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We consider boson shells in scalar electrodynamics coupled to Einstein gravity. The interior of the

shells can be empty space, or harbor a black hole or a naked singularity. We analyze the properties of these

types of solutions and determine their domains of existence. We investigate the energy conditions and

present mass formulae for the composite black hole–boson shell systems. We demonstrate that these types

of solutions violate black hole uniqueness.
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I. INTRODUCTION

A complex scalar field theory with a suitable self-
interaction can lead to stationary localized solutions
called Q balls [1,2], because the global phase invariance
of the scalar field theory is associated with a conserved
charge Q. When the theory is coupled to electromagne-
tism, this charge represents the electromagnetic charge of
the Q balls [1].

Recently, a special type of scalar potential was consid-
ered [3–5]. Leading to the signum-Gordon equation for the
scalar field, this potential gives rise to spatially compact Q
balls [3]. The scalar field of these spherically symmetric
configurations is finite inside a ball of radius ro, but
vanishes identically outside this radius. In this respect the
compact Q balls resemble stars.

Interestingly, when coupled to electromagnetism, the
balance of forces allows for shell-like configurations [4].
In these Q shells the scalar field vanishes identically both
inside a certain radius ri and outside a certain radius ro,
thus forming a shell of charged matter of size ri < r < ro.
With increasing charge the shell radii increase, allowing
for arbitrarily large Q shells. Note, that the shells consi-
dered here are thick shells, in contrast to the often consi-
dered thin shells (see, e.g., Ref. [6] and references therein).

When the scalar field is coupled to gravity, branches of
globally regular self-gravitating solutions emerge from the
Q ball solutions, corresponding to boson stars [7–10]. The
compact Q balls then give rise to compact boson stars.
Likewise, in the presence of gravity the compact Q shells
turn into compact shells of self-gravitating charged matter,
gravitating boson shells [11]. Recently, we have analyzed
the properties and the domain of existence of these com-
pact boson stars and gravitating boson shells [11].

The gravitating boson shells surround a flat Minkowski-
like interior region, r < ri, while their exterior region r >
ro is described by the part r > ro of a Reissner-Nordström
solution, which possesses the same charge and mass as
the shell. Unlike the Q shells in flat space, however, the
gravitating boson shells cannot carry arbitrarily large
charge. As the charge increases the mass increases as

well, until a limiting solution is reached. Here the mass
within the shell radius ro becomes too big for a regular
shell space-time to persist, and a throat is formed at ro. The
exterior space-time r > ro then corresponds precisely to
the exterior of an extremal Reissner-Nordström solution.
However, the shells need not be empty in their interior

r < ri. Instead of flat Minkowski space the gravitating
boson shells can harbor a Schwarzschild-like black hole
there [11]. This black hole has its event horizon rH in the
interior region 0< rH < ri, where the scalar field vanishes
and the gauge potential is constant. Since the black hole
is surrounded by a shell of charged boson matter, the
presence of the scalar field outside the event horizon may
be interpreted as scalar hair. Thus the black hole theorems
forbidding scalar hair under a great variety of circumstan-
ces [12–14] can be eluded in this model.
Here we show, that the shells may also harbor charge in

their interior r < ri. The flat space shells may contain point
charges at their center, whereas the gravitating boson
shells may either harbor charged black holes or naked
singularities. These interior solutions are then described
by Reissner-Nordström-like solutions. Thus a space-time
arises, that consists of a Reissner-Nordström-like interior
r < ri, a boson shell ri < r < ro, and a Reissner-
Nordström-like exterior ro < r. Depending on the values
of the mass and charge, the interior solution will be a
subextremal black hole, an extremal black hole or a naked
singularity.
We analyze the properties of these boson shell solutions

carrying charge also in their interior r < ri, and we deter-
mine their domain of existence. We show that as in the case
of the uncharged interior solutions, a throat can develop at
the outer radius ro. This renders the exterior space-time an
exterior extremal Reissner-Nordström space-time. At the
same time the temperature of the black hole event horizon
rH in the interior tends to zero. When the interior black
hole solution becomes extremal, a further increase of the
charge in the interior results in a naked singularity sur-
rounded only by the shell. Moreover, space-times exist
which possess both an extremal interior black hole solution
as well as an outer throat.
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The paper is organized as follows. In Sec. II we recall the
action, the equations of motion and the ansatz for the fields.
We also specify the boundary conditions, discuss the global
charges, and present mass theorems for the solutions. In
Sec. III we discuss boson shells with a Minkowski-like
interior and with a Schwarzschild-like interior. We then
turn in Sec. IV to the boson shells carrying charge in their
interior, which may be pointlike or in the form of a charged
black hole. We analyze the energy conditions for all of
these solutions in Sec. V, and end with our conclusions in
Sec. VI. A discussion of the special spiral-like behavior of
the solutions, which occurs when the event horizon ap-
proaches the inner shell radius, is presented in the
Appendix.

II. ACTION, EQUATIONS,
BOUNDARY CONDITIONS

A. Action and equations of motion

We consider the action of a self-interacting complex
scalar field � coupled to a U(1) gauge field and to
Einstein gravity

S ¼
Z �

R

16�G
� 1

4
F��F�� � ðD��Þ�ðD��Þ �Uðj�jÞ

�

� ffiffiffiffiffiffiffi�g
p

d4x; (1)

with field strength tensor

F�� ¼ @�A� � @�A�; (2)

covariant derivative

D�� ¼ @��þ ieA��; (3)

curvature scalar R, Newton’s constant G, gauge coupling
constant e, and the asterisk denotes complex conjugation.
The scalar potential U is chosen as [3–5]

Uðj�jÞ ¼ �j�j: (4)

Variation of the action with respect to the metric and the
matter fields leads, respectively, to the Einstein equations

G�� ¼ R�� � 1
2g��R ¼ 8�GT�� (5)

with stress-energy tensor

T��¼g��LM�2
@LM

@g��

¼
�
F��F��g

���1

4
g��F��F

��

�

�1

2
g��ððD��Þ�ðD��ÞþðD��Þ�ðD��ÞÞg��

þðD��Þ�ðD��ÞþðD��Þ�ðD��Þ��g��j�j; (6)

and the matter field equations,

@�ð ffiffiffiffiffiffiffi�g
p

F��Þ ¼ ffiffiffiffiffiffiffi�g
p

e��D��; (7)

D�ð ffiffiffiffiffiffiffi�g
p

D��Þ ¼ � ffiffiffiffiffiffiffi�g
p �

2

�

j�j : (8)

B. Ansatz

To construct spherically symmetric solutions we employ
Schwarzschild-like coordinates and adopt the metric

ds2 ¼ g��dx
�dx�

¼ �A2Ndt2 þ N�1dr2 þ r2ðd�2 þ sin2�d�2Þ: (9)

For solutions with vanishing magnetic field the Ansatz for
the matter fields has the form

� ¼ �ðrÞei!t; (10)

A�dx
� ¼ A0ðrÞdt: (11)

For notational simplicity, we introduce new coupling
constants [4]

�2 ¼ a ¼ 4�G
�1=3

e2
; � ¼ �effiffiffi

2
p ; (12)

and redefine the matter field functions,

hðrÞ ¼ ffiffiffi
2

p
e�ðrÞ; bðrÞ ¼ !þ eA0ðrÞ: (13)

The latter corresponds to performing a gauge transforma-
tion to make the scalar field real and absorbing the fre-
quency ! of the scalar field into the gauge transformed
vector potential. Note, that the parameter � can be re-
moved by rescaling and will therefore be set to one [4].
Thus the only parameter left is the gravitational coupling
�. In the following we will consider hðrÞ as non-negative.
With the above ansatz the Einstein equations Gt

t ¼
2�2Tt

t , G
r
r ¼ 2�2Tr

r , G
�
� ¼ 2�2T�

� reduce to

�1

r2
½rð1� NÞ�0

¼ � �2

A2N
ðA2N2h02 þ Nb02 þ 2A2Nhþ b2h2Þ; (14)

2rA0N � A½rð1� NÞ�0
Ar2

¼ �2

A2N
ðA2N2h02 � Nb02 � 2A2Nhþ b2h2Þ; (15)

2r½rA0N�0 þ A½r2N0�0
2Ar2

¼ �2

A2N
ð�A2N2h02 þ Nb02 � 2A2Nhþ b2h2Þ; (16)

respectively, where the prime denotes differentiation with
respect to r. Solving Eqs. (14) and (15) for N0 and A0 yields

KLEIHAUS et al. PHYSICAL REVIEW D 82, 104050 (2010)

104050-2



N0 ¼1�N

r
� �2r

A2N
ðA2N2h02þNb02þ2A2Nhþb2h2Þ;

(17)

A0 ¼ �2r

AN2
ðA2N2h02 þ b2h2Þ; (18)

The field equations ½@LM

@h0 �0 ¼ @LM

@h and ½@LM

@b0 �0 ¼ @LM

@b read

½ANr2h0�0 ¼ r2

AN
ðA2NsignðhÞ � b2hÞ; (19)

�
r2b0

A

�0 ¼ bh2r2

AN
: (20)

where signðhÞ ¼ 1 for h > 0, but signð0Þ ¼ 0. After elimi-
nation of A0 and N0 we obtain

h00 ¼ �2

A2N
rh0ð2A2hþ b02Þ � h0ðN þ 1Þ

rN

þ A2NsignðhÞ � b2h

A2N2
; (21)

b00 ¼ �2

A2N2
rb0ðA2N2h02 þ b2h2Þ � 2b0

r
þ bh2

N
(22)

In order to solve the ordinary differential equations
(17), (18), (21), and (22), numerically we introduce a
new coordinate x via

r ¼ ri þ xðro � riÞ; 0 � x � 1: (23)

Thus the inner and outer boundaries of the shell are always
at x ¼ 0, respectively x ¼ 1, while their radii ri and ro
become free parameters.

C. Boundary conditions

Let us now specify the boundary conditions for the
metric and matter functions. For the metric function A
we adopt

AðroÞ ¼ 1; (24)

where ro is the outer radius, thus fixing the time coordinate.
For the metric functionNðrÞwe require for globally regular
ball-like boson star solutions

Nð0Þ ¼ 1; (25)

for globally regular shell-like solutions

NðriÞ ¼ 1; (26)

where ri is the inner radius of the shell. For globally regular
boson star solutions we require at the origin and at the outer
radius ro the conditions

b0ð0Þ¼0; h0ð0Þ¼0; hðroÞ¼0; h0ðroÞ¼0: (27)

In order to choose also the value of bð0Þ as a boundary
condition, we make the outer radius ro an auxiliary

(constant) variable, and thus add the differential equation
ro

0 ¼ 0, without imposing a boundary condition.
For globally regular shell solutions we require at the

inner radius ri and at the outer radius ro the conditions

b0ðriÞ ¼ 0; hðriÞ ¼ 0; h0ðriÞ ¼ 0;

hðroÞ ¼ 0; h0ðroÞ ¼ 0: (28)

In order to choose also bðriÞ ¼ bi as a boundary condition,
we now also make the ratio of inner and outer radius ri=ro
an auxiliary (constant) variable. Alternatively to demand-
ing a certain value for bðriÞ, we may also specify the value
of the electric charge Q, i.e., b0ðroÞ ¼ �Q=r2o.
For electrically charged black hole solutions in the in-

terior of the shell, r < ri, we consider the exact solution

NðrÞ ¼
�
1� rH

r

��
1� rC

r

�
; bðrÞ ¼ �i �QH

r
Ai;

AðrÞ ¼ Ai; hðrÞ ¼ 0:

where Ai and �i are constants. The event horizon radius
rH and Cauchy horizon radius rC � rH are related to the
horizon charge QH by

�2Q2
H ¼ rHrC: (29)

Evaluation at the inner radius of the shell yields the
boundary conditions

NðriÞ ¼
�
1� rH

ri

��
1� rC

ri

�
; bðriÞ ¼ bi;

b0ðriÞ ¼ �Ai

�

ffiffiffiffiffiffiffiffiffiffi
rHrC

p
r2i

; hðriÞ ¼ 0; h0ðriÞ ¼ 0:

At the outer radius of the shell the boundary conditions are
the same as for the ball-like boson star solutions and the
shell-like solutions.
Thus the solutions are specified by the parameters �, rH,

rC, and bi (or Q).
Note that also the second derivatives N00 and A00 are

continuous at the boundary of the shell. This can been
seen easily from Eqs. (17) and (18) by taking into account
the boundary conditions for the functions h and h0 and the
fact that h00 is bounded (although not continuous). As a
consequence the Riemann tensor is continuous at the
boundary of the shell.

D. Charge and mass

Let us define the electric charge QS localized within a
given 2-sphere S by1

QS ¼ 1

4�

Z
S

�F�’d�d’: (30)

The global charge of the solutions is then obtained by
taking the surface S to infinity, yielding

1Note that our convention for the charge [4] differs in sign
from the usual one.
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Q ¼ 1

4�

Z
1

�F�’d�d’: (31)

When a charged black hole is located inside the shell, the
horizon charge QH of the black hole is obtained, by locat-
ing the surface S at the event horizon. Furthermore, a point
charge Qi sitting at the origin may be considered.

The bosons contribute to the global charge Q via the
conserved current

j� ¼ �ið��D����D���Þ; j�;� ¼ 0: (32)

For the above ansatz the expression for the time component
of the electromagnetic current is

j0 ¼ � h2b

A2N
: (33)

The charge contribution from the boson shells is then
obtained as the spatial integral

Qsh ¼ � 1

4�

Z ro

ri

j0
ffiffiffiffiffiffiffi�g

p
drd�d’: (34)

The global charge therefore consists of the charge carried
by the bosons forming the shells and the charge localized
in the interior, Qi or QH.

The mass M of the stationary asymptotically flat space-
times is obtained from the corresponding Komar expres-
sion. For globally regular space-times like boson stars and
shells of boson matter the mass is given by

M ¼ 1

4�G

Z
�
R��n

�	�dV; (35)

where � denotes an asymptotically flat spacelike hyper-
surface, n� is normal to � with n�n

� ¼ �1, dV is the

natural volume element on �, and 	 denotes an asymptoti-
cally timelike Killing vector field [15]. Replacing the Ricci
tensor via the Einstein equations by the stress-energy
tensor yields

M ¼ 2
Z
�

�
T�� � 1

2
g��T





�
n�	�dV: (36)

For black hole space-times the corresponding Komar
expression is given by

M ¼ MH þ 2
Z
�

�
T�� � 1

2
g��T





�
n�	�dV; (37)

where MH is the horizon mass of the black hole. The mass
of all gravitating solutions can be directly obtained from
the asymptotic form of their metric. In the units employed,
we find

M ¼ 1

�2
lim
r!1mðrÞ; (38)

where the mass function mðrÞ is related to the metric
function NðrÞ by NðrÞ ¼ 1� 2mðrÞ=r.

Finally we recall that, for fixed gravitational coupling
constant �, regular solutions satisfy [4,11]

dM ¼ bð1ÞdQ; (39)

where bð1Þ represents the electrostatic potential at infinity.
Thus integration yields the mass relation

M2 ¼ M1 þMQ ¼ M1 þ
Z Q2

Q1

bð1ÞdQ; (40)

where the mass M2 of a regular solution with charge Q2 is
obtained by integrating from any regular solution M1 with
charge Q1 along the curve of intermediate solutions of
the set.
The respective mass relation for black holes space-times

within boson shells follows in the isolated horizon frame-
work [16]. The latter states that the massM of a black hole
space-time with horizon radius rH and the massMreg of the

corresponding globally regular space-time obtained in the
limit rH ! 0 are related via [16–18]

M ¼ Mreg þM�; (41)

where the mass contribution M� is defined by

M� ¼ 1

�2

Z rH

0
�ðr0HÞr0Hdr0H: (42)

Here �ðrHÞ represents the surface gravity of the black hole
with horizon radius rH, � ¼ 2�T. Accordingly, the mass
M of a space-time with a black hole with horizon radius rH
within a boson shell with global chargeQ is obtained as the
sum of the globally regular gravitating boson shell with
charge Q and the integral M� along the set of black hole
space-times, obtained by increasing the horizon radius for
fixed charge from zero to rH [11].
When the charge is allowed to vary, too, the above

relation generalizes. In accordance with (39) and the first
law (in the units employed),2i.e.,

dM ¼ �

8��2
dAþ bð1ÞdQ� bðrHÞdQH; (43)

where A ¼ 4�r2H denotes the area of the horizon, the
generalized relation reads [11]

M¼MregþM�þMQ

¼MregþM�þ
Z Q

Qreg

bð1ÞdQ0 �
Z QH

0
bðrHÞdQ0

H: (44)

III. BOSON SHELLS WITH NEUTRAL INTERIOR

To set the stage for the discussion of the boson shell solu-
tions with neutral black holes in their interior, we begin by
briefly recalling the basic properties and the domain of exis-
tence of the boson shells with Minkowski-like interior [11].

2Note that the signs of the last two terms follow from our
definition of the electric charge.
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A. Empty boson shells

In boson shells we need to distinguish three regions
of the space-time. In the inner region 0 � r < ri the gauge
potential is constant and the scalar field vanishes.
Consequently, it is Minkowski-like, with NðrÞ ¼ 1 and
AðrÞ ¼ const< 1. The middle region ri < r < ro repre-
sents the shell of charged boson matter. The outer region
ro < r <1, finally, equals to the outer part of a Reissner-
Nordström space-time (for a naked singularity since the
charge of the boson shell is larger than the mass). In this
outer region the gauge field exhibits the standard Coulomb
falloff, while the scalar field vanishes identically. (A typi-
cal boson shell solution is seen in Fig. 2(a), where it
represents the beginning of a branch of solutions with
Schwarzschild-like interior.)

The domain of existence of these gravitating boson
shells depends on the strength of the gravitational coupling
a ¼ �2. For a given finite value of the gravitational cou-
pling, boson shells emerge from the boson star solutions,
when the scalar field vanishes at the origin, hð0Þ ¼ 0. The
value of the outer radius ro at the transition point depends
on the strength of the gravitational coupling. It decreases
monotonically from ro � 4:9 for vanishing coupling
� ¼ 0 to ro � 3:0 for the maximal coupling �cr, for which
boson shells exist.

When the value of the inner shell radius ri is increased
from zero while the gravitational coupling constant is kept
fixed, the corresponding branch of boson shells is obtained.
With increasing inner shell radius ri also the outer radius ro
increases. This is seen in Fig. 1(a), where the ratio ri=ro of
both shell radii is shown versus the outer radius ro. Along
with the shell radii also the massM and the chargeQ of the
shells increase, as seen in Fig. 1(b).

Since the mass increases faster than the outer shell
radius (and also faster than the charge), one can expect,

that at a given point there will be too much mass within a
region of radius ro to still allow for globally regular solu-
tions. Indeed, the branches of boson shells end, when a
throat is formed at the outer radius ro. As this happens, the
value of the gauge field function bðrÞ reaches zero at the
inner radius ri (or equivalently bð0Þ ! 0, since bðrÞ is
constant in the interior, 0 � r � ri). The outer space-
time r > ro then corresponds to the exterior of an extremal
Reissner-Nordström space-time. Such an extremal
Reissner-Nordström space-time requires a certain relation
between the horizon radius rH, the mass M and the charge
Q. In our units and with the horizon at the outer shell radius
ro this relation becomes

ro ¼ �2M ¼ �Q: (45)

As seen in Fig. 1(b), this relation indeed holds at the end
points of the boson shell branches.
We finally note, that for large gravitational coupling, the

boson shell branches end long before the inner and outer
shell radii become comparable in size. In contrast, for
small gravitational coupling, the boson shell branches ex-
tend much further and end only when the two shell radii are
almost of the same size. However, as long as the gravita-
tional coupling is finite, the growth of gravitating boson
shells is limited by gravity. Only in flat space boson shells
can have arbitrarily large mass, charge, and size [4].

B. Boson shells with Schwarzschild-like
black holes: QH ¼ 0

Let us now address the case, when a Schwarzschild-like
black hole is immersed in the interior region r < ri of
the boson shell, first discussed in Ref. [11]. Thus the
Minkowski-like inner region r < ri of the space-time of
gravitating boson shell solutions is replaced by the inner
part of a curved Schwarzschild-like space-time, where the
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FIG. 1 (color online). Properties of gravitating boson shells shown versus the outer radius ro of the shells for several values of the
gravitational coupling constant a ¼ �2: (a) the ratio of the inner to outer radius ri=ro of the shell; (b) the scaled mass �2M and
the scaled charge �Q of the shell, together with the condition for throat formation r0 ¼ �2M ¼ �Q. The large asterisks mark the
transition points from boson stars (Q balls) to boson shells, the small asterisks mark the solutions with throats.
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event horizon resides at rH < ri. The metric in the interior
region r < ri is then determined by the Schwarzschild
metric function NðrÞ ¼ 1� ðrH=rÞ and a constant metric
function AðrÞ ¼ AðriÞ. A set of such solutions with increas-
ing event horizon rH is exhibited in Fig. 2.

The presence of the boson shell outside the event hori-
zon of the black hole influences the metric in the interior
region of the shell. Since AðrÞ is monotonically increasing
for ri < r < ro and constant for r � ri and r � ro, this
implies AðriÞ<AðroÞ. Consequently, for an asymptotically
flat space-time, i.e., Að1Þ ¼ AðroÞ ¼ 1, the metric func-
tion AðrÞ assumes some value AðrÞ ¼ AðriÞ � 1 in the
interior region r < ri of the space-time, instead of the
(usual) Schwarzschild value AðrÞ ¼ 1.

The boson shells with Schwarzschild-like black holes in
their interior are obtained from the empty boson shells, by
imposing the presence of an event horizon rH and increas-
ing its value from zero. In the following we discuss the
main features of these boson shell space-times with electri-
cally neutral black holes, by considering some generic
cases [11]. In particular, we consider solutions with small

charge and with large charge. Clearly, solutions with large
charge are possible only for small values of the gravita-
tional coupling, whereas solutions with small charge are
also possible for larger values of the gravitational coupling.
Indeed, for a given value of the charge the gravitational
coupling cannot exceed a critical value, which decreases
with increasing charge.

1. Small Q

We begin with Schwarzschild-like black holes within
boson shells which carry only a small charge, and choose
Q ¼ 10 for definiteness. Varying the gravitational coupling
between a ¼ 0:01 and 0.15, we illustrate in Fig. 3 the main
properties of these solutions. Their domain of existence is
seen in Fig. 3(a), where the radius of the event horizon rH is
exhibited versus the outer shell radius ro. When the event
horizon is increased from the limiting value of zero (of
the empty shells) the outer shell radius ro decreases. This
decrease may be interpreted as due to the gravitational
attraction from the black hole in the interior of the shell.
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FIG. 2 (color online). Functions hðrÞ, bðrÞ, NðrÞ and AðrÞ versus the radial coordinate r with a ¼ �2 ¼ 0:1, Q ¼ 10 for boson shells
with Minkowski and Schwarzschild-like interior: (a) rH ¼ 0; (b) rH ¼ 0:17; (c) rH ¼ 0:88; (d) rH ¼ 1:72.
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Obviously, the event horizon is limited in size, since the
shell is limited in size. However, the physical reasons that
limit the growth of the event horizon, and thus the growth
of the inner black hole, differ for small and large values of
the gravitational coupling. For small values of the gravita-
tional coupling constant, the branches of boson shells with
Schwarzschild-like black hole solutions in their interior

exhibit a spiral-like behavior, when approaching their
end points. Here the event horizon rH and the outer shell
radius ro exhibit an oscillatory behavior, as they converge
towards limiting values. (The first few branches of the
spirals are apparent in Fig. 3(a) and enlarged in the inlet
for a representative value of the gravitational coupling
constant, �2 ¼ 0:01, while the higher branches are too
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FIG. 3 (color online). Properties of boson shells with chargeQ ¼ 10 and Schwarzschild-like black holes in their interior: (a) the event
horizon radius rH versus the outer shell radius ro; (b) the massM vs ro, the thin dotted curve corresponds to the extremal limit where a
throat is formed; (c) the ratio ri=ro vs ro; (d) the ratio rH=ri vs ro; (e) the temperature TH vs ro; (f) the value bðriÞ of the gauge field
function bðrÞ at the inner shell radius ri vs rH. The gravitational coupling a ¼ �2 assumes the values 0.01, 0.02, 0.05, 0.10, and 0.15.
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small to be resolved there.) In contrast, for larger values of
the gravitational coupling constant the branches of boson
shells with Schwarzschild-like black hole solutions in their
interior exhibit a monotonic behavior. Here the radii rH and
ro approach their maximal values at the end points of the
branches monotonically.

The massM of the solutions is exhibited in Fig. 3(b) and
follows this pattern. For small values of the gravitational
coupling the mass exhibits a spiral-like behavior. Thus for
given values of the charge and the mass, there are several
different solutions. These solutions form a countable set,
where the number of solutions increases as the values of
the mass and the charge are chosen closer to the values of
the mass and the charge of the limiting solution of the
spiral. Thus for those limiting values at the end point of the
spiral a maximal (possibly infinite) number of discrete
solutions should be present, all with the same mass and
the same charge. Consequently these black hole space-
times surrounded by boson shells violate uniqueness
[11]. These black holes carry scalar hair in the form of
compact boson shells.

Let us now address the end points of the branches of
boson shells with Schwarzschild-like black holes more
closely, in order to understand the physical reasons causing
the branches to end. For that purpose we consider the
behavior of the inner shell radius ri and the horizon radius
rH as we move into the spiral. We note that while both
oscillate, their ratio rH=ri increases monotonically and
converges to the limiting value of one, as we approach the
end point of the spiral. This is seen in Figs. 3(c) and 3(d).
Since the horizon cannot become bigger than the inner shell
radius, these branches of black holes terminate when the
event horizon coincides with the inner boundary of the
shell. A further discussion of the spirals and their limiting
solution is given in the Appendix.

As we turn to the larger values of the gravitational
constant we note that the branches end before the ratio
rH=ri tends to one. Here the physical mechanism causing
the branches to terminate consists in the formation of a
throat at the outer shell radius ro. To understand the reason
let us compare the mass M and the charge Q of the
solutions along these branches. In terms of Reissner-
Nordström solutions, which describe the exterior solution
r � ro, these values of the mass and the charge would
correspond to Reissner-Nordström solutions with naked
singularities at their center. Along the branches we keep
Q fixed and increase the horizon radius rH and with it the
mass M. Thus along the branches the mass is getting
steadily closer to the extremal value, where a degenerate
horizon would be present in the Reissner-Nordström
solution. When the conditions for extremal Reissner-
Nordström solutions, ro ¼ �2M ¼ �Q, finally become
satisfied, a throat is formed at the outer shell radius ro.
Note that this analysis implies that uniqueness is not
violated for these solutions.

As the throat forms, the temperature TH at the event
horizon rH < ri of the Schwarzschild-like black hole in the
interior of the shell tends to zero. This is seen in Fig. 3(e).
At first this vanishing of the temperature appears unex-
pected, since the Schwarzschild-like black hole is not
charged. However, the reason for the vanishing of the
temperature TH can be understood from the behavior of
the metric function AðrÞ in gtt. The temperature TH of the
black hole within the boson shell is given by

TH ¼ AðrHÞTSðrHÞ; (46)

where TSðrHÞ denotes the temperature of a Schwarzschild
black hole, TSðrHÞ ¼ ð4�rHÞ�1. Indeed, we observe, that
the function AðrÞ tends to zero in the interior, when the
throat is formed as seen in Fig. 2(d), thus leading to a
vanishing temperature TH. On the other hand, the diver-
gence of the temperature TH with vanishing event horizon
rH ! 0 just reflects the usual Schwarzschild behavior.

2. Larger Q

Solutions with larger charge are only possible for small
values of the gravitational coupling. Let us for definiteness
now consider solutions with charge Q ¼ 100, whose prop-
erties are demonstrated in Fig. 4. For the largest values of
the gravitational coupling that are possible for this charge,
the branches of solutions with a Schwarzschild-like black
hole in the interior exhibit the same pattern as discussed
above for the case of small charge and large gravitational
coupling. These branches exhibit a monotonic behavior,
where the horizon radius and the mass increase with de-
creasing outer shell radius. The branches end when a throat
is formed at the outer shell radius, when ro ¼ �2M ¼ �Q
is satisfied. This is demonstrated in Fig. 4 for �2 ¼ 0:05.
Clearly, with this monotonic behavior the solutions exhibit
uniqueness in this parameter range.
For smaller values of the gravitational coupling, how-

ever, the pattern changes, allowing for nonmonotonic
branches and thus, again, for nonuniqueness of the black
hole solutions. The new pattern is seen in Fig. 4 for �2 ¼
0:02 and 0.01. These large charge solutions have large
outer and inner shell radii. With a ratio ri=ro close to 1,
they seem like rather thin shells. (The proper distance from
ri to ro can, of course, become arbitrarily large, as an
extremal configuration is approached.)
As the horizon radius increases along these branches, the

outer shell radius decreases while the mass increases.
Interestingly, now the scaled mass and charge become
equal, �2M ¼ �Q, before the outer shell radius has suffi-
ciently shrunk to satisfy the conditions for extremal
Reissner-Nordström solutions, thus ro >�2M ¼ �Q.
Consequently, a throat cannot yet be formed. As the hori-
zon is increased further, the mass increases further, and the
exterior solution becomes the respective outer part of a
Reissner-Nordström black hole solution, since now
�2M>�Q.
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The horizon then reaches a maximal value, similar to the
case when spirals arise. Beyond this value the horizon, the
outer shell radius and the mass decrease, while the ratio
rH=ri continues to increase. However, since both the outer
shell radius and themass decrease, they can and do reach the
extremal Reissner-Nordström values ro ¼ �2M ¼ �Q.

Here a throat is formed at the outer shell radius and the
branches end.
Unlike the case of full spirals, however, we here have

only two solutions for a given mass and charge, since a
single bifurcation is present. These two black hole space-
times have the same set of global charges but are otherwise
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FIG. 4 (color online). Properties of boson shells with charge Q ¼ 100 and Schwarzschild-like black holes in their interior: (a) the
event horizon radius rH versus the outer shell radius ro; (b) the mass M vs ro, the thin dotted curve corresponds to the extremal limit
where a throat is formed; (c) the ratio ri=ro vs ro; (d) the ratio rH=ri vs ro; (e) the temperature TH vs ro; (f) the value bðriÞ of the gauge
field function bðrÞ at the inner shell radius ri vs rH. The gravitational coupling a ¼ �2 assumes the values 0.01, 0.02, 0.05, 0.10, and 0.15.
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distinct solutions of the Einstein-matter equations, and thus
black hole uniqueness is again seen not to hold in this model
of scalar electrodynamics coupled to gravity. Note that also
pure Reissner-Nordström black holes exist in some parame-
ter range (i.e., when M> jQj=�), which possess the same
global charges as the boson shells with interior black hole.

IV. BOSON SHELLS WITH CHARGED INTERIOR

We now replace the inner empty Minkowski space of the
boson shell by a point charge or by a charged Reissner-
Nordström-like black hole and consider the effect of these
inner charges Qi, respectively, QH on the physical proper-
ties of these solutions and on their domain of existence.

A. Boson shells with point-like charges

To get a first understanding of the physical effects in the
presence of a charge Qi in the interior region r < ri of the
boson shells, we switch off gravity and consider flat space.
We thus put a point charge at the origin of the Minkowski
space in the interior of the flat space boson shells. As we

turn on the charge Qi, branches of solutions emerge from
the boson shells with Minkowski interior. When the charge
of the shell and the charge in the interior have the same
sign, we obtain a repulsive force. For like charges the
branches can then be extended far out. For opposite
charges, in contrast, the force is attractive. This is expected
to limit the relative magnitude of the charge, that can be put
into the interior.
The basic question that we would like to address is

whether the negative charge in the interior region of the
shell can become sufficiently large to cancel the positive
charge carried by the boson shell itself and thus yield a
globally neutral solution, i.e., a solution with Q ¼ 0. To
answer this question, let us consider branches of solutions,
where the global charge and the charge in the interior are
varied. For convenience, we choose fixed values of the
gauge field function bðrÞ at the inner shell radius, while
we vary the charges. This procedure then reveals the
domain of existence of this type of solutions.
As seen in Fig. 5, we cannot reach globally neutral

solutions. When the negative charge in the interior reaches
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FIG. 5 (color online). Properties of boson shells in flat space with a pointlike charge Qi in their interior: (a) the charge Qi versus the
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sizeable values, the global charge does not decrease.
Instead an even larger positive charge carried by the shell
is needed to accommodate the negative charge in the
interior. Thus the global charge does not decrease but
increase. Obviously, the attraction of the unlike charges
is too big to allow for globally neutral solutions consisting
of a charged boson shell and an oppositely charged point
charge. The coupling to gravity does not change this basic
fact, as discussed below.

B. Boson shells with charged black holes: QH � 0

Let us now turn to gravitating boson shells, which harbor
a charged black hole in their interior, r < ri. These branches
of solutions with a Reissner-Nordström-like black hole
in their interior emerge from the solutions with
Schwarzschild-like black holes, when the black hole is
endowed with a small charge QH, its horizon charge. The
horizon chargeQH is then increased or decreased from zero,
while the remaining parameters �,Q and rH are held fixed.

Since the parameter space is rather large, we focus in the
following on three regions of the parameter space, covering
the basic features which these solutions possess.

1. Small charge, small gravitational coupling

Let us first consider the case of small charge and small
gravitational coupling, choosing (as in the Schwarzschild
case) the values Q ¼ 10 and �2 ¼ 0:01. We exhibit some
of the properties of these solutions in Fig. 6. In Fig. 6(a) we
show the ratio of the Cauchy horizon radius rC to the event
horizon radius rH for branches of solutions with fixed
values of the event horizon rH. For positive horizon charge
QH > 0, these branches extend from the respective solu-
tions with a Schwarzschild-like interior where rC ¼ 0, up
to the solutions with an extremal charged black hole in the
interior. The extremality condition can be expressed in
terms of the event horizon rH and the Cauchy horizon rC
of the inner black hole

rC
rH

¼ 1: (47)

The extremal end points of the branches are indicated
in the figures by small asterisks. As seen in Fig. 6(c), along
these branches the horizon charge QH rises monotonically
from zero to the extremal value.

In order to reach shells with even larger charges in their
interior, we can either consider Reissner-Nordström-like
solutions without horizons, i.e., naked singularities inside
the shells. Alternatively, we can switch the role of the two
horizons, and keep the Cauchy horizon rC fixed, while we
vary the event horizon rH. For the latter choice, we exhibit
in Fig. 6(b) the continuously extended branches of solu-
tions, exhibiting the ratio of the event horizon radius rH to
the Cauchy horizon radius rC. The extremal solutions,
where the two parts of the branches match, are marked
by the asterisks.

In the following we denote by rbh the value of the radius
which is kept fixed, i.e., rbh ¼ rH along the lower parts,
where rC is varied, and rbh ¼ rC along the upper parts,
where rH is varied. Figures 6(c)–6(f) then exhibit both
parts of the branches, the fixed rH as well as the fixed rC
parts, with both parts merging when the interior black hole
solutions become extremal. As seen in 6(c), the horizon
charge QH becomes very large along the fixed rC parts of
the branches, and assumes values rather close to the global
chargeQ. Thus the horizon charge becomes almost as large
as possible. Like QH the mass M varies smoothly along
both parts of these branches, as seen in Fig. 6(d).
Let us now consider the end points of these branches of

solutions. When the Cauchy horizon is kept fixed, while
the event horizon is increased, the boson shells become
smaller, since the outer shell radius ro decreases mono-
tonically. At the same time, the shell thickness ro � ri
decreases, yielding an increasing ratio ri=ro, as seen in
Fig. 6(e). Most revealing is, however, the increase of the
ratio rH=ri of the event horizon to the inner shell radius,
shown in Fig. 6(f). Since this ratio goes to one, as the
branches reach their end point, this signals that the
branches end in spirals. A close inspection of the branches
of solutions in the vicinity of the end points indeed reveals
the presence of spirals.
The temperature TH of these solutions is shown in

Fig. 7(a). The temperature vanishes when the interior
black hole solutions become extremal, otherwise the tem-
perature is finite. To address the nonuniqueness of the
solutions, we inspect Fig. 7(b), where the mass M is
shown as a function of the horizon charge QH for fixed
global charge Q. Interestingly, now a continuous set of
solutions possesses the same global charges M and Q.
Such a set can for instance be obtained by varying the
horizon radius rH. Moreover, even if we were to add the
horizon charge QH as a further charge to characterize the
black hole space-times, uniqueness would not be recov-
ered, as seen from the crossings of the branches in Fig. 7
(b). Note that also pure Reissner-Nordström black holes
exist in some parameter range (i.e., when M> jQj=� ¼
100 in Fig. 7(b)), which possess the same global charges
as the boson shells with interior black hole.
Let us finally turn to solutions with negative charges in

their interior. For that purpose we reconsider Fig. 7(c).
Clearly, the inner black hole solutions, that have so far
been endowed with positive charge, can also be endowed
with negative charge, leading to branches with negative
horizon charge QH < 0. However, the amount of negative
charge that can be immersed in the interior of these solu-
tions is only rather small as seen in Fig. 7(c). (Because
QH ¼ � ffiffiffiffiffiffiffiffiffiffi

rHrC
p

=�, small rC corresponds to smallQH when

rH and � are fixed.)
Indeed, for solutions in the considered parameter range

the horizon charge cannot be decreased far and thus re-
mains close to zero. Since for negative horizon charge
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QH < 0 the ratio rC=rH remains small as well, we zoom
into this region in Fig. 7(c). Zooming in even further in
Fig. 7(d) we see that for certain parameters the horizon
charge can even change back to become positive again
before such a branch with fixed horizon radius rH ends.

Addressing now the end points of these branches, we
note that for small values of the event horizon radius rH,
where only one solution with vanishing horizon charge
exists, the branches with negative horizon charge end in
spirals, e.g., for rH ¼ 0:7 and 0.8. In contrast, if there are
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FIG. 6 (color online). Properties of boson shells with Reissner-Nordström-like black hole solutions in their interior shown versus the
outer shell radius ro for charge Q ¼ 10 and gravitational coupling constant a ¼ �2 ¼ 0:01: (a) the ratio of Cauchy horizon to event
horizon rC=rH; (b) the ratio of event horizon to Cauchy horizon rH=rC; (c) the horizon charge QH; (d) the massM, the dot corresponds
to the extremal limit where a throat is formed; (e) the ratio of inner to outer shell radius ri=ro; (f) the ratio of event horizon to inner
shell radius rH=ri. The asterisks mark extremal black holes where rC=rH ¼ 1.
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two solutions with vanishing horizon charge for a given
event horizon radius rH, then the branch of solutions with
negative horizon charge connects these two solutions.
Moreover, in this case a second branch with positive hori-
zon charge exists, which emerges from the second solution
with vanishing horizon charge and ends in a spiral as seen
in Figs. 7(c) and 7(d) for rH ¼ 0:881. This pattern contin-
ues when more than two solutions with vanishing horizon
charge exist for a given horizon radius rH, i.e., in the
spirals, leading to more branches with positive, respec-
tively, negative horizon charges, connecting pairs of solu-
tions with vanishing horizon charge. Note finally that in
Figs. 6 and 7 the branch with rH ¼ 0:98 does not possess
a limit with zero horizon charge, and ends in a spiral
with QH > 0.

2. Small charge, larger gravitational coupling

Next we turn to solutions for larger gravitational cou-
pling a ¼ 0:1 and small charge Q ¼ 10. In Fig. 8(a) we
show the ratio rC=rH versus the outer shell radius ro for

several fixed values of rH, and in Fig. 8(b) the ratio rH=rC
for several fixed values of rC. As before, branches of
solutions with charged black holes emerge from the solu-
tions with Schwarzschild-like black holes. Interestingly, as
seen in Fig. 8(c), now the negative horizon charge can
assume a considerably larger magnitude as compared to
the previous case. Thus the negative horizon charge
branches extend much further. These branches end in
spirals, when the ratio of the horizon radius to the inner
shell radius rH=ri tends to one, as seen in Fig. 8(f).
The branches with positive horizon charge and fixed

horizon radius extend up to the extremal case, where
rC=rH ¼ 1. However, for negative horizon charge the
branches can now also reach the extremal case, when (for
the parameters employed) the event horizon radius is be-
low rH;max ¼ 0:378 23. Increasing the magnitude of the

charge in the interior further, can then yield boson shells
with naked singularities in their interior, carrying positive
or negative charge.
Alternatively, extending these branches beyond the

extremal solutions by keeping the Cauchy horizon fixed,
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FIG. 7 (color online). Properties of boson shells with Reissner-Nordström-like black hole solutions in their interior shown versus the
outer shell radius ro for charge Q ¼ 10 and gravitational coupling constant a ¼ �2 ¼ 0:01: (a) the temperature TH versus ro; (b) the
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while varying the event horizon, we see that the negative
horizon charge solutions only form small loops connecting
two extremal solutions, as shown in Fig. 8(b) for rC ¼
0:35. In contrast, the branches with positive horizon charge
black holes extend further, yielding boson shells of con-
siderably smaller size.

Whereas in the previous case described in Sec. IVB1
the fixed rC branches ended also in spirals, we here observe
the alternative end point scenario, namely, the branches
end when a throat is formed at the outer shell radius. This is
obvious from Figs. 8(b) and 8(d), since the formation of a
throat occurs when the conditions ro ¼ �2M ¼ �Q hold.
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FIG. 8 (color online). Properties of boson shells with Reissner-Nordström-like black hole solutions in their interior shown versus the
outer shell radius ro for charge Q ¼ 10 and gravitational coupling constant a ¼ �2 ¼ 0:1: (a) the ratio of Cauchy horizon to event
horizon rC=rH; (b) the ratio of event horizon to Cauchy horizon rH=rC; (c) the horizon charge QH; (d) the massM, the dot corresponds
to the extremal limit where a throat is formed; (e) the ratio of inner to outer shell radius ri=ro; (f) the ratio of event horizon to inner
shell radius rH=ri. Note that a ¼ �2, and the asterisks mark extremal black holes where rC=rH ¼ 1.

KLEIHAUS et al. PHYSICAL REVIEW D 82, 104050 (2010)

104050-14



Clearly, the end points of all branches occur at an outer
shell radius of ro ¼ �Q, where the mass assumes the value
M ¼ Q=�.

The formation of the throat at these end points is also
seen in the temperature TH, exhibited in Fig. 9(a).
Evidently, the temperature goes to zero when the inte-
rior black hole solutions become extremal, as indicated
by the asterisks. But the temperature also goes to zero
at the end points of the branches, where a throat is
formed.

Nonuniqueness, finally, is addressed in Fig. 9(b), where
the mass is exhibited versus the horizon charge. Again, we
see a continuous nonuniqueness of the solutions containing
charged black holes, as long as only the global charges are
considered. The crossings of the branches, on the other
hand, show that, as in the previous case, even with the
introduction of a further charge QH uniqueness is not
regained.

3. Large charge

Next we turn to black hole solutions with large charge
Q ¼ 100 and small gravitational coupling a ¼ 0:01. As in
the above cases branches of solutions with positively and
negatively charged interior black holes emerge from the
solutions with Schwarzschild-like interior. The properties
of these solutions are exhibited in Figs. 10 and 11.

Considering first solutions with a positively charged
interior black hole, we expect the same type of behavior
as above. With increasing horizon charge, the branches of
fixed horizon size end when the inner black hole solution
becomes extremal. From there these branches can be con-
tinued by retaining the Cauchy horizon fixed while varying
the event horizon. We observe this expected behavior in-
deed, but only for the smaller values of the fixed horizon
radius. These branches end, when a throat is formed at the
outer shell radius, i.e., when ro ¼ �2M ¼ �Q.

However, for larger values of the fixed horizon radius, no
longer an extremal black hole is encountered. Instead, the
branches reach a maximal value of rC=rH and then bend
backwards towards smaller values of the horizon charge
and larger values of the shell size. The value rH ¼ 10
shown in the figures, is slightly above the critical value
rH;cr, where this new type of behavior sets in. These

branches then reach a second solution with a neutral in-
terior, different from the starting solution.
When the value of the fixed horizon radius is increased

further, beyond a critical value there no longer exists a
solution with a neutral interior black hole, and the branch
of solutions with charged interior black holes closes on
itself. Above a maximal value of the horizon radius also
solutions with charged interior black holes no longer exist.
Thus the behavior of these branches of solutions de-

pends on how many solutions with a neutral black hole
in the interior exist for a given global charge and fixed
horizon radius. The critical radius rH;cr is precisely given

by the transition point from one to two neutral interior
solutions, readily identifiable in Fig. 3. Here, as the throat
is formed at the outer shell radius, the inner black hole
solution becomes extremal, thus rC=rH ¼ 1, but the hori-
zon is still slightly smaller than the inner shell radius, and
the inner shell radius is slightly smaller than the outer shell
radius, rH < ri < ro. This space-time therefore satisfies
the conditions for an extremal solution at two places, at
rH and at ro.
Let us now extend the above analysis to solutions with

negative horizon charges. The ratio rC=rH for this type of
solutions is considered explicitly in Fig. 10(b), while the
other figures contain solutions with both positive and nega-
tive horizon charges. When there is only one solution with
a neutral black hole in the interior, i.e., when rH < rH;cr,
then the branches with negative horizon charge show a
spiral-like behavior. On the other hand, when there are two
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FIG. 9 (color online). Properties of boson shells with Reissner-Nordström-like black hole solutions in their interior shown versus
the outer shell radius ro for charge Q ¼ 10 and gravitational coupling constant a ¼ �2 ¼ 0:1: (a) the temperature TH versus ro;
(b) the mass M versus the horizon charge QH.
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solutions with a neutral black hole in the interior, i.e., when
rH > rH;cr, then the branches with negative (or positive)

horizon charges connect both of these solutions with van-
ishing horizon charge. The spiral-like behavior indicates
that the ratio of the event horizon radius to the inner radius

rH=ri tends to one. This is demonstrated in detail for
rH ¼ 9:0 in the inlet of Fig. 10(f), where we show the first
ten branches. To extrapolate the end point (diamond) we
made a fourth order approximation using the data at the
minima and maxima of ro.
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FIG. 10 (color online). Properties of boson shells with Reissner-Nordström-like black hole solutions in their interior shown versus
the outer shell radius ro for charge Q ¼ 100 and gravitational coupling constant a ¼ �2 ¼ 0:01: (a) the ratio of Cauchy horizon to
event horizon rC=rH; (b) the ratio of Cauchy horizon to event horizon rC=rH; (c) the horizon charge QH; (d) the mass M, the dot
corresponds to the extremal limit where a throat is formed; (e) the ratio of inner to outer shell radius ri=ro; (f) the ratio of event horizon
to inner shell radius rH=ri. The inlet shows rH=ri together with the envelope (dotted lines) and the extrapolated end point (diamond) for
rH ¼ rbh ¼ 9:0. Note that a ¼ �2, and the asterisks mark extremal black holes where rC=rH ¼ 1.
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In Fig. 11(a) we exhibit the temperature of these solu-
tions. The temperature tends to zero when the inner black
hole becomes extremal, which is indicated by the asterisks
in the figure. The temperature also tends to zero, when a
throat forms at the outer horizon radius. For the given
values of the charge and gravitational coupling constant,
this happens when the outer shell radius reaches ro ¼ 10.
In the figure we see the throat formation for rC ¼ 8 and 9.
The continuous nonuniqueness of the solutions containing
charged black holes is demonstrated in Fig. 11(b). Note
that also pure Reissner-Nordström black holes exist in
some parameter range (i.e., when M> jQj=� ¼ 1000 in
Fig. 11(b)), which possess the same global charges as the
boson shells with interior black hole.

V. ENERGY CONDITIONS

We now consider the energy conditions for these boson
shell solutions with black holes in their interior. To that
end, we define X�ðxÞ as a unit timelike vector field,
X�X� < 0, and T�� is the stress-energy tensor. Then the

weak and strong energy conditions read

weak energy condition T��X
�X� � 0

strong energy condition

�
T�� � 1

2
Tg��

�
X�X� � 0:

The dominant energy condition requires that for all future
directed timelike X�ðxÞ, the vector �T�

� X�ðxÞ is future
directed timelike or null.

If X� represents the four velocity of an observer then the
weak energy condition states that the energy density as
measured by any observer cannot be negative, whereas the
dominant energy condition states that the speed of the
energy flow as measured by any observer cannot exceed
the speed of light. The strong energy condition guarantees

that for a hypersurface orthogonal congruence the change
of the expansion with respect to proper time is negative.
To analyze the weak, strong and dominant energy con-

ditions for the boson shell solutions we follow Wald [15].
For a diagonal stress-energy tensor

T�
� ¼ diagð��; Pr; P�; P’Þ; (48)

the weak energy condition can be expressed as

� � 0 and �þ Pi � 0; i ¼ r; �; ’; (49)

the strong energy condition requires

�þX
i

Pi � 0 and �þ Pi � 0; i ¼ r; �; ’;

(50)

and for the dominant energy condition

� � jPij; i ¼ r; �; ’; (51)

has to hold.
In the interior (r � ri) and exterior (r � ro) of the shell

all energy conditions are satisfied, since here the space-
time is of Reissner-Nordström type. In order to analyze a
possible violation of the energy conditions it is sufficient to
restrict to the shell ri < r < ro. For the boson shell solu-
tions the energy density and the pressures are given by

� ¼ �T0
0 ¼ 1

2
ðNh02 þ 2jhjÞ þ 1

2A2N
ðNb02 þ b2h2Þ;

(52)

Pr ¼ Tr
r ¼ 1

2
ðNh02 � 2jhjÞ þ 1

2A2N
ð�Nb02 þ b2h2Þ;

(53)
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FIG. 11 (color online). Properties of boson shells with Reissner-Nordström-like black hole solutions in their interior shown versus
the outer shell radius ro for charge Q ¼ 100 and gravitational coupling constant a ¼ �2 ¼ 0:01: (a) the temperature TH versus ro;
(b) the mass M versus the horizon charge QH.
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P� ¼ T�
� ¼ � 1

2
ðNh02 þ 2jhjÞ þ 1

2A2N
ðNb02 þ b2h2Þ;

(54)

P’ ¼ T’
’ ¼ T�

�: (55)

From Eqs. (52)–(55) it can immediately be seen that
the weak energy condition is satisfied. For the dominant
energy condition we find

�
Nh02

2
þ b2h2

2A2N

�
þ

�
hþ b02

2A2

�

�
��������
�
Nh02

2
þ b2h2

2A2N

�
�

�
hþ b02

2A2

���������
1

2
ðNh02 þ 2hÞ þ 1

2A2N
ðNb02 þ b2h2Þ

�
���������

1

2
ðNh02 þ 2hÞ þ 1

2A2N
ðNb02 þ b2h2Þ

��������:

Both inequalities are of the form 	2
1 þ 	2

2 � j	2
1 � 	2

2j,
which is always satisfied. Hence the dominant energy
condition is also fulfilled. For the strong energy condition
we note that

�þX
i

Pi ¼ �2hþ 1

A2N
ðNb02 þ 2h2b2Þ (56)

may become negative for some solutions. For the
Schwarzschild case, e.g., b0 ¼ 0 and h2 	 h near r ¼ ri.
Thus for these solutions the strong energy condition
is violated. However, for the Reissner-Nordström case
b0 � 0 at r ¼ ri. Thus the strong energy condition may
be satisfied if b02 at r ¼ ri is large enough.

We show in Fig. 12(a) examples of solutions for which
the strong energy condition is violated in some bounded
region of space-time. However, there are also solutions for
which the strong energy condition is everywhere satisfied,

as seen in Fig. 12(b). [For convenience we show the
quantity r4ðb02=2A2 þ h2b2=A2N � hÞ].

VI. CONCLUSIONS

We have considered boson shells in scalar electrody-
namics with a V-shaped scalar potential, implying that the
scalar field is finite only in a compact shell-like region,
ri < r < ro. Coupling the scalar field to gravity leads to
self-gravitating boson shells with an empty Minkowski-
like interior region r < ri. However, the interior region
need not be empty. In flat space, the interior region can
contain a point charge. In curved space, the interior region
can either contain a black hole or a naked singularity.
While the flat space solutions can grow without bound,

the domain of existence of the self-gravitating solutions
is limited. The reason is, that gravity does not allow for
regular solutions, which have a large mass concentrated in
a (too) small region. Indeed, when the solutions approach
the boundary of the domain of existence, a throat develops
at the outer radius of the shells, making the exterior region
of the space-time equal to the exterior region of an
extremal Reissner-Nordström black hole.
When the boson shells carry like charges in their inte-

rior, these give rise to electromagnetic repulsion of the
surrounding boson shell. When the charges located in the
interior of the shell are of opposite sign, however, further
attraction arises that supplements the gravitational attrac-
tion. When the resulting attraction becomes too large,
shell-like solutions are no longer possible. In particular,
the attraction resulting from opposite charges is too big, to
allow for globally neutral shell-like solutions.
Analyzing the physical properties of these types of

solutions we have found, that space-times with a black
hole inside the boson shell can possess the same values
of the global charge Q and the same values of the global
mass M, while they differ in other physical properties.
Consequently, uniqueness does not hold for these black
hole space-times. Instead they possess scalar hair in the
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FIG. 12 (color online). Violation resp. nonviolation of the strong energy condition (br ¼ b0).
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form of charged compact shells. When the inner black
holes are neutral, there can only be denumerably many
such solutions with the same global charges. These are
present for sets of solutions with a spiral-like behavior.
In contrast, when the inner black holes carry charge a
continuous nonuniqueness of the solutions arises. The
black hole uniqueness theorems [12–14] are evaded for
these solutions because of the special type of potential,
making the scalar field vanish identically outside the
boson shell. Note that in the proof of nonexistence of
black holes with scalar hair [14] the asymptotic form
of the scalar field is essential. For our solutions however,
the scalar field vanishes at some finite radius ro and stays
identically zero for r > ro. Therefore the proof of [14]
does not apply to the compact boson shells harboring
black holes.

The next step will be to consider rotation [19]. While
rotating boson stars are well known [9,10,20–22], the in-
clusion of rotation for self-gravitating boson shells will
present an interesting generalization. However, the imple-
mentation and subsequent numerical construction of such
rotating boson shells which may also harbor black holes
still represents a challenge.

So far we have considered only solutions which have
an empty Minkowski-like interior, or possess pointlike
charges, Schwarzschild-like black holes or Reissner-
Nordström-like solutions in the interior of the boson shells.
It would be interesting to consider also compact boson
stars inside the boson shells. This would lead to space-
times with an onion-like shell structure: a compact boson
star surrounded by a Reissner-Nordström-like solution
surrounded by a boson shell surrounded by a Reissner-
Nordström-like solution. In principle this kind of solutions
can be extended further to include also multiple boson
shells.
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APPENDIX

We here elucidate the limiting behavior of the solutions,
when the branches of boson shells harboring black holes
end in spirals. A particular case for the occurrence of a
spiral pattern was shown in Fig. 3(a), where sets of boson
shell solutions with Schwarzschild-like black holes in
their interior were exhibited for small gravitational cou-
pling. As discussed above, such a spiral pattern arises in
the limit when the event horizon and the inner boundary
of the shell approach each other and finally coincide, i.e.,
when rH=ri ! 1.
In order to demonstrate how the solutions behave in

this limit, we choose two typical examples with gravita-
tional coupling constant a ¼ 0:01. The first one has
charge Q ¼ 10 and a Schwarzschild-like black hole in
the interior; the second one has charge Q ¼ 100 and a
negatively charged Reissner-Nordström-like black hole
in the interior. In both cases we consider a sequence of
solutions with increasing values of the ratio rH=ri.
It is convenient to employ the radial coordinate x ¼

ðr� riÞ=ðro � riÞ. In Fig. 13(a) we show the function
hx ¼ dh=dx versus log10ðx=ð1� xÞÞ. In the first example
we observe that hx assumes its maximum at decreasing
values of x as the ratio rH=ri tends to one. Away from the
maximum, the function hx approaches a limiting function
labeled ‘‘rH=ri ¼ 1’’ in Fig. 13(a). In the second example
we observe that the number of extrema of hx increases with
increasing rH=ri. But similar to the previous example it
seems that the locations of the extrema tend to zero (except
for the two outer most extrema) as rH=ri tends to one. This
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FIG. 13 (color online). (a) Function hx ¼ dh=dx versus log10ðx=ð1� xÞÞ with radial coordinate x ¼ ðr� riÞ=ðro � riÞ for boson
shells with Schwarzschild-like black hole solutions in their interior for charge Q ¼ 10 and gravitational coupling a ¼ �2 ¼ 0:01 and
several values of rH=ri. (b) The same as (a) for boson shells with negatively charged Reissner-Nordström-like black hole solutions in
their interior for charge Q ¼ 100, gravitational coupling a ¼ �2 ¼ 0:01 and event horizon radius rH ¼ 9:0.
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is demonstrated in Fig. 13(b). Note that in this example
the largest ratio rH=ri ¼ 0:983 is still not very close to
the limiting value of one.

The limiting solutions are obtained with boundary
conditions different from the ones required for the boson
shell solutions. Thus we no longer impose h0ðriÞ ¼ 0, but
require regularity at the horizon, i.e., jh00ðrHÞj<1, to-
gether with NðrHÞ ¼ 0. We also require hðrHÞ ¼ 0 and
signðhÞ ¼ 1 at the horizon. On the other hand we need
signðhÞ ¼ 0 at the outer radius ro, for compactness of the

solution. Therefore, although the limiting solutions are
solutions of the boundary value problem, the potential of
the scalar field is not consistently defined. Note that the
condition signðhÞ ¼ 1 at the horizon also is not consistent
with signð0Þ ¼ 0, which we used for the boson shell
solutions. Thus the limiting solution does not belong
to the set of boson shell solutions. In fact, we observe
from Fig. 13 that the boson shell solutions converge
to the limiting solutions only pointwise, i.e., at all r
except ri.
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