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We present a high-order accurate discontinuous Galerkin method for evolving the spherically reduced

Baumgarte-Shapiro-Shibata-Nakamura (BSSN) system expressed in terms of second-order spatial opera-

tors. Our multidomain method achieves global spectral accuracy and longtime stability on short computa-

tional domains. We discuss in detail both our scheme for the BSSN system and its implementation. After a

theoretical and computational verification of the proposed scheme, we conclude with a brief discussion of

issues likely to arise when one considers the full BSSN system.
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I. INTRODUCTION

Breakthroughs in numerical relativity during this decade
have made it possible to simulate, via evolution of the full
three-dimensional Einstein equations, binary black-hole
dynamics through inspiral, merger, and ringdown of the
remnant single black hole [1–15] (see e.g. recent reviews
[16,17]). Inspiraling binaries are among the most promis-
ing sources of gravitational waves for the network of laser
interferometric detectors such as LIGO [18] and VIRGO
[19,20]. Through the construction of templates for matched
filtering, waveforms extracted from numerical-relativity
simulations are expected to facilitate the detection of
genuine gravitational waveforms by interferometric
detectors.

Early attempts to evolve the Einstein equations relied on
the Arnowitt-Deser-Misner (ADM) decomposition
[21,22]. The resulting ADM system proved only weakly
hyperbolic when expressed in first-order form, a fact partly
accounting for difficulties associated with its numerical
evolution [23,24]. Difficulties in evolving black-hole solu-
tions to the Einstein equations also stem from singularities,
gauge conditions within the computational domain, and
unstable constraint violation. For over ten years, the goal of
accurate and stable numerical integration of the Einstein
equations has continuously spurred the interest of numer-
icists and theorists alike, leading to a wealth of new formal-
isms [25–52] (this list is not exhaustive).

To evolve binary black holes, numerical relativists
currently use one of the following versions of the
Einstein equations: the generalized harmonic (GH)

system [48,49,51,53] or the Baumgarte-Shapiro-Shibata-
Nakamura (BSSN) system [26,36,50]. Using a finite-
difference approach with adaptive mesh refinement,
Pretorius [1,2,49] used a constraint-suppressing second-
order form of the GH system (suggested by Gundlach
et al. [48]) to evolve a binary through inspiral, merger
and ringdown. Lindblom et al. [51] recast the second-
order GH system into a first-order symmetric-hyperbolic
evolution system with constraint suppression comparable
to that of the second-order system. This first-order GH
system has been used to successfully simulate binary black
holes evolution with nodal spectral (pseudospectral) meth-
ods [14,15,54]. More recently, Ref. [55] has introduced a
new penalty method for nodal spectral evolutions of spa-
tially second-order wave equations. This work provides a
foundation for solution of the second-order GH system via
spectral methods, and has been used to evolve the Kerr
solution [56] and the inspiral of binaries. Typically written
in a spatially second-order form, the BSSN system [36] has
seen widespread use by numerical-relativity groups that
employ finite-difference techniques to evolve binaries.
Reference [57] presented a nodal spectral code to evolve
the BSSN system in second-order form. The system proved
unstable when tested on a single black hole. In more recent
work [58], longer evolutions were obtained through the
adoption of better gauge conditions, filtering methods, and
more distant outer boundaries. The BSSN system has also
been evolved in a first-order strongly hyperbolic formula-
tion for a single black hole with nodal spectral methods
[59]. Such evolutions of a single black hole exhibited
instabilities similar to those reported in Ref. [58].
Corresponding to the two versions of the Einstein equa-

tions discussed in the last paragraph are two distinct tech-
niques for the treatment of singularities in numerical
relativity. Evolutions based on the GH system have used
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black-hole excision, whereby the interior of an apparent
horizon is removed (excised) from the computational do-
main. This technique relies on horizon tracking and gauge
conditions which ensure that inner boundaries of the com-
putational domain are pure outflow, whence no inner
boundary conditions are needed. Evolutions based on the
BSSN system have relied on the moving-punctures tech-
nique [3,4], also coined ‘‘natural excision.’’ Technically
much easier to implement than excision, this technique
features mild central singularities which evolve freely
in the computational domain. Initially these puncture
points may represent either asymptotically flat regions or
‘‘trumpets.’’ Hannam et al. first discussed cylindrical
asymptotics in moving-puncture evolutions [60,61], see
also [62–66].

Relative to the alternative systems previously dis-
cussed, the BSSN system in second-order form affords
an easier treatment of singularities and features a rela-
tively small number of geometric variables directly
related to the foliation of spacetime into spacelike hyper-
surfaces. However, to date, spectral methods for black-
hole binaries have been successfully implemented only
for the first-order GH system. The binary black-hole
problem is essentially a smooth one (singularities reside
on sets of measure zero censored by horizons), and spec-
tral methods exhibit well-established advantages over
finite-difference methods for longtime simulation of
such problems [67]. Therefore, the development and
analysis of a stable spectral implementation of the full
BSSN system is a worthwhile goal in numerical relativity,
and the motivation behind the pioneering investigations
reported in Refs. [57–59].

In Refs. [50,62], Brown introduced a spherically re-
duced version of the BSSN system as a test bed for trac-
table examination of theoretical and computational issues
involved in solving this system. Indeed, appealing to the
simplicity of this system, he offered geometrical and physi-
cal insights into the nature of the moving-puncture tech-
nique and its finite-difference implementation [62,65,66]
(see also [63,64]). Here, we exploit this system to a similar
end, using it as a simplified setting in which to develop
spectral methods for the stable integration of the BSSN
system. Precisely, we develop and test a nodal discontinu-
ous Galerkin method (dG) [68] for integration of the
spherically reduced BSSN system. While Brown’s chief
focus lay with moving punctures, for further simplicity we
adopt the excision technique. Clearly, the problem we
consider is not as daunting as the one confronted by both
Tichy and Mroue [57–59]. Nevertheless, our method is
robustly stable, and therefore might serve as a stepping
stone toward a stable dG-based formulation for the full
BSSN system. The conclusion offers further comments
toward this end.

Nodal dG schemes are both well suited and well
developed for hyperbolic problems [68]. Although

mostly used for hyperbolic problems expressed as first-
order systems, dG methods have also been applied to
systems involving second-order spatial operators, typi-
cally via dG interior penalty (IP) methods [69–74].
(References [75–77] discuss the concept of hyperbolicity
[78] in the context of such systems.) Penalty methods of
a different type were exploited in Ref. [55] for the wave
equation written in second-order form. Local discontinu-
ous Galerkin (LDG) schemes, developed initially by Shu
and coworkers [79–81], constitute an alternate approach
for integration of spatially second-order systems. LDG
schemes feature essentially the same auxiliary variables
as those appearing in traditional first-order reductions,
however in LDG schemes such variables are not evolved
and arise only as local variables. The basic difference
between dG-IP and LDG methods is the manner in
which subdomains are coupled. The method we de-
scribed for the spherically reduced BSSN system is
essentially an LDG scheme.
This paper is organized as follows: Section II collects

the relevant equations from Brown’s presentation, and
develops some further notation useful for expressing the
spherically reduced BSSN system in various abstract
forms. Section III presents our nodal dG scheme in detail,
and Sec. IV documents the results of several numerical
simulations testing our scheme. Our conclusion discusses
possible generalization of our method to the full BSSN
system. Several appendices collect further technical
details. In particular, Appendix C considers a simple sys-
tem which models the spherically reduced BSSN system,
giving an analytical proof that the model system is L2

stable in the semidiscrete sense.

II. SPHERICALLY SYMMETRIC (GENERALIZED)
BSSN EQUATIONS

As shown by Brown [50], the BSSN system can be
generalized to allow for a conformal metric without
unit determinant, and this paper focuses on the spherical
reduction of this system, also considered by Brown in
[62]. In fact, this spherical reduction relies on freedom
present in the generalized BSSN system, since spherical-
polar coordinates should not be associated with a unit-
determinant conformal metric. Although we work with
the spherically reduced generalized BSSN system (subject
to Brown’s Lagrangian condition, to be precise), we will
nevertheless describe it as the spherically reduced BSSN
system.

A. Basic variables and spherically reduced system

The conformal-traceless decomposition of the geometry
associated with a spacelike 3-surface is

�g ab ¼ ��1gab; Kab ¼ ��1ðAab þ 1
3gabKÞ; (1)
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where �gab is the physical 3-metric and Kab is the physical
extrinsic curvature tensor. The BSSN variables are the
conformal metric gab, the conformal factor �, the trace-
free extrinsic curvature Aab, the trace K ¼ �gabKab, and the

conformal connection �a � �g�1=2@bðg1=2gabÞ, where g
is the determinant of the metric. The BSSN system also
includes the lapse �, shift vector �a, and an auxiliary
vector field Ba used to define the ‘‘� driver’’ for the shift.

Following Brown, we adopt a spherically symmetric line
element,

ds2 ¼ ��2dt2 þ ��1grrðdrþ �rdtÞ2 þ ��1g��ðd�2
þ sin2�d�2Þ;

(2)

along with the spherically symmetric Ansatz:

�a ¼
�r

� cos�=ðg�� sin�Þ
0

0
BB@

1
CCA;

Aab ¼ Arr

1 0 0

0 �g��=ð2grrÞ 0

0 0 �g��sin
2�=ð2grrÞ

0
BB@

1
CCA: (3a)

Subject to the assumption of spherical symmetry, the basic
variables are �, grr, g��, Arr, K, �r, �, �r, Br. All
are functions of t and r, and satisfy the following spheri-
cally symmetric (generalized, Lagrangian-form) BSSN
system1:

@t� ¼ �r�0 � 2�K � ð@t�Þ0; (4a)

@t�
r ¼ �r�r0 þ 3

4B
r � ð@t�rÞ0; (4b)

@tB
r ¼ �rBr0 þ �ð@t�r � �r�r0Þ � �Br � ð@tBrÞ0; (4c)

@t� ¼ �r�0 þ 2

3
K��� �rg0rr�

3grr
� 2�rg0���

3g��
� 2

3
�r0�; (4d)

@tgrr ¼ 2

3
�rg0rr þ 4

3
grr�

r0 � 2Arr�� 2grr�
rg0��

3g��
; (4e)

@tg�� ¼ 1

3
�rg0�� þ

Arrg���

grr
� g���

rg0rr
3grr

� 2

3
g���

r0; (4f)

@tArr ¼ �rA0
rr þ 4

3
Arr�

r0 � �rg0rrArr

3grr
� 2�rg0��Arr

3g��
þ 2��ðg0rrÞ2

3g2rr
� ��ðg0��Þ2

3g2��
� �ð�0Þ2

6�
þ 2

3
grr���

r0 � ��g0rrg0��
2grrg��

þ �g0rr�0

3grr
þ �g0���

0

3g��
� �g0rr�0

6grr
� �g0���

0

6g��
� 2

3
�0�0 þ ��00

3
� 2

3
��00 � ��g00rr

3grr
þ ��g00��

3g��
� 2�A2

rr

grr
þ K�Arr

� 2grr��

3g��
; (4g)

@tK ¼ �rK0 þ �g0rr�0

2g2rr
� �g0���0

grrg��
þ �0�0

2grr
� ��00

grr
þ 3�A2

rr

2g2rr
þ 1

3
�K2; (4h)

@t�
r ¼ �r�r0 þ Arr�g

0
��

g2rrg��
þ 2�r0g0��

3grrg��
þ Arr�g

0
rr

g3rr
� 4�K0

3grr
� 2Arr�

0

g2rr
� 3Arr��

0

g2rr�
þ 4�r00

3grr
� �rðg0��Þ2

grrðg��Þ2
þ �rg00rr

6ðgrrÞ2

þ �rg00��
3g��grr

; (4i)

where the prime stands for partial r differentiation.
Equations (4d)–(4i) are Brown’s Eqs. (9a-f) listed in
[62], subject to his Lagrangian condition (corresponding
to v ¼ 1 in Brown’s equations). The first three Eqs. (4a)–
(4c) comprise the gauge sector, and these are essentially
spherically symmetric versions of the standard ‘‘1þ log’’
and ‘‘�-driver’’ conditions listed in Eqs. (1) and (2) of [62].
However, we have introduced the following minor mod-
ifications. First, ð@t�Þ0 designates a constant term which

ensures that the right-hand side of the � evolution Eq. (4a)
vanishes at the initial time. This source term as well as
the analogous terms appearing in the evolution Eqs. (4b)
and (4c) for �r and Br are needed to enable a static
evolution of the Schwarzschild solution in Kerr-Schild
coordinates. Second, the parameter � (perhaps with

1For this system the determinant g ¼ grrðg��Þ2sin4� is not
unity.
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functional dependence) modifies the hyperbolicity of the
first-order system [82]. The damping parameter� typically
appears in standard versions of these gauge evolution
equations. (See Secs. II C and IVB for further discussions.)
For this BSSN system, we have three constraints: the
Hamiltonian constraint H , the momentum constraint
Mr, and the constraint Gr resulting from the definition
of the conformal connection �r. In spherical symmetry,
these constraints are written as follows:

H ¼ � 3A2
rr

2g2rr
þ 2K2

3
� 5ð�0Þ2

2�grr
þ 2�00

grr
þ 2�

g��
� 2�g00��

grrg��

þ 2�0g0��
grrg��

þ �g0rrg0��
g2rrg��

� �0g0rr
g2rr

þ �ðg0��Þ2
2grrg

2
��

; (5a)

Mr ¼ A0
rr

grr
� 2K0

3
� 3Arr�

0

2�grr
þ 3Arrg

0
��

2grrg��
� Arrg

0
rr

g2rr
; (5b)

Gr ¼ � g0rr
2g2rr

þ g0��
grrg��

þ �r: (5c)

These expressions are the ones listed by Brown in [62].
Equations (4e) and (4f) also ensure that the determinant
factor g=sin4� ¼ grrðg��Þ2 remains fixed throughout an
evolution.

B. Abstract expressions of the system

We define the following vectors built with system
variables:

u ¼

�
grr
g��
�
�r

0
BBBBB@

1
CCCCCA; v ¼

Br

Arr

K
�r

0
BBB@

1
CCCA; Q ¼

�0
g0rr
g0��
�0
�r0

0
BBBBB@

1
CCCCCA: (6)

Introduction ofQmight seem unnecessary at this stage, but
proves useful in the construction of our discontinuous
Galerkin scheme. In terms of the vectors u, v, and Q we
further define

Wu:v ¼ u

v

 !
;

Wv:Q ¼ v

Q

 !
;

W ¼ Wu:Q ¼
u

v

Q

0
BB@

1
CCA:

(7)

Here we have introduced ‘‘colon notation’’ [83] to repre-
sent (sub)vectors and (sub)matrices, although we employ
the notation over block rather than individual elements. In
the first-order version of the system (4) the components of
Q are promoted to independent fields, in which case the
corresponding principal part features

@tB
r ¼�rBr0 �4��

3grr
K0 þ 4�

3grr
Q0

�r þ ��r

6ðgrrÞ2
Q0

grr þ
��r

3g��grr
Q0

g�� ; (8a)

@tArr ¼�rA0
rrþ2

3
grr���

r0 þ1

3
�Q0

��2

3
�Q0

�� ��

3grr
Q0

grr þ
��

3g��
Q0

g�� ; (8b)

@tK¼�rK0 � �

grr
Q0

�; (8c)

@t�
r ¼�r�r0 �4�K0

3grr
þ 4

3grr
Q0

�r þ �r

6ðgrrÞ2
Q0

grr þ
�r

3g��grr
Q0

g�� ; (8d)

@tQ� ¼�rQ0
�þ2

3
��K0 ��r�

3grr
Q0

grr �
2�r�

3g��
Q0

g�� �
2

3
�Q0

�r ; (8e)

@tQgrr ¼
2

3
�rQ0

grr þ
4

3
grrQ

0
�r �2�A0

rr�2grr�
r

3g��
Q0

g�� ; (8f)

@tQg�� ¼
1

3
�rQ0

g�� þ
g���

grr
A0
rr�g���

r

3grr
Q0

grr �
2

3
g��Q

0
�r ; (8g)

@tQ� ¼�rQ0
��2�K0; (8h)

@tQ�r ¼�rQ0
�r þ 3

4B
r0; (8i)

where all lower-order terms on the right-hand side have
been dropped. This sector of principal parts of the first-
order system has the form

@tWv:Q þ ~AðuÞW 0
v:Q ¼ 0; (9)

where (minus) the explicit form of the 9-by-9 matrix ~AðuÞ
is given below in (A1). The first-order version of (4) takes
the nonconservative form

@tWþAðuÞW 0 ¼SðWÞ; AðuÞ¼ 05�5 05�9

09�5
~AðuÞ

� �
; (10)
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where SðWÞ is a vector of lower-order terms built with all
components of W. Partition of ~AðuÞ ¼ AðuÞv:Q;v:Q into
blocks corresponding to the v and Q sectors yields

~AðuÞ ¼ ~AðuÞvv ~AðuÞvQ
~AðuÞQv

~AðuÞQQ

 !
: (11)

Using these blocks, we then define the 9-by-9 matrix

AðuÞ ¼ AðuÞu:v;v:Q ¼ 05�4 05�5
~AðuÞvv ~AðuÞvQ

� �
; (12)

and express (4) as

@tWu:v þ AðuÞW 0
v:Q ¼ SðWÞ; (13a)

Q ¼ u0; (13b)

where SðWÞ ¼ SðWÞu:v.

C. Hyperbolicity and characteristic fields

Although our numerical scheme deals directly with the
second-order spatial operators appearing in (4), we first
consider the hyperbolicity of the corresponding first-order
system (10). The characteristic fields and their speeds are
found by instantaneously ‘‘freezing’’ the fields u in AðuÞ
to some value u0, corresponding to a linearization around a
uniform state. Below we continue to write u for simplicity
with the understanding that u is really the background
solution u0. Of primary interest is the range of u0 for which
the system is strongly hyperbolic [75–78].
Appendix A shows that the characteristic fields corre-

sponding to (4) are as follows: (i) all components of u (each
with speed 0), and (ii) the fields

X1 ¼ g��Qgrr þ 2grrQg�� ; (14a)

X2 ¼ grr�
r þ 2

�
Q� � 1

2grr
Qgrr �

1

g��
Qg�� ; (14b)

X3 ¼ grr
�

Br þ 2

�
Q� � 1

2grr
Qgrr �

1

g��
Qg�� ; (14c)

X�
4 ¼�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2�grr
�

s
KþQ�; (14d)

X�
5 ¼� 3ffiffiffiffiffiffiffiffiffiffi

grr�
p Arr � 2

ffiffiffiffiffiffiffi
grr
�

s
Kþ 2grr�

r þ 1

�
Q� � 1

grr
Qgrr þ

1

g��
Qg�� ; (14e)

X�
6 ¼�3

4

grr
�

Br � �
ffiffiffiffiffiffiffiffiffiffi
�grr

p
ð2����ÞK� �r

8ð�rgrr�
ffiffiffiffiffiffiffiffiffiffi
�grr

p ÞQgrr �
�rgrr

4g��ð�rgrr �
ffiffiffiffiffiffiffiffiffiffi
�grr

p ÞQg��

þ ��

ð2����ÞQ� �
ffiffiffiffiffiffiffi
grr
�

r
Q�r; (14f)

with the speeds listed in Table I. To ensure strong hyper-
bolicity we must necessarily require

� > 0; ð�rÞ2grr � � � 0; 2��� � � 0; (15)

as shown in Appendix A where further conditions are
also given. When � ¼ 1 the hyperbolicity condition of
Ref. [62] is recovered. In fact, the system could be
recast as symmetric hyperbolic. Indeed, as it involves one
spatial dimension, the relevant symmetrizer can be con-
structed via polar decomposition of the diagonalizing simi-
larity transformation. However, we will not exploit this
possibility.

This system admits an inner excision boundary provided

�r � max

0
@ ffiffiffiffiffiffiffiffiffiffi

2��

grr

s
;

ffiffiffiffiffiffiffiffiffi
�2�

grr

s
;

ffiffiffiffiffiffiffi
�

grr

s 1
A (16)

holds at the inner boundary. This condition ensures each
characteristic field has a nonpositive speed at the inner
boundary, and therefore the inner boundary is an excision
boundary at which no boundary conditions are needed. The
extra flexibility afforded by the parameter � could be used
to maintain rigorous hyperbolicity by moving the points at
which the conditions in (15) are violated outside of the
computational domain. Furthermore, for � ¼ 1 Eq. (16)
conceivably fails or is only satisfied close to r ¼ 0 where
field gradients are prohibitively large. The troublesome Xþ

6

gauge mode has a positive speed ��r þ ffiffiffiffiffiffiffiffiffiffiffiffi
�=grr

p
. Indeed,

for the conformally flat Kerr-Schild system considered in
Sec. IVB an inner excision boundary is only possible
provided � is small enough.
The transformation (14) can be inverted in order to

express the fundamental fields in terms of the characteristic
fields:
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Br ¼ � 1

6

�

grrg��

� ð�rÞ2
ð�rÞ2grr � �

�
X1 þ 2

3

���

grrð2��� �Þ ðX
þ
4 þ X�

4 Þ �
2

3

�

grr
ðXþ

6 þ X�
6 Þ; (17a)

Arr ¼ 1

3

ffiffiffiffiffiffiffiffiffiffi
grr�

2�

r
ðXþ

4 � X�
4 Þ �

ffiffiffiffiffiffiffiffiffiffi
grr�

p
6

ðXþ
5 � X�

5 Þ; (17b)

K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�

8�grr

s
ðXþ

4 � X�
4 Þ; (17c)

�r ¼ � 1

6

1

grrg��

� ð�rÞ2
ð�rÞ2grr � �

�
X1 þ 1

grr
ðX2 � X3Þ þ 2

3

��

grrð2��� �Þ ðX
þ
4 þ X�

4 Þ

� 2

3

1

grr
ðXþ

6 þ X�
6 Þ; (17d)

Q� ¼ 1

12

�

grrg��

�
4ð�rÞ2grr � 3�

ð�rÞ2grr � �

�
X1 þ �

2
X3 � 1

3

��2

ð2��� �Þ ðX
þ
4 þ X�

4 Þ þ
�

3
ðXþ

6 þ X�
6 Þ; (17e)

Qgrr ¼
2ð�rÞ2grr � 3�

6g��ðð�rÞ2grr � �ÞX1 þ 4

3
grrX2 � grrX3 þ 2

3

��grr
ð2��� �Þ ðX

þ
4 þ X�

4 Þ �
1

3
grrðXþ

5 þ X�
5 Þ

� 2

3
grrðXþ

6 þ X�
6 Þ; (17f)

Qg�� ¼
�

1

4grr
þ ð�rÞ2

12ðð�rÞ2grr � �Þ
�
X1 � 2

3
g��X2 þ 1

2
g��X3 � 1

3

��g��
ð2��� �Þ ðX

þ
4 þ X�

4 Þ þ
1

6
g��ðXþ

5 þ X�
5 Þ

þ 1

3
g��ðXþ

6 þ X�
6 Þ; (17g)

Q� ¼ 1
2ðXþ

4 þ X�
4 Þ; (17h)

Q�r ¼ �r�

8grrg��ðð�rÞ2grr � �ÞX1 � �

ð2��� �Þ
ffiffiffiffiffiffiffiffiffi
��

8grr

s
ðXþ

4 � X�
4 Þ þ

1

2

ffiffiffiffiffiffiffi
�

grr

s
ðXþ

6 � X�
6 Þ: (17i)

We will refer to this inverse transformation when discus-
sing outer boundary conditions for our numerical simula-
tions in Sec. IVB.

III. DISCONTINUOUS GALERKIN METHOD

This section describes the nodal discontinuous
Galerkin method used to numerically solve (4). We adopt
a method-of-lines strategy, and here describe the relevant
semidiscrete scheme while leaving the temporal dimen-
sion continuous. To approximate (4), we follow the
general procedure first introduced in Ref. [84]. Our
approach defines local auxiliary variables Q ¼ u0, and
rewrites the spatially second-order system (4) as the first-
order system (13a). Once we use (13b) to eliminate Q
from (13a), we recover the primal Eqs. (4). The auxiliary
variable approach was later generalized and coined the
local discontinuous Galkerin method in Ref. [79]. We
may refer to our particular scheme as an LDG method,
but note that many variations exist in the literature. We
stress that in LDG methods Q is not evolved and is
introduced primarily to assist in the construction of a
stable scheme.

Equations (12) and (13a) imply that the physical flux
function is

FðWÞ ¼ FuðWÞ
FvðWÞ

 !
� AðuÞWv:Q ¼ 05�1

fðWÞ

 !
;

f ¼

fBr

fArr

fK

f�

0
BBBBB@

1
CCCCCA: (18)

Only the evolution equations for Br, Arr, K, and �r give
rise to nonzero components in F, and we have collected
these nonzero components into a smaller vector f ¼ Fv.
Inspection of (8) determines these components. For
example, from (8c) we find

fK ¼ ��rK þ �

grr
Q�: (19)

A. Local approximation of the system (13)

Our treatment closely follows [85], but with the
equations and notations relevant for this paper. Our com-
putational domain � is the closed r interval ½a; b�.
We cover � with kmax > 1 nonoverlapping intervals
Dk ¼ ½ak; bk�, where a ¼ a1, b ¼ bkmax , and bk�1 ¼ ak

for k ¼ 2; � � � ; kmax.
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On each intervalDk, we approximate each component of
the system vectorW by a local interpolating polynomial of
degree N. For example,

�k
hðt; rÞ ¼

XN
j¼0

�ðt; rkjÞ‘kjðrÞ (20)

approximates �ðt; rÞ. Throughout this section, approxima-
tions are denoted by a subscript h (see [68] for the nota-
tion). For example, Wh and fh are approximations of W
and f. AlthoughQ ¼ u0, Qh and u

0
h are not necessarily the

same. In (20) ‘kjðrÞ is the jth Lagrange polynomial belong-

ing to Dk,

‘kjðrÞ ¼
YN
i¼0
i�j

r� rki
rkj � rki

: (21)

Evidently, the polynomial �k
h interpolates � at rkj . To define

the nodes rkj , consider the mapping from the unit interval

[� 1, 1] to Dk,

rkðuÞ ¼ ak þ 1
2ð1þ uÞðbk � akÞ; (22)

and the N þ 1 Legendre-Gauss-Lobatto (LGL) nodes uj.

The uj are the roots of the equation

ð1� u2ÞP0
NðuÞ ¼ 0; (23)

where PNðuÞ is the Nth degree Legendre polynomial, and
the physical nodes are simply rkj ¼ rkðujÞ. In vector nota-

tion the approximation (20) takes the form

�k
hðt; rÞ ¼ �kðtÞT‘kðrÞ; (24)

in terms of the column vectors

�kðtÞ ¼ ½�ðt; rk0Þ; � � � ; �ðt; rkNÞ�T;
‘kðrÞ ¼ ½‘k0ðrÞ; � � � ; ‘kNðrÞ�T:

(25)

On each open interval ðak; bkÞ 	 Dk and for each com-
ponent of the equations in (13), we define local residuals
measuring the extent to which our approximations satisfy
the original continuum system. Dropping the subdomain
label k on the polynomials and focusing on the K equation
as a representative example, the local residual correspond-
ing to (4h) is

�ðRKÞkh � �@tKh þ ð�rK0Þh �
�
�Q0

�

grr

�
h
þ
�
�QgrrQ�

2g2rr

�
h

�
�
�Qg��Q�

grrg��

�
h
þ
�
Q�Q�

2grr

�
h
þ
�
3�A2

rr

2g2rr

�
h

þ
�
1

3
�K2

�
h
: (26)

Here, for example, the expressions read2

ð�rK0Þh ¼ �r
hK

0
h;

�
Q�Q�

2grr

�
h
¼ Q�;hQ�;h

2grr;h
: (27)

We similarly construct the remaining eight residuals, e.g.
ðRgrrÞh and ðR�rÞh, as well as five residuals corresponding
to (13b). For example, one of these remaining five is

ðRQ�
Þkh � �Q�;h þ �0

h: (28)

Let the kth inner product be defined as

ðu; vÞDk �
Z bk

ak
druðrÞvðrÞ; (29)

and consider the expression ð‘kj ; ðRKÞkhÞDk . We call the

requirement that this inner product vanish 8 j the kth
Galerkin condition. For each component of the system
and for each k there is a corresponding Galerkin condition,
in total 9kmaxðN þ 1Þ equations for (13a) and 5kmaxðN þ 1Þ
for (13b). Enforcement of the Galerkin conditions on each
Dk will not recover a meaningful global solution, since
they provide no mechanism for coupling the local solutions
on the different intervals. Borrowing from the finite volume
toolbox, we achieve coupling through integration by parts
on r and introduction of the numerical flux f
 at the inter-
face between subdomains.
In (26) we only need to consider ð�rK0Þh and

ð�Q0
�=grrÞh, as the other terms comprise a component of

the source vector Sh. Using integration by parts, we write

ð‘kj ; ð�rK0ÞhÞDk ¼�
Z bk

ak
dr½ð‘kj�r

hÞ0Kh�þ ð�r
hKhÞ‘kj jbkak ;

(30a)

ð‘kj ; ð�Q0
�=grrÞhÞDk ¼�

Z bk

ak
dr

��
‘kj

�h

grr;h

�0
Q�;h

�

þ
�
�hQ�;h

grr;h

�
‘kj jbkak : (30b)

In these formulas, we have retained the domain index k on
‘kj , while continuing to suppress it on Kh, grr;h, etc.

2At this stage the first expression is generically a polynomial
of degree 2N � 1 and the latter is not a polynomial. The
conventions adopted in Eq. (27) prove useful while working
with the residual. However, later on in Sec. III C, to obtain the
final form (47) of the numerical approximation corresponding to
(26), we will replace nonlinear terms with degree-N
polynomials.

DISCONTINUOUS GALERKIN METHOD FOR THE . . . PHYSICAL REVIEW D 82, 104051 (2010)

104051-7



Moreover, we have suppressed the r dependence in all
terms on the right-hand side. Addition of these formulas
along with the definition fK;h ¼ �ð�rKÞh þ ð�Q�=grrÞh
gives

ð‘kj ; ð�rK0Þh � ð�Q0
�=grrÞhÞDk

¼ �
Z bk

ak
dr

�
ð‘kj�r

hÞ0Kh �
�
‘kj

�h

grr;h

�0
Q�;h

�
� fK;h‘

k
j jbkak :
(31)

In lieu of (31), we will instead work with the replacement

ð‘kj ; ð�rK0Þh � ð�Q0
�=grrÞhÞDk

! �
Z bk

ak
dr

�
ð‘kj�r

hÞ0Kh �
�
‘kj

�h

grr;h

�0
Q�;h

�
� f
K‘kj jbkak :

(32)

This replacement features a component f
K of the numeri-
cal flux rather than a component fK;h of the boundary flux.
The numerical flux is determined by (as yet not chosen)
functions3

f
 ¼ f
ðWþ; W�Þ; (33)

where, for example, W� is an interior boundary value
[eitherWk

hðt; akÞ orWk
hðt; bkÞ] of the approximation defined

on Dk, and Wþ is an exterior boundary value [either
Wk�1

h ðt; bk�1Þ or Wkþ1
h ðt; akþ1Þ] of the approximation de-

fined on either Dk�1 or Dkþ1. We discuss our choice of
numerical flux in the next subsection. We now employ
additional integration by parts to write the above replace-
ment as

ð‘kj ; ð�rK0Þh � ð�Q0
�=grrÞhÞDk

!
Z bk

ak
dr‘kj

�
�rK0 � �Q0

�

grr

�
h
þ ðfK;h � f
KÞ‘kj jbkak : (34)

Rather than the exact kth Galerkin condition
ð‘kj ; ðRKÞkhÞDk ¼ 0, 8 j for the K component of (13) on

Dk, we will instead strive to enforce

ð‘kj ; ðRKÞkhÞDk ¼ ðfK;h � f
KÞ‘kj jbkak ; 8 j; (35)

although our treatment of nonlinear terms will lead to a
slight modification of these equations (we return to this
issue shortly). The other components of (13a) are treated
similarly, as are the components of (13b). Recall that, for
example,Q� ¼ �0. Formally using the same dG method to
solve for Q�, we arrive at the replacement

ð‘kj ; ðRQ�
ÞkhÞDk !

Z bk

ak
dr‘kjð�Q�;hþ�0

hÞ� ð�h��
Þ‘kj jbkak ;
(36)

which again features a component�
 of the numerical flux.
The auxiliary variables are constructed and used at each
stage of temporal integration. We then have

ð‘kj ; ðRQ�
ÞkhÞDk ¼ ð�h � �
Þ‘kj jbkak ; 8 j (37)

as the corresponding enforced kth Galerkin condition.

B. Numerical flux

To further complete our dG scheme we must specify
functional forms for the components of the numerical flux
introduced in the previous section. We distinguish between
the physical fluxes (components of f) and the auxiliary
fluxes (components of u) arising from the definition of the
auxiliary variables. These choices are not independent as
the resulting scheme must be stable and consistent. Our
choice follows [86] which considered diffusion problems.
Additional analysis of this flux choice appears in [68,87].
Let us first consider the numerical fluxes corresponding

to the physical fluxes and of the form (33). The numerical
flux vector is a function of the system and auxiliary vari-
ables interior and exterior to a subdomain. A common
choice for f
 is

f
 ¼ fffhgg þ �

2
⟦vh⟧;

K-component of f
: f
K ¼ fffK;hgg þ �

2
⟦Kh⟧;

(38)

where, as an example, we have also shown the component
of f
 corresponding to the analysis above. Respectively,
the average and jump across the interface are

fffhgg ¼ 1
2ðfþ þ f�Þ; ⟦vh⟧ ¼ n�v� þ nþvþ: (39)

Here � is a position dependent penalty parameter (fixed
below) and n�ðnþÞ is the local outward pointing normal to
the interior (exterior) subdomain. The role of � is to
‘‘penalize’’ (i.e. yield a negative contribution to the L2

energy norm) jumps across an interface. An appropriate
choice of � will ensure stability, and we now provide some
motivation for the choice (41) of � we make below.
Were we treating the fully first-order system (10), the

local Lax-Friedrichs flux would often be a preferred choice
due to its simplicity [68]. In this case, the constant! in the
numerical flux formula F 
 ¼ ffF hgg þ 1

2!⟦Wh⟧ obeys

! � maxj	ðrWF ðWÞÞj. Here, F ðWÞ ¼ AðuÞW, the no-
tation 	ð�Þ indicates the spectral radius of the matrix
within, and the max is taken over interior W� and exterior
Wþ states. Motivated by (9), we adopt a similar but simpler
prescription, substituting the field gradient

rWv:Q
~AðuÞWv:Q ¼ ~AðuÞ (40)

for rWF ðWÞ. Precisely, we assume the scaling

3In the context of the dG method here, þ and � denote
‘‘exterior’’ and ‘‘interior,’’ and have no relation to the � using
to denote the characteristic fields and speeds in Table I. For
characteristic fields and speeds, þ and � mean ‘‘right moving’’
and ‘‘left moving’’.
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�ðbkÞ ¼ �ðakþ1Þ ¼ �kþ1=2 � C �maxj	ð ~AðuÞÞj; (41)

where C ¼ Oð1Þ is a constant chosen for stability. Larger
values of C will result in schemes with better stability
properties, whereas too large a value will impact the
Courant-Friedrichs-Lewy condition. At the interface point

Ikþ1=2 � Dk \ Dkþ1, the vector uh has two representations:
u� at bk and uþ at akþ1. The max in (41) is taken over the
corresponding two sets of field speeds. More precisely, the
speeds in Table I are computed for both u� and uþ, and
the maximum taken over all resulting speeds. For the
auxiliary variables, a penalized central flux is used The
definition with one representative component is

u
 ¼ ffuhgg � 1
2⟦uh⟧;

�-component of u
: �
 ¼ ff�hgg � 1
2⟦�h⟧;

(42)

with similar expressions for the remaining components.
We stress the following point. Since the interior coupling

between subdomains is achieved through the numerical
flux forms (41) and (42), the inverse transformation (17)
expressing the fundamental fields in terms of the character-
istic fields is not required to achieve this coupling. On the
other hand, imposition of physical boundary conditions
may still rely on (17), since this transformation allows
one to fix only incoming characteristic modes.

C. Nodal form of the semidiscrete equations

Let us introduce the kth mass and stiffness matrices,

Mk
ij ¼

Z bk

ak
dr‘ki ðrÞ‘kjðrÞ; Skij ¼

Z bk

ak
dr‘ki ðrÞ‘k0j ðrÞ:

(43)

These matrices belong to Dk, and the corresponding ma-
trices defined on the reference interval [� 1, 1] are

�M ij ¼
Z 1

�1
du‘iðuÞ‘jðuÞ; �Sij ¼

Z 1

�1
du‘iðuÞ‘0jðuÞ;

(44)

where ‘jðuÞ is the jth Lagrange polynomial determined by

the LGL nodes uj on [� 1, 1]. These matrices are related

by Mk
ij ¼ 1

2 ðbk � akÞ �Mij and Skij ¼ �Sij, whence only the

reference matrices require computation and storage.

We will use the matrices Mk and Sk in obtaining an
ordinary differential equation system from (26) and (35).
Towards this end, we first approximate the nonlinear terms
(products and quotients) in (26) by degree-N interpolating
polynomials. Such approximations are achieved through
pointwise representations. For example, ðQ�Q�=grrÞh
appears in (26), and is expressed in the following way:
[cf. footnote 2]�

Q�Q�

grr

�
h
ðt; rÞ ¼

�
Q�;hQ�;h

grr;h

�
ðt; rÞ

! XN
j¼0

Q�;hðt; rkjÞQ�;hðt; rkjÞ
grr;hðt; rkjÞ

‘kjðrÞ: (45)

Note that the expressions on the right and left are not
equivalent due to aliasing error [67]. Our vector notation
for this replacement will be�

Q�Q�

grr

�
h
ðt; rÞ !

�
Q�Q�

grr

�
ðtÞT‘kðrÞ: (46)

Operations among bold variables are always performed
pointwise. Making similar replacements for all terms in
(26), and then carrying out the integrations in (35), which
bring in Mk and Sk, we arrive at

@tK ¼ �rDK� �DQ�

grr
þ 1

2

�QgrrQ�

g2rr
� �Qg��Q�

grrg��

þ 1

2

Q�Q�

grr
þ 3

2

�A2
rr

g2rr
þ 1

3
�K2

þM�1‘kðfK;h � f
KÞjbkak ; (47)

where we have again suppressed the superscript k on all
terms except ‘kðrÞ, and the subscript h is dropped on all
boldfaced variables. As described in [68], the spectral
collocation derivative matrix

ðDkÞij ¼
d‘kj
dr

��������r¼rki

(48)

can also be expressed as Dk ¼ ðMkÞ�1Sk, which appears
above. Eight other semidiscrete evolution equations are
similarly obtained, with nine in total (one for each compo-
nent of Wu:v). Additionally, we have

Q� ¼ D�þM�1‘kð�
 ��hÞjbkak (49)

as one of the auxiliary equations, with five in total (one for
each component of Q ¼ WQ:Q).

D. Filtering

Like other nodal (pseudospectral) methods, our scheme
may suffer from instabilities driven by aliasing error [67].
Filtering is a simple yet robust remedy. To filter a solution
component, such as �, we use the modal (as opposed to
nodal) representation of the solution:

TABLE I. Characteristic speeds. These speeds are the eigen-
values listed in (A2).

Field Speed

X1 	1 ¼ 0
X2;3 	2;3 ¼ ��r

X�
4 	�

4 ¼ ��r � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2��=grr

p
X�
5 	�

5 ¼ ��r � �
ffiffiffiffiffiffiffiffiffiffiffiffi
�=grr

p
X�
6 	�

6 ¼ ��r � ffiffiffiffiffiffiffiffiffiffiffiffi
�=grr

p
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�k
hðt; rÞ ¼

XN
j¼0

�ðt; rkjÞ‘kjðrÞ ¼
XN
j¼0

�̂k
jðtÞPjðrÞ; (50)

where PjðrÞ is the jth Legendre polynomial. Let �j ¼
j=N, and define the filter function


ð�jÞ ¼
8><
>:
1 for 0 � �j � Nc=N

exp

�
��

�
�j�Nc=N

1�Nc=N

�
2s
�

for Nc=N � �j � 1:

(51)

At each time step we modify our solution component
according to

�k
h ! ð�k

hÞfiltered ¼
XN
j¼0


ð�jÞ�̂k
jðtÞPjðrÞ: (52)

Evidently, the modification only affects the top N � Nc

modes, and is sufficient to control the type of weak insta-
bility driven by aliasing [68]. The numerical parametersNc

and � are problem dependent. For our simulations, we have
taken � ’ � logð"machÞ ¼ 36, where "mach is machine ac-
curacy in double precision.

E. Model system

To better illustrate the basic properties of our method,
we consider a toy model. Namely, the following spatially
second-order system:

@tu ¼ u0 þ av� u3 þ gðt; xÞ; (53a)

@tv ¼ u00 þ v0 � ðuþ vÞðu0Þ2 þ v2u2 þ hðt; xÞ; (53b)

where a � 1 is constant and g and h are analytic source
terms to be specified. In contrast to (6), here u, v, andQ ¼
u0 are scalars rather than vectors. System (53) admits a
first-order reduction in which u0 is defined as an extra
variable. Since this first-order reduction is strongly hyper-
bolic, the spatially second-order system (53) is also
strongly hyperbolic by one of the definitions considered
in [77]. The characteristic fields X� and speeds 	� are

Xþ ¼ ffiffiffi
a

p
v� u0; 	þ ¼ ffiffiffi

a
p � 1;

X� ¼ ffiffiffi
a

p
vþ u0; 	� ¼ �ð ffiffiffi

a
p þ 1Þ: (54)

To construct a local dG scheme for this system, we first
rewrite it as

@tu ¼ Qþ av� u3 þ gðt; xÞ; (55a)

@tv ¼ Q0 þ v0 � ðuþ vÞQ2 þ v2u2 þ hðt; xÞ; (55b)

Q ¼ u0: (55c)

Evidently, f ¼ �ðQþ vÞ is the v component of the physi-
cal flux vector

Fðv;QÞ � Fu

Fv

� �
¼ 0

f

� �
: (56)

Note that F has the same structure as ðu; vÞT . Borrowing
from the presentation for the BSSN system, we write the
analogous semidiscrete scheme on each subdomain Dk for
the model system:

@tu ¼ Qþ av� u3 þ gðtÞ; (57a)

@tv ¼ DQþDv� ðuþ vÞQ2 þ v2u2 þ hðtÞ
þM�1‘kðfh � f
Þjbk

ak
; (57b)

Q ¼ DuþM�1‘kðu
 � uhÞjbkak : (57c)

Here, we have suppressed the subinterval label k from all
variables except for the vector ‘k of Lagrange polynomial
values. Moreover, following the guidelines discussed
above, the numerical fluxes are given by

f
 ¼ fffhggþ1þ ffiffiffi
a

p
2

⟦vh⟧; u
 ¼ ffuhgg�1

2
⟦uh⟧: (58)

Appendix C analyzes the stability of our scheme, for a
more general numerical flux choice, as applied to (53) with
the nonlinear and source terms dropped.

IV. RESULTS FROM NUMERICAL SIMULATIONS

This section presents results found by numerically solv-
ing both the model system (53) and BSSN system (4) with
the dG scheme presented in Sec. III.

A. Simulations of the model system

The semidiscrete scheme (57) has been integrated with
the classical fourth-order Runge-Kutta method. When in-
tegrating this system, we have first constructed Q at each
Runge-Kutta stage, and then substituted into the evolution
Eqs. (57a) and (57b) for u and v. The problem has been
solved on a computational domain [0, 4�] comprised of
two subdomains with a time step chosen small enough for
stability. The initial data has been taken from the following
exact solution to (53):

u0exactðt; xÞ ¼ 1
2½sinðx�	�tÞ � sinðx�	þtÞ�; (59a)

vexactðt; xÞ ¼ 1

2
ffiffiffi
a

p ½sinðx�	�tÞ þ sinðx�	þtÞ�; (59b)

gðt; xÞ ¼ u3exact (59c)

hðt; xÞ ¼ ðuexact þ vexactÞðu0exactÞ2 � v2
exactu

2
exact; (59d)

where the speeds	� are found in (54). Specification of the
boundary condition at a physical endpoint amounts to
choosing the external state for at the endpoint. We have
considered two possibilities: (i) the analytic state
ðQþ; vþÞ ¼ ðQexact; vexactÞ and (ii) an upwind state. For
example, at x ¼ 4� the upwind state is4

4We remind the reader that, unfortunately, the� on X� means
something different than the � indicating exterior/interior dG
states [cf. footnote 3].
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Qþ ¼ Qupwind ¼ 1

2
½ðX�Þexact � ðXþÞnumer�;

vþ ¼ vupwind ¼ 1

2
ffiffiffi
a

p ½ðX�Þexact þ ðXþÞnumer�:
(60)

Either choice of ðQþ; vþÞ leads to similar results, and the
plots here correspond to the analytic state. Figure 1 clearly
shows spectral convergence with increasing polynomial
order N across all fields for the case a ¼ 2. Other values
of a, including a ¼ 1 for which Xþ is a static characteristic
field, have also been considered with similar results.
Appendix C demonstrates that our proposed scheme for
the system (57) with nonlinear and source terms dropped is
stable in a semidiscrete sense. Nevertheless, the fully dis-
crete scheme, obtained via temporal discretization by the
fourth-order Runge-Kutta method, is still subject to the

standard absolute stability requirement. Namely, if 	h is
any eigenvalue corresponding to the (linearized) discrete
spatial operator, then a necessary condition for stability is
that 	h�t lies in absolute stability region for Runge-Kutta
4. We here show empirically that the associated time step
restriction scales like N�2, i.e. �t ¼ OðN�2Þ for stability.
We note that such scaling is welcome in light of the
second-order spatial operators which appear in the system,
and suggest a possible worse scaling like N�4. Figure 2
plots the maximum stable time step for a range of N,
demonstrating the N�2 scaling, in line with behavior
known from analysis of first-order systems [68]. This
scaling also holds for the BSSN system.

B. Simulations of the BSSN system

This subsection documents results for simulations of the
unit-mass-parameter (M ¼ 1) Schwarzschild solution (B9)
expressed in terms of ingoing Kerr-Schild coordinates.
Since the solution is stationary, temporal integration of
the semidiscrete scheme has been carried out with the
forward Euler method which the dissipation in our method
allows. The r-coordinate domain [0.4, 3.4] has been split
into 3 equally spaced subdomains, and we have set� ¼ 10,
� ¼ 0:1, andC ¼ 2 [cf. Eq. (41)]. For all simulations�t has
been chosen for stability. With the chosen �, the inner
physical boundary rmin ¼ 0:4 is an excision surface. At
each time step we have applied an (order 2s ¼ 20) expo-
nential filter on the top two-thirds of the modal coefficient
set for all fields except for grr and g��.For stability, we have
empirically observed that grr and g�� must not be filtered.
A detailed understanding of this is still lacking.
Issues related to physical boundary conditions are similar

to the one encountered in Sec. IVA for the model problem.
Similar to before, we have retained Eqs. (38) and (42) as the
choice of numerical flux even at the endpoints. Therefore, at
an endpoint the specification of the boundary condition
amounts to the choice Wþ of external state. We have
typically chosen the inner boundary of the radial domain
as an excision boundary, and in this case Wþ ¼ W� is
enforced at the inner physical boundary. At the outer physi-
cal boundary, for Wþ we have again considered two
choices: (i) Wexact and (ii) Wupwind. To enforce choice (ii)

the inverse transformation (17) must be used with incoming
characteristic fields fixed to their exact values, similar to
(60). We have tried various versions of choice (ii), and in all
cases the resulting simulations have been unstable. We
therefore present results corresponding to choice (i).
Although the choice of an analytical external state Wexact

at the outer boundary is stable for our problem, such a
boundary condition is unlikely to generalize to more com-
plicated scenarios involving dynamical fields. Indeed, the
issue of outer boundary conditions for the BSSN system is
an active area of research, with a proper treatment requiring
fixation of incoming radiation, control of the constraints, and
specification of gauge (see Ref. [88] for a recent analysis).
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FIG. 1 (color online). Spectral convergence of fields for model
partial differential equation. Respectively, for N ¼ 3, 6, 9, 12, a
time step of �t ¼ 0:0578, 0.0178, 0.0084, 0.0049 has been
chosen for stability and accuracy. In the title headings, for
example, �u � unumer � uexact.
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For BSSN simulations, our main diagnostic is to monitor
the Hamiltonian, momentum, and conformal connection
constraints. Figure 3 depicts longtime histories of constraint
violations, whereas Figs. 4 and 5 depict longtime error
histories for the individual BSSN field components. From
the middle plot in Fig. 5, we infer that, up to the indicated
numerical error, the factor g=sin4� ¼ grrðg��Þ2 remains at
its initial fixed profile r4 throughout the evolution. These
figures indicate that the proposed scheme is stable for long
times, and exhibits spectral converge with increased poly-
nomial order N. Similar results are recovered from M ¼ 0

Minkowski initial data. The stability documented in these
plots does not appear to rely on inordinate parameter tuning.
For example, with the fixed parameters described above, we
obtain similar plots if we individually vary (i) rmin over
{0.325, 0.35, 0.4, 0.475} (values still corresponding to an
excision surface for the given choice of �), (ii) � over {1, 3,
7, 10}, (iii) s over {8, 9, 10}. With the polynomial order N
ranging over {23, 26, 29, 31}, both stability and qualita-
tively similar exponential convergence is achieved with a
single subdomain. Likewise, adoption of a larger coordinate
domain with more subdomains does not significantly impact
our results. However, for much larger rmax stability requires
a smaller time step or a time stepper better suited for wave
problems (e.g. Runge-Kutta 4). Finally, we have considered
the addition of random noise to all field components at the
initial time. Precisely, with the system component � as an
example, we have set

� ð0Þ � �ð0Þ þ �ð0Þ; (61)

where each component (nodal value) of �ð0Þ is 10�5 times
a random variable drawn from a standard normal distribu-
tion. Such perturbed initial data also gives rise to stable
evolutions.

V. CONCLUSION

We have introduced a discontinuous Galerkin method
for solving the spherically reduced BSSN system with
second-order spatial operators. Our scheme shares similar-
ities with other discontinuous Galerkin methods that use
local auxiliary variables to handle high-order spatial de-
rivatives [68,79–81,84,86,87], and which have typically
been applied to either elliptic, parabolic, or mixed type
problems. The key ingredient of a stable dG scheme is an
appropriate choice of numerical flux, and our particular
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FIG. 5 (color online). Spectral convergence of solution viola-
tions forM ¼ 1 Kerr-Schild initial data. See the caption of Fig. 4
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choice has been motivated by the analysis presented in
Appendix C. When used to evolve the Schwarzschild
solution in Kerr-Schild coordinates, our numerical imple-
mentation of the BSSN system (4) is robustly stable and
converges to the analytic solution exponentially with in-
creased polynomial order. By approximating the spatially
second-order form of the BSSN system, we have not
introduced extra fields which are evolved. Evolved auxil-
iary fields result in new constraints which may spoil
stability. Our main goal has been stable evolution of the
spherically reduced BSSN system as a first step towards
understanding how a discontinuous Galerkin method might
be applied to the full BSSN system. Towards that goal, we
now discuss treatment of singularities and generalization
of the described dG method to higher space dimension.

To deal with the fixed Schwarzschild singularity, we have
used excision which is easy in the context of the spherically
reduced BSSN system. However, excision for the binary
black-hole problem in full general relativity requires atten-
tion to the technical challenge of horizon tracking. State-of-
the-art BSSN codes avoid such complication, relying instead
on the moving-puncture technique. While the moving-
puncture technique does involve mild central singularities,
it may still prove amenable to spectral methods. Indeed,
spectral methods for nonsmooth problems are well devel-
oped in both theory and for complex applications. Since the
moving-puncture technique can be performed in spherical
symmetry [62], a first step toward a spectral moving-
puncture code would be to implement a moving puncture
with the nodal dG method described here. Such an imple-
mentation may adopt Legendre-Gauss-Radau nodes on the
innermost subdomain, thereby ensuring that the physical
singularity does not lie on a nodal point (in much the same
way finite-difference codes use a staggered grid). Beyond
traditional excision and moving punctures, one might con-
struct smooth initial data via the turducken approach to
singularities. However, in combination with 1þ log slicing
and the Gamma-driver shift condition, turduckened initial
data will evolve towards a ‘‘trumpet’’ geometry [89,90].

Discontinuous Galerkin methods for hyperbolic prob-
lems in two and three space dimensions are well devel-
oped. A generalization of the method described here to
three dimensions and the full BSSN system would likely
rely on an unstructured mesh. Appropriate local polyno-
mial expansions for the subelements are well understood,
as are choices for the numerical fluxes which would now
live on two-dimensional faces rather than single points.
Whether or not it would ultimately prove successful, gen-
eralization of our dG method to a higher dimension would
rely on an established conceptual framework. Further com-
putational advances of relevance to a generalization of our
dG method to the full BSSN system (possibly including
matter) may include mesh hp adaptivity, local time step-
ping, shock capturing and slope limiting techniques [68].
Moreover, recent work [91] indicates that enhanced per-
formance would be expected were our scheme imple-
mented on graphics processor units.
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APPENDIX A: HYPERBOLICITY OF
THE FIRST-ORDER SYSTEM.

This appendix analyzes the matrix AðuÞ appearing in
(10) in order to construct the characteristic fields (14). In
matrix form the sector (8) of the principal part of (10) reads
as follows:

@t

Br

Arr

K
�r

Q�

Qgrr

Qg��

Q�

Q�r

2
6666666666666664

3
7777777777777775
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�r 0 � 4��
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��r
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; (A1)
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which defines the matrix ~AðuÞ appearing in (9), and so also
the matrix AðuÞ in (10). Note that in the last equation the
matrix within the square brackets is � ~AðuÞ. For certain
configurations of u and �, the system (10) is strongly
hyperbolic [78], that is AðuÞ has a complete set of eigen-
vectors and real eigenvalues. Indeed, five eigenpairs of
AðuÞ are trivially recovered upon inspection of AðuÞ’s
leading 5� 5 diagonal block. These correspond to eigen-
value 0 and the left eigenspace f�j ¼ eTj :1 � j � 5g,
where ej are the canonical basis vectors. Since each com-
ponent of u arises as eTj W, each is also a characteristic
field.

The remaining nine eigenpairs are determined by ~AðuÞ.
The eigenvalues of ~AðuÞ are

	1 ¼ 0; 	2;3 ¼ ��r; 	�
4 ¼ ��r �

ffiffiffiffiffiffiffiffiffiffi
2��

grr

s
;

	�
5 ¼ ��r � �

ffiffiffiffiffiffiffi
�

grr

s
; 	�

6 ¼ ��r �
ffiffiffiffiffiffiffi
�

grr

s
;

(A2)

and the corresponding left eigenvectors are

x1¼ð0;0;0;0;0;g��;2grr;0;0Þ; (A3a)

x2¼
�
0;0;0;grr;

2

�
;� 1

2grr
;� 1

g��
;0;0

�
; (A3b)

x3¼
�
grr
�
;0;0;0;

2

�
;� 1

2grr
;� 1

g��
;0;0

�
; (A3c)

x�4 ¼
�
0;0;�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2�grr
�

s
;0;0;0;0;1;0

�
; (A3d)

x�5 ¼
�
0;� 3ffiffiffiffiffiffiffiffiffiffi

grr�
p ;�2

ffiffiffiffiffiffiffi
grr
�

s
;2grr;

1

�
;� 1

grr
;
1

g��
;0;0

�
; (A3e)

x�6 ¼
�
�3

4

grr
�
;0;� �

ffiffiffiffiffiffiffiffiffiffi
�grr

p
ð2����Þ ;0;0;�

�r

8ð�rgrr�
ffiffiffiffiffiffiffiffiffiffi
�grr

p Þ ;

� �rgrr
4g��ð�rgrr�

ffiffiffiffiffiffiffiffiffiffi
�grr

p Þ ;
��

ð2����Þ ;�
ffiffiffiffiffiffiffi
grr
�

r �
; (A3f)

where for example x�5 ~AðuÞ ¼ 	�
5 x

�
5 . Assuming that grr,

g��, �, and � are everywhere strictly positive, the eigen-
values are real and the eigenvectors are linearly indepen-
dent provided that (15) holds. These eigenvectors are easily
extended to eigenvectors of AðuÞ, e.g. as x�6 !
ð01�5; x

�
6 Þ. Then, for example, the characteristic field

X�
6 � ð01�5; x

�
6 ÞW ¼ x�6 Wv:Q; (A4)

and similarly X�
j ¼ x�j Wv:Q for j ¼ 4, 5 and Xk ¼ xkWv:Q

for k ¼ 1, 2, 3. The characteristic speeds for these fields are
	k and 	�

j . With this convention the speeds listed in

Table I correspond to the Xk and X�
j in (14).

APPENDIX B: SCHWARZSCHILD SOLUTION IN
CONFORMAL KERR-SCHILD COORDINATES

In Kerr-Schild coordinates, here the system directly
related to incoming Eddington-Finkelstein null coordi-
nates, the line element for the Schwarzschild solution reads

ds2 ¼ ��2dt2 þ ð1þ 2M=RÞðdRþ �RdtÞ2 þ R2d�2

þ R2sin2�d�2; (B1)

where R is the area radius, � ¼ ð1þ 2M=RÞ�1=2 is the
lapse, and �R ¼ 2M=ðRþ 2MÞ is the shift vector. The
physical spatial metric �gab is the spatial part of this line
element.
To define the corresponding solution to the BSSN sys-

tem, we use equation gab ¼ � �gab to define the following
relationship between line elements:

dr2 þ r2ðd�2 þ sin2�d�2Þ
¼ �½ð1þ 2M=RÞdR2 þ R2d�2 þ R2sin2�d�2�; (B2)

so that

�

�
1þ 2M

R

��
dR

dr

�
2 ¼ 1; �R2 ¼ r2: (B3)

Then we have �
1þ 2M

R

�
1=2 dR

R
¼ dr

r
; (B4)

with integration yielding

r ¼ R

4

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2M

R

s �
2
e2�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2M=R

p
; (B5)

where the constant of integration has been chosen so that
the R, r ! 1 limits are consistent. The second relation in
(B3) shows that

� ¼ 1

16

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2M

R

s �
4
e4�4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2M=R

p
;

��4 ¼ 2e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2M=R

p
�1

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2M=R

p : (B6)

The extrinsic curvature tensor is specified by the expres-
sion for K given in (B9h), the identityK ¼ KR

R þ 2K�
� , and

K�
� ¼

�
1þ 2M

R

��1=2 2M

R2
: (B7)

Since KR
R ¼ Kr

r , we compute that

Kr
r ¼K� 2K�

� ¼�
�
1þ 2M

R

��1=2
�
RþM

Rþ 2M

�
2M

R2
: (B8)

Next, since Krr ¼ �grrK
r
r ¼ ��1Kr

r , we have Kr
r ¼ Arr þ

1
3grrK. This implies Arr ¼ Kr

r � 1
3K, from which we get

(B9g). In all we have
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� ¼
�
1þ 2M

R

��1=2
; (B9a)
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dR
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�
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R

��1=2 2M

R
; (B9b)

grr ¼ 1; (B9c)

g�� ¼ r2 ¼ �R2; (B9d)

� ¼ 1
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; (B9e)

Br ¼ 0; (B9f)

Arr ¼ �
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��1=2 4M
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Rþ 2M

�
; (B9g)

K ¼
�
1þ 2M

R

��3=2
�
1þ 3M

R

�
2M

R2
; (B9h)

�r ¼ � 2

r
¼ � 2

�1=2R
: (B9i)

To differentiate these expressions with respect to r, we use
the identity

dR

dr
¼ ��1=2

�
1þ 2M

R

��1=2
(B10)

along with the chain rule.

APPENDIX C: STABILITY OF
THE MODEL SYSTEM

The following stability analysis for the model system
(53) has been inspired by [80,81]. After dropping all non-
linear source terms, the system (53) becomes

@tu ¼ u0 þ av; (C1a)

@tv ¼ u00 þ v0: (C1b)

This section analyzes the stability of (C1), considering
both the continuum system itself as well as its semidiscrete
dG approximation. The latter analysis offers some insight
into the empirically observed stability of our dG scheme
for the spherically reduced BSSN equations.

1. Analysis for a single interval

Throughout we work with the L2 inner product and
norm,

ðf; gÞD ¼
Z
D
fg; kfkD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðf; fÞD

q
; (C2)

where D is the spatial coordinate interval (here D may
represent a subdomain Dk or the whole domain�), and we

have suppressed all integration measures. For the contin-
uum model we will establish the following estimate:

ku0ðT; �Þk2D þ akvðT; �Þk2D
� CðTÞðku0ð0; �Þk2D þ akvð0; �Þk2DÞ; (C3)

where the time-dependent constant CðTÞ is determined
solely by the choice of boundary conditions. To show
(C3), we first change variables with v̂ ¼ ffiffiffi

a
p

v, thereby
rewriting (C1) in the following symmetric form:

@tu ¼ u0 þ ffiffiffi
a

p
v̂; (C4a)

@tv̂ ¼ ffiffiffi
a

p
u00 þ v̂0: (C4b)

Equations (C4a) and (C4b) then imply

1

2
@t
Z
D
ðu0Þ2 ¼

Z
D
u0ðu00 þ ffiffiffi

a
p

v̂0Þ

¼
Z
D

ffiffiffi
a

p
u0v̂0 þ1

2

Z
@D
ðu0Þ2; (C5a)

1

2
@t
Z
D
ðv̂Þ2 ¼

Z
D
v̂ð ffiffiffi

a
p

u00 þ v̂0Þ

¼�
Z
D

ffiffiffi
a

p
u0v̂0 þ1

2

Z
@D
ðv̂2þ2

ffiffiffi
a

p
u0v̂Þ: (C5b)

Here v̂v̂0 and u0u00 have been expressed as exact derivatives
and then integrated to boundary terms, the second equation
employs an extra integration by parts, and with only one
space dimension

R
@D denotes a difference of endpoint

evaluations. Addition of Eqs. (C5a) and (C5b) gives

1

2
@t
Z
D
½v̂2 þ ðu0Þ2� ¼ 1

2

Z
@D
½v̂2 þ ðu0Þ2 þ 2

ffiffiffi
a

p
u0v̂�:

(C6)

Substitutions with the identities

½v̂2 þ ðu0Þ2� ¼ 1
2½ðv̂þ u0Þ2 þ ðv̂� u0Þ2�;

2u0v̂ ¼ 1
2½ðv̂þ u0Þ2 � ðv̂� u0Þ2� (C7)

and replacements to recover the original variable v ¼
v̂=

ffiffiffi
a

p
yield

1

2
@t
Z
D
½av2 þ ðu0Þ2� ¼ 1þ ffiffiffi

a
p

4

Z
@D
ð ffiffiffi

a
p

vþ u0Þ2

þ 1� ffiffiffi
a

p
4

Z
@D
ð ffiffiffi

a
p

v� u0Þ2: (C8)

From (C8) we deduce that the time-dependent constant
CðTÞ in (C3) must satisfy

��������1þ
R
T
0 ½1þ

ffiffi
a

p
2

R
@Dð

ffiffiffi
a

p
vþ u0Þ2 þ 1� ffiffi

a
p
2

R
@Dð

ffiffiffi
a

p
v� u0Þ2�dt

ku0ð0; �Þk2 þ akvð0; �Þk2
��������� CðTÞ: (C9)
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For periodic boundary conditions, we may choose
CðTÞ ¼ 1. Moreover, if a � 1 and u0 ¼ � ffiffiffi

a
p

v is specified
at @Dþ, then ku0ðt; �Þk2 þ akvðt; �Þk2 decays.

Still working on a single interval (subdomain), we now
consider the semidiscrete scheme for (C4), i. e. (57) with
all nonlinear source terms dropped, and with v replaced by
v̂=

ffiffiffi
a

p
. Derivation of a formula analogous to (C8) is our

first step toward establishing L2 stability of the semidis-
crete scheme. While (57) features vectors, for example
uðtÞ, taking values at the LGL nodal points, here we
work with the numerical solution as a polynomial, for
example uhðt; xÞ. These two representations are related
by the Lagrange interpolating polynomials for the nodal
set, here taken to span both the space of test functions and
the space of basis functions. Our scheme is

Z
Dk

c @tuh ¼
Z
Dk

c ðQh þ
ffiffiffi
a

p
v̂hÞ; (C10a)

Z
Dk
�@tv̂h ¼�

Z
Dk
�0ð ffiffiffi

a
p

Qh þ v̂hÞþ
Z
@Dk

�ð ffiffiffi
a

p
Q
 þ v̂
Þ;

(C10b)Z
Dk
’Qh ¼

Z
Dk
’u0h þ

Z
@Dk

’ðu
 �uhÞ; (C10c)

where c , �, and’ are polynomial test functions. These test
functions are arbitrary, except that they must be degree-N
polynomials. In (C10) the variables uh, v̂h and Qh should
also carry a superscript k, but we have suppressed this.
Derivation of a formula analogous to (C8) is complicated
by the fact that Qh is not evolved. Nevertheless, at a given
instant t we can assemble Qh from (C10c).

Mimicking the calculation (C5b) from the continuum
case, we first use (C10b) with � ¼ v̂h to write

1

2
@t
Z
Dk

v̂2
h

¼ �
Z
Dk
ð ffiffiffi

a
p

Qh þ v̂hÞv̂0
h þ

Z
@Dk

ð ffiffiffi
a

p
Q
 þ v̂
Þv̂h

¼ �
Z
Dk

ffiffiffi
a

p
Qhv̂

0
h þ

1

2

Z
@Dk

½2ð ffiffiffi
a

p
Q
 þ v̂
Þv̂h � v̂2

h�:
(C11)

The right-hand side of (C5a) is analogous to

1

2
@t
Z
Dk

Q2
h ¼

Z
Dk

Qh@tQh: (C12)

However, since Qh is not evolved, the term @tQh must be
given a suitable interpretation. On the right-hand side of
(C10c) only uh, u

0
h, and u
 necessarily depend on time,

since the test function ’ need not be time dependent.
Furthermore, u
 is explicitly given as a linear combination
of uh, as seen in Eq. (C21c) below. Choosing ’ ¼ ‘j,

taking the time derivative of (C10c), and appealing to the
commutivity of mixed partial derivatives, we therefore
arrive at

Z
Dk

‘j@tQh ¼
Z
Dk

‘jð@tuhÞ0 þ
Z
@Dk

‘jðð@tuÞ
 � @tuhÞ;
(C13)

where ð@tuÞ
 depends on @tuh in precisely the same way
that u
 depends on uh. We have written ‘j rather than ’ in

the last equation to emphasize that the result also holds for
any linear combination of ‘j (for example ’), and even for

time-dependent combinations. Since Qh is itself such a
combination, we obtain
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Dk

Qhð@tuhÞ0 þ
Z
@Dk

ðð@tuÞ
 � @tuhÞQh

¼
Z
Dk

QhðQ0
h þ

ffiffiffi
a

p
v̂0
hÞ þ

Z
@Dk

ðð@tuÞ
 � @tuhÞQh

¼
Z
Dk

ffiffiffi
a

p
Qhv̂

0
h þ

1

2

Z
@Dk

½2ðð@tuÞ
 � @tuhÞQh þQ2
h�:

(C14)

Addition of (C11) and (C14) gives

1

2
@t
Z
Dk
ðQ2

h þ v̂2
hÞ ¼

1

2

Z
@Dk

½Q2
h � v̂2

h þ 2ð ffiffiffi
a

p
Q
 þ v̂
Þv̂h

þ 2ðð@tuÞ
 �@tuhÞQh�; (C15)

the aforementioned analog of (C8). This formula holds on
a single subdomain Dk, and we now combine multiple
copies of it, one for each value of k.

2. Analysis for multiple intervals

To facilitate combination of (C15) over all k, we change

notation. At every subdomain interface Ikþ1=2 �
@Dk \ @Dkþ1, let the superscripts L and R denote field
values, respectively, taken from the left and right. Then

the fields evaluated at Ikþ1=2 which belong to Dk will be
uLkþ1=2, v̂

L
kþ1=2, and QL

kþ1=2, while those belonging to Dkþ1

will be uRkþ1=2, v̂
R
kþ1=2, and QR

kþ1=2. However, at I
k�1=2 the

values taken from Dk are uRk�1=2, v̂
R
k�1=2, and QR

k�1=2. Note

that we have also replaced the subscript h, denoting a
numerical solution, with k� 1=2, denoting the location
of the endpoint value of the numerical solution. With this
notation, we define

�L
� ¼ 1

2½ðQL
�Þ2 � ðv̂L

�Þ2� þ ð ffiffiffi
a

p
Q


� þ v̂

�Þv̂L

�

þ ½ð@tu�Þ
 � @tu
L
��QL

�; (C16)

and similarly for �R
�. The same numerical fluxes appear in

both �L
� and �R

� (i.e. each numerical flux takes the same
value on either side of an interface), whence fluxes likeQ


�

do not carry an L or R superscript. In terms of these
definitions (C15) becomes
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1

2
@t
Z
Dk
ðQ2

h þ v̂2
hÞ ¼ �L

kþ1=2 � �R
k�1=2: (C17)

Summation over all Dk yields

1

2
@t
Xkmax

k¼1

Z
Dk
ðQ2

h þ v̂2
hÞ

¼ Xkmax�1

k¼1

ð�L
kþ1=2 � �R

kþ1=2Þ þ �L
kmaxþ1=2 � �R

1=2

¼ Xkmax�1

k¼1

ð�L
h � �R

h ÞjIkþ1=2 þ�L
kmaxþ1=2 ��R

1=2: (C18)

We have reverted to h notation denoting the numerical
solution, since the L, R superscripts indicate unambigu-

ously the relevant domain used for evaluation at Ikþ1=2.
We again seek an estimate of the form

Xkmax

k¼1

ðkQhðT; �Þk2Dk þ akvhðT; �Þk2DkÞ

� CðTÞXkmax

k¼1

ðkQhð0; �Þk2Dk þ akvhð0; �Þk2DkÞ; (C19)

that is essentially the same as the one (C3) considered in
the continuum case. Assume that the chosen boundary
conditions ensure �L

kmaxþ1=2 ��R
1=2 is bounded by a time-

dependent constant which does not depend on the numeri-
cal parameters N and h (subdomain width). Establishment
of stability then amounts to showing that the remaining
sum over interface terms in (C18) is nonpositive; whence
this remaining sum is consistent with CðTÞ � 1, although
the boundary conditions may give rise to a different bound.
In fact, we will choose the numerical fluxes such that each

individual interface term is nonpositive. At interface Ikþ1=2

and in L, R notation, the jump and average of v̂h, for
example, are

1
2ðv̂þ þ v̂�Þ � ffv̂hgg ¼ 1

2ðv̂L
kþ1=2 þ v̂R

kþ1=2Þ; (C20a)

n�v̂� þ nþv̂þ � ⟦v̂h⟧ ¼ v̂L
kþ1=2 � v̂R

kþ1=2: (C20b)

Consider numerical fluxes of the form

Q
 ¼ ffQhgg �
�Q
2
⟦Qh⟧; (C21a)

v̂
 ¼ ffv̂hgg � �v
2
⟦v̂h⟧; (C21b)

u
 ¼ ffuhgg � �u
2
⟦uh⟧; (C21c)

ð@tuÞ
 ¼ ff@tuhgg � �u
2
⟦@tuh⟧; (C21d)

where (C21c) induces (C21d) and where the penalty
parameters �u, �v, and �Q are real numbers. The fluxes

defined in (58) correspond to �u ¼ 1, �v ¼ 1þ ffiffiffi
a

p
, and

�Q ¼ 0. In terms of these quantities the kth interface

contribution in (C18) is

ð�L
h ��R

h ÞjIkþ1=2 ¼ 1

2
ð⟦Q2

h⟧� ⟦v̂2
h⟧Þ þ ffv̂hgg⟦v̂h⟧

� �v
2
⟦v̂h⟧

2 þ ffiffiffi
a

p ffQhgg⟦v̂h⟧

�
ffiffiffi
a

p
�Q
2

⟦Qh⟧⟦v̂h⟧� ffQhgg⟦@tuh⟧

� �u
2
⟦@tuh⟧⟦Qh⟧; (C22)

where we have suppressed the k dependence of the right-
hand side. Now consider the term ⟦@tuh⟧. Because @tuh
and Qh þ

ffiffiffi
a

p
v̂h are both polynomials of degree N,

Eq. (C10a) implies the vector equation @tu ¼ Qþ ffiffiffi
a

p
v̂,

that is pointwise equivalence on the nodal points of Dk,
which in turn implies ⟦@tuh⟧ ¼ ⟦Qh þ

ffiffiffi
a

p
v̂h⟧. Upon sub-

stituting this identity into the last equation, we arrive at an
expression which features only v̂h and Qh,

ð�L
h ��R

h ÞjIkþ1=2 ¼ 1

2
ð⟦Q2

h⟧� ⟦v̂2
h⟧Þ þ ffv̂hgg⟦v̂h⟧

� �v
2
⟦v̂h⟧

2 þ ffiffiffi
a

p ffQhgg⟦v̂h⟧

�
ffiffiffi
a

p
�Q
2

⟦Qh⟧⟦v̂h⟧

� ffQhgg⟦Qh þ
ffiffiffi
a

p
v̂h⟧

� �u
2
⟦Qh þ

ffiffiffi
a

p
v̂h⟧⟦Qh⟧: (C23)

The identities ffv̂hgg⟦v̂h⟧ ¼ 1
2 ⟦v̂

2
h⟧ and ⟦Qh þ

ffiffiffi
a

p
v̂h⟧ ¼

⟦Qh⟧þ
ffiffiffi
a

p
⟦v̂h⟧ then simplify (C23) to

ð�L
h ��R

h ÞjIkþ1=2 ¼ � �v
2
⟦v̂h⟧

2 �
ffiffiffi
a

p ð�u þ �QÞ
2

⟦Qh⟧⟦v̂h⟧

� �u
2
⟦Qh⟧

2: (C24)

The role of a penalty parameter is now clear. Positive
values of �v penalize jumps in v̂h through a negative
contribution to the energy. Likewise, positive values of
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FIG. 6. Stable evolutions for the model system. For fixed �v ¼
10�6 and �v ¼ 1þ ffiffiffi

2
p

respectively, the left and right plots
depict stable choices (determined empirically) of �u and �Q
for the linear model system (C1). The stable regions are colored
black, but the jagged edges result from the discretization of the
ð�u; �QÞ plane.
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�u penalize jumps in Qh through a negative contribution to
the energy. However, because the sign of ⟦Qh⟧⟦v̂h⟧ can be
positive or negative, only the choice �Q ¼ ��u yields an

expression for ð�L
h � �R

h ÞjIkþ1=2 which is manifestly nega-

tive for �u � 0 and �v � 0. A simple estimate based on
Young’s inequality with " (that is, 2�� � "�1�2 þ "�2,
where �, � � 0 and " > 0) shows that for �Q ¼ 0 the

choice �v � a�u=4 also yields stability.
Figure 6 depicts certain choices of stable penalty pa-

rameters for the linear model system evolved to tfinal ¼
1000 (with a ¼ 2, N ¼ 10, and �t ’ 0:0553), as deter-
mined empirically with simulations similar to those de-
scribed in Sec. IVA. The left plot corresponds to a small
�v ¼ 10�6, for which the choice �u ¼ 1, �Q ¼ 0 is not

stable, as expected from the theoretical analysis. However,
the right plot corresponds to �v ¼ 1þ ffiffiffi

a
p

, for which �u ¼
1, �Q ¼ 0 is stable. Motivated by the numerical flux

choices (38) and (42) used for the BSSN system (4), we

have (as mentioned above) set �u ¼ 1, �v ¼ 1þ ffiffiffi
a

p
, and

�Q ¼ 0 in simulations of the nonlinear model (53). For the

nonlinear model system (53), the theoretically motivated
choice �Q ¼ ��u also yields numerically stable evolutions

when �u � 0 and �v � 0.
For the nonlinear systems (4) and (53), we do not

attempt a formal stability proof. Nevertheless, the results
of this appendix have served as a guide for our choices of
penalty parameters. For the BSSN system (4), u, v, and Q
are block indices [cf. Eq. (6)]. Similar to the model prob-
lem, we have penalized Q with �u ¼ 1, with �v chosen
large enough to heuristically overcome the cross terms of
indefinite size that arise from �Q ¼ 0 (we interpret equa-

tions like �u ¼ 1 componentwise). An analogous choice
‘‘�Q ¼ ��u’’ for the BSSN system might be possible, but

would be considerably more complicated. Indeed, such a
choice likely entails a matrix of penalty parameters, but we
do not give the details here.
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