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We extend the Krori-Barua analysis of the static, spherically symmetric, Einstein-Maxwell field

equations and consider charged fluid sources with anisotropic stresses. The inclusion of a new variable

(tangential pressure) allows the use of a nonlinear, Chaplygin-type equation of state with coefficients fixed

by the matching conditions at the boundary of the source. Some physical features are briefly discussed.
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I. INTRODUCTION

A major issue of the static, spherically symmetric
Einstein field equations in general relativity is to find out
interior solutions which are free of singularity. It has been
shown that an uncharged incompressible fluid sphere of
mass m cannot be held in equilibrium below certain radius
a ¼ 9m

4 and even demands a larger value for a related

to a physically reasonable equation of state (EOS) [1].
Regarding stability of the model, Stettner [2] argued that
a fluid sphere of uniform density with a net surface charge
is more stable than without charge. Therefore, a general
mechanism, adopted by the relativists to overcome this
singularity due to gravitational collapsing of a static,
spherically symmetric fluid sphere, is to include charge
to the neutral system. It is observed that in the presence of
charge either gravitational attraction is counterbalanced
by the electrical repulsion in addition to the pressure
gradient [3] or inhibits the growth of space-time curvature
which has a great role to avoid singularities [4]. According
to Ivanov [5] the presence of the charge function serves
as a safety valve, which absorbs much of the fine-tuning,
necessary in the uncharged case. However, in connection
to this we would like to mention here a special kind of
mechanism to avert singularity as used by Trautman [6]
under Einstein-Cartan theory where the physical entity
spin torsion is supposed to act as an agent of repulsive
effect.

A large amount of works on charged fluid spheres are
available in the literature [an exhaustive discussion with

various classification schemes regarding sources for the
Reissner-Nordström (RN) space-time can be obtained in
Ref. [5]]. However, in connection to singularity we would
like to mention here that Efinger [7], Kyle and Martin [8],
and Wilson [9] have found relativistic internal solutions
for static charged spheres, but none of these solutions is
absolutely free from singularities. On the other hand,
spheres of charged dust have been investigated by
Bonnor [10], Bonnor and Wickramasuriya [11], and
Raychaudhuri [12]. Among all these investigations it is
observed that in Efinger’s solution the metric has a singu-
larity at the origin (r ¼ 0), whereas the solutions due to
Kyle andMartin [8] andWilson [9] do not have any interior
singularities. However, it is argued by Junevicus [13] that
in both the above cases the metrics may have singularities
at points other than the origin so that restrictions have to be
imposed on the sphere to avoid them. According to him the
fluid sphere solutions of Kyle and Martin [8], Wilson [9],
Kramer and Neugebauer [14], and Krori and Barua (KB)
[15] are of special interest since, with the imposition of
suitable conditions, they are completely free of metric
singularities and satisfy physical considerations (for the
discussion and analysis of stability see Refs. [16,17],
respectively).
We would like to note here, especially, the works of KB

[15] and Junevicus [13] which are the basis of our present
investigation. KB [15] constructed static, spherically sym-
metric solutions of the Einstein-Maxwell equations based
on a particular choice of the metric components g00 and g11
in curvature coordinates. Assuming that the source is a
charged fluid with isotropic stresses, the three independent
Einstein equations were reduced to linear algebraic equa-
tions for the energy density �ðrÞ, pressure pðrÞ, and the
square of the electric field, EðrÞ2. In this approach the
independent Maxwell equation is used to obtain the charge
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density from the predetermined form of EðrÞ. A special
feature of KB [15] solutions is that they are singularity
free. A thorough analysis of this singularity-free KB [15]
solution has been done by Junevicus [13]. The main aspect
of his investigation is to fix up the constants involved in the
KB [15] metric in terms of the physical constants of mass,
charge, and radius of the source. He also investigated the
conditions for physical relevance leading to a functional
dependence of the ratio of mass-to-radius on the ratio of
charge-to-mass and also to upper and lower limits on these
ratios. In his recent work on static charged perfect fluid
spheres in general relativity Ivanov [5] also observed that
the solution of KB [15] which is fixed by the junction
conditions is nonsingular and the positivity conditions
are satisfied.

In connection with the above discussion on the KB
solution [15] it is to be mentioned regarding the very recent
work on these solution by Varela et al. [18]. The work deals
with self-gravitating, charged and anisotropic fluids to
solve the Einstein-Maxwell equations. In order to discuss
analytical solutions they [15] extend the KBmethod [15] to
include pressure anisotropy and linear or nonlinear equa-
tions of state. The obtained solutions satisfy the energy
conditions of general relativity and have the following
features: (1) spheres with vanishing net charge contain
fluid elements with unbounded proper charge density lo-
cated at the fluid-vacuum interface; (2) inward-directed
fluid forces caused by pressure anisotropy may allow equi-
librium configurations with larger net charges and electric
field intensities than those found in studies of charged
isotropic fluids; (3) links of these results with charged
strange quark stars as well as models of dark matter
including massive charged particles are possible; and
(4) the van der Waals equation of state leading to matter
densities constrained by cubic polynomial equations is
considered.

Our present investigation of static, spherically symmet-
ric charged fluid sphere distribution is a continuation of the
above work of an anisotropic fluid source [18]. This means
that the radial and tangential pressures are, in general,
unequal so that the simplest relation between them may
be assumed as pt ¼ npr (n � 1) [19]. However, there are
several other forms of anisotropic relationship between
pressures that can be noted in the literature; e.g., in con-
nection to the electromagnetic mass model Herrera and
Varela [20] introduced a condition of anisotropy in the
form pt � pr ¼ gq2r2, where g is a constant having non-
zero value whereas Barreto et al. [21] define the degree of

local anisotropy induced by charge as pt � pr ¼ E2

4� ,

where E is the local electric field intensity, to consider
self-similar and charged radiating fluid spheres as aniso-
tropic sources.

Recently, scientists show great interest on the Chaplygin
gas EOS in order to explain the accelerating phase of the
present Universe as well as to unify the dark energy and

dark matter. As the Chaplygin gas EOS is a specific form of
polytropic EOS, it looks promising to describe dark energy
spherically symmetric charged objects, generally termed as
dark stars in the literature [22–25]. As a possible mecha-
nism of formation it is argued by several investigators
that the first stars to form in the Universe, at redshifts
z� 10–50, may be powered by dark matter annihilation
for a significant period of time rather than nuclear fusion
[26–29]. On the other hand, it is believed that dark energy
exerts a repulsive force on its surrounding and this repulsive
force, likewise electric charge, may prevent the star from
gravitational collapse. Therefore, people have speculated
that a massive star does not simply collapse to form a black
hole, instead to the formation of a dark energy star with
a final configuration without neither singularities nor
horizons [30–33].
However, among the above mentioned dark star models

we are especially interested in the work of Bertolami and
Páramos [22] where they, like us, have used the generalized
Chaplygin gas (GCG) EOS with special reference to an-
isotropic pressure, though our motivation and approach to
solve the spherically symmetric gas model is quite differ-
ent from theirs. The scheme of the present investigation is
therefore as follows: we write down the four independent
Einstein-Maxwell equations. By allowing the radial (pr)
and tangential (pt) pressures to be different, we have found
out the six variables pr, pt, �, � ¼ EðrÞ2, �, and �, where
the other parameters are, respectively, matter-energy den-
sity, electric field intensity, and metric potentials (Sec. II).
Ivanov [5] has explained the usual difficulties that gener-
ally arise when we combine equations of state (even a
linear one) with the field equations. Interestingly, we are
here dealing with a nonlinear EOS and are able to find
solutions using an algebraic method (we do not solve
differential equations). Adding the nonlinear Chaplygin
gas EOS pr ¼ H�� K

� (where H and K are two arbitrary

constants) and using the KB ansatz for � and �, we get four
algebraic equations for �, pr, pt, and � ¼ EðrÞ2. Using the
independent Maxwell equation we determine the charge
density � from � (Sec. III). We present and discuss the
necessary matching of the solutions and the related bound-
ary conditions in Sec. IV which allow us to find out the
expressions for H and K with their physical features
through the graphical plots. Also, energy conditions have
been discussed in detail (Sec. V). Some concluding re-
marks are made in Sec. VI.

II. BASIC EQUATIONS

The KB [15] metric is given by

ds2 ¼ �e�ðrÞdt2 þ e�ðrÞdr2 þ r2ðd�2 þ sin2�d�2Þ; (1)

where �ðrÞ ¼ Ar2 and �ðrÞ ¼ Br2 þ C with arbitrary con-
stants A, B, and C.
The most general energy momentum tensor compatible

with spherical symmetry is
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T	
� ¼ ð�þ prÞu	u� � prg

	
� þ ðpt � prÞ
	
� (2)

with

u	u	 ¼ �
	
	 ¼ 1:

The Einstein-Maxwell equations are

e��

�
�0

r
� 1

r2

�
þ 1

r2
¼ 8��þ E2; (3)

e��

�
1

r2
þ �0

r

�
� 1

r2
¼ 8�pr � E2; (4)

1

2
e��

�
1

2
ð�0Þ2 þ �00 � 1

2
�0�0 þ 1

r
ð�0 � �0Þ

�

¼ 8�pt þ E2; (5)

and

ðr2EÞ0 ¼ 4�r2�e�=2: (6)

Equation (6) can equivalently be expressed in the form

EðrÞ ¼ 1

r2

Z r

0
4�r2�e�=2dr ¼ qðrÞ

r2
; (7)

where qðrÞ is the total charge of the sphere under
consideration.

III. SOLUTIONS

Now, we consider the KB ansatz:

�ðrÞ ¼ Ar2; �ðrÞ ¼ Br2 þ C; (8)

where, as mentioned earlier, A, B, and C are some arbitrary
constants. It is of interest to note that these constants were
determined by Junevicus [13] in terms of the physical
quantities mass, charge, and radius of the source.

Along with the above ansatz let us also use the general-
ized Chaplygin gas EOS for the charged fluid as [34]

pr ¼ H�� K

�
; (9)

where H and K are two positive constants.
Equations (3) and (4) imply

ð�þ prÞ � fðrÞ ¼ ðAþ BÞ
4�

e�Ar2 : (10)

From Eqs. (9), (8), and (10), we get the following
solution set:

� ¼
�
fþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f2 þ 2hK
p

h

�
; (11)

pr ¼ f�
�
fþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f2 þ 2hK
p

h

�
; (12)

pt ¼ 1

8�

�
2e�Ar2ðB� AÞð2þ Br2Þ � 1

r2
ð1� e�Ar2Þ

þ 8�

�
fþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f2 þ 2hK
p

h

��
; (13)

E2 ¼ 2Ae�Ar2 þ 1

r2
ð1� e�Ar2Þ � 8�

�
fþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f2 þ 2hK
p

h

�
;

(14)

q2 ¼ 2Ar4e�Ar2 þ r2ð1� e�Ar2Þ

� 8�r4
�
fþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f2 þ 2hK
p

h

�
; (15)

where h ¼ 2ð1þHÞ. We observe that for finite values of
the physical parameters h � 0, so that H � �1.

IV. BOUNDARY CONDITIONS

The RN metric [35,36] is given by

ds2 ¼ �
�
1� 2m

r
þQ2

r2

�
dt2 þ

�
1� 2m

r
þQ2

r2

��1
dr2

þ r2ðd�2 þ sin2�d�2Þ: (16)

To match our interior metric with the above exterior one we

impose only the continuity of gtt, grr, and
@gtt
@r across a

surface, S, at r ¼ a. This yeilds the following equations:

1� 2m

a
þQ2

a2
¼ eBa

2þC; (17)

1� 2m

a
þQ2

a2
¼ eAa

2
; (18)

m

a2
�Q2

a3
¼ BaeBa

2þC: (19)

Therefore, from the above equations, one can easily get

A ¼ � 1

a2
ln

�
1� 2m

a
þQ2

a2

�
; (20)

B ¼ 1

a2

�
m

a
�Q2

a2

��
1� 2m

a
þQ2

a2

��1
; (21)

C ¼ ln

�
1� 2m

a
þQ2

a2

�
�

m
a � Q2

a2

½1� 2m
a þ Q2

a2
�
: (22)

Note that no extra assumption on the value of �ðrÞ at
r ¼ a is required here and we therefore obtain �ðaÞ ¼ Q2

a4
.

This result was expected as a consequence of the matching
conditions at r ¼ a (absence of the thin shell). On the other
hand, the electric field at r ¼ 0 is zero. Therefore, the
energy conditions at r ¼ 0 involve only the central value
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of density, as well as for the radial and tangential pressures.
As a thin shell exists, we could not use the boun-
dary condition for � at a which means one cannot get

�ðaÞ ¼ Q2

a4
.

Let us now impose the boundary conditions

prðaÞ ¼ 0; �ð0Þ ¼ Eð0Þ ¼ 0: (23)

We obtain two independent equations which are readily
solved for H and K as functions of the source parameters.
We note that Eð0Þ ¼ 0 implies

�0 ¼ 3A

8�
¼

�
FeAa

2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðFeAa2Þ2 þ 2hK

q
h

�
(24)

and prðaÞ ¼ 0 implies

F�
�
Fþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 þ 2hK

p

h

�
¼ 0; (25)

where F ¼ fðaÞ ¼ ðAþBÞ
4� e�Aa2 .

From the above two equations (24) and (25), one could
find the values of two unknowns H and K in terms of A, B,
and a, in other words, in terms of mass, charge, and radius
of the spherically symmetric charged objects. Therefore,
through a simple mathematical exercise, we have the ex-
pressions for the constants as follows:

H ¼ 3AðB� AÞ
½9A2 � 4ðAþ BÞ2e�2Aa2� ; (26)

K ¼
�ðAþ BÞe�Aa2

4�

�
2

�
�
2

�
1þ 3AðB� AÞ

½9A2 � 4ðAþ BÞ2e�2Aa2�
�
2 � 1

�
: (27)

One can note that at r ¼ 0, Eð0Þ ¼ 0, �ð0Þ ¼ 3A
8� , and

prð0Þ ¼ 1
2ptð0Þ ¼ 2B�A

8� . Also, the curve profiles (Figs. 1–3)

FIG. 1 (color online). The density parameter � is shown
against r.

FIG. 2 (color online). The radial pressure pr is shown
against r.

FIG. 3 (color online). The transverse pressure pt is shown
against r.
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for the parameters, �, pr, etc. indicate no singularity pres-
ence inside the star.

V. TOV EQUATIONS

The generalized Tolman-Oppenheimer-Volkov (TOV)
equation as presented by Ponce de León [37] is

�MGð�þ prÞ
r2

eð���Þ=2 � dpr

dr

þ �
q

r2
e�=2 þ 2

r
ðpt � prÞ ¼ 0; (28)

where MG ¼ MGðrÞ is the effective gravitational mass in-
side a sphere of radius r and q ¼ qðrÞ is given by (15). The
effective gravitational mass is given by the expression

MGðrÞ ¼ 1
2r

2eð���Þ=2�0; (29)

derived from the Tolman-Whittaker formula and the
Einstein-Maxwell equations.

It is important to note that the above equation describes
the equilibrium condition for charged fluid elements sub-
ject to gravitational, hydrostatic, and electric forces, plus
another force due to the anisotropy factor which is a
measure of the pressure anisotropy of the fluid comprising
the charged body. Combined with (11)–(13) and (15), the
above equation takes the form

Fg þ Fh þ Fe þ Fa ¼ 0; (30)

where

Fg ¼ �Brð�þ prÞ; (31)

Fh ¼ �dpr

dr
; (32)

Fe ¼ �EeAr
2=2; (33)

Fa ¼ 2

r
ðpt � prÞ: (34)

The profiles of Fg, Fh, Fe, and Fa for sources are shown

in Fig. 4. This figure indicates that Fh is comparatively
small. Thus the hydrostatic force has a negligible effect in
spite of the fact that static equilibrium is attainable due to
pressure anisotropy, gravitational, and electric forces.
Although several specific equations of state for prð�Þ are

used in the literature, very little is known for the much
less intuitive second equation of state ptð�Þ. The equation
of state parameter !t � pt

� for the anisotropic object can

be obtained directly from Eqs. (11) and (13), which is
given by

pt

�
� !t ¼

½2e�Ar2ðB� AÞð2þ Br2Þ � 1
r2
ð1� e�Ar2Þ þ 8�ðfþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
f2þ2hK

p
h Þ�

8�ðfþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
f2þ2hK

p
h Þ

: (35)

FIG. 4 (color online). Four different forces acting on fluid
elements in static equilibrium are shown against r.

FIG. 5 (color online). The variation of the equation of state
parameter !t is shown against r.
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Figure 5 shows the variation of !t against r. The equa-
tion of state for anisotropic charged fluid is positive and
confined within 0 � !t � 1, i.e., charged fluid is non-
exotic in nature.

VI. ENERGY CONDITIONS

It is well known for the charged fluid that the null energy
condition (NEC), weak energy condition (WEC), and
strong energy condition (SEC) will be satisfied if and
only if the following inequalities hold simultaneously at
every point within the source:

~�þ ~E2

8�
� 0; (36)

~�þ ~pr � 0; (37)

~�þ ~pt þ
~E2

4�
� 0; (38)

~�þ ~pr þ 2~pt þ
~E2

4�
� 0: (39)

Direct plotting of the left sides of (9)–(12) shows that
these inequalities are satisfied as well at every r (see
Fig. 6).

At this point we feel it is required to determine whether
specific choices of mass, charge, and radius lead to solu-
tions satisfying the above energy conditions at r ¼ 0. A
close observation of the equations (20) and (21) suggests to
us to adopt here some adimensional quantities which can

be defined as � ¼ a2A and � ¼ a2B. We restrict our
attention to solutions satisfying � � 0, � � 0, and � �
2�. These solutions satisfy the four energy conditions of
general relativity, viz., the NEC, the WEC, the SEC, and
the dominant energy condition (DEC).
For a sphere of radius a, mass M, and charge Q,

Eqs. (2.13)–(2.15) in [13] [Eqs. (20)–(22) in our present
case] are alternatively expressed in the adimensional forms

� ¼ � lnð1� 2	þ 2Þ; (40)

� ¼ 	� 2

1� 2	þ 2
; (41)

C ¼ lnð1� 2	þ 2Þ � 	� 2

1� 2	þ 2
; (42)

where 	 ¼ M
a , and  ¼ jQj

a . It is very important that the

field equations can eventually be expressed in terms of
these adimensional constants, the adimensional variables
~� ¼ a2�, ~pr ¼ a2pr, ~pt ¼ a2pt, and ~� ¼ a2�, and the
adimensional radial coordinate x ¼ r

a . We have seen that

particular values of the adimensional parameters 	, 
determine the adimensional KB constants �, �, and C,
which in turn determine � and � at every x 2 ½0; 1�. The
values of 	 and  are restricted by the condition that no
horizon is included in the external region described by the
RN metric.
We consider all possible roots of the equation g00 ¼ 0.

The radius of the charged sphere a is big enough so that no
horizons are included in the external RN metric. The three
possible cases follow.

A. Two real roots

	2 >2.

We choose 1>	þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	2 � 2

p
. Therefore, < 1 and	

satisfies <	< 1þ2

2 .

B. One real root

	 ¼ .
We choose 1>	 ¼ .

C. No real roots

	< , otherwise arbitrary.
The selected values of 	 and  determine values of �

and�, which should satisfy the energy conditions. Another
acceptability condition is that ~�ðxÞ � 0 for every x 2
½0; 1�.
The arising expressions for �, pr, and pt can be eval-

uated at r ¼ 0. Hence we find the energy density and
pressures at r ¼ 0 as

�0 ¼ 3A

8�
¼ 3�

8�a2
; (43)FIG. 6 (color online). The variations of the left-hand side of

the expressions of energy conditions are shown against r.
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pr0 ¼ 1

2
pt0 ¼ 2B� A

8�
¼ 2�� �

8�a2
: (44)

Now, the energy conditions [38] at the center can be
written as follows:

(i) NEC: pr0 þ �0 � 0 ) �þ � � 0.
(ii) WEC: pr0 þ �0 � 0 ) �þ � � 0 and �0 � 0 )

� � 0.
(iii) SEC: pr0 þ �0 � 0 ) �þ � � 0 and 3pr0þ

�0 � 0 ) � � 0.
(iv) DEC: �0> j pr0 j) 2� � � � �.
The characterization of dark energy fluid is the violation

of one of the SEC, more specifically, the one related to the
Raychaudhuri equation [25,39]. If the second equation of
the WEC is violated, we have a phantom dark energy fluid.

Now, the EOS at r ¼ 0 is

pr0

�0
¼ m; (45)

where

m ¼ 2�� �

3�
� �

2�
� 1: (46)

Notice that � and pr are decreasing functions of r (these
can be shown by plotting the graphs of � and pr or one can

find d�
dr < 0 and dpr

dr < 0, i.e., � and p are decreasing func-

tions of r). At r ¼ 0, they assume fixed values �0 and pr0.
So, � and p have a maximum at r ¼ 0. We have checked
that �0

0 ¼ 0, p0
r0 ¼ 0 and �00

0 < 0, p00
r0 < 0.

VII. STABILITY

Bertolami and Páramos [22] argue that if one assumes
that the GCG tends to a smooth distribution over space then
most density perturbations tend to be flattened within a
time scale related to their initial size and the characteristic
speed of sound.

One of the important ‘‘physical acceptability condi-
tions’’ for anisotropic matter are the squares of radial and
tangential sound speeds, defined by

v2
sr ¼ dpr

d�
¼ H þ K

½fþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
f2þ2hK

p
h �2

; (47)

and

v2
st¼dpt

d�

¼1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2þ2hK

p
4�rAðAþBÞ

�
�
2

r2
eAr

2 �4rAðB�AÞð1þBr2Þ� 2

r3
�2A

r

�
; (48)

should be less than the speed of light [40,41].
From the above equation (47), an important aspect can

be observed that the squared of radial sound velocity is

always positive irrespective of matter density and hence
this is always positive even in the case of exotic matter.
Figures 7 and 8 show that these parameters satisfy the
inequalities 0 � v2

sr � 1 and 0 � v2
st � 1 everywhere

within the charged fluid.
Now, we use Herrera’s approach [40] to identify poten-

tially unstable or stable anisotropic matter configurations

FIG. 7 (color online). The variation of radial sound speed v2
sr is

shown against r.

FIG. 8 (color online). The variation of tangential sound speed
v2
st is shown against r.
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known as the concept of cracking (or overturning). Since,
0 � v2

sr � 1 and 0 � v2
st � 1, therefore, according to

[40,42], j v2
st � v2

sr j� 1. Figure 9 of the model also sup-
ports this.

Now,

� 1 � v2
st � v2

sr � 1

implies

� 1 � v2
st � v2

sr � 0; potentially stable;

0< v2
st � v2

sr � 1; potentially unstable:

One can note that the region for which v2
st < v2

sr is a
potentially stable region and the region for which v2

st > v2
sr

is a potentially unstable region. If v2
st � v2

sr keeps the same
sign everywhere within a matter distribution, no cracking
will occur. The curve profile (Fig. 10) for v2

st � v2
sr indi-

cates that there is a change of sign and thus alternating
a potentially unstable to a stable region within the
distribution.

VIII. MINIMUM MASS-RADIUS RELATION

The above analysis indicates that our model is very
much unstable within radius 1.5 unit. But, the configura-
tion is stable within 1:5< r � 8. In a recent paper,
Andréasson [42] discovered a surprising result as

ffiffiffiffiffi
M

p
<

ffiffiffiffi
R

p
3

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R

9
þQ2

3R

s

for a lower bound on the radius R of a charged sphere with
mass M and charge Q.
The inequality is shown to hold for any solution which

satisfies pr þ 2pt � �.
The plot (Fig. 11) for pr þ 2pt � � against r indicates

that in the region 1:5< r � 8, pr þ 2pt � � is negative.
Since our model is stable within 1:5< r � 8,
Andréasson’s relation holds good for our model.

FIG. 9 (color online). The variation of j v2
st � v2

sr j is shown
against r.

FIG. 10 (color online). The variation of v2
st � v2

sr is shown
against r.

FIG. 11 (color online). The variation of 2pt þ pr � � is
shown against r.
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It would be interesting to make some comments regard-
ing opposite situations with the maximum mass-radius
relation. By using the static spherically symmetric gravi-
tational field equations Buchdahl [1] has obtained an ab-
solute constraint of the maximally allowable mass radius
for isotropic fluid spheres of the form 2M

R < 8
9 (for a gener-

alized expression we refer to the work of Mak et al. [43]).
It is worthwhile to calculate effective gravitational mass

which is due to the contribution of the energy density � of

the matter and the electric energy density E2

8� and can be

expressed as

Meffective ¼ 4�
Z R

0

�
�þ E2

8�

�
r2dr

¼ 1

2
Rþ 1ffiffiffiffi

A
p �

�
3

2
; AR2

�
� 1

2
ffiffiffiffi
A

p �

�
1

2
; AR2

�
;

(49)

where �ð32 ; AR2Þ is the lower incomplete gamma function.

In Fig. 12, we plot the mass-radius relation. We also plot
Meffective

R against R (see Fig. 13) which shows that the ratio
Meffective

R is decreasing even if the radius is increasing with the

mass.
According to Ponce de León [37] the energy conditions

require

e�� � 1; �0 � 0:

These relations lead to a maximum charge as follows:

R � q2

M
;

where M and q represent the total mass and charge of the
charged sphere of radius R.
AssumingR ¼ 8 km and M

R ¼ 0:5, we find from Eq. (15)

as q2 ¼ 0:203 72. Thus our model satisfies Ponce
de León’s condition [37].
In this connection we add that the mass-radius-charge

relation for compact astrophysical objects plays an impor-
tant role in many physical processes. The strong gravita-
tional field due to the density of the matter inside the stars
indicates that a strong electric field due to the electric
charge is possible. The effects of electric charge in com-
pact stars assuming that the charge distribution is propor-
tional to the mass density were studied recently by several
authors [16,44–46].

IX. CONCLUSIONS

In this paper we are checking the energy conditions only
at the center of the charged sphere. It would be convenient
to extend the analysis to other points within the sphere.
A series method like the one used in Eqs. (32) and (34) by
KB [15] might be useful.
Unlike the work of Bertolami and Páramos [22], where

they have used the generalized Chaplygin gas EOS in
special reference to anisotropic pressure we generate the
solutions for KB metric under Einstein-Maxwell space-
time. So a natural question would be, does the result go
over into the solution of Bertolami et al. for isotropic
stresses? The straightforward answer is no. This is because
we have extended the KB approach assuming a singularity-
free form of the metric ansatz to charged anisotropic source

FIG. 12 (color online). The variation of Meffective is shown
against R.

FIG. 13 (color online). The variation of Meffective

R is shown
against R.
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with a nonlinear, Chaplygin-type equation of state. There-
fore, whether our solution corresponds to a Chaplygin
dark star needs special verification, specifically whether a
charged Chaplygin dark star exists demands further inves-
tigation. In a similar fashion one may raise the question,
does the result go over into an exact solution for an EOS
p ¼ H� (K ¼ 0)? The answer this time is affirmative, as
our solution coincides with the solution obtained by Varela
et al. [18] for an EOS p ¼ H� (K ¼ 0). One can easily see
that our results go over into the expressions obtained by
Varela et al. with �1 ¼ 0. Also, it may be interesting to
extrapolate the present investigation to the astrophysical
bodies, especially quark or strange stars with radius around
8 km.

ACKNOWLEDGMENTS

F. R. and S. R. are thankful to the authority of Inter-
University Centre for Astronomy and Astrophysics,
Pune, India, for providing them a visiting associateship
under which a part of this work was carried out. F. R. is
also thankful to PURSE for providing financial support.
We are very grateful to an anonymous referee for his/
her insightful comments that have led to significant
improvements, particularly on the interpretational
aspects.

APPENDIX: ANALYSIS OF
JUNCTION CONDITIONS

We note that the metric coefficients are continuous at the
junction, i.e., at S, where r ¼ a. However, this does not
mean that the metric coefficients are differentiable at the
junction. The affine connection may be discontinuous
there. The above statement can be quantified in terms of
a second fundamental form of the boundary.

The second fundamental forms associated with the two
sides of the shell are [47–50]

K�
ij ¼ �n��

�
@2X�

@�i@�j þ ��
��

@X�

@�i

@X�

@�j

���������S
; (A1)

where n�� are the units normal to S and can be given by

n�� ¼ �
��������g�� @f

@X�

@f

@X�

��������
�ð1=2Þ @f

@X� (A2)

with n	n	 ¼ 1. Here, �i are the intrinsic coordinates on

the shell where f ¼ 0 is the parametric equation of the
shell S and � and þ corresponds to interior (ours) and
exterior (RN). It is to be noted that since the shell is
infinitesimally thin in the radial direction there is no radial
pressure. Using Lanczos equations [47–50], one can find
the surface energy term � and surface tangential pressures
p� ¼ p� � pt as

� ¼ � 1

4�a
½

ffiffiffiffiffiffiffiffi
e��

p
�þ�; (A3)

pt ¼ 1

8�a

��
1þ a�0

2

� ffiffiffiffiffiffiffiffi
e��

p �þ
�
: (A4)

The metric functions are continuous on S, and then one
finds

� ¼ 0; (A5)

pt ¼ 1

8�a

��
M

a
�Q2

a2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2M

a
þQ2

a2

s

� Aa2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2M

a
þQ2

a2

s �
: (A6)

Hence one can match our interior solution with an ex-
terior RN solution in the presence of a thin shell. Thewhole
space-time is given by our metric and the RN metric which
are smoothly joined.
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