbital radius (or
time t = t,,) as

oM
R(t,,)

E, = E(1,) = (1 - )U(tm), (16)

and use the following expression to obtain U() for smaller
radii. [This may give the innermost stable circular orbit
(ISCO) radius.]

U(t) = Em<1 2M>_1.

0] 17)
At this stage, we still use the three velocity derived from
the NR trajectory.

Here we set R(t,,)/M = 7.64 for the ¢ = 1/10 case.
This radius is obtained from the energy minimum eval-
uated by Eq. (14). In the ¢ = 1/15 case, we do not have
such an energy minimum. Therefore, we simply set the
same radius as for the ¢ = 1/10 case.

A. Orbit near merger

There are large differences between the coordinate sys-
tem used in the NR simulation and the Schwarzschild
coordinates near the horizon. Although the binary merges
at finite time in the NR simulation, the binary does not
merge in the Schwarzschild coordinates. Therefore, we
need to give the orbit near the horizon.

Here, we assume that the radiation reaction is not im-
portant near merger after 7 = 75, and use the geodesic orbit
on the Schwarzschild spacetime. First, we consider the
conserved quantities, i.e., the energy and angular momen-
tum:

Em = E(tm) = E(tf)»
oM )*1 (13)

L, = L(t;) = R(t;)*®(t;)E (1 - =
f f f f=m R(tf)

where E,, is the same as in the previous section. And then,

from the above equations, we calculate

. Ly R(t) —2M
0= F "R

19)

U(r) = Em(l —%)1,

On the other hand, we use a fitting formula for the radial
trajectory. By using g, u*u” = —1, we define an effective
energy for the radial motion,
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(- ma) (0 m(-m) )

and consider E, as a constant after ¢ = 7. The evolution of
R(¢) is derived as

B2 )
(21)

R(t) = —(1

From this equation, we can obtain various equations if we
need, for example, R(r) = (9R(¢)/dR(¢))R(¢). It is noted
that we may consider another treatment as discussed in
Sec. V.

In our perturbative code for both ¢ = 1/10 and 1/15
cases, we set R(t;)/M = 3.0 which is inside the ISCO
radius. This is because we want to use the NR trajectories
as long as possible in this paper, and the data of the tracks
become noisy inside the above orbital radius due to the
coordinate transformation.

S(even,l) : _
on - (57) £+ 1)(r€? + r€ — 2r + 6M)r

32m(r — 2M)*\2 B0

+ (t,r
(ré> + r€ — 2r + 6M)\/€({T Bin

B 167 (€412 + 2r2€3 — 5r2€2 + 16r62M — 6r2€ + 16r¢M + 812 — 68rM + 108M3)

167(r — 2M)*(r€? + r€ — 4r + 2M) (1)( " —
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B. Regge-Wheeler-Zerilli equations with spin
1. First-order Regge-Wheeler-Zerilli equations

For the notation of the Regge-Wheeler-Zerilli formalism
[37,38], we use [32,34]. In the first-order perturbation, i.e.,
the nonspinning case, we may solve the equations,

——qr

—VEN W, r)

_ S(even 1)(t r)’ (22)

tm

for the even parity with the Zerilli function \I’gr)l, and

\I'(‘”)(t )+ qf(“)(z r) = VO, )

= Sf;’,,‘fd’“(r, ), (23)

for the odd parity with the Regge-Wheeler function \Ifﬁft’;ll) .
Here r* = r + 2M In[r/(2M) — 1] is a characteristic coor-
dinate, and the first-order source terms, S, (even D and S;‘;’fd’l),

are given by

VE+ 1€ = 1€ + 2)
327T(r - 2M)3 (l)( r)

(€2+r€—2r+6M)€(€+1)8

A (()lf)m (t’ r)

(€ + 1)€(r€2 + rf — 2r + 6M)>?

(r¢*> + r€ — 2r + 6M)€(€ + 1) ar Aoem(t
16327r(r — 2M)

sy ) = LT gy ()

3227 (r — 2M)?
(r€? 4+ r€ —2r + 6M)€(€ + 1)

2.1

o2, )

tr)+

VI + 1€ = 1) +2)

1672imr(r — 2M)

\/ ¢+ 1 (@—1(€+2)3t

Zolun,

VI + 1D = 1) +2) ar

(24)

where ﬂly) etc. denote the tensor harmonlcs coefficient of the particle’s energy -momentum tensor 7',,. It is noted that
the even parity wave function \I’ and odd parity wave function ‘I’{’m) are related to the Moncrlef’s [39] and the
Cunningham et al. [40] waveforms by a normalization factor, respectively.

2. Even parity perturbation with spin

When we discuss only the second-order Einstein equation in Eq. (11) for the even parity perturbation, the Zerilli
equation with the O(a') spin effect is written as

‘I’(z)(t r) to ‘I'(Z)(t r) = VAW (1, ) = s, 1),(25)

(even 2) .

where the second-order source term S, in the above equation is given by
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S%er::enl)(t’ r) _ S((f;;en,Z)(E’ S) + Si}er:l/eni)(o’ S);

sieven2(g, §) =

2a(=r + 2M)(=2r + r€ + r€2 +

PHYSICAL REVIEW D 82, 104057 (2010)

12M) )

mS (
€€+ D> + rf — 2r + 6M)

+ 64 ALt r) +

VE + Dr(r€? + r€ — 2r + 6M)
192i(—r + 2M) 72

Ofm( )

9 F @ r)

\/ZW(_F‘F 2M) (1)
r

O+ 1D -1 +2)

' —6r+ €r+2r03 + r€ + 2r0?)(—r + (€ +
+81(12M 6r+ €*r +2r€° + r€ +2r€?)(—r 2M)H(1)( )+ (£ + 1) K(l)( ))

P(ré? + ré — 2r + 6M)

48 € —m) +m) (

sieven (o, §) =

e+ —-De+2)V2e—12e+ 1\

6(r — 2M)(2€*r* — 4r* €% + 61 + 1200 — 5r2¢

—28rM + 12r€M + 4€3rM + 12r€>M + 36M?)(£ — 1)(€ + 2)/[(r€*> + r€ — 2r + 6M)*r]

X (ra by, 6 )+ 2h) (6, 7) = ra Y (5, 7))

\/_7T(€ +2)(r€? + r€ = 2r + 3M)(¢ — 1)*(r — 2M)

_I_

r\/(€—71(r€2 + 7l — 2r + 6M)?

-0.1)

48 +m+ D)l —m+ 1)/

T DU - DT 2)

(2¢ + 1)(2€ + 3)

\—6(r —2M)(2r*€% + 32rM — 36M? + 3¢42

+ 403rM + 20 + 21203 — 8r) (€ — 1) + 2)/[(r€% + r€ — 2r + 6M)?*F]

X (ro, A (t, Nr+ 2hY

1€+1m

0€+1m(t I") —rd héll”)+lm(t I"))
J‘ 2m(€ — 1)(r€? + r€ = 2r + 3M)(€ + 2)*(r — 2M) ()

€+ 1)+ 2)(r€? + r€ — 2r + 6M)?

ot+1m (b r)). (26)

In Eq. (26), S(even 2(E, S) and S(even 2)(0, S) mean the coupling between the black hole’s spin and the first-order even and

odd parity perturbatlons respectlvely The tensor harmonics coefficients of the first-order metric perturbation, H (1 €)m etc.
are written in terms of the first-order Regge-Wheeler and Zerilli functions.
Here, we introduce the following combined function:
Wt 1) = W (1, 1) + W2 (1, 7), 27)

which is the linear combination of the first- and second-order wave functions. This function formally satisfies

d 92
VD, (1, r) + iSmP () &%m(z, r) + ismpgeve“)(r)m%(t, r)

+m+1D)—m+1)

a a2 \I}(’m(t }") + \I}{’m(t I‘)
- ((;e —’T;E§€++m1)) A S\/(

where S%ZCH‘L)(I, r) denotes the local source term with the
Dirac’s delta function and its derivative. The explicit
expression and some detailed analysis are given in
Appendix A 1.

3. Odd parity perturbation with spin

In the first perturbative order calculation, we have used
the Cunningham et al. waveform \I’((,’ D for the odd parity
as the Regge-Wheeler function. When we use plo2)

{m >
have some trouble in the source terms of the perturbed
Regge-Wheeler (odd parity) equation. The second-order

local source term does not vanish at the horizon. Therefore,

2¢ + 1)(2¢ + 3)

(even +)( )\Ir1({/0+11)m(t r) + S(even L)(l‘ r)’

(28)

we use the Zerilli waveform q,(oz,z) instead of the

Cunningham et al. waveform \If(0 )|

bative order

in the second pertur-

82
Fw;‘f”(; Rl (O

V(Odd)( )\I’(O 7,2) (t ) _ S(Odd 72) (t r) (29)

where the second-order source term S%oygd,z,z)

given as

is formally
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§0OZ2) :8\/§7Ti(r—2M) @)
Y 2
16827iM (r — 2M) D21,

AT D - D +2)
. 8\/5771(1’ - 2M)2 Jd (2)(
WITF D — D€ +2) r

).
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second-order Einstein tensor. And using Q(znl, we have
the relation between the two waveforms ‘If(gif) and

\I’E&Z’z) as
9, W2 (1, r)
16+2mir(r — 2M) )

-+ +1n ™

=2W%D (1 ) + (t,r).

(30) 1)

g}l and D(ezn{ are calculated by the tensor harmonics
expansion of —G(,%L[h“’w‘”e), hspin)]/(847)  from the
J

(022)
Vi

For the wave equation of , we have the second-

order source term as

SEED (1, ) = SEUEI(E, §) + SEA(0, 5);

{m

48 (C=—m)l+m)( (r=2M)FE—1E+2)(€+1)

(1
e+ D - +2)V2e - 12e+ D\ r 9K

€— lm(t I")

Sz §) =

2a(r —2M)(€ — 1)(€ + 2)(€ + 1) F 48
MW a7 B ) T DE =T
+m+1D)E—m+ 1)/_3 (r =2M)€(€ — 1)(€ + 2) 5, KW »
¢+ 1D2+3) \ = crn(tr

Y27l — 2l - (e +2) FO ,,))
2T T DC T e T3
S©U22 () ) — Sm (—48\/51'77(}’ —2M) () — 12i(6r + r€ + r€? — 14M)(r — 2M) mY (1)
e+n\  Jeer s ot ! r’ o
12i(r — 2M)(3r — 1M 4i(=9r + r€ + r€®> + 21M)(r — 2M
S S U SRR 60) )

without any regularization (or modification) of the wave function. Here, we note that S%‘;gd’z’z)(E, S) forthe € =3, m =2
mode is the time derivative of the second-order term in Eq. (76) of [41]. The explicit expression of Eq. (29) is given in
Appendix A 2. We should note that for the £ = 2 mode, there is an ill-defined term due to the factor (£ — 2) in the
denominator. This is why we need a special treatment for the € = 1 mode in the next section.

4. For lower £ modes

In the calculation of the second-order £ = 2 odd parity perturbation, we have the first-order € = 1 mode contribution. In
[38], this € = 1 mode has been calculated under the Zerilli gauge, i.e., K;,, = hgfl)m =hn =o.

Ilm

Hop () = mﬁ j—zfmm +MF5(0)60 (),
R e < 1,000~ RW),
HY (1, r) = (r_le)zfm(t)B(r — R(1)), (33)
where
a0 = s ©0 2 0, @) (34)

Here * denotes the complex conjugate. There is no contribution from the m = 0 mode.
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Using the above first-order € = 1 mode, we calculate the second-order source term from the coupling between this mode
and the black hole’s spin. Then the source term becomes finite at the horizon. In order to remove this finite term, we

introduce a regularization function,

Y32 —m)2 + m)

Fu(8(r — R(1)), (35)

WL (1, r) = WEPR(, )

2m

30Mr(r — 2M)

and we solve the wave equation for the regularized function ‘I’(Z(;’lz‘z)‘R. Here, we note that the regularization function does
not affect the waveform at infinity in our calculation. The regularized second-order source term is derived as

_ 4157u82 = m)2 + m)
15

Son PR (E, 5, [€ = 1])

Y, (0, @(r))[(

im(R(1) — 2M)2U(1)(d(1))?

R(t)M
N R(OU®)(R(t) — 2M)(D(r))? _im(R(?) — IM2D()  R()(R(r) — 2M)>15(r _RW)
R(t)M (R())*MU(r) (R®)*MU(t) )dr

n (im(R(t) — 2M)(13M — 3R(1))(d(1))* U(r) _ 2im(5SM — 2R(1))(R(1) — 2M)*D()U(1)

(R())*M
_ 4 (R(0) — 2M?R(HU(1)

(R())’M

(—12M + 2Mm? — m2R(1) + 4R(1))(D(1))*R (1)U (1)

(R()yM

im(11M — 2R(0))(R(1) — 2M)D(7) _5 (4M — R(D)R(t)

(R(1)*M

(R0))*MU(1)

We have only the local source contributions as the
second-order source term from this mode. Using the
following asymptotic behavior near the horizon, U(f) ~
(1 —=2M/R(t)"",R(t) ~ (1 — 2M/R(1)), and (1) ~ (1 —
2M/R(t)), we find that the above source term vanishes at
the horizon in the integration of the wave equation.

5. Symmetry in V,,, and \If(e(;r)l
In this subsection, we use the notation \I’%e“) =,
and \Ifg,(;sd) = \P?;)w which have the following relation in the

first perturbative order:

\I,(even/odd) _ (_ ])m(q,%i:;en/odd))*‘ (37)

{—m
This is derived from a formula for the spherical harmonics,

In the O(a') calculation, we should have the same

symmetry because the metric perturbations become real.
(even/odd)
tm

We can check this by using the explicit form of §

6. Gravitational waves

In the above sections, we discussed the techniques to
2) aploh

{m> tm >
and ‘I’E&Z’z). The first-order wave functions and waveforms
at infinity are simply related as

he — i = 3 Y 1)€(gr+ &)

calculate the wave functions ¥, = \If(glrzl + v

X (W) — vy Ly, (39)

(R(1)*™MU(1) )5(r - R(f))]- (36)

where —2Y,, denotes the spin-weighted spherical har-
monics used in [42].

On the other hand, in order to discuss gravitational
waveforms in the second perturbative order, we need to
check the asymptotic behavior of the metric perturbation
and the contributions from the first-order gauge transfor-
mation. First, we evaluate the asymptotic behavior of the

tensor harmonics coefficients of G%,, because this infor-
mation is used to construct the metric perturbation from the
wave functions. For the odd parity-spin coupling part, we
have the following behavior:

AL (0.9~001/7), AR (0,9~001/r),
AP(0,8)~01/r), B (0,8~0(1/r),
B2(0,9)~0(1/7),  G2(0,9~0(1/7),  (40)
F20,8~o00/,  22(0,8~01/r),
2% (0,9)~0(1/r), D(0,5)~0(1/r),

and for the even parity-spin coupling part,
AL (ES)~00/r), AR (ES)~01/r),
AD(ES)~001/r), B2 (ES)~0(1/r),
BA(E, S)~ 01/,  GAES)~0(1/r"), (41

2 (ES)~0(1/r),

97 (E,$)~0(1/r),

And the even parity-spin coupling part from the € = 1 even
parity has a different behavior:

(E,S)~0(1/r),
D (E )~ 0(1/7).
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D(E S, [€=1])~o0(1/r),

2m
9% (E,5,[€=1])~0(1/r),

and Q)(zznl(E, S, [€ = 1]) = Oin the first-order Zerilli gauge.

From the above asymptotic behaviors, if we set the
observer location to a large distance, we do not need to
consider these tensor harmonics contributions because the
contributions are at least O(1/r) lower than the leading
part. Note that the metric reconstruction in the second-
order odd parity perturbation has been done from the

(42)

Zerilli waveform \Ififi‘nz’z).

Next, we discuss the contributions from the first-order
gauge transformation. Formally the following gauge trans-
formation [43] is used in the second-order calculation:

Xpw = Xap = Xy T VA

+ITE () + g0 )] @)
where comma ““,” in the index indicates the partial deriva-
tive with respect to the background Schwarzschild coordi-
nates, and cf(')/‘ and §(2)" are generators of the first- and
second-order gauge transformations, respectively. The sub-
scripts RW and AF show the Regge-Wheeler gauge where
we reconstruct the metric perturbation, and the asymptotic
flat gauge where we obtain the gravitational waveforms,
respectively. Then, the metric perturbations change to

— h(l)

RWur Lf(l)guw (44)

(1) (1
hRW/,LV - hAF/.LV

e 1

2
h? RWur — §£§(2>gﬂy

(@)
RWuv — h

AFuv
1 o (W
+ Eﬁf(l)g,uv - £§“)hRW,uv’ (45)

where L ¢o denotes the Lie derivative.

In this paper, second perturbative order means O(ua)
where u and a are small quantities. Since £ is O(u), we
ignore .Eél)gw, and £§mh§§3W with hg&,w ~ O(u) in
Eq. (45). On the other hand, there is a contribution from
L f(”hﬁ}’;"”“). The asymptotic behavior of this tensor har-
monics coefficient becomes

8Hog ~ O(1/7), 8Hygm ~ O(1/7),

8Hyy =0,  8hY) ~ 0@,

8h(), ~ 0(), 3Gy, ~0(1/r),

8Ke ~ O(1/1), Shoem ~ O(°),

8higm ~ O, 8hog ~ O(). (46)

For the € = 1 mode in the first perturbative order when we
consider the gauge transformation to the center of mass
coordinates, we have the same behaviors. These contribu-
tions to the second-order metric perturbation under the

PHYSICAL REVIEW D 82, 104057 (2010)

Regge-Wheeler gauge are also lower order by O(1/r) at
least.

Finally, to derive the waveforms in the SRWZ formal-
ism, we may consider

=1L+ DL+ 2)
B ZJ 2r

h+ - ihX

X (W, — i) Y (47)

where again V,,, = \I’i}”)l + \Ifgi. Note that for \I'(g,’i we
have used a different wave functions for the first- and
second-order odd parity calculations for the sake of sim-
plicity of the final results. Using Eq. (31) and the above

asymptotic behaviors of o?

¢m» W€ simply combine them as

{m tm

P = vl 42 [ drv%?), (48)

7. Observer location effect

In [11], we saw that the observer location effect was not
negligible on the waveforms. To compare the NR and
perturbative waveforms, we directly use Eq. (47) because
we can set the extraction radius of gravitational waves at a
sufficiently distant location, for example, R, /M = 1000.
On the other hand, the NR waveforms are obtained from
the NR ¢4 data

Yy =hy —ihy. (49)

We should note that these are true only at Rgp, — 0.
First, we discuss the asymptotic behavior of the (first-

order) Regge-Wheeler-Zerilli functions. In general ¢

modes for both the even and odd parities, which we denote

by \I’fn:en) and ‘I’if;;id), are given by

{m

+
\P(even/odd) _ H{’m([ _ r*) + @ [dtH(fm(t — r*)
r
+002) 50)

We note that errors due to finite extration radii, which arise
from the integral term in Eq.(50), are larger for lower
frequencies due to the 1/w obtained by integrating a
function with a frequency w.

Next, we discuss the relation between Regge-Wheeler-
Zerilli functions and the mode function M’" of the Weyl
scalar. Here, although we can use the formula given in
Egs. (C.1) and (C.2) of [44], we use simpler formulae valid
for the asymptotic behavior of the functions. If the NR
Weyl scalar satisfies the Teukolsky equation in the
Schwarzschild spacetime, we have

N -1 +2 ﬁgm(t —
2r

+ 0(r™?), S

l"lﬁﬁm = I:I€1n([ - r*)
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where the difference between Hy,, and H,,, in Eq. (50) is
only the numerical factor.
Combining the above equation with Eq. (50), we have

tm

rt,bﬁ"’ . \I,(even/odd) . ; jdﬂy(ee;:zen/odd) + 0(7’72), (52)

which is independent of € and parity modes. This equation
is consistent with the formula in [44]. Here, we have
considered the correction for the RWZ functions. It is
important, however, to calculate H,,,, the waveform at
infinity, because the PN waveforms, which are used to
construct the hybrid waveform, do not have the finite
observer location effects.

Therefore, we consider the extrapolation of the NR i,
from, for example, Rqn/M = 100 to infinity by using
Eq. (51):

. =D +2) . _
i = Ron ! =02 [argl + 0RG3).

(33)
Again, the above formula is derived by assuming the
Teukolsky equation in the Schwarzschild spacetime
(a = 0). Since we treat only the extrapolation from
Rops/M = 100 to infinity, we may use the wave (linear
propagation) equation in the flat spacetime. Thus, the
Teukolsky equation with M — 0 is sufficient to discuss
the extrapolation. This calculation gives the same result as
Eq. (53). Note that since the above formulation has been
discussed by using the Weyl scalar in the Kinnersley tetrad,
we need an extra factor as the explanation below Eq. (3) for
that in another tetrad.

Let us point out that full numerical methods using
Cauchy-characteristic methods have been developed [45].
Also multipatch [46] and pseudospectral [10] techniques
allow extraction radii very far from the source.

8. Numerical integration method

Although we have used the combination of Eq. (27) for
the even parity perturbation and integrate Eq. (28) in this
paper, the basic equations are the four wave equations, (22)
and (23) for the first perturbative order and (25) and (29)
for the second perturbative order.

In order to integrate the resulting even and odd parity
wave equations, we use the method described in [47]. This
method is second-order accurate in the grid spacing (see
[31] for a fourth-order formalism), but deals with the
Dirac’s delta source “exactly” or as accurately as needed.

Even if we considered the metric (6) with first-order
spin corrections to the Schwarzschild metric, the method of
perturbations we used still propagates waves on the exact
Schwarzschild background and lumps the spin corrections
in a source term, as if they would be second-order pertur-
bations. We hence apply the methods of [31,47] with an
added smooth source to integrate the first order in spin-
corrected RWZ wave equations. We proved second-order
convergence of the extracted waveforms and used spatial
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and time steps that produced errors well below those
acceptable for full numerical evolutions. The runs typically
take under a minute on a laptop and are very low in
memory and resources requirements. We also note that
these types of codes are amenable to implementation on
accelerated hardware such as GPUs or cell processors [48].

IV. ANALYSIS OF THE NUMERICAL VERSUS
PERTURBATIVE RESULTS

Here we directly compare the waveforms generated fully
numerically with those computed by the perturbative
(SRWZ) approach. Since our full numerical evolutions
routinely extract the Weyl scalar ¢, at intermediate radii,
typically around R = 100M (a compromise between far
enough of the sources and high enough local resolution),
and the perturbative code evolves the Regge-Wheeler and
Zerilli waveforms, we need to translate these different
measurements of the waveform into a common radiation
quantity. While analytic expressions already exist that
relate them both [44], such expressions involve second
derivatives that lead to some numerical noise when build-
ing up ¢4, for instance. The usual strain A also involves
two integration constants that are hard to fix with accuracy
[9,49]. Hence, as a compromise, we use the news function,
essentially dh/dt, which displays nicer smoothness prop-
erties for numerical comparisons.

In Figs. 7-9 we superpose the waveforms obtained for
the full numerical evolution of the ¢ = 1/10 black-hole
binary case and the perturbative waveforms as computed
by the integration of the wave equations (25) and (29)
both, including the spin corrections (a/M = 0.26) or sim-
ply setting it to zero. We do these comparisons for the
leading (€, m) = (2, 2) mode and the next-to-leading (2, 1)
and (3, 3) modes. Note that while (2, 1) is an odd parity

0.04 — — NR ; =
... Spin OFF

L —— Spin ON 4

-0.04 - a

1 l 1 l 1 l 1 l 1 l 1 l 1 l 1 l
100 200 300 400 500 600 700 800 900

/M

1 1 1
1000 1100 1200

FIG. 7 (color online). The real part of the (€ =2, m = 2)
mode of dh/dt for the g = 1/10 case. The (black) solid, (red)
dotted, and (blue) dashed curves show the NR, spin-off, and
spin-on calculations, respectively.
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FIG. 8 (color online). The real part of the (€ =2, m = 1)
mode of dh/dt for the ¢ = 1/10 case. The (black) solid, (red)
dotted, and (blue) dashed curves show the NR, spin-off, and
spin-on calculations, respectively.
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FIG. 9 (color online). The real part of the (€ =3, m = 3)
mode of dh/dt for the ¢ = 1/10 case. The (black) solid, (red)
dotted, and (blue) dashed curves show the NR, spin-off, and
spin-on calculations, respectively.

mode (for a = 0) and comes from integration of the Regge-
Wheeler equation (23), the other modes are even parity and
hence obtained by integration of the Zerilli equation (22).
In all cases we use the same “‘full numerical” trajectory.
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When spin terms are switched on, there is a coupling
of even and odd parity modes as shown in
Egs. (25) and (29).

We have computed the overlap functions, as defined in
Ref. [9], of these three sets of waveforms in order to
quantify the phase agreement between them. This provides
some insight into the possibility of using these perturbative
waveforms to build up a bank of templates to support
detection and analysis of gravitational wave observatories
such as LIGO and VIRGO. Table IV shows that the agree-
ment between numerical and perturbative waveforms is
very good in general for all three modes, and that including
the spin dependence improves the matching to an excellent
level. This improvement is based on the accurate descrip-
tion of the late time phase, as we will discuss next, and is
independent of the particle’s track. The orbital (inspiral)
part of the waveforms are not so strongly dependent on the
spin terms (for our simulations) and are correctly described
by the nonspinning perturbations. It is interesting to note
here that the excellent phase agreement during the inspiral
orbit might not be so surprising since the perturbative
code uses the full numerical tracks (transformed into
Schwarzschild coordinates); however, coordinates and
gauges in full numerical evolutions are described in quite
a different way than in (analytic) perturbative expressions,
and it is reassuring to find such a good agreement in the
final products of evolutions.

In Figs. 10-12 we superpose the waveforms for the
modes (2, 2), (2, 1), and (3, 3) obtained from the full
numerical evolution of the ¢ = 1/15 case. We included
full numerical, perturbative with spin (a/M = 0.189),
and without spin corrections (a = 0). We computed the
overlap functions, as defined in Ref. [9], for these three sets
of waveforms and display the results in Table V. We ob-
serve again the generally very good agreement of the
perturbative and full numerical waveforms. The agreement
is still stronger when we include the spin dependence of the
remnant black hole.

In order to study in more detail the agreement of the
numerical and perturbative waveforms, we will proceed to
decompose them into phase and amplitude (¢, A) with the
usual formula

¥ = Aexplig). (54)

TABLE IV. The overlap (matching) between the NR and perturbative dh/dt for the ¢ = 1/10
case. The integration time is from 7/M = 100 to 1220, and the definition of the matching is

given in Egs. (26) and (27) of [9].

Mode N =2,m=2) NE=2,m=1) N =3, m=23)
Match (Spin OFF) 0.980404 0.968 137 0.927 807
Match (Spin ON) 0.995 055 0.982 173 0.995 347
Mode S =2,m=2) J=2,m=1) ¢ =3, m=3)
Match (Spin OFF) 0.980379 0.972727 0.928 151
Match (Spin ON) 0.995 196 0.982 604 0.995571
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FIG. 10 (color online). The real part of the (€ =2, m =2)
mode of dh/dt for the ¢ = 1/15 case. The (black) solid, (red)
dotted, and (blue) dashed curves show the NR, spin-off, and
spin-on calculations, respectively.
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FIG. 11 (color online). The real part of the (€ =2, m = 1)
mode of dh/dt for the ¢ = 1/15 case. The (black) solid, (red)
dotted, and (blue) dashed curves show the NR, spin-off, and
spin-on calculations, respectively.

We display in Figs. 13—15 the phases of the (2, 2), (2, 1)
and (3, 3) modes for the ¢ = 1/10 case. Note the very good
agreement between numerical and perturbative waveforms
for the whole range of the simulation. All the agreements
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FIG. 12 (color online). The real part of the ({ =3, m = 3)
mode of dh/dt for the ¢ = 1/15 case. The (black) solid, (red)
dotted, and (blue) dashed curves show the NR, spin-off, and
spin-on calculations, respectively.

have been found with a single full numerical trajectory
feeding the source terms of both the even and odd parity
perturbative equations. The insets in the figures zoom
in on the late time phases to display the effect of the spin
correction, which in all three modes shows improvements
over the nonspinning background case.

Figures 16—18 show the phases of the (2, 2), (2, 1) and
(3, 3) modes for the ¢ = 1/15 case. Again very good
agreement is seen for the whole range of the full numerical
simulation between perturbative and numerical results.
The insets show that the spin correction, even if smaller
than for the ¢ = 1/10 case, still improves the late time
phase, correctly capturing the quasinormal frequencies of
the slowly rotating Kerr black hole (a/M = 0.189).

We now turn to compare amplitudes of waveforms.
Although for gravitational wave detection by the LIGO
and VIRGO observatories the most important indicator is
the phase, the amplitude agreement is particularly impor-
tant in the modeling of the sources. Figure 19 directly
compares the amplitudes of the ¢ = 1/10 and ¢ = 1/15
cases, shifted in time to agree at the peaks of their ampli-
tudes. We then rescale the amplitudes of the ¢ = 1/15
waveform by the factor u(g = 1/10)/u(qg = 1/15) =
1.41 to verify a linear rescaling. We find that the rescaled

TABLE V. The overlap (matching) between the NR and perturbative dh/dt for the ¢ = 1/15
case. The integration time is from #/M = 100 to 750, and the definition of the matching is given

in Egs. (26) and (27) of [9].

Mode NE=2,m=2) NE=2,m=1) N =3, m=23)
Spin OFF 0.991 297 0.993 986 0.969 254
Spin ON 0.996 607 0.997 256 0.995974
Mode St =2,m=2) S=2,m=1) ¢ =3, m=3)
Spin OFF 0.991 653 0.996 433 0.968 889
Spin ON 0.996 780 0.998 178 0.996218
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FIG. 13 (color online). The phase evolution of the (£ =2,
m = 2) wave for the ¢ = 1/10 case. The (black) solid, (red)
dotted, and (blue) dashed curves show the NR, spin-off, and
spin-on calculations, respectively. The inset shows the zoom-in
for the quasinormal region.

amplitude of the ¢ = 1/15 wave is very close to the actual
g = 1/10 amplitude, showing that the systems are close to
behaving linearly at these mass ratios.

In order to assess this last point in more detail, we
compute the differences of the numerical and perturbative
waveforms for each case, ¢ = 1/10 and g = 1/15, and
study how this “error’ scales with g (or more precisely w).
We display the results of such computations in Figs. 20 and
21 for the cases of neglecting the spin of the final hole and
that of taking it into account, respectively. The plots show
that the inspiral phase scales like w? as one would predict if
the system would be completely linearized. While in the
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FIG. 15 (color online). The phase evolution of the (£ =3,
m = 3) wave for the ¢ = 1/10 case. The (black) solid, (red)
dotted, and (blue) dashed curves show the NR, spin-off, and
spin-on calculations, respectively. The inset shows the zoom-in
for the quasinormal region.

final merger region, near the peak of the amplitude, the
rescaled differences display a dependence in w between
linear and quadratic, as if there are still nonlinearities
present. One would expect this behavior for values of ¢
that are in the intermediate mass ratio regime, where the
linear approximation is good but small nonlinear effects
can still be observed.

V. DISCUSSION

In this paper we have described in detail the tech-
niques used to compute gravitational waveforms with the
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FIG. 14 (color online). The phase evolution of the (£ =2,
m = 1) wave for the ¢ = 1/10 case. The (black) solid, (red)
dotted, and (blue) dashed curves show the NR, spin-off, and
spin-on calculations, respectively. The inset shows the zoom-in
for the quasinormal region.

M

FIG. 16 (color online). The phase evolution of the (€ =2,
m = 2) wave for the ¢ = 1/15 case. The (black) solid, (red)
dotted, and (blue) dashed curves show the NR, spin-off, and
spin-on calculations, respectively. The inset shows the zoom-in
for the quasinormal region.
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FIG. 17 (color online). The phase evolution of the (£ = 2,
m = 1) wave for the ¢ = 1/15 case. The (black) solid, (red)
dotted, and (blue) dashed curves show the NR, spin-off, and
spin-on calculations, respectively. The inset shows the zoom-in
for the quasinormal region.

perturbative approach using full numerical trajectories in
the source terms of the perturbative wave equations. The
program was successfully tested in the ¢ = 1/10 case in
Ref. [11]. We have taken it further here studying larger
initial separations for the full numerical evolutions of
the g = 1/10 case, leading to simulations lasting for
nearly eight orbits before the final plunge. We have also
studied the case g = 1/15, the smallest mass ratio so
far in the literature, in order to assess quantitatively the
g-dependence of the agreement of the full numerical and
perturbative evolutions in the intermediate mass ratio
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FIG. 18 (color online). The phase evolution of the (£ = 3,
m = 3) wave for the ¢ = 1/15 case. The (black) solid, (red)
dotted, and (blue) dashed curves show the NR, spin-off, and
spin-on calculations, respectively. The inset shows the zoom-in
for the quasinormal region.
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FIG. 19 (color online). The amplitude of the (£ =2, m = 2)
mode of the NR dh/dt for the ¢ = 1/10 and 1/15 cases. The
(black) thick solid and (red) solid curves show the ¢ = 1/10 and
1/15 amplitudes, respectively. The (red) dashed curve denotes
n(qg = 1/10)/m(g = 1/15) ~ 1.41 times the ¢ = 1/15 ampli-
tude.

regime. We have also included in our new computations
the (linear dependence) spin of the final remnant in order to
correctly reproduce the quasinormal ringing component of
the full waveform at late times (after merger). The results
are displayed in Tables IV and V and in Figs. 13—18. They
show an apparent improvement in the matching (overlap)
indices when the spin correction is taken into account
compared to the vanishing spin case. In the Appendix
we apply this linear-in-spin perturbation theory (SRWZ)
to compute the corresponding quasinormal modes and
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FIG. 20 (color online). The amplitude difference in the (¢ = 2,
m = 2) mode between the NR and perturbative dh/dt for the
spin-off cases. The (black) thick solid curve shows the ¢ = 1/10
case. The (red) solid, dotted, and dashed curves show the
amplitude differences for the ¢ = 1/15 case rescaled by factors
of 1, 1.41, and 1.412, respectively.
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FIG. 21 (color online). The amplitude difference in the (£ = 2,
m = 2) mode between the NR and perturbative dh/dt for the
spin-on cases. The (black) thick solid curve shows the ¢ = 1/10
case. The (red) solid, dotted, and dashed curves show the
amplitude differences for the ¢ = 1/15 case rescaled by factors
of 1, 1.41, and 1.412, respectively.

compare the frequencies of these modes with those ob-
tained for a Kerr black hole background for all values of the
spin parameter. We observe the results in Figs. 29 and 30.
They show that SRWZ provide reliable predictions for
a/M = 0.3, which justifies their use for the cases studied
here where a/M = 0.26, 0.19 for ¢ = 1/10, 1/15, respec-
tively. The generalization to arbitrary spins requires solv-
ing the Teukolsky equation instead of the RWZ ones [50].
Note that the relevant spin-effects on the waveforms are
due to the spin of the large black hole, while the effects of
the spin of the small hole on radiation will tend to be
negligible as g decreases. The use of numerical trajectories
to describe the motion of the small hole in the field of the
larger one already incorporates the spin dependence where
the effects are stronger.

After comparing the perturbative and full numerical
waveforms and verifying the accuracy of the former, there
remains the question of accurately modeling the trajecto-
ries for small ¢ BHBs. We have stressed here an important
fact, that the trajectory dependence disappears from the
perturbative formulation once the black holes merge, re-
ducing the need of further full numerical simulations with
the resulting saving of computational resources. This sav-
ings is not negligible, because one saves not only the
(relatively short) time of evolution from merger to the
end of the ringdown, but also the evolution time required
to propagate the signal to an observer located far away
from the sources. Typically, this should save over 500M of
full numerical evolution. One can also predict the parame-
ters of the final black hole by using formulae for the
remnant parameters, as in [51,52], found by empirical
fitting. Still, the goal of our project is to be able to model,
empirically, the BHBs inspiral trajectories as a function

PHYSICAL REVIEW D 82, 104057 (2010)

of g from a reasonably small number of full numerical
evolutions. In particular, numerical evolutions start from a
finite, relatively close initial separation of the holes. It is
hence important to provide the large separation input
from PN theory. While the full modeling of trajectories is
beyond the scope of the current paper, here we discuss how
this interface can be achieved for the current simulations of
the ¢ = 1/10 and ¢ = 1/15 cases. The results are summa-
rized in Figs. 22 and 23. We have considered the full
numerical and PN trajectories in the Schwarzschild coor-
dinates, i.e., correct the full numerical tracks for the 1 +
log time slice and the PN ones for the quasiisotropic
coordinates (ADM-TT gauge). In the ¢ = 1/10 case, the
full numerical evolutions essentially start from initial
separations R; = 9.5M in the Schwarzschild coordinates.
We see a relatively smooth matching for the tracks and
their first derivative in the upper-left inset of Fig. 22. This
would lead hence to smooth waveforms in the whole range
of the evolution, i.e., from as large initial (PN) separations
as needed down to the ringdown. Note, however, that in
order to achieve this smooth matching of trajectories we
had to make use of the resummed PN (RPN) evolutions
(i.e. containing exactly the particle limit in the
Schwarzschild background). The RPN Hamiltonian used
here is derived in the following. Based on the Hamiltonian
formulation for the test particle given in [53], the re-
summed part Hgy, is calculated by using the
Schwarzschild metric in the isotropic coordinates. Then
the RPN Hamiltonian is given by

HR™N = Hgy + Hpy + Hypx + Hapy (55)
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FIG. 22 (color online). The radial trajectory R(f) obtained
from the PN and NR evolutions for the ¢ = 1/10 case in the
Schwarzschild coordinates. The (black) solid, (red) dashed, and
(blue) dotted curves show the NR, resummed, and Taylor PN
ones, respectively. From the lower-right inset, we can choose the
matching radius between the NR and resummed PN evolutions
as R(1)/M = 9.35123. The upper-left inset is the zoom-in
around the matching time.
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FIG. 23 (color online). The radial trajectory R(f) obtained
from the PN and NR evolutions for the ¢ = 1/15 case in the
Schwarzschild coordinates. The (black) solid, (red) dashed, and
(blue) dotted curves show the NR, resummed, and Taylor PN
ones, respectively. From the lower-right inset, we can choose the
matching radius between the NR and resummed PN evolutions
as R(1)/M = 8.28796. The upper-left inset is the zoom-in
around the matching time.

The finite mass effects Hpx, Hopn, and Hspy in the above
Hamiltonian are introduced by the result of the standard
3PN Taylor Hamiltonian (TPN) and the 3.5PN radiation
reaction effects on the equations of motion are treated as in
[54]. In practice, H, py is obtained by the subtraction of
the test particle limit from the Taylor PN Hamiltonian
H pn. The PN evolutions in the figures have been obtained
from the quasicircular initial parameter at R(r) ~ 50M.
A good matching, at this initial separation, cannot be
achieved with the TPN Hamiltonian. Of course, at larger
separations both PN expressions get closer to each other,
and a full numerical simulation started at such large initial
separations could be matched by Taylor PN expansion
as well.

This also suggests that, at even closer separations, as in
the case of the numerical evolutions for ¢ = 1/15 starting
from R; = 8.4M, not even the resummed PN leads to a
very smooth matching of track. This is indeed the case
displayed in Fig. 23. We may then conclude that, in order to
simulate full inspirals of ¢ ~ 1/10 matched to resummed
PN, one needs to start the full numerical simulations from
initial separations R; > 9M in the Schwarzschild coordi-
nates, i.e., REQI) > 8M in the quasiisotropic coordinates.
Alternatively, one could seek to improve the resummed PN
expansions with the effective one-body (EOB) formalism
[55] and its extension to incorporate full numerical results
(EOBNR) [56]. It is also relevant to cite here the works
[57-59] that make perturbative evolutions of particle tra-
jectories completely derived from PN expansions and used
all the way down to merger without direct input from full
numerical trajectories.
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If one can indeed extend those improved post-
Newtonian treatments down to the ISCO in the particle
limit, at R = 6 M in the Schwarzschild coordinates, i.e.,
RUSCO) = 4 950 in the isotropic coordinates, then one can
argue that the subsequent merger trajectory reaches a
“universal” limit given by the geodesic motion of
quasicircular orbits. In fact this seems to be the case for
the tracks of the g = 1/10 and ¢ = 1/15 simulations
as displayed in Fig. 3. One can argue that the very low
level of radiation of those plunging orbits implies the
universal form of the track. This was also recently
observed in [59] studying PN orbits. Notably, at the other
extreme of the mass ratio range, i.e., for equal (and com-
parable) mass BHBs, the strong gravitational emission
taking place during the plunge erases any details of the
preliminary evolution and one observes a universal wave-
form [60-63]

To see the universal behavior of geodesics inside the
ISCO for quasicircular inspirals, we use the orbits with
imaginary eccentricities for timelike geodesics in the
Schwarzschild spacetime as given on page 111 of [64].
The initial part of these orbits can be considered the
continuation of the inspiral trajectories through the
ISCO. These geodesics have the following form near
the horizon:

o2 (1L s 31 BYY(E )

1 13, 39/ Ry\2\/R .\
)
(8 64 64(1 o) \aar ! (56)

where the imaginary eccentricity (ie) is a small quantity,
and Ry < 6M.
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FIG. 24 (color online). The orbit with imaginary eccentricities
discussed in [64]. The thick and thin curves show the g = 1/10
and ¢ = 1/15 cases, respectively. Here we show the orbits with
various eccentricities.

104057-19



LOUSTO et al.

The initial velocity at R(f) = R, is approximately
drR(1) _ /6

gi\/en by

do(r) _ V6 \/6<1_ﬁ>

dt  36M 24M 6M

+ \/6(15(1 - &)2 - ez), (57)

288M 6M

which allows us to match to full numerical trajectories
and then use the geodesic expressions to smoothly suppress
the local source terms when the particle approaches the
Schwarzschild horizon (See Sec. 111 A 4).

In Fig. 24, we plot the phase evolution in terms of the
orbital radius. As a fiducial starting point, just inside the
Schwarzschild ISCO, we take the self-force corrected
ISCO radius

Ry = 6M — 3.269u, (58)
as discussed in [65]. Although we see some differences in
the initial part of the orbits, the trajectories reach a univer-
sal limit approaching the horizon.
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APPENDIX: ANALYSIS OF THE
WAVE EQUATIONS

The following is useful for the analytic discussion,
especially the behavior of the source term around the
horizon. And this also gives a stable evolution in the
numerical calculation, because nonvanishing contributions
at the horizon in the source terms are canceled out
analytically.

Here, we discuss the wave functions as

W (t, 1) = W1, DR — r) + W (1, NO(r — R(2)),
‘I'(;tmep)(t, r) = ‘l’ifj;“)(t, r)— ‘l’?r‘;)(t, r), (A1)

where W, denotes the even or odd parity wave function.
The functions W™, W and ‘Ifgfp) are the homogene-

tm> ~4€m >
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ous solutions of the Regge-Wheeler-Zerilli equations.
From these definitions, we have

Wo,(t, 1) = WV, ) + WP (1, 0(r — R()).

{m

(A2)

Therefore, for example, the time derivative of the above
wave function is written as

0, Wt 1) = 0,91 1) + (0,957 (2, 1)6(r — R(2))

m {m
— whter(y, r)dlfi—y) 5(r — R()
= 9, r) + (3, YD (1, 1))0(r — R(1))
_Ayp(step) dR(t) o

To find the quantities of the waveforms at the particle
location, i.e., ‘I’%Stmep)(t, R(1)), we use

16\27ir(r — 2M)
€+ 1D)(re?+ r€ —2r + 6M)

x AW (@ r),

9, (1) =WEV (@, ) +

16+27ir(r — 2M)

(=D +2)yE€+1)

(A4)

9, WOV (s, ) =2W0%D (1 ) +
X QW (1, 7),

where each wave function in the left-hand and right-hand
side of the above equations behaves as a step function
at the particle’s location because of the first-order
Regge-Wheeler-Zerilli waveforms. Therefore, substituting

Eq. (A3) into 8,‘1’((1")1 and a,‘l’<°’l) we obtain the analytic

{m >
expression of W) (1 R(1)) from the coefficients of the

{m
Dirac’s delta function.

1. Analysis of the even parity wave equation

We have introduced a new function for the even parity
calculation to the SRWZ formalism:

Vot 1) =V 10 + W2 (1, p), (A5)

The gravitational waveform with the spin effect is obtained
directly from W¥,,,. Therefore, we discuss the wave equa-
tion for Wy, in the following. Here, we create our numeri-
cal code for the perturbative calculation based on [31]. It is
important to distinguish the cell that the particle does cross
from the other cells.

For the cell that the particle does not cross, we use the
following homogeneous equation, i.e., can read the follow-
ing equation from the step function part, which does not
include the local source term:
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2 —2M)* 92 —2M)M 9
— a—‘I’gm(l‘, r) + —(r ) a—‘l’gm(t, r) + 27(;” ) — W, (t, 1) — (r = 2M)(4r3 € — €49 + 3¢ — 7637
at? r? ar? P Jar
+ €083 + 126372M — 24r*M€ — 1872 M L% + 24r*M + 6€*r>M — T72rM?* + 36€2rM? + 36{rM?>
+ 12M3) W, (t, 1) /[(r€* + €r — 2r + 6M)*r*] — 4iSm(4r3€7 + 144M3€% + 16r°€¢ — 2413 + 18M (5>
+ 144M3€ + r3 €8 — 216rM?* — 66032 M — A8r2M{ + 144M°3 + 36€2rM? + 2213¢% + 1202 M + 60313
— 11€4° + 54M 0> + T2M>*€*r + 126> M + 144M%r€3 — 90r>M > — 364rM?
24iS(€ + 2)(€ — Dm(r — 2M)> 92
r2(r€* + €r — 2r + 6M)%€(£ + 1) ator

- 14€5r3)(%\1’5m(t, AP+ DO + r — 2r + 6M)*] + W, (1)

. =—m{+m)
2¢—-1)2¢+ 1)

+ 6r2 — 28rM + 36M2)‘If(€°_)1m(t, r)/[PE(re% + €r — 2r + 6M)?]

= —128

r—2M) — 2)(0Or2 + 2r 6% + 4rf3M — 47262 + 12rM€% — 5r2€ + 12rM<¢

C+m+1)—m+1)
(2¢ + 1)(2¢ + 3)

+32rM — 872 = 36M2)WY) | (1, r)/[(€ + D)3 (r® + €r — 2r + 6M)2]. (A6)

+ 128 (r = 2M)(€ + 3)(r* + 3r2€* + 4r3M + 257203 + 21242

And then we need the following local source term which is added to the right-hand side of the above equation, for the
cell that the particle does cross:

Si}cr:l/en,L) _ S(even,l,L) + S(evcn,Z,L)’ (A7)

{m tm

where the first-order source term S(f’mve“‘l’L) is the same as Sffn:e“’l) in Section Il B 1 and given in Eq. (A.5) of [31] as

gleven L) _ [327w(R(t) — 2M)(2M — R(1) — R(OR(1))2M — R(1) + R(OR()U(1) d 5 — R()
(m €€ + 1R (R(1)€2 + R(1)€ — 2R (1) + 6M) dr
o (32m2(R(t) — 2MUN)(D(0)?  64imR(1)(R() — 2M)U(1)D (1)
€€+ 1) (€ —1)(¢ +2) R(1)€% + R(1)¢ — 2R(1) + 6M

16(R(2) — 2M)U(2)(D(1))?
(R + R()E — 2R() + 6M)(€ — 1)(€ + 2)
16U(1)(R(1))?
R(t)(R(1)€*> + R(t)€ — 2R(t) + 6M)>
16(R(z) — 2M)*U(2)
(R(D))}(R(1)€> + R(1)€ — 2R(t) + 6M)?
X (60M? + 12R(1)€>M — 24R(t)M + 12R(t)¢M — 2(R(1))*€ — (R(1))*€* + 2€3(R(1))?

" €4<R<t>)2>)5<r - R(r))]yzm@o, o (1)). (A8)

(—8M + 10M€? + 10M€ — 3R()€> + 2R(1)€3 + 4R(¢)

+ R(1)¢* — 4R(1)€) +

(—2(R(0)*€ = (R())*€* + 26 (R(1))* + €4 (R(1))?

+ 12R(1)€>M + 12R(t)¢M + 12M?) —

The second-order local source term S(Zzen’z'm has the following expression:
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S(even, 2,L) _

192imS7pU(1)(R(t) — 2M)R(1)(€2 + € — 2m?)(d(r))?

PHYSICAL REVIEW D 82, 104057 (2010)

(€ +2)(€ — D + D2(R(0)€2 + R(t)€ — 2R(¢) + 6M) Yo

(©, <1>(t))f 8(r = R(1))

ad

—24imS(€ + 2)(€ — 1)(R(¢) — 2M)?
[(R(t))2(R(t)€2 + R(t)¢ — 2R(1) + 6M)20(€ + 1) ot

Vo (1, 1)l ) + imSTRY,, (B, (1))

X (—384(€2 + € — 2m2)(30M? + 6R(£)>M + 6R(1)¢M — 21R()M — 2€(R(£))> — 2€*(R(1))

+ 4(R(N))HU ) D(1)2R (1) /[R()(€ + 2)(€ — 1)(€ + 1)*€2(R(1)€% + R(1)€ — 2R(1) + 6M)?]

— 128(R(1) — 2M)U(H)R(1)((R(1))2€* + 2(R(1))* €3 — 6€2(R(1))> +

18R(1)€*M — T€(R(?))* + 18R(1)eM

+ 10(R(2))*> — 36R()M + 36M?)/[€(R(1))*(R(1)€> + R(1)€ — 2R(t) + 6M)*(£ + 1)]

192imU(1)(€2 + € — 2m?)(R(1) — 2M)(D(z))?

(€ +2)(€ — 1) + 1)2€>(R(1)€*> + R(1)¢ — 2R(t) + 6M)
10€(R(1))? + (R(1))*€* + 2(R(1))*€° + 16(R(1))?

+ 30R(1)(M — 60R(1)M —

+ 128imU(t)(R(t) — 2M)*(72M? + 30R(1)¢*M

—9R(R(D)D()/[(€ + 1R + R — 2R(z) + 6M)3(R(t))3]):|6(r —R()

(€ — m)(€ + m) Ur)D(r)(R(t) — 2M)*(—2R(?) + R(t)¢ + R(1)€* + 3M)

* (2567”‘ Ner=nei+n

C+ DR} (R + R(t)€ — 2R(1) + 6M)?
(€ +m+ 1) —m~+ 1) U@OD)(R(1) — 2M)*(—2R(t) + R(1)€ + R(1)€> + 3M)

Y71, (O, (1))

— 2567uS
TH 20 + 1)(2€ + 3)

X 0,Y", . (O, CD(t)))é(r — RO).

Here we have used the analytic expression of the wave
function \P(“ep)(t R(t)) at the particle’s location, and the
instantaneous geodesic approximation for the second-order
source term.

It is noted that there are remaining terms at the horizon
in the integration of the wave equation. These arise from
the transformation of the original wave equation to the
above equation. Since the source term for the original
wave equation does not include any remaining term at

(€ + 1)*(R(1))*(R(1)€> + R(1)€ — 2R(z) + 6M)?

(A9)

the horizon, these remaining terms cancel out with the

derivatives of the wave function, i.e., a‘lf(esrffp) /ot.

2. Analysis of the odd parity wave equation

In the calculation for the odd parity perturbation of the
SRWZ formalism, we have treated the first- and second-
order perturbations separately. The first-order (local)
source term, Sy (Odd LD — =S, (Odd D which has been simplified
with the geodesm equatlon is given as

(0dd,1,L) _ 32w B s (R —2M)D() d
SE = i o L(O®O - 20 REP @) + EOEDNO) L5~ Ro)
+ ((2R(t) —IMROUD) — imROROUE) D) + W

_2R(t) = 2M)2U(1)D(1)
(R(1))?

Next, we focus on the second-order wave equation. WV

)6<r - R(z))]aﬂ;fm(@o, o (1)),

(A10)

felilm and \Ififi;ll) have already been derived in the first-

order calculation. For the cell that the particle does not cross, we may consider only the homogeneous part of the wave

equation,

104057-22



INTERMEDIATE-MASS-RATIO BLACK HOLE BINARIES: ...

62
SN+ \Ir("“)(t r) -

+ 187 — 6r€ + ré* + OME?

Vé(]odd)( )q,(o 7,2) (t r)

— 42M + 9¢M)(r — 2M)

PHYSICAL REVIEW D 82, 104057 (2010)

WD (i, p)

3 _ 5,02
_ imS(—2(2r€ 5r¢

€+ 1)r'e
2(37‘ - 8M)6(I" 2M) d \P(O 1)( r) ) ( ?M) a \P(O 1)(t r))
r r
_ + _ 2 _ 2
N 48 € —m) +m) (- (r 2M)*(€ —1) o \I’E}lzl ‘.
e —1Vee—nee+ n\ r atar "
3 (r —2M)(€ — 1)(€*r? — 21263 — r2 €% + 2174 + 6r0>M — 6r{M — 12rM + 24M?) 9 \P(l) " ))
;
2 ro(r€?> — r€ — 2r + 6M) (=1m
n (€+m+1)(€—m+1)/ (r—2M)*(¢£ +2) 92 ) (1)
— r
€+ 1)€+2) ¢+ 1D2+3) \ argr ~ CHim>
C 3 (r=2M)(€ +2)(€4 7 + 6207 + 117207 + 6r7€ + 6rf>M + 18rfM + 24M?) 0 _ )
ey PTG r>)- (Al)
2 (r€* + 3rf + 6M)
The second-order local source terms, S(Odd’z‘z’]‘), which we need for the cell that the particle does cross, is written as

(0,1,step)

327+ 3)(€ —2)U()D(1)(R(t) — 2M)?

(0odd,Z2,L) _
S€ m

S(ZM 0 L) =k —

(R(1)S  ar

(R@) €+ 1> (€ —1)(€+2)

) - 48 [(€—m)(t+m)
X agyfm((ao,@(t)))(?(r R(1)+ e—\Vee—D2e+1)

€ —2m2)(D(1)*(— R(t)+2M)U(t)R(t)

127 0(€ +2) (62 —
X[ R (C—2)1
(3(R(t) OIMP(E—1)(C+2) (€ +1) 9

RO 1
12im(R(t) —2M)U(t)(€*> —

(1,step)
‘Pf— 1m

€—2m*)(D(0)*

Y 1,(B0 (1) B(r—R(t))

)=k

12(5R (1) — 14M)R() U (1)(€2 — € — 2m2)(D(1))?

mu(+2)(
+ T (

96im(R(t) —2M)3} (€ + D U(1)D(7)

(R(1))*(€—2)

(R(1))*(€—2)

_48(R(1) —2M)*(€ + DU(HR(1) (€ — 1)¢

(R())>(R(1)€*> — R(1)€ —2R(1) + 6M)

where [€ < —{ — 1] refers to an additional term obtained
by replacing € w1th —{¢ — 1 in all terms in Eq. (A12),

startln% from @p £ p5 -+ and subsequently replacing
‘If(lgteZm th\Ifi,+sn and Y*,_, with Y, , . The above

source term is added to the right-hand side of the homoge-
neous part of the wave equation. It is found that the right-
hand side of the equation vanishes at the horizon. Here, the
instantaneous geodesic approximation has also been used
in the above equation.

|

(R(1)>(R(z)€>
XY?_, (O D(1)(r— R(t))] F [l —0—1]

—R(t)€ —2R(t) +6M) )
(A12)

3. Analysis of quasinormal modes

In the SRWZ formalism, we discuss a special case where
the € = 2, m = =2 even or odd parity mode is dominant
and couplings with the other modes can be ignored. Also,
the perturbed Regge-Wheeler-Zerilli equations with the
spin effect do not have the local source terms, i.e., we
consider the homogeneous equation.

For the even parity part, we use the same equation as
Eq. (A6) without the other mode coupling:

8iS(r — 2M)? 92

92 92 (r —2M)(4r + 4r°M + 6rM?* + 3M3)
5 - 6 \I’ + t, =+ "P + t,
[ a2 | ar2 A(2r + 3M)? ] 2=2(01) = 0 S5 arar L2
8iS(6r3 + 46r*M + 45rM? + 21M?3) 9
‘I’ H(t,r)=0. Al3
+ 3(2r + 3M) 2+ 2( r) ( )
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For the odd parity part, we use a different equation from
Eq. (A11). This is because, if we ignore the other mode
coupling and the local source term, we can derive a simple
equation by using only the Cunningham et al. waveform
‘Ifg’i)z (or the Zerilli waveform ‘I’g’f;). The € =2,m = =2
odd parity wave equation with the spin effect becomes

32 (92 (I’ - M)(I" - 2M) (0)
[_ W ar ) - 6 r4 iI\PZiz(t, I")
L 28 9 P 0 n T 2iS(7r* = 17rM + 8M?)
=2 arar 22T (r—2M)r*

9
X 5\1’;‘;)2(1, r)=0. (Al14)

where we have introduced W) (1, r) = WO, 1) +

WA, 7).

We treat the above equations in the frequency domain,

,  d? (r —2M)(@4r3 + 4r*M + 6rM? + 3M?3)
w- + -6
dr*? r*(2r + 3M)?
8Sw(r —2M)* d
X Wsin(w;r) = W Wouo(@; 1)
SSw(6r + 46r2M + 45rM?* + 21M3)‘I’ (@:1)
A2r + 3M) 222l @s 1
=0, (A15)
d’ (r — M)(r —2M)
I:wz + prcan 6 0 ]‘I’(zoi)2(w; r)

2Sw(7r* — 17rM + 8M?)
(r—2M)r*

== qu°+>2(w r T

X qugz(w; r) = 0. (A16)

For the nonspinning (S = 0) case of the above equa-
tions, we have already known the transformation between
the Regge-Wheeler and Zerilli function. This is known as
the Chandrasekhar transformation [64], given by

M*(r — 2M)

(0,1) —
-+ ) - +
R (e e

)wg22< )

+ 3M(1 — 27>%‘P(21i)2(t, ). (A17)
Using this transformation, for example, we may solve only
the Regge-Wheeler equation to obtain the quasinormal
frequency.

In order to discuss a similar treatment up to O(a') (a =
S/M), first we consider the following transformation:

28w
2r +3M

)\pg‘ﬁz(w ”.

Vyir(w;r) = exp< )\I’ztz(w; r),

(A18)

‘I’(z(’i)z(w; r) = exp( YV

PHYSICAL REVIEW D 82, 104057 (2010)

T T T T T T T T T
0.1782 | .
Oo o
%o
r O
%o
0.178 |- @) .
© 57
&~ r o
£ o
B 017718 0 .
E o
‘ r ¢}
o
0.1776 |~ o .
L o
o
0.1774 |- len
! . ! . ! . ! . !
073 0.74 075 076 0.77

Real

FIG. 25 (color online). The quasinormal frequencies,
around y = 0. We have used the same expression as [67]. The
(red) circles show our result, and the + marks denote the values
given in Table II of [68].

where these transformations are consistent in the O(a').
Since we treat the wave functions only up to O(a'), we may
choose another transformation here. From the above trans-
formations, we have the simple differential equations
which are similar to the Regge-Wheeler and Zerilli equa-
tions. The difference from the original Regge-Wheeler and
Zerilli equations arises in the potential terms.

, | A2 (r = 2M)(4r° + 4r*M + 6rM* + 3M°)
w” + -6
dr? *(2r + 3M)?
8Sw(4r’ + 56r2M + 36rM?* + 15M3)
X W, o(w;r) F 3 3
2r + 3M)’
X Wyen(w;r) =0 (A19)
T T T T T T T T T
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FIG. 26 (color online). The real part of the quasinormal fre-
quencies, w around y = 0. The horizontal axis denotes the
nondimensional spin parameter, y = S/M?. The (red) circles
show our result, and the + marks denote the values given in
Table II of [68].
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FIG. 27 (color online). The (minus) imaginary part of the
quasinormal frequencies, w around y = 0. The horizontal axis
denotes the nondimensional spin parameter, y = S/M?. The
(red) circles show our result, and the + marks denote the values
given in Table II of [68].
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FIG. 28 (color online). The quasinormal frequencies, w for
—0.9 = y = 0.9. We have used the same expression as [67]. The
(red) circles show our result, and the + marks denote the values
given in Table II of [68].

. M*(r — 2M) _ SMw(45M? — 48r?)
d? r—M)(r—2M)] = P ; =(6+9 * )
[‘”2 e 6! )r(4 )]‘Pélz(w; r) 222(7) PQr+3M) . PQr+3M)
- M 4 Sw
4S 3 - ZM ~ + 5 - i i -
T %\Pg";z wir) = 0. (A20) X Woeolwsr) + 3M(1 2 r)(l 3 M)
d -~
From these equations, we find the “Chandrasekhar” X quzﬂ(w’r)' (A21)
transformation as
TABLE VI. The quasinormal frequencies in terms of p = —iw. The m = —2 mode can be

considered as the m = 2 mode with the inverse spin signature. Here we set a;; = 0 in the
recurrence relation of Eq. (A26). This creates the numerical error in our calculation (see y =

0.0).

X m = 2 (This paper) m =2 ([68]) Errg; Erry
-0.9 —0.173072 — 0.581 783i —0.176562 — 0.594 488i —0.019766  0.021371
-0.8 —0.174 141 — 0.595 877i —0.177024 — 0.606 626i —0.016285 0.017719
—0.7 —0.175137 — 0.610783i —0.177434 — 0.619616i —0.012945 0.014255
—0.6 —0.176 039 — 0.626 584i —0.177784 — 0.633 568i —0.009 815 0.011023
-0.5 —0.176 825 — 0.643379i —0.178062 — 0.648 614i —0.006 947 0.008 071
—-0.4 —0.177466 — 0.661 283 —0.178262 — 0.664916i —0.004 465 0.005 463
-0.3 —0.177930 — 0.680440i —0.178 368 — 0.682 666i —0.002455 0.003 260
-0.2 —0.178 181 — 0.701 019i —0.178 364 — 0.702 106i —0.001 025 0.001 548
—0.1 —0.178 186 — 0.723233i —0.178 228 — 0.723 536i —0.000235 0.000418
0.0 —0.177923 — 0.747 340i —0.177924 — 0.747 344i —0.000 005 0.000 005
0.1 —0.177398 — 0.773 654i —0.177412 — 0.774036i —0.000078 0.000493
0.2 —0.176 662 — 0.802 534 —0.176 622 — 0.804 290i 0.000226  0.002183
03 —0.175836 — 0.834372i —0.175458 — 0.839054i 0.002154  0.005580
0.4 —0.175116 — 0.869 549i —0.173764 — 0.879 684i 0.007780  0.011521
0.5 —0.174747 — 0.908 398i —0.171278 — 0.928 246i 0.020253 0.021382
0.6 —0.174999 — 0.951 162i —0.167 532 — 0.988 090i 0.044570  0.037373
0.7 —0.176 094 — 0.997991i —0.161 588 — 1.065 198i 0.089771 0.063 095
0.8 —0.178 154 — 1.048 919 —0.151252 — 1.172030i 0.177862  0.105040
0.9 —0.181181 — 1.103919i —0.129726 — 1.343268i 0.396644  0.178185
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FIG. 29 (color online). The real part of the quasinormal fre-
quencies, w for —0.9 = y = 0.9. The horizontal axis denotes
the nondimensional spin parameter, y = S/M?. The (red) circles
show our result, and the + marks denote the values given in
Table II of [68].

The differential equations for the even and odd parity
perturbation become the same form by using the above
transformation.

Next, we consider quasinormal modes derived from
Eq. (A20). A recent review for quasinormal modes is given
in [66]. Here, we should note that if we use Eq. (A18) to
obtain the simple equation in Eq. (A20), these change
the boundary behaviors near the horizon and at infinity.
Therefore, although the expression is same in the O(a')
expansion, we should consider doing another transforma-
tion:

0.18 O 4

B bDDP o)
,85666@ 69@@@9-00 1

017
+

0.16 - + —

-Imaginary
T
L

0.14 — —

0.13 +

FIG. 30 (color online). The (minus) imaginary part of the
quasinormal frequencies, @ for —0.9 = y = 0.9. The horizontal
axis denotes the nondimensional spin parameter, y = S/M?>.
The (red) circles show our result, and the + marks denote the
values given in Table II of [68].
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‘If(zoi)z(a); r)

r—2M Swr <) .
= [1 + f ln(l + W)]‘I’Ziz(w, r).

(A22)

This does not change the boundary behaviors.
In order to calculate the quasinormal frequencies, we use
the Leaver’s method [67]. As boundary conditions, the

wave function ‘i’(zot)z has the following behaviors:

P (p;r)— r Pe P for r — oo,
o , (A23)
‘I'(zoi)Q(p; r)— (r—1)P*x  for r— 1,

where we have considered 2M = 1 and p = —iw which

are the same notation as [67]. Here, y is defined by the
nondimensional spin parameter y = S/M?. Then a solu-
tion of Eq. (A20) can be written in the form of

\irg’t)z(p; r) = rPePU=D(p — 1)pTixp—(ptiv)
— r—1\»
X .
2a()

We obtain the recurrence relation for a, in the above
equation,

(A24)

apa; + Boag =0, (A25)
and for n = 1,
aydyt + lgnan + Ynln—1 = 0’ (A26)
where
. : . : . : .
0r 000000 g 7
00© 0
| 0009 o) |
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FIG. 31 (color online). The error in the real part of the quasi-
normal frequencies, i.e., —Erry. The horizontal axis denotes the
nondimensional spin parameter, y = S/M?>.
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FIG. 32 (color online). The error in the (minus) imaginary part
of the quasinormal frequencies, i.e., Errg;. The horizontal axis
denotes the nondimensional spin parameter, y = S/M?.

a,=2+2n)p +2in+)y+ (n+1)>
B, = —8p> + (=4 —8n —Tix)p
—2i2n + 1)y — 3 — 2n* — 2n,
Yo = 4p> + (4n + Six)p + 2ixyn + (n — 2)(n + 2).
(A27)

When we set y = 0, the above equations reduce to Eq. (8)
in [67].

In Fig. 25, we show the result for the quasinormal
frequencies, @ around y = 0. As a reference, we also
plot the values given in Table II of [68]. Figures 26 and
27 show the real and imaginary parts of the quasinormal
frequencies around Y = 0, respectively. Figures 28-30

PHYSICAL REVIEW D 82, 104057 (2010)
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FIG. 33 (color online). The absolute value of the relative errors
in quasinormal frequencies in the region —0.5 = y = 0.5. The
(red) circles and (blue) boxes show those of the real and
imaginary parts of the frequencies, i.e., |Errgz| and |Errg],
respectively. The horizontal axis denotes the nondimensional
spin parameter, y = S/M?>.

show the result for —0.9 = y = 0.9. In Table VI, we
show the numerical values and the relative errors for the
real and imaginary parts of p defined by

_9(p) = R(p)
Ne)

S(pa) —3(p)

Err; )
i S(p)

Erry = (A28)

where p, and p represent our result and that of [68],
respectively. We plot the above errors in Figs. 31 and 32,
and we zoom in on the region —0.5 = y =0.5 in
Fig. 33 which shows the absolute values of the relative
erTor.
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