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A string-inspired three-form-dilaton-gravity model is studied in a Randall-Sundrum brane world

scenario. As expected, the rank-3 antisymmetric field is exponentially suppressed. For each mass level,

the mass spectrum is bigger than the one for the Kalb-Ramond field. The coupling between the dilaton and

the massless Kaluza-Klein mode of the three-form is calculated, and the coupling constant of the cubic

interactions is obtained numerically. This coupling are of the order of Tev�1; therefore, there exists a

possibility to find some signal of it at Tev scale.
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I. INTRODUCTION

The core idea of extra dimension models is to consider
the four-dimensional universe as a hyper-surface em-
bedded in multidimensional manifold. The appeal of
such models is the determination of scenarios where mem-
branes have the best chances to mimic the standard model’s
characteristics. In particular, the standard model presents
interesting topics to study, such as the hierarchy problem
and the cosmological constant problem that can be treated
by the above-mentioned models. For example, the Randall-
Sundrum model [1,2] provides a possible solution to the
hierarchy problem and show how gravity is trapped to a
membrane.

There are studies that emphasize the general properties
of membranes, for example, one that makes an analysis of
the space-time singularities that arise in braneworld mod-
els with four-dimensional (4D) Poincare invariance [3].
Others with cosmological implications consider our uni-
verse initially as an empty p-brane embedded in a mani-
fold, whose bulk is populated only with a dilaton field that
couples itself to the brane, producing a rich and interesting
evolutionary cosmology [4]. The presence of other fields in
the bulk introduces the problem of field localization in the
brane, which is an important tool in order to build up the
standard model in the membrane setup. For such, several
ingredients had to be added: the gravitational field, spinor
fields, scalar fields, and gauge fields. A lot of aspects have
been studied related to these topics. These investigations
include both the smooth models described by solitonlike
membranes and the pure Randall-Sundrum models con-
taining space-time singularities. For these, there is an ex-
tensive list of references in literature [5–16].

Despite its achievements, that model does not favor the
localization of zero modes of gauge vector fields. Such
localization is important to construct the standard model in
a membrane [17]. That happens because the gauge vector
field theory is conformal in D ¼ 4: this makes the warp

factor in the pure Randall-Sundrum model disappear from
the effective action. The issue of localization of standard
model fields on the three-brane has been widely studied
[18–22]. Despite this, we must consider a scenario in
which it is assumed a priori that the matter fields are
constrained to live on the three-brane.
Some studies about higher rank tensor fields have been

made showing its relation with the AdS/CFT conjecture
[23]. Besides this, string theory shows the naturalness of
higher rank tensor fields in its spectrum [24,25].
In mathematical terms, the presence of one more extra

dimension (D ¼ 5) provides the existence of many anti-
symmetric fields, namely, the two-, three-, four-, and five-
forms. However, the only relevant ones for the visible
brane are the two- and three-form. This is due to the fact
that when the number of dimensions increase, the number
of gauge freedom also increases. This can be used to cancel
the dynamics of the field in the visible brane. It is important
to point out that this happens only because we have an
interacting theory. If this was not so, we could cancel more
degrees of freedom using the equations of motion and the
three-form would not have dynamics [26]. The mass spec-
trum of the two- and three-form have been studied, for
example, in Refs. [27,28].
The coupling between the two-form and the dilaton,

with cosmological consequences, has been studied in
[29]. There are also authors that investigate that coupling
in the domain of standard model physics [30]. Such cou-
pling, inspired in string theory, can provide us with a
process that, in principle, could be observed in the LHC.
That may happen through a Drell-Yang process, in which a
pair of quark-antiquark can give rise to a three-form field,
mediated by a dilaton. This kind of process can appear in a
scenario where the dilaton is considered as the Higgs field
[31–33]. This raises the question if the coupling between
the three-form and the dilaton give a similar process, and
this is the goal of this article.
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The question to be addressed in this piece of work is
related to other kinds of gauge fields. We present a full
action, including the gravity, the dilaton, and the three-
form field action. The dimensional reduction is done, and
the effective action at the visible brane is obtained. Then,
we analyze carefully the dilaton sector, find the mass
spectrum, and find the complete solution for dilaton coef-
ficients. This result will be needed when the coupling with
the three-form is analyzed. After, we analyze the three-
form sector and, like in the dilaton case, we find the mass
spectrum and solve the equation to find the coefficients of
the expansion. The mass spectrum of the three-form is
compared with that of the two-form, the dilaton, and the
gravity field. This gives a hint that the three-form must not
be seen at LHC, because of the mass of the massive
Kaluza-Klein modes. Finally, we study the coupling with
the dilaton and find how we can conclude that a signal of
the massless three-form can be found at LHC.

II. DILATON AND ANTISYMMETRIC TENSOR
FIELDS IN RANDALL-SUNDRUM FRAMEWORK

As the number of antisymmetric tensor fields increase
with dimensions, these fields has to be considered. In fact
these fields have been taken into account in the literature.
As said in the introduction, the antisymmetric tensors
relevant to the visible brane are that of rank two and three
[28]. We focus our attention here in the second tensor field
cited. As usual, capital Latin index represent the coordi-
nates in the bulk and Greek index, those on the brane. The
metric is given by

ds2 ¼ e�2����dx
�dx� þ r2cdy

2; (1)

where � ¼ krcy, y is the coordinate of fifth dimension,
rc is the compactification radius for that dimension, k is a
constant of the order of the higher dimensional Planck
mass M, and ��� is the 4D Minkowski metric.

The coupling between the two-form and the dilaton was
considered recently by Mukhopadhyaya [30]. We consider
here that the three-form couples in the same way to the
dilaton. The motivation for this is that, if our solution is
lifted to six dimensions, upon compactification in S1, we
obtain the same coupling for the matter fields. This also
justifies the name dilaton for � [14]. The action to be
considered is therefore given by

S ¼ Sgrav þ SX þ Sdil; (2)

where

Sgrav ¼
Z

d5x
ffiffiffiffiffiffiffiffi�G

p
2M3R;

SX ¼
Z

d5x
ffiffiffiffiffiffiffiffi�G

p ½�e�=M3=2
2YMNLPY

MNLP�;

and

Sdil ¼
Z

d5x
ffiffiffiffiffiffiffiffi�G

p �
1

2
@M�@M��m2�2

�
: (3)

Defining the three-form field XMNO and fixing the gauge
X��y ¼ 0, we have two possibilities for the strength tensor

Y���� ¼ @½�X����

or

Yy��� ¼ @½yX����:

We must here focus only in the dilaton and the antisym-
metric field XMNO. Thus, for the metric in (1), we have

SX ¼
Z

d4x
Z

dyrce
�4�fAþ Bþ Cg;

where

A ¼ �2e�=M3=2
e8���������	�
�Y���
Y��	�; (4)

B ¼ �2e�=M3=2 4

r2c
e6���������
@yX���@yX��
; (5)

and

C ¼ rce
�4�

�
e2�

2
���@��@��þ 1

2r2c
@y�@y��m2�2

�
:

(6)

As the mass term of the dilaton decouples the visible
brane, we must consider the kinetic term only. Performing
an integration by parts in the second terms of the dilaton
and X fields, respectively, we get

S ¼
Z

d4x
Z

dy

�
rce

�4�A

þ e�=M3=2 8

rc
��������
X���@yðe2�@yX��
Þ

þ rce
�2�

2
���@��@��� 1

2rc
�@yðe�4�@y�Þ

�
:

Note that the derivative in the exponential of the dilaton
would give a term suppressed by the Planck mass and
therefore is irrelevant for the effective action. At this point,
we must consider the Kaluza-Klein decomposition of the
fields

X��� ¼ X1
n¼0

Xn
���ðxÞ�

nðyÞffiffiffiffiffi
rc

p ; � ¼ X1
n¼0

�nðxÞ c
nðyÞffiffiffiffiffi
rc

p ;

where

Z
e4��mðyÞ�nðyÞdy ¼ 	mn;

Z
e�2�c mðyÞc nðyÞdy ¼ 	mn:

(7)
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In terms of the above projections, the effective action on
the visible brane is given by

S ¼
Z

d4x
X1
n¼0

X1
m¼0

Z
dy

�
e�=M3=2

�
�2e4��m�n������

� ��	�
�Yn
���
Y

m
��	� þ

8

r2c
��������
Xn

���X
m
��
�

m

� d

dy

�
e2�

d

dy
�n

��
þ

�
e�2�

2
c mc n���@��

m@��
n

� 1

2r2c
�m�nc m@yðe�4�@yc

nÞ
��
:

The action above is the action of the rank three antisym-
metric tensor field, or three-form, coupled to a dilaton. The
first bracket represents the three-form coupled to a dilaton
and the second the dilaton itself. As there is no coupling of
the terms in the second brackets and the three-form fields,
it is a free dilaton action. Sowemust concentrate in the free
dilaton action and later go on to the main objective, which
is the antisymmetric field.

III. BULK DILATON FIELD

At this section, we must consider the dilaton sector. Here
we must expand the dilaton exponential

e�=M3=2 ¼ 1þ ð�=M3=2Þ þ ð�=M3=2Þ2=2!þ � � �
and concentrate only in the first term which will give the
usual kinetic and mass term for the dilaton field provided,
so we have

� 1

r2c
@yðe�4�@yc

nÞ ¼ ðmd
nÞ2e�2�c n: (8)

The other terms of the expansion will be considered later
as interaction terms in the effective action. Using the above
orthonormality conditions, we finally get

Sdil ¼
Z

d4x
X1
n¼0

1

2
½���@��

n@��
n þ ðmd

nÞ2�n�n�:

Therefore, we obtain a standard dilaton action with
masses given by the solutions of Eq. (8). The solution is
given in [30] and we will basically repeat it here. The
easiest solution is for the massless dilaton, where we
have to solve the equation

� 1

r2c
@yðe�4�@yc

nÞ ¼ 0

with the obvious solution

c 0 ¼ C1

4krc
e4� þ C2:

The constants can be obtained from orbifold condition
c 0ð�
Þ ¼ c 0ð
Þ and from orthonormality conditions,

again. We find C1 ¼ 0 and, considering also that
expð�2krc
Þ � 1, C2 ¼

ffiffiffiffiffiffiffi
krc

p
. The final solution is

c 0 ¼ ffiffiffiffiffiffiffi
krc

p
:

In order to solve the equations for the massive modes

first, we must make the change of variables zn ¼ md
n

k e� and

fn ¼ c ne�2� to obtain the second order equation

�
z2n

d2

dz2n
þ zn

d

dzn
þ ðz2n � 4Þ

�
fn ¼ 0;

which admits a Bessel function of order 2 as a solution. The
general solution is

c n ¼ e2�

Nn

½J2ðznÞ þ �nY2ðznÞ�;

where Nn and �n are constants to be determined. First of
all, we must use the continuity condition for the derivative
of c n at y ¼ 0. Remembering that J2 and Y2 are Bessel and
Neumann functions of order 2, we obtain

�n ¼ � J1ðmd
n

k Þ
Y1ðmd

n

k Þ
:

As the masses md
n are expected to be of order of Tev on

the brane, we have md
n � k, and expanding the right-hand

side of the above equation, we obtain

�n ¼ �


4

�
md

n

k

�
2 � 1:

Using the boundary condition at y ¼ 
, we obtain

J1ðxnÞ ¼ 0; (9)

where we have defined xn ¼ znð
Þ ¼ md
n

k ekrc
.

If we find the solutions of the equation above, we can
find xn and therefore the mass spectrum. Now the orthogo-
nality condition can be used to determine Nn, and we
obtain for the solution

c nðznÞ ¼
ffiffiffiffiffiffiffi
krc

p e2�

ekrc

J2ðznÞ
J2ðxnÞ :

Now we have the complete solution for the dilaton given
by

� ¼ ffiffiffiffiffiffiffi
krc

p
�0 þ X1

n¼1

ffiffiffi
k

p e2�

ekrc

J2ðznÞ
J2ðxnÞ�

n

with masses given by Eq. (9). Posteriorly, we will compare
the mass of the dilaton with the graviton one. The complete
solution for the dilaton will be necessary for studying its
coupling to the antisymmetric field.
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IV. BULK THREE-FORM FIELD

Now we must consider the three-form field. The action
was constructed before and we have

SX ¼
Z

d4x
X1
n¼0

X1
m¼0

Z
dye�=M3=2

�
�2e4��m�n������

� ��	�
�Yn
���
Y

m
��	� þ

8

r2c
��������
Xn

���X
m
��


� �m d

dy

�
e2�

d

dy
�n

��
: (10)

Again we must expand of the dilaton exponential and
consider only the first term. The mass spectrum is obtained
from

� 1

r2c

d

dy

�
e2�

d

dy
�n

�
¼ ðmn

XÞ2�ne4�;

and again the other terms of the expansion will be consid-
ered later as interaction terms in the effective action. The
simplest and most important solution of the above equation
is obtained for the massless case, where we have the
equation

� 1

r2c

d

dy

�
e2�

d

dy
�n

�
¼ 0

with obvious solution

�0 ¼ � C1

2krc
e�2� þ C2:

Using continuity of the derivative at y ¼ 
 gives us
C1 ¼ 0 and from orthogonality, we finally get

�0 ¼ ffiffiffiffiffiffiffiffiffiffi
2krc

p
e�2krc
:

For the massive modes, similarly to the dilaton case, we
perform the redefinitions z0n ¼ mn

k e� and f0n ¼ e��n to

obtain the equation

�
z02n

d2

dz02n
þ z0n

d

dz0n
þ ðz02n � 1Þ

�
f0n ¼ 0

with solution given by a Bessel function of order 1.
Therefore,

�n ¼ e��f0n ¼ e��

N0
n

½J1ðz0nÞ þ �0
nY1ðz0nÞ�;

and again we have to determine the constants N0
n and �0

n

using contour conditions. First of all, we must use con-
tinuity conditions at y ¼ 0 to obtain

�0
n ¼ � J2ðm

n
X

k Þ
Y2ðm

n
X

k Þ
:

As the masses are in Tev scale, we have mn
X � k and

expanding the above expression, we get

�0
n � 


25

�
mn

X

k

�
4 � 1:

Using the above result, the fact that ekrc
 � 1, and the
contour condition at y ¼ 
, we obtain

J2ðx0nÞ ¼ 0 (11)

with the definition x0n ¼ z0nð
Þ ¼ mn
X

k ekrc
. Therefore, we

can obtain the mass spectrum and, in the visible brane, the
masses are solutions of the Eq. (11). The effective action is
given by

SX ¼
Z

d4x
X1
n¼0

e�=M3=2f�2��������	�
�Yn
���
Y

m
��	�

� 8ðmn
XÞ2��������
Xn

���X
m
��
g: (12)

We can obtain Nn with the normalization condition to
obtain

N0
n ¼ ekrc
ffiffiffiffiffiffiffi

krc
p J1ðx0nÞ;

and we arrive at the final solution for the massive modes
given by

�nðznÞ ¼
ffiffiffiffiffiffiffi
krc

p e�

ekrc

J1ðz0nÞ
J1ðx0nÞ :

It is interesting to note that, despite the way we have
defined it, the mass spectrum of the three-form field is no
altered by the dilaton, and the only change will be in the
interaction terms, that will be analyzed posteriorly. We list
in Table I the value of the masses for the graviton, the
dilaton, the two-form, and three-form, per [28,30], using
the scale krc ¼ 12 and k ¼ 1019 Gev.
It is obvious from the Table I that, the higher the rank of

the tensor is, the higher the mass spectrum is, and the
possibility of a finding these fields in the LHC becomes
more and more elusive. The possibility for some signal of
the X field in LHC will come from its interaction with the
dilaton field, and this is analyzed in the next section.

TABLE I. Masses of KK modes where krc ¼ 12 and
k ¼ 1019 Gev.

n 1 2 3 4

mn
grav (TeV) 1.66 3.04 4.40 5.77

mn
dil (TeV) 1.66 3.04 4.40 5.77

mn
KR (TeV) 2.87 5.26 7.62 9.99

mn
X (TeV) 4.44 7.28 10.05 12.79
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V. THREE-FORM COUPLED TO DILATON

As we explore here only the coupling between the three-
form and the dilaton, we must consider only the relevant
part of the action, which is given by

SX ¼
Z

d4x
X1
n¼0

X1
m¼0

Z
dye�=M3=2½�2e4��m�n������

� ��	�
�Yn
���
Y

m
��	� � 8ðmn

XÞ2��������


� Xn
���X

m
��
�

m�ne4��: (13)

When we expand the exponential of the dilaton, the first
term will give us the usual kinetic and mass term studied
previously. The next terms of the expansion are

expð�=M3=2Þ � 1 ¼
�
M�3=2

X1
n¼0

�nðxÞ c
nðyÞffiffiffiffiffi
rc

p
�

þ 1

2!

�
M�3=2

X1
n¼0

�nðxÞ c
nðyÞffiffiffiffiffi
rc

p
�
2 þ � � �

(14)

The terms beyond the first are highly suppressed by
powers of the plank mass; therefore, we must consider
only the first term, or

expð�=M3=2Þ � 1�M�3=2
X1
n¼0

�nðxÞ c
nðyÞffiffiffiffiffi
rc

p

¼ M�3=2

� ffiffiffiffiffiffiffi
krc

p
�0 þ X1

n¼1

ffiffiffi
k

p e2�

ekrc

J2ðznÞ
J2ðxnÞ�

n

�
: (15)

The above term will give a coupling of the form�X2. As
we can see from the complete solution of the dilaton and
the three-form, the interaction of the massless fields will be
suppressed by a factor of 1

Mp
and therefore is not consid-

ered. The interaction between a massless dilaton, a mass-
less two-form, and a massive three-form is like �0X0Xn

and gives us a null result because of the orthogonality
relations.

Therefore, the interaction that posses massless dilatons
are irrelevant, and we must consider only the massive ones.
Taking in account these considerations and rearranging
terms in the action, we get for the cubic interactions

SX � Scubic ¼
X1

n;m¼0

X1
p¼1

M�3=2ffiffiffiffiffi
rc

p
Z

dye4��mðyÞ�nðyÞc pðyÞ

�
Z

d4x�pðxÞ½�2��������	�
�Yn
���


� Ym
��	� � 8ðmn

XÞ2��������
Xn
���X

m
��
�:
(16)

From the effective action, we can see that the coupling
constant for these interactions are given by

M�3=2ffiffiffiffiffi
rc

p
Z þ


�

dye4��m�nc i:

As said before, due the large values of the mass for the
Kaluza-Klein (KK) modes, their signal must hardly be seen
at LHC. Therefore, we concentrate in the more interesting
case, that is the massless mode. Using now the solution for
the coefficients above we obtain, for the massless modes

2krc
MP

e�5krc

Z þ


�

dye6�

J2ðznÞ
J2ðxnÞ :

The above integral was solved numerically using the
software MATHEMATICA, and the results for the first four
KK modes are given in Table II.
The values of the coupling constant in the above table

are given in Gev�1. This shows a rather interesting possi-
bility: Despite the fact that the massless mode is extremely
suppressed, its coupling with the dilaton rises the possibil-
ity of a signal at LHC. As pointed in [30], the Lorenz
structure of the interactions and masses involved will
change the angular distribution of X fields produced.
Furthermore, in the a Drell-Yan process, the production
of X zero modes through, for example, the interaction of
quark-antiquark pairs, may have different (but significant)
rates for sufficient integrated luminosity if we compare
with the case of the Kalb-Ramond and gravity fields.

VI. CONCLUSIONS

Extending earlier results about antisymmetric fields
[28], we have shown here that the nontrivial coupling
between the dilaton and the antisymmetric field do not
affect its high suppression in our visible brane due to the
warp factor of the Randall-Sundrum scenario.
In the dilaton background, we have studied new inter-

actions between the Kaluza-Klein modes of the dilaton field
with the antisymmetric field. These results are important
from the phenomenological viewpoint. The interactions
that possess massless dilatons are irrelevant, and we must
consider only the massive ones. As we have shown, higher
order interactions of the massless fields are suppressed by
a factor of 1

Mp
and therefore are not considered. Because

of the large mass of the massive modes, we considered only
the massless case. In fact, numerical computation of the
important interaction is of order of Tev�1 and can give us
signals of this field in the LHC’s searches through
Drell-Yan processes mediated by massive dilaton.

TABLE II. Coupling constants in units of Gev�1.

n Coupling constant

1 0.00143676

2 0.000788648

3 0.000413211

4 0.000249329
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