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The authors prove that the dynamics of spin 1=2 particles in stationary gravitational fields can be

described using an approach, which builds upon the formalism of pseudo-Hermitian Hamiltonians. The

proof consists in the analysis of three expressions for Hamiltonians, which are derived from the Dirac

equation and describe the dynamics of spin 1=2 particles in the gravitational field of the Kerr solution. The

Hamiltonians correspond to different choices of tetrad vectors and differ from each other. The differences

between the Hamiltonians confirm the conclusion known from many studies that the Hamiltonians derived

from the Dirac equation are nonunique. Application of standard pseudo-Hermitian quantum mechanics

rules to each of these Hamiltonians produces the same Hermitian Hamiltonian. The eigenvalue spectrum

of the resulting Hamiltonian is the same as that of the Hamiltonians derived from the Dirac equation with

any chosen system of tetrad vectors. For description of the dynamics of spin 1=2 particles in stationary

gravitational fields can be used not only the formalism of pseudo-Hermitian Hamiltonians but also an

alternative approach, which employs the Parker scalar product. The authors show that the alternative

approach is equivalent to the formalism of pseudo-Hermitian Hamiltonians.
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I. INTRODUCTION

In a number of studies (for example, in [1]), the attempts
to describe the dynamics of half-integer spin particles in
the gravitational field within the Hamiltonian formalism
were found to encounter two problems that have not been
resolved so far. One of the problems is that the form of
resulting Hamiltonians depends on the choice of the sys-
tem of tetrad vectors. A failure to resolve this problem will
devalue the whole Hamiltonian formalism, because it is
impossible to make physically verifiable predictions on its
basis. The second problem is that Hamiltonians possess no
Hermiticity, i.e. the key property underlying the apparatus
of quantum mechanics and quantum field theory.

Authors of some papers (for example, [2,3]) believe that
the problem can be resolved by employing a relativistically
invariant scalar product for state space vectors (the Parker
scalar product).

In some papers (for example, in [4,5]), the initial
Hamiltonians were modified for the purpose of
Hermiticity. This modification approach, however, did
not seem substantiated enough.

In this paper, we propose to solve the problem of non-
uniqueness and Hermiticity of Hamiltonians using the
formalism of pseudo-Hermitian Hamiltonians (see [6–8]
and references therein). The viability of this approach is
supported by the following reasoning. Let us consider three
types of Hamiltonians corresponding to a 1=2-spin particle
in an axially symmetrical stationary gravitational field
generated by a point body with mass M and moment J.

Recall that the metric of such a gravitational field is
described by the Kerr solution, which transforms into the
Schwarzschild metric if J ¼ 0. Hamiltonians are written
for different choices of the system of tetrad vectors:
(1) in the Killing system of tetrad vectors [10], in which

the tetrad vectorH�
0 coincides with the time passage

direction of a distant observer;
(2) in the system of tetrad vectors in the gauge of [5,11];
(3) in the system of tetrad vectors in the so-called

symmetric gauge.

All the three Hamiltonians, first, differ from each other in
their form, and, second, are not Hermitian. However, as
shown in this paper, all the three Hamiltonians are pseudo-
Hermitian.
Recall that in accordance with [6–8] the condition of

pseudo-Hermiticity of the Hamiltonians assumes the exis-
tence of an invertible operator1 � satisfying the relation-
ship

�Ĥ��1 ¼ Ĥþ: (1)

If there exists an operator � satisfying the relationship

� ¼ �þ�; (2)

the Hamiltonian Ĥ constructed in accordance with the law

Ĥ ¼ �Ĥ��1 (3)

will be Hermitian
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1An operator � in the papers [7] is called a metric operator.
But we do not use this term with regard to �.
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Ĥ ¼ Ĥþ (4)

and will have an eigenvalue spectrum coinciding with

that of the initial Hamiltonian Ĥ. We will call the

Hamiltonian Ĥ constructed by rule (3) the Hamiltonian
in � representation.

Note that not all of initially non-Hermitian Hamiltonians

Ĥ are pseudo-Hermitian, and not all of them can be re-

duced to Hermitian expressions Ĥ. However, for the three
aforementioned types of Hamiltonians subject to the
pseudo-Hermitian Hamiltonian formalism procedures, we
draw conclusions, which are far from being evident a
priori. For example, in all the three cases the expressions

for Ĥ turn out, first, to be Hermitian, and, second, to be
identical. Such an identity means that whatever the choice
of the system of tetrad vectors in the gravitational field

there will always exist a single Hermitian Hamiltonian Ĥ,
which has the same spectrum of energy levels as any of the

starting operators Ĥ. Upon transition to the Hamiltonian

Ĥ, one can use the quantum mechanics apparatus in its
standard form. In particular, the left-hand side of the
Schrödinger equation will contain the operator iℏð@=@tÞ,
in which the time coordinate t is understood to be the time
of an infinitely distant observer.

As for the wave functions, in the formalism of pseudo-
Hermitian Hamiltonians they will certainly change with

the Ĥ-to-Ĥ transition. The operator � does not depend on
time in the considered cases. So, if2� is a wave function in
� representation, i.e. it satisfies the equation

i
@�

@t
¼ Ĥ�; (5)

the appropriate wave function c for the initial
Hamiltonian, i.e. the function satisfying the equation

i
@c

@t
¼ Ĥc ; (6)

is calculated as

� ¼ �c : (7)

The scalar products of the wave functions in � repre-
sentation have a standard form within the quantum me-
chanics,3 i.e.

ð�;�Þ ¼
Z

d3xð�þ�Þ: (8)

The scalar product for the wave functions in initial repre-
sentation by definition is

h�; c i� ¼
Z

d3xð�þ�þ�c Þ ¼
Z

d3xð�þ�c Þ: (9)

In this case

ð�;�Þ ¼ h�; c i�: (10)

The Hermiticity condition for pseudo-Hermitian
Hamiltonians is fulfilled concerning the scalar product
(9) [see e.g. the relations (1)–(4)]4:

h�; ðĤc Þi� � hðĤ�Þ; c i�
¼
Z

d3xð�þ�Ĥc Þ �
Z

d3xð�þĤþ�c Þ ¼ 0: (11)

We investigate the connection between formulas (9) for
the scalar products and formation rules of scalar products
of wave functions introduced in the papers [2,3]. As a
result we established that the operator � in (9) coincides
with the operator which follows from the rule [2,3]. These
results are also presented in this paper. In Sec. VII we
discuss the obtained results and come to the conclusion that
in this paper the problem of uniqueness and Hermiticity of
Hamiltonians for Dirac particles in gravitational fields is
resolved.

II. THE REDUCINGOF THEDIRACEQUATION TO
THE FORM OF THE SCHRÖDINGER EQUATION

The problem of spin 1=2 particle motion is usually (see
e.g. [4,5,12–15]) treated under two assumptions:
(1) stationary of gravitational fields (Schwarzschild,

Kerr),
(2) minimality of interaction between bispinors and

gravitational field, i.e. interaction appeared at the
writing of the Dirac equation in the covariant form
and accounting of dependence between global and
local Dirac matrices by means of tetrad vectorsH

�
� .

5

Recall the line of corresponding reasoning and introduce
notations.
The tetrad vectors are defined by the relationships

H�
�H�

�g�� ¼ ���; (12)

where

��� ¼ diag½�1; 1; 1; 1�: (13)

In addition to the system of tetrad vectors H�
� , one can

introduce three other systems of tetrad vectors, H��, H
��,

H
�
�, which differ from H

�
� in the location of the global and

local (underlined) indices. The global indices are raised

2We use the capital Greek letters for the wave function in �
representation and the small Greek letters for the wave function
in initial representation.

3The standard formalism of quantum mechanics we call a
formalism in form which is stated in quantum mechanics text-
books and monographs (for example, [9]).

4We do not discuss here in detail the mathematical aspect of
states spaces theory in pseudo-Hermitian quantum mechanics.
The readers can find the theory, for example, in the papers [7].

5The Greek letters take on values 0, 1, 2, 3 and the Roman
letters take on values 1, 2, 3.
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and lowered by means of the metric tensor g�� and inverse

tensor g��, and the local indices are also raised and low-

ered by means of the tensors ���, �
��.

We assume that particle motion is described by the Dirac
equation, which is written in the units ℏ ¼ c ¼ 1 as

��

�
@c

@x�
þ��c

�
�mc ¼ 0: (14)

Here, m is the particle mass, c is the four-component
‘‘column’’ bispinor, and �� are the 4� 4 Dirac matrices
satisfying the relationship

���� þ ���� ¼ 2g��E: (15)

Here E is the 4� 4 identity matrix.
The parentheses in (14) contain a covariant derivative of

the bispinor r�c ,

r�c ¼ @c

@x�
þ��c : (16)

The structure r�c contains the quantity �� called bispi-
nor connectivity. To find the explicit form of ��, one
should fix some system of tetrad vectors H

�
� defined by

the relationship (12). Upon that, the quantity �� can be
expressed through Christoffel derivatives from tetrad in the
following way (the Christoffel derivatives are denoted by
the semicolon):

�� ¼ �1
4H

"
�H�";�S

��: (17)

In what follows, along with Dirac matrices with global
indices ��, we will use Dirac matrices with local indices
��. The relationship between �� and �� is given by the
expression

�� ¼ H�
��

�: (18)

It follows from (18), (15), and (12) that

���� þ ���� ¼ 2���E: (19)

In terms of the matrices ��, the Dirac equation (14) can be
written as follows:

H�
��

�
�
@c

@x�
þ��c

�
�mc ¼ 0: (20)

It is convenient to choose the quantities �� so that they
have the same form for all local frames of reference. The
sets �� and �� can be used to construct a full set of 4� 4
matrices. The full set is, for example, the set

E; ��; S�� � 1
2ð���� � ����Þ;

�5 � �0�1�2�3; �5��:
(21)

Any set of Dirac matrices provides for several discrete
automorphisms. We restrict ourselves to the automorphism

�� ! �þ
� ¼ �D��D

�1: (22)

The matrix D will be called anti-Hermitizing.
The Dirac equation can be written in the form of the

Schrödinger equation. If the resulting Hamiltonian opera-
tor (or the evolution operator) were Hermitian and unique,
it would be easier to analyze the theory’s physical content,
because this would allow us to employ the apparatus of the
quantum theory for finding the spectrum of eigenvalues
and state vectors. In the general case, however, the
Hamiltonian operator does not possess the aforementioned
properties. Let us consider this issue in more detail.
The way of reducing the Dirac equation (14) to the form

of the Schrödinger equation is determined by the require-
ment that the left-hand side of the Schrödinger equation
should contain the operator ið@=@tÞ, with t being the time
of a distant observer.

i
@c

@t
¼ Ĥc : (23)

The operator Ĥ on the right side of (23) has the meaning of
an evolution operator in the frame of reference related to
the distant observer. It follows from (14) and (23) that

Ĥ ¼ i

ð�g00Þ�
0�krk � i�0 � im

ð�g00Þ�
0: (24)

By substituting expression (16) for covariant derivatives in
(24), we obtain

Ĥ ¼ � im

ð�g00Þ�
0 þ i

ð�g00Þ�
0�k @

@xk

� i�0 þ i

ð�g00Þ�
0�k�k: (25)

In order to further refine the expression for Ĥ, one should
substitute expressions (17) for �0 and �k in (25). As (17)
contains tetrad vectors and their derivatives, it turns out
after this kind of substitution that the Hamiltonian becomes
dependent on the choice of tetrad vectors. This fact might
seem nonphysical, if we take into account that the Dirac
equation in the initial form is invariant with respect to the
transition from one system of tetrad vectors to another.
Writing the Dirac equation in the Schrödinger form (23),
however, assumes the diversion from covariance, because
the partial time derivative is transferred to the left side,
which distinguishes the time coordinate. This very coor-
dinate disparity results in the Hamiltonian’s sensitivity to
the choice of the system of tetrad vectors. Another ‘‘draw-
back’’ of the Hamiltonian written as (25) is the lack of
Hermiticity in standard understanding of this term (see
Introduction).
The above considerations about uniqueness and

Hermiticity of Hamiltonian (25) are the problems that are
solved in the further sections.
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III. THE KERR SOLUTION FOR AWEAK
GRAVITATIONAL FIELD

The metric of the Kerr solution in the first-order ap-
proximation in ‘‘mass’’ M with length dimensionality
(M is half the gravitational radius, i.e. the quantity
GM=c2) is presented in many references, for example, in
[16,17]. In this approximation, the Kerr metric has the
following form:

g00 ¼ �1þ 2
M

R
; g0k ¼ 2

MðJklRlÞ
R3

;

gmn ¼ 	mn þ 2
M

R
	mn;

ffiffiffiffiffiffiffi�g
p ¼ 1þ 2

M

R
;

g00 ¼ �1� 2
M

R
; g0k ¼ 2

MðJklRlÞ
R3

;

gmn ¼ 	mn � 2
M

R
	mn: (26)

Let us call the quantity Jmn in (26) the ‘‘reduced tensor of
angular momentum’’ (with Jmn being the quantity derived
by dividing the ‘‘physical’’ tensor of angular momentum
by Mc). Instead of the tensor Jmn, one can use its equiva-
lent, the axial tensor Jk ¼ 1

2 "mnkJmn, where "mnk is a

totally antisymmetric third-rank tensor.
The Christoffel symbols corresponding to the metric

(26) are equal to

0

00

 !
¼ 0;

0

0k

 !
¼ MRk

R3
;

0

mn

 !
¼ 3

M½ðJmlRlÞRn þ ðJnlRlÞRm�
R5

;

k

00

 !
¼ MRk

R3
;

m

0n

 !
¼ 2

MJmn

R3
� 3

M½ðJmlRlÞRn � ðJnlRlÞRm�
R5

;

k

mn

 !
¼ �M

R3
½	kmRn þ 	knRm � 	mnRk�: (27)

In many publications (for example, in [4]), the dynamics of
a half-integer spin particle was studied in the space, the
metric of which was described by two functions of spatial
coordinates: V ¼ Vðx; y; zÞ, W ¼ Wðx; y; zÞ.

ds2 ¼ �V2dt2 þW2ðdx2 þ dy2 þ dz2Þ: (28)

By comparing (28) with (26), we see that for the
Schwarzschild solution (Jkl ¼ 0)

V ¼ 1�M

R
; W ¼ 1þM

R
: (29)

Note that expression (28) for the square of the interval has a
limited range of applicability. For example, the Kerr solu-
tion (26) in principle cannot be reduced to (28). In what
follows, we will use the notations of (26).

For the Kerr field, let us introduce a Killing vector,
which is associated with the time direction as viewed by
a distant observer. There are three Killing vectors in the
Schwarzschild gravitational field, and two in the Kerr field.
The Killing vectors are defined through the Lie derivative.
The Lie derivative of the metric along the vector 
� has the
following form:

	
g�� ¼ 
�g��;� þ 
�
;�g�� þ 
�

;�g��: (30)

If the vector 
� is such that the equality

	
g�� ¼ 0 (31)

is fulfilled, the vector 
� is a Killing vector. It is easy to see
that the vector of the form


� ¼ ð1; 0; 0; 0Þ (32)

is a Killing vector in case of stationary metric.
By definition, the Killing system of tetrad vectors will be

called the system in which the tetrad vector ~H�
0 is collinear

with the vector 
�, i.e. the tetrad vector has only nonzero
component ~H0

0:

~H 0
0 � 0; ~Hk

0 ¼ 0: (33)

The vectors that satisfy (33) will be denoted with an upper
tilde.
Using (12) and (33), we establish that6:

~H0
0 ¼

�
1þM

R

�
; ~Hk

0 ¼ 0;

~H0
k ¼ 2

MðJklRlÞ
R3

; ~Hm
k ¼ 	mk

�
1�M

R

�
: (34)

Note that expressions (34) are the same as those obtained
for a stationary gravitational field in [10]. However, they
differ from the expressions in [11], which were used in
some papers (for example, in [5]).
The quantities �� are found using formulas (17). For

Eqs. (34) we obtain

~�0 ¼ � 1

2

MRk

R3
S0 k þ 1

2

�
MJmn

R3
� 3

2

�M½ðJmlRlÞRn � ðJnlRlÞRm�
R5

�
Smn; (35)

~�k ¼ 1

4

M

R3
½Rp	kq � Rq	kp�Spq �

�
MJkm
R3

� 3

2

M½ðJklRlÞRm � ðJmlRlÞRk�
R5

�
�0�

m: (36)

6Here and further we give nothing but one for each four
possible systems of tetrad vectors. The other three systems are
obtained by means of raising and lowering global indices with
the help of the metric tensor g�� and the inverse tensor g�� and
for the local indices with the help of tensors ���, �

�� [see
explanation for (12)].
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IV. HAMILTONIANS FOR THE KERR SOLUTION

A. Hamiltonian in the Killing system of tetrad vectors

The Hamiltonian operator ~̂H is derived from general
formula (25), but using tetrad vectors with tildes (34) and
bispinor connectivity components with tildes (35) and (36).

~̂H ¼ � im

ð�g00Þ ~�
0 þ i

ð�g00Þ ~�
0 ~�k @

@xk

� i ~�0 þ i

ð�g00Þ ~�
0 ~�k ~�k: (37)

For convenience of calculations, Hamiltonian (37) is writ-
ten as a sum of four summands.

~̂H � ~̂H1 þ ~̂H2 þ ~̂H3 þ ~̂H4: (38)

Here

~̂H 1 � � im

ð�g00Þ ~�
0; (39)

~̂H 2 � i

ð�g00Þ ~�
0 ~�k @

@xk
; (40)

~̂H 3 � �i ~�0; (41)

~̂H 4 � i

ð�g00Þ ~�
0 ~�k ~�k: (42)

We calculate each of the four summands in expression (38)
:

~̂H 1 ¼ im

�
1�M

R

�
�0 � 2im

MðJklRlÞ
R3

�k; (43)

~̂H2 ¼ �i

�
1� 2

M

R

�
�0�

k @

@xk
þ 2i

MðJklRlÞ
R3

@

@xk

þ 2i
MðJmlRlÞ

R3
Smk

@

@xk
; (44)

~̂H3 ¼ � i

2

MRk

R3
�0�k

þ i

2

�
M

R3
Jk � 3

MðJlRlÞRk

R5

�
�5�0�k; (45)

~̂H4 ¼ i
M

R3
Rk�0�

k � i
MJk
R3

�5�0�k

þ 3i
MðJlRlÞRk

R5
�5�0�k: (46)

By substituting (43)–(46) in (38) we obtain

~̂H ¼ im�0 � im
M

R
�0 � i�0�

k @

@xk
þ 2i

M

R
�0�

k @

@xk

þ i

2

MRk

R3
�0�

k þ 2i
MðJklRlÞ

R3

@

@xk

� 2im
MðJklRlÞ

R3
�k þ 2i

MðJmlRlÞ
R3

Smk

@

@xk

� i

2

�
M

R3
Jk � 3

MðJlRlÞRk

R5

�
�5�0�k: (47)

The terms that do not contain Jmn correspond to the
Hamiltonian in the Schwarzschild problem. They are the
same as the corresponding expression for the Hamiltonian
in [4]. The rest of Hamiltonian (47), i.e. the part with Jmn,
however, differs from a similar part in [5]. This stems from
the difference in the system of tetrad vectors. This fact is
also evidenced by considerations presented in [1], which
points out that the ‘‘ambiguity’’ of Hamiltonians is due to
their dependence on the choice of tetrad vectors.
The tensor Jmn in expression (47) can be replaced with

an axial tensor Jk. Such a replacement will result in the

following form of the Hamiltonian ~̂H in the Killing system
of reference vectors:

~̂H ¼ im�0 � im
M

R
�0 � i�0�

k @

@xk
þ 2i

M

R
�0�

k @

@xk

þ i

2

MRk

R3
�0�

k þ 2i
M

R3
"klqRlJq

@

@xk

� 2im
M

R3
"klqRlJq�k þ 2i

M

R3
ðJl�5�0�lÞ

� Rk

@

@xk
� 2i

M

R3
ðRl�5�0�lÞJk @

@xk

� i

2

�
M

R3
Jk � 3

MðJlRlÞRk

R5

�
�5�0�k: (48)

Obviously expressions (47) and (48) are equivalent.

B. Two other Hamiltonians

In addition to Hamiltonian (48), let us present two other
expressions for Hamiltonians in another system of tetrad
vectors without their derivation using the notations adopted
above.
(1) System of tetrad vectors used in [5,11]:

H00
0 ¼

�
1þM

R

�
; H0k

0 ¼ �2
MðJklRlÞ

R3
;

H00
k ¼ 0; H0m

k ¼ 	mk

�
1�M

R

�
: (49)

Hamiltonian in system of tetrad vectors (49):
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Ĥ0 ¼ im�0 � im
M

R
�0 � i�0�k

@

@xk

þ 2i
M

R
�0�

k @

@xk
þ i

2

MRk

R3
�0�

k

þ 2i
MðJklRlÞ

R3

@

@xk

þ i

2

�
M

R3
Jk � 3

MðJlRlÞRk

R5

�
�5�0�k: (50)

(2) System of tetrad vectors in symmetric gauge:

H0
0 ¼

�
1þM

R

�
; Hk

0 ¼ �MðJklRlÞ
R3

;

H0
k ¼

MðJklRlÞ
R3

; Hm
k ¼ 	mk

�
1�M

R

�
:

(51)

Hamiltonian in system of tetrad vectors (51):

Ĥ ¼ im�0 � i�0�k

@

@xk
� im

M

R
�0

þ 2i
M

R
�0�

k @

@xk
þ i

2

MRk

R3
�0�

k

þ 2i
MðJklRlÞ

R3

@

@xk
� im

MðJklRlÞ
R3

;

�k þ i
MðJmlRlÞ

R3
Smk

@

@xk
: (52)

In the Hamiltonians, (47), (50), and (52), the
Schwarzschild terms and one of the Kerr terms are
the same. The rest of the terms are different for all
three Hamiltonians. The widest range of terms is

observed in the Hamiltonian ~̂H.
None of the Hamiltonians, (47), (50), and (52), is

Hermitian.

C. Hamiltonians in the notations of [4,5]

For convenience of comparison with results of [4,5], the
expressions (48), (50), and (52) are presented for the case
of the metric ��� ¼ diag½1;�1;�1;�1� and Dirac matri-

ces � ¼ �0, �i ¼ �0�i,
P

k ¼ �5�
0�k. Expressions (48),

(50), and (52) take the form of expressions (53)–(55),
respectively.7

~̂H ¼ �m�M

R
�mþ �p� 2M

R
�pþ i

2

M

R3
�R

þ 2M

R3
JðR� pÞ þ 2M

R3
ðJ�RÞ�m�

� 2M

R3
ið�JÞðRpÞ þ 2M

R3
ið�RÞðJpÞ

þ 1

2

�
M

R3
ð�JÞ � 3MðJRÞð�RÞ

R5

�
: (53)

Ĥ0 ¼ �m�M

R
�mþ �p� 2M

R
�p

þ i

2

M

R3
�Rþ 2M

R3
JðR� pÞ

� � 1

2

�
M

R3
ð�JÞ � 3MðJRÞð�RÞ

R5

�
: (54)

Ĥ ¼ �m�M

R
�mþ �p� 2M

R
�pþ i

2

M

R3
�R

þ 2M

R3
JðR� pÞ � M

R3
ðJ�RÞ�m�

� M

R3
ið�JÞðRpÞ þ M

R3
ið�RÞðJpÞ: (55)

V. FORMALISM OF PSEUDO-HERMITIAN
HAMILTONIANS

A. Construction of the operator Ĥ in system
of tetrad vectors [5,11]

First, we need to make sure that Hamiltonian (50) is
pseudo-Hermitian. The pseudo-Hermiticity condition (1)
assumes the existence of operators �, ��1 that satisfy the

relationship �Ĥ��1 ¼ Ĥþ. If wewrite this relationship for
Hamiltonian (50), to within the first order, we will obtain

� ¼ 1þ 3M

R
; ��1 ¼ 1� 3

M

R
: (56)

From (2) and (56) we obtain that

� ¼ 1þ 3

2

M

R
: (57)

By substituting (57) in (3) and using expression (50), we
find the desired expression for the Hermitian Hamiltonian:

Ĥ ¼
�
1þ 3

2

M

R

�
Ĥ

�
1� 3

2

M

R

�

¼ im�0 � im
M

R
�0 � i�0�k

@

@xk
þ 2i

M

R
�0�

k @

@xk

� i
MRk

R3
�0�

k þ 2i
MðJklRlÞ

R3

@

@xk

þ i

2

�
M

R3
Jk � 3

MðJlRlÞRk

R5

�
�5�0�k: (58)

By comparing (58) with (50), we see that only the
Schwarzschild part has changed. The Kerr term in
Hamiltonian (50) was Hermitian, and it has not been
affected by the transformation of (3).
Expression (58) is completely the same as the Hermitian

Hamiltonian used in [5].

B. Construction of the operator Ĥ
for other systems of tetrad vectors

Hamiltonians (47) and (52) similar to Hamiltonian (50)
are pseudo-Hermitian.7In (50) and (52) tensors Jmn substitute for axial vectors Jk.
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The procedure of deriving the Hermitian operator Ĥ for
Hamiltonians (47) and (52) is identical to the above pro-
cedure for Hamiltonian (50) and will not be described here.

As a result of implementing this procedure as applied to
Hamiltonian (47), the operator � for it was found, first, to
be equal to

� ¼ 1þ 3

2

M

R
þMðJkmRmÞ

R3
�0�k: (59)

Second, the resulting Hermitian Hamiltonian is the same as
Hamiltonian (58).

As a result of implementing this procedure as applied to
Hamiltonian (52), the operator � for it was found, first, to
be equal to

� ¼ 1þ 3

2

M

R
þ 1

2

MðJkmRmÞ
R3

�0�k: (60)

Second, the resulting Hermitian Hamiltonian is also the
same as Hamiltonian (58).

C. Summary of pseudo-Hermitian Hamiltonians

The approach employing the formalism of pseudo-
Hermitian Hamiltonians leads to the standard apparatus
of quantum mechanics. The resulting Hamiltonian gener-
ated within this approach is expressed as (58). It

(i) does not depend on the choice of tetrad vectors,
(ii) is Hermitian,
(iii) has an eigenvalue spectrum, which coincides with

that of initial Hamiltonians for any choice of tetrad
vectors.

The scalar products can be calculated by two ways. The
scalar products are calculated by Eq. (8) in terms of the
wave functions in � representation. For calculation of
scalar products in terms of the wave functions in initial
representation it is necessary to use Eqs. (9) which have the
invertible operators � explicitly. For convenience, the
quantities � and � for three systems of tetrad vectors are
presented in Table I. It should be remembered that in all

three systems of tetrad vectors, the Hamiltonian Ĥ in �
representation is Hermitian, has the same form, and is
defined as (58).

VI. THE PARKER SCALAR PRODUCT

A. The scalar product introduced in [2,3]

Let us consider an approach based on the use of the
scalar product of wave functions introduced in [2,3] (let us

call this scalar product the Parker scalar product). Let us
provide some auxiliary relationships, which are convenient
as applied to the Parker formalism.
It follows from (18) and (22) that the operator of the

anti-Hermitian conjugation of matrices �� with global
indices is the same matrix �0, which performs these func-

tions for the matrices �� with local indices. Thus,

�þ
� ¼ �0���0; �þ

� ¼ �0���0: (61)

Using (61), we obtain

ðS��Þþ ¼ �0S���0; ðS��Þþ ¼ �0S���0;

�þ
5 ¼ ��0�5�0: (62)

Considering (62), and the fact that bispinor connectivity
�� is expressed as

�� ¼ 1
4����S

��; (63)

without loss of generality, we can write that

ð��Þþ ¼ �0���0 ! �� ¼ �0ð��Þþ�0: (64)

Covariant derivatives of Dirac matrices are equal to zero,

r��� ¼ ��;� þ ½��; ���� ¼ 0: (65)

Papers [2,3] introduce the following rule for calculating the
scalar product of two wave functions � and c :

h�; c i ¼
Z

d3x
ffiffiffiffiffiffiffi�g

p ð�þ�0�
0c Þ: (66)

It is easy to see that the right-hand quantity is not only
invariant with respect to the choice of tetrad vectors, but it
is also a four-dimensional scalar with respect to the trans-
formation of global coordinates. Indeed, for any two wave
functions � and c , one can introduce a four-dimensional
vector

j� � ð�þ�0�
�c Þ: (67)

We choose a four-dimensional volume, V4, and perform
integration of the scalar j�;� over it. We obtain a scalarR
V4
d4x

ffiffiffiffiffiffiffi�g
p

j�;�. Note that neither the scalar j�;� nor the

scalar obtained by integration is generally speaking equal
to zero. The integral scalar can be transformed according to
the Gauss theorem. If the four-dimensional space is chosen
such that the three-dimensional spaces bounding it are
orthogonal to the Killing vector, it will follow from the
Gauss theorem that

TABLE I. Operators � and � for three systems of tetrad vectors.

Tetrad vectors Operator � Operator �

Killing system (34) 1þ 3M
R þ 2MðJkmRmÞ

R3 �0�k 1þ 3
2
M
R þ MðJkmRmÞ

R3 �0�k

System (49)—system of tetrad vectors in gauge [5,11] 1þ 3M
R 1þ 3

2
M
R

System (51)—system of tetrad vectors in symmetric gauge 1þ 3M
R þ MðJkmRmÞ

R3 �0�k 1þ 3
2
M
R þ 1

2
MðJkmRmÞ

R3 �0�k
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Z
V4

d4x
ffiffiffiffiffiffiffi�g

p
j�;� ¼

Z
V3

d3x
ffiffiffiffiffiffiffi�g

p
j0: (68)

Since the left side contains a scalar, the quantity ð�; c Þ on
the right side should also be a global scalar.

Note that in the case of plane space, tetrad vectors can be
identified with tangent vectors to the coordinate lines. In
this case, the expression for the scalar product (67) in
Cartesian coordinates will take the standard form for quan-
tum mechanics:

h’; c i !
Z

d3xð’þc Þ:

This property of the quantity h’; c i can be treated as a
manifestation of the correspondence principle.

So, we have to use Eq. (66) for calculating the Parker
scalar product h’; c i. Let us write this equation for the
case using the Killing system of tetrad vectors (34).

h�; c i ¼
Z

d3x
ffiffiffiffiffiffiffi�g

p ð�þ�0�
0c Þ

¼
Z

d3x
ffiffiffiffiffiffiffi�g

p fð�þ�0H
0
0�

0c Þ þ ð�þ�0H
0
k�

kc Þg

¼
Z

d3x

�
1þ 2

M

R

� ffiffiffiffiffiffiffi�g
p ��

�þ
�
1þ 2

M

R

�
c

�

þ
�
�þ�0

�
2
MðJklRlÞ

R3

�
�kc

��
: (69)

After transformation we obtain

h�; c i ¼
Z

d3x

�
�þ

�
1þ 3

M

R
þ 2

MðJklRlÞ
R3

�0�
k

�
c

�
:

(70)

By comparing (70) with (9), we see that for the Killing
system

� ¼ 1þ 3
M

R
þ 2

MðJkmRmÞ
R3

�0�k; (71)

i.e. the same value that was obtained in pseudo-Hermitian
formalism (see Table I). The similar results are obtained
for two other systems of tetrad vectors considered above.
We omit the proof.

The obtained results mean that in the case of stationary
gravitational fields the use of the Parker scalar product
results in practically the use of the invertible operator �
which follows from the formalism of pseudo-Hermitian
quantum mechanics. In other words, the Parker scalar
product h’; c i coincides with the scalar product h’; c i�.

h�; c i ¼ h�; c i�: (72)

One of the consequences of (72) is that the relation

h’; ðĤc Þi ¼ hðĤ’Þ; c i has to be fulfilled in the case
when the scalar products are defined in accordance with
the rules (66), i.e.

h�; ðĤc Þi ¼
Z

d3x
ffiffiffiffiffiffiffi�g

p ð�þ�0�
0Ĥc Þ;

hðĤ�Þ; c i ¼
Z

d3x
ffiffiffiffiffiffiffi�g

p ð�þĤþ�0�
0c Þ: (73)

B. Hermiticity of Hamiltonian concerning
Parker scalar product

Let us check the satisfiability of the relation

h’; ðĤc Þi ¼ hðĤ’Þ; c i by direct calculation in the case
when the scalar product is used in Parker form (66). With
this purpose let us consider the expression

� � h�; ðĤc Þi � hðĤ�Þ; c i: (74)

If we manage to prove that the expression (74) for � is
equal to zero at any functions ’ and c , then Hermiticity of
Hamiltonian concerning the Parker scalar product will be
proved.
We substitute the expressions for Hamiltonian (24) in

(74) and write the expression for � as a sum of three
summands:

� � �1 þ �2 þ�3: (75)

Here

�1 ¼
Z

d3x
ffiffiffiffiffiffiffi�g

p �
�þ�0�

0

�
� im

ð�g00Þ�
0

�
c

�

�
Z

d3x
ffiffiffiffiffiffiffi�g

p ���
� im

ð�g00Þ�
0

�
�

�þ
�0�

0c

�
: (76)

�2 ¼
Z

d3x
ffiffiffiffiffiffiffi�g

p ð’þ�0�
0f�i�0gc Þ

�
Z

d3x
ffiffiffiffiffiffiffi�g

p ððf�i�0g’Þþ�0�
0c Þ: (77)

�3 ¼
Z

d3x
ffiffiffiffiffiffiffi�g

p �
’þ�0�

0

�
i

ð�g00Þ�
0�krk

�
c

�

�
Z

d3x
ffiffiffiffiffiffiffi�g

p ���
i

ð�g00Þ�
0�krk

�
’

�þ
�0�

0c

�
: (78)

Let us now calculate each of three terms (76)–(78). For
calculating �1 we use the following relations:

�0�0 ¼ g00; �0�0 ¼ �E: (79)

Thus,

�1 ¼
Z

d3x
ffiffiffiffiffiffiffi�g

p im

ð�g00Þ
� f�ð�þ�0�

0�0c Þ � ð�þ�0þ�0�
0c Þg

¼
Z

d3x
ffiffiffiffiffiffiffi�g

p im

ð�g00Þ
� f�g00ð�þ�0c Þ þ g00ð�þ�0c Þg � 0: (80)

For �2
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�2 ¼ i
Z

d3x
ffiffiffiffiffiffiffi�g

p fð�’þ�0�
0�0c Þ � ð’þ�þ

0 �0�
0c Þg

¼ i
Z

d3x
ffiffiffiffiffiffiffi�g

p ð’þ�0½�0; �
0��c Þ:

Using (65), this expression for �2 can be written as

�2 ¼ �i
Z

d3x
ffiffiffiffiffiffiffi�g

p ð�þ�0ð�0
;0Þc Þ: (81)

Let us calculate �3 using the same techniques that have
been used to obtain �1 and �2:

�3 ¼
Z

d3x
ffiffiffiffiffiffiffi�g

p i

ð�g00Þ fð�
þ�0�

0�0�kðrkc ÞÞ þ ððrk�
þÞ�kþ�0þ�0�

0c Þg

¼
Z

d3x
ffiffiffiffiffiffiffi�g

p i

ð�g00Þ fð�
þ�0�

0�0�kðrkc ÞÞ þ ððrk�
þÞ�0�

k�0�0�
0�0�0�

0c Þg

¼
Z

d3x
ffiffiffiffiffiffiffi�g

p i

ð�g00Þ fg
00ð�þ�0�

kðrkc ÞÞ þ g00ððrk�
þÞ�0�

kc Þg

¼ �i
Z

d3x
ffiffiffiffiffiffiffi�g

p fð�þ�0�
kðrkc ÞÞ þ ððrk�

þÞ�0�
kc Þg: (82)

The expression (82) can be written as

�3 ¼ �i
Z

d3x
ffiffiffiffiffiffiffi�g

p
jk;k: (83)

Here we used the notation jk ¼ ð’þ�0�
kc Þ and also

ð�þ�0�
kðrkc ÞÞ þ ððrk�

þÞ�0�
kc Þ ¼ rkj

k ¼ jk;k:

(84)

By substituting expressions (80), (81), and (83) in (75), we
obtain

� ¼ �i
Z

d3x
ffiffiffiffiffiffiffi�g

p ð�þ�0ð�0
;0Þc Þ � i

Z
d3x

ffiffiffiffiffiffiffi�g
p

jk;k:

(85)

Usually it is assumed that the second summand in the right
part of (85) can be reduced to a surface integral according
to the Gauss theorem and equated to zero. Such an as-
sumption is used particularly in [3]. But the Gauss theorem
can be used only if an integrand is a divergence of density
of covariant vector. If in our case such density is ð ffiffiffiffiffiffiffi�g

p
jkÞ,

the Gauss theorem has to be written as

Z
d3xð ffiffiffiffiffiffiffi�g

p
jkÞ;k ¼

I
dskð ffiffiffiffiffiffiffi�g

p
jkÞ: (86)

Let us select a term �i
R
d3xð ffiffiffiffiffiffiffi�g

p
jkÞ;k in

�i
R
d3x

ffiffiffiffiffiffiffi�g
p

jk;k.

�i
Z

d3x
ffiffiffiffiffiffiffi�g

p
jk;k ¼ �i

Z
d3x

ffiffiffiffiffiffiffi�g
p �

jk;k þ
k

k0

 !
j0 þ k

km

 !
jm
�

¼ �i
Z

d3x
ffiffiffiffiffiffiffi�g

p �
1ffiffiffiffiffiffiffi�g

p ð ffiffiffiffiffiffiffi�g
p

jkÞ;k �
ð ffiffiffiffiffiffiffi�g
p Þ;kffiffiffiffiffiffiffi�g
p jk þ k

k0

 !
j0 þ k

km

 !
jm
�

¼ �i
Z

d3xð ffiffiffiffiffiffiffi�g
p

jkÞ;k � i
Z

d3x
ffiffiffiffiffiffiffi�g

p �
�ð ffiffiffiffiffiffiffi�g

p Þ;kffiffiffiffiffiffiffi�g
p jk þ k

k0

 !
j0 þ k

km

 !
jm
�
: (87)

Further we use the following relation:

ð ffiffiffiffiffiffiffi�g
p Þ;kffiffiffiffiffiffiffi�g
p ¼ 1

2
g��g��;k ¼ "

"k

� �
: (88)

Let us substitute this expression in (87):

�i
Z

d3x
ffiffiffiffiffiffiffi�g

p
jk;k ¼ �i

Z
d3xð ffiffiffiffiffiffiffi�g

p
jkÞ;k � i

Z
d3x

ffiffiffiffiffiffiffi�g
p �

� "

"k

 !
jk þ k

k0

 !
j0 þ k

km

 !
jm
�

¼ �i
Z

d3xð ffiffiffiffiffiffiffi�g
p

jkÞ;k � i
Z

d3x
ffiffiffiffiffiffiffi�g

p �
� 0

0k

 !
jk þ k

k0

 !
j0
�
: (89)

The expression (85) for � has the following view:
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� ¼ �i
Z

d3xð ffiffiffiffiffiffiffi�g
p

jkÞ;k � i
Z

d3x
ffiffiffiffiffiffiffi�g

p

�
�
�þ�0

�
�0
;0 þ

0

00

 !
�0 þ 0

0k

 !
�k

�
c

�

� i
Z

d3x
ffiffiffiffiffiffiffi�g

p �
� 0

0k

 !
jk þ k

k0

 !
j0
�
: (90)

For the Kerr solution in considered approximation

�0
;0 ¼ 0;

0
00

� �
¼ 0;

k
k0

� �
¼ 0: (91)

Using (91) we obtain

� ¼ �i
Z

d3xð ffiffiffiffiffiffiffi�g
p

jkÞ;k � i
Z

d3x
ffiffiffiffiffiffiffi�g

p 0

0k

 !
jk

� i
Z

d3x
ffiffiffiffiffiffiffi�g

p �
� 0

0k

 !
jk
�
¼ 0: (92)

Here we used the Gauss theorem in form (86) and assume
the surface integral is equal to zero.

The relation (92) means that we proved Hermiticity of
initial Hamiltonian (24) concerning the Parker scalar
product.

VII. DISCUSSION

The results obtained in this study make it possible to
look at the description of quantum mechanics of spin 1=2
particles in stationary gravitational fields from a new point
of view.

For example, before this study, the problem of non-
uniqueness of Hamiltonians and their sensitivity to the
choice of tetrad vectors in our opinion was unresolved.

The apparatus of pseudo-Hermitian quantum mechanics
used in this study allowed us to resolve this issue at least
as applied to the Schwarzschild and the Kerr solutions. It

was proven that the resulting Hamiltonian Ĥ defined as
(58) does not depend on the choice of tetrad vectors and is
Hermitian. The scalar products also do not dependent on
the choice of tetrad vectors, if they were calculated using
operators � shown in Table I.

In our opinion, the uniqueness of the Hamiltonian Ĥ is
nontrivial. Indeed, all of the three initial expressions for
Hamiltonians (47), (50), and (52), first, differ from each
other and, second, are non-Hermitian concerning standard
scalar product in Hilbert space. After applying procedures

for the transformation of initial Hamiltonians Ĥ into their

Hermitian expressions Ĥ, the latter could in principle
differ in some Hermitian summands. It is not the case,

however, and the expressions for Ĥ are the same in all the
three cases. Such a coincidence means that whatever the
choice of tetrad vectors in a gravitational field there will

always exist a single Hermitian Hamiltonian Ĥ, which has
the same spectrum of energy levels as any of the starting

operators Ĥ.

Upon transition to the Hamiltonian Ĥ, one can use the
quantum mechanics apparatus in its standard form. In par-
ticular, the left member of the Schrödinger equation will
contain the operator ið@=@tÞ, in which the time coordinate t
is understood to be the time of an infinitely distant observer.
Interestingly, the expression derived in this study for the

Hamiltonian Ĥ is the same as the expression proposed in
[5] for the Kerr field.8 The formalism of pseudo-Hermitian

TABLE II. Comparison of quantum mechanics treatment of dynamics of Dirac particle in stationary gravitational field.

Methods of quantum mechanics treatment

A B C

Hermitian quan-

tum mechanics in

� representation

Pseudo-Hermitian quantum

mechanics in initial repre-

sentation

Approach based on Parker

scalar product

Hamiltonian Ĥ ¼ Ĥþ Ĥ ¼ ��1Ĥþ� Ĥ ¼ ð ffiffiffiffiffiffiffi�g
p

�0�
0Þ�1 �

Ĥþð ffiffiffiffiffiffiffi�g
p

�0�
0Þ

Dependence of Hamiltonian

type on choice of system

of tetrad vectors

No Yes Yes

Scalar product Standard scalar

product for Hilbert

space: ð�;�Þ ¼R
d3xð�þ�Þ

With an weight operator

� ¼ �þ�: h’; c i� ¼R
d3xð’þ�c Þ

� ¼ �þ� ¼
ð ffiffiffiffiffiffiffi�g
p

�0�
0Þ h’; c i ¼R

d3x
ffiffiffiffiffiffiffi�g

p � ð’þ�0�
0c Þ

Connection between Hamiltonians Ĥ ¼ �Ĥ��1

Connection between scalar products ð�;�Þ ¼ h’; c i� ¼ h’; c i
Connection between wave functions � ¼ �c

8The statement concerning the Kerr field also holds for the
Schwarzschild field, for which a Hermitian Hamiltonian was
proposed in [4].

M.V. GORBATENKO AND V. P. NEZNAMOV PHYSICAL REVIEW D 82, 104056 (2010)

104056-10



Hamiltonians, in fact, validates the expressions for
Hermitian Hamiltonians used in [4,5].

The comparison of quantum mechanics treatment of
dynamics of theDirac particle in the stationary gravitational
field is presented in Table II. The approaches in the columns
A and B are equivalent in the sense that they result in the
same spectrum of energy of Hamiltonians and the same
values of scalar products. We proved that the approaches in
columnsB andC are also equivalent, because the operator�
in scalar product (9) obtained within the formalism of
pseudo-Hermitian quantum mechanics coincides with the
operator

ffiffiffiffiffiffiffi�g
p

�0�
0. The expression for this operator fol-

lows from the scalar product introduced in papers [2,3]. We
suppose that this result is also very important because the

construction algorithm of the Parker scalar product satisfies
a number of general-theoretical requirements (see
Sec. VIA), whichmakes the use of this algorithm attractive.
The results of this study allow us to claim that the

method of pseudo-Hermitian Hamiltonians enables the
application of the relativistic quantum mechanics formal-
ism practically in its standard form. The expression for the

operator Ĥ in � representation allows us to get rid of
ambiguity connected with different types of the initial
Hamiltonians at the use of different systems of tetrad
vectors. We think that this feature of the pseudo-
Hermitian method makes it preferable as applied to the
problems, in which gravitational effects are resolved and
their quantitative characteristics are analyzed.
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