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In higher dimensions than four, conventional uniqueness theorem in asymptotically flat space-times

does not hold, i.e., black objects cannot be classified only by the mass, angular momentum, and charge. In

this paper, we define multipole moments for black objects and show that Myers-Perry black hole and black

ring can be distinguished by quadrupole moments. This consideration gives us a new insight for the

uniqueness theorem for black objects in higher dimensions.
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I. INTRODUCTION

In four dimensions, stationary and asymptotically flat
black hole solutions can be classified by their mass, angu-
lar momentum, and charge completely. This is the famous
uniqueness theorem [1]. On the other hand, this uniqueness
property of black objects does not hold in higher dimen-
sions. As presented by Emparan and Reall [2–4] (see also
Ref. [5]), in five dimensions, there is the black ring solu-
tion, which can have the same mass and angular momen-
tum as the Myers-Perry black hole [6]. If we do not restrict
our consideration to cases with a single horizon, there are
many, probably infinite, regular solutions with the same
mass and angular momentum [7–11]. This shows that there
are much richer properties of black object solutions in
higher dimensions compared to four dimensions. At the
same time, however, it is unlikely that the complete clas-
sifications of these black objects are possible. Now, note
that there are a sort of uniqueness theorems in some
restricted cases. For example, in static and vacuum
space-times, the Schwarzschild-Tangherlini solution [12]
is only regular black hole solution [13]. For stationary
solutions which have a single horizon and two axial com-
muting Killing vectors, if one specifies the topology of the
horizon (S3 or S1 � S2), the solution can be uniquely
determined (the Myers-Perry solutions or black ring solu-
tions, respectively) [14–16]. Furthermore, in more general
situations of five-dimensional, stationary, and two rota-
tional symmetric asymptotically flat space-times, if one
specifies its mass, angular momentum, and so-called rod
structure [2,17], which represents the positions of event
horizons and rotational axis, the regular solution is deter-
mined uniquely [18]. Theorems like these can be extended
to nonvacuum cases and so on [19–25]. However, these
uniqueness theorem for five-dimensional stationary black
objects are not satisfactory in physical point of view. This
is because the relation between the rod structure and global
charge is unclear and we want to classify black object
space-times in terms of global charges or quantities

observed at infinity. Unfortunately, the rod structure is
quasilocal concept. The purpose of this paper is the
classification of stationary black objects by multipole
moments, which are defined at spatial infinity. The asymp-
totic quantities like multipole moments might be useful to
study the properties of solutions(black ring solutions in
d > 5 dimensions [26] or non-Myers-Perry black hole with
spherical topology of event horizon [27,28]) which are
conjectured to be exist.
Geroch [29,30] and Hansen [31] defined the multipole

moments by using the conformal completion to obtain the
property of space-times at spatial infinity � in four dimen-
sions. In Ref. [30], Geroch conjectured that (A) two solu-
tions of the four-dimensional Einstein equations having the
same multipole moments coincide each others at least in a
neighborhood of �, and (B) given any sets of multipole
moments, subject to the appropriate convergence condi-
tion, there exist a solution of Einstein equations having
precisely those moments. About conjecture (A), Beig and
Simon and Kundu showed the validity for static [32] and
stationary space-times [33,34]. For conjecture (B), there is
no rigorous proof and it is an open issue even in four
dimensions until now. There is also the coordinate based
definition of multipole moments by Thorne [35]. It was
shown that Thorne’s multipole moments are same as
Geroch and Hansen’s multipole moments under certain
conditions [36]. Following Geroch’s idea on four dimen-
sional static cases, Tomizawa and one of the present
authors proposed the definition of multipole moments in
higher dimensional static space-times [37]. In this paper,
we discuss the definition of multipole moments in five-
dimensional stationary space-times and then show that
asymptotically flat, stationary, and two rotational symmet-
ric solutions with a single horizon are completely classified
by the mass monopole, quadrupole moments, and angular
dipole moments. This successful result will encourage us
to study the classification for general cases including mul-
tiple horizon cases.
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The rest of this paper is organized as follows. In the next
section, we define mass multipole moments and angular
multipole moments in five-dimensional stationary space-
times. We will emphasize that the definition of the angular
multipole moments is a rather nontrivial task. Some details
related to the definitions are shown in Appendix A. In
Sec. III, as an exercise, we shall consider the multipole
moments of the static black objects and discuss the classi-
fication of them. In Sec. IV, we will compute the multipole
moments for stationary black objects. Then we show that
black ring can be distinguished from the Myers-Perry
solutions by the ‘‘reduced’’ quadrupole moments which
are well defined in center-of-mass gauge. In Sec. V, we
summarize our result and discuss the possibility of unique-
ness theorem using the multipole moments. In Appendix A,
we write down the field equations and see why our defini-
tion of multipole moments is appropriate. In Appendix B,
we compute the multipole moments for the black ring
solutions with two angular momenta. In Appendix C, for
comparison, we compute the multipole moments for black
objects with multiple horizons solutions like black Saturn
[7] and orthogonal black di-ring solutions [10].

II. DEFINITION OF MULTIPOLE MOMENTS

In this section, following Refs. [30,37], we shall define
the multipole moments in five-dimensional stationary
space-times. At first, we describe the definition of the
asymptotically flatness based on the conformal completion
method briefly. Then we will give a definition of the multi-
pole moments. The definition of the multipole moments
associated with angular momentum is not given by a
simple extension from four to five dimensions. We also
address the gauge dependence which comes from the
gauge freedom of the conformal transformation.

A. Asymptotic flatness

For stationary space-times, we introduce the notion of
asymptotic flatness at spatial infinity based on conformal
completion method [38,39]. The metric of stationary
space-times can be written as

ĝ ab ¼ 1

�
�a�b þ ĥab; (1)

where � ¼ @=@t is the timelike Killing vector, � ¼
ĝab�

a�b, and ĥab is the metric on t ¼ const hypersurfaces.
Since the multipole moments will be defined on t ¼ const
hypersurfaces, we can focus on only the metric on t ¼
const hypersurfaces.

Let us consider the conformal transformation as

hab ¼ �2ĥab: (2)

If there is a function � which satisfies the conditions

�¼̂0; Da�¼̂0; DaDb�¼̂2hab; (3)

t ¼ const hypersurface is called asymptotically flat space
and the point � ¼ 0 is identified as the spatial infinity �.
Here, Da is the covariant derivative with respect to the
metric hab, and ¼̂ stands for the evaluation on �. At the
spatial infinity, hab becomes the flat metric and we use
the coordinate as follows:

ds2 ¼ habdx
adxb¼̂d�2

þ �2ðd�2 þ sin2�d�2 þ cos2�dc 2Þ: (4)

The above conditions on� imply the asymptotic behavior
of � as �� 1=r2 � �2 near �. In this paper, we consider
only the solutions of the vacuum Einstein equations

R̂ð5Þ
ab ¼ 0 for simplicity.

B. Multipole moments

At first, we define mass 2s-pole moments Pa1a2���as as

P � ��1ð1� ffiffiffiffi
�

p Þ; (5)

Pa ¼ DaP; (6)

Pa1a2���as ¼ O
�
Da1Pa2���as �

ðs� 1Þ2
2

Ra1a2Pa3���as

�
; (7)

where O½Tab���� denotes the totally symmetric trace free
part of the tensor Tab���. In four dimensions, the mass
multipole moments in stationary space-times are defined
from the scalar potential P which consists of the lapse
function � and the twist potential � satisfying a conformal
invariant equation [31]. As we will show soon, the corre-
sponding twist potential is represented by a vector�a, not a
scalar, in five dimensions. Hence, we use only the lapse
functions � for the definition in five dimensions, and this
does not matter. In fact, we can check that the twist
potential does not contribute to the multipole moments in
four and five dimensions. The role of � will be important
only in the proof of the smoothness of the multipole mo-
ments in four dimensions [31,33,34]. Note that the relation
between the Arnowitt-Deser-Misner (ADM) mass and the
mass monopole is shown in Ref. [17],

MADM ¼ 3�

4
P: (8)

For the definition of angular multipole moments, we
assume the presence of the two commuting axisymmetric
Killing vectors m ¼ @=@� and l ¼ @=@c . In this case,
there are many known exact solutions. However, note that
this assumption might be rather strong in some senses. This
is because the existence of only a single axisymmetric
Killing vector is guaranteed from the stationarity [40,41].
Although it is interesting to consider the multipole mo-
ments of single rotational symmetric cases too [42], this is
beyond the scope of our current paper.
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Now, we introduce the tensor �̂ab as

�̂ ab ¼ "̂abcde�
cr̂d�e: (9)

Since �̂ab satisfies D̂½a�̂bc� ¼ 0 by the vacuum Einstein

equation ð5ÞR̂ab ¼ 0, �̂ab can be written by the twist
potential �̂a as

�̂ ab ¼ D̂½a�̂b�: (10)

�̂a satisfies the four-dimensional Maxwell-type equation
(see Appendix A). Therefore, under the conformal trans-
formation of Eq. (2), we can take �̂ab as conformal invari-
ant quantity, i.e., �̂ab ¼ �ab and �̂a ¼ �a. From this twist
potential �a, we can construct two scalar potentials as

J� ¼ �al
a

ðlalaÞ1=2
and Jc ¼ �am

a

ðmam
aÞ1=2 : (11)

Then we can define the angular multipole moments in the
same way as the mass multipole moments discussed above.

That is, the angular 2s-pole moments J�a1a2���as and J
c
a1a2���as

are defined recursively as

J�a1a2���as ¼ O
�
Da1J

�
a2���as �

ðs� 1Þ2
2

Ra1a2J
�
a3���as

�
; (12)

and

Jca1a2���as ¼ O
�
Da1J

c
a2...as �

ðs� 1Þ2
2

Ra1a2J
c
a3���as

�
: (13)

Here we have a remark: if one considers the cases having
single rotational symmetry, �a cannot be written only by
scalar potential in a natural way. This means that it is not
easy to construct the angular multipole moments in single
rotational symmetric cases. The resolution to this difficulty
is left for future study.

C. Unphysical gauge dependence

Before computing the multipole moments for known
black objects, we should comment on the gauge depen-
dence of the multipole moments defined above. There are
gauge freedoms in the conformal completion of Eq. (2) as

� ! !�; (14)

where

! ’ 1þ fð�;�; . . .Þ
r

þOð1=r2Þ: (15)

Under this gauge transformation, multipole moments are
transformed as

Pa1���as ! Pa1���as � s2O½Pa1���as�1
Das!� (16)

in the linear order of!.1Da! represents the 1=r-order part
in ! [see Eq. (15)] and corresponds to the choice of the

origin of the coordinate in the physical coordinate x̂a [38].
In the definition of Thorne’s multipole moments [35], there
is such gauge freedom, which is just a translation. Thus,
the freedom of the order of Da! can be fixed by gauge
conditions just like a center-of-mass gauge. Higher order
parts Oð1=r2Þ in Eq. (15), which can be written as
DaDb!;DaDbDc!; � � � , do not contribute to the trans-
formation of multipole moments in the linear order. On
the other hand, in nonlinear order of !, the changes of
multipole moments under transformations of Eq. (14)
depend on not only Da!, but also higher order terms.
For example, the octupole moments are transformed as

Pabc ! Pabc � 9O½PabDc!�
þ gO½Da!DbDc!�Pþ � � � ; (17)

where g is a numerical constant. Hence the value of the
octupole or higher-pole moments depend on the choice of
Oð1=r2Þ parts in !, while monopole, dipole, and quadru-
pole moments depend only on Da!. Higher multipole
moments than quadrupole, that is, octupole and 24-pole
moments, have gauge ambiguities from the conformal
transformation even in center-of-mass gauge. Since there
is no tractable way to fix the gauge freedom of Oð1=r2Þ
parts in !, we will focus on the computation of only
monopole, dipole and quadrupole moments for known
black objects solutions in the center-of-mass gauge.

D. Modes

In the practical calculations of the multipole moments,
we must specify the concrete coordinate and modes. In this
paper, we use the coordinate in Eq. (4). Then it is easy to
see that the quadrupole moments have nine modes as

cos2�; sin2� sin2�; sin2� cos2�;

cos2� sin2c ; cos2� cos2c ; cos� sin� sin� sinc ;

cos� sin� sin� cosc ; cos� sin� cos� sinc ;

cos� sin� cos� cosc : (18)

In two rotational symmetric cases, nonvanishing quadru-
pole moment mode is only one mode of cos2� in center-of-
mass gauge. In this paper, then, we define the coefficients
of this mode in P�� as mass quadrupole moments Q.2

III. STATIC CASES

In this section, as a first step, we compute the multipole
moments for known static solutions. Then we will discuss
the classification of space-times with single horizon.
Following the uniqueness theorem [13], regular static
black object solutions of the vacuum Einstein equation

1Transformations of J�a1���as and Jca1���as are same as Eq. (16).

2If we define the quadrupole moment as the coefficient in other
components of Pab, the difference will be only sign.
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are completely classified by its mass, that is, the mass
monopole. Other solutions like the static black ring have
conical singularities and they are not regular solutions.
However, by computing the multipole moments of these
nonregular solutions, we can study the dependence of the
multipole moments on the topology of horizon. Since all
angular multipole moments vanish in static cases, we will
consider only mass multipole moments. This section will
be helpful to study the multipole moments for stationary
cases in which we are interested more.

The metric of static and two rotational symmetric space-
times in five dimensions can be written in the Weyl coor-
dinate [2],

ds2 ¼ �e2Utdt2 þ e2U�d�2 þ e2Uc dc 2

þ e2�ðdR2 þ dz2Þ; (19)

where Ut þU� þUc ¼ logR. The solutions are repre-

sented by the rod structure which is composed of the
zero points of gtt, g��, and gc c and stand for the positions

of event horizons and rotational axis. For computation of
the multipole moments, it is better to use new coordinate
given by

R ¼ 1
2r

2 sin2�; (20)

and

z ¼ 1
2r

2 cos2�; (21)

and take the conformal factor as � ¼ 1=r2 ¼ �2.
The coordinate t, r, �, �, and c here are same as those
in Eq. (4). TheWeyl coordinate has the gauge freedom z !
zþ constant and this gauge freedom corresponds to r !
rð1þOð1=r2ÞÞ in the coordinate of Eq. (4). As mentioned
in the previous section, the monopole, dipole, and quadru-
pole moments we compute in the following are indepen-
dent on this Oð1=r2Þ order gauge transformations. This
implies that those moments should be written by the dif-
ference ai � aj as seen soon later.

A. Schwarzschild black holes

At first, we will compute the multipole moments of the
Schwarzschild black hole as a trivial example. The rod
structure of the Schwarzschild black holes are shown in
Fig. 1. The Schwarzschild black hole is described by
two parameters aSch and bSch in the Weyl coordinate. As
there is a gauge freedom z ! zþ constant, however, the
independent parameter is only bSch � aSch. After all, the
multipole moments of the Schwarzschild black hole are
computed as

P ¼ bSch � aSch; Pa ¼ 0; (22)

Q ¼ 0: (23)

Hence, the Schwarzschild black hole has only monopole as
nontrivial multipole moments, which is proportional to the
ADM mass. Here note that the 24-pole moment L is given
by L / ða3Sch � b3SchÞ. As we stressed before, however, it

has the unphysical gauge dependence and then the physical
meaning of this L is unclear.

B. Static black ring

Next, we compute the multipole moments of static black
ring solution (the rod structure is shown in Fig. 2). Static
black ring solutions have two independent parameters
bBR � aBR and cBR � bBR. Then, after short calculation,
we can see that the multipole moments are

P ¼ bBR � aBR; Pa ¼ 0; (24)

Q ¼ �4ðbBR � aBRÞðcBR � bBRÞ: (25)

In our definition of quadrupole moments, Q is always
nonpositive. In addition, only if we take the
Schwarzschild limit of bBR ¼ cBR or flat limit of aBR ¼
bBR, the quadrupole moment vanishes.

FIG. 1. Rod structure of Schwarzschild black hole.

FIG. 2. Rod structure of static black ring (BR).
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C. Classification issue

We can distinguish the Schwarzschild black hole from
black ring solutions by quadrupole moments. Then, if the
single horizon is assumed, black objects are completely
classified by the mass monopole and quadrupole moments,
which are well defined in center-of-mass gauge.

Although the cases with multiple horizons are beyond
of our current consideration, we have some comments.
In Appendix C, we computed the multipole moments
for black Saturn and orthogonal black di-ring cases as
examples. Static black Saturn and orthogonal di-ring
solutions have three and four independent parameters,
respectively. On the other hand, the mass monopole and
quadrupole moments can determine only two independent
parameters. Then the multipole moments up to the quad-
rupole moments are not enough parameters to specify the
space-times uniquely. That is, higher multipole moments
are needed for the classification of these solutions. As
mentioned in the previous section, however, the higher
multipole moments have the unphysical gauge ambiguities
of !. Thus, we should fix the gauge about the conformal
factor� completely or improve the definition of the higher
multipole moments.

IV. STATIONARY CASES

In static cases, we have shown that black objects with
single horizon can be classified by mass monopole and
quadrupole moments completely. In this section, we con-
sider the black objects with angular momentum and single
horizon. As we will see later soon, in stationary cases,
rotating black objects can be classified by mass monopole,
quadrupole, and angular dipole moments.

Using the fact of �� ��tan2�gtc and �c � cot2�gt�
near the spatial infinity, we define the coefficient of cos� in

J�� and sin� in Jc� as angular dipole moments J� and Jc .

Here note that cos� is l ¼ 1 mode of scalar harmonics in
�-rotational plane with the metric d�2 þ sin2�d�2 and
sin� is one in the c -rotational plane with the metric d�2 þ
cos2�dc 2. Note that the relations between the angular
dipole moments and the ADM angular momentum are
given by [17]

J�ADM ¼ �

4
J�; JcADM ¼ ��

4
Jc : (26)

A. Myers-Perry black holes

Let us examine the Myers-Perry solutions. The metric of
the Myers-Perry black holes is given by

ds2 ¼ �dt2 þM

�
ðdt� j�sin

2�d�� jc cos
2�c Þ2

þ ðr2 þ j2�Þsin2�d�2 þ ðr2 þ j2c Þcos2�dc 2

þ �

�
dr2 þ�d�2; (27)

where

� ¼ r2 þ j2�cos
2�þ j2c sin

2�; (28)

and

� ¼ r2
�
1þ j2�

r2

��
1þ j2c

r2

�
�M: (29)

Introducing the new coordinate defined by � ¼ 1=r and
taking the conformal factor as � ¼ �2, we can compute
the multipole moments of the Myers-Perry black holes.
The results are

P ¼ M

2
; Pa ¼ 0; Q ¼ �ðj2� � j2c ÞM; (30)

J ¼ 0; J� ¼ j�M; Jc ¼ �jcM; (31)

J�ab ¼ Jcab ¼ 0: (32)

Contrasted with the Schwarzschild black hole case, the
rotating black holes have nonzero mass quadrupole
moments, which are contributions from the rotations. To
measure the deviation of other black object solutions from
the Myers-Perry black holes, it is better to define the
reduced mass quadrupole moments as

Qred ¼ Qþ J2� � J2c

2P
: (33)

It is chosen so that the reduced mass quadrupole moments
of the Myers-Perry black holes vanishes, that is,

Qred
MP ¼ 0: (34)

B. Black ring with single angular momentum

Next, we compute the multipole moments of black ring
with single angular momentum. For the case of black ring
with two angular momenta, see Appendix. B. The metric is
given by [4]

ds2 ¼ �FðyÞ
FðxÞ

�
dt� CR

1þ y

FðyÞ d�
�
2 þ R2

ðx� yÞ2 FðxÞ

�
�
�GðyÞ

FðyÞ d�
2 � dy2

GðyÞ þ
dx2

GðxÞ þ
GðxÞ
FðxÞ dc

2

�
;

(35)

where

Fð�Þ ¼ 1þ ��; Gð�Þ ¼ ð1� �2Þð1þ ��Þ; (36)

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð�� �Þ 1þ �

1� �

s
; (37)

and the parameter range is 0< � � � < 1. For the regular
black ring solution which has no conical singularities,
the parameters � and � must satisfy the relation as
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� ¼ 2�=ð1þ �2Þ. In the following, we will consider this
regular black ring solution.

For the computation of the multipole moments, it is
better to introduce the coordinate ð�; �Þ defined by

x ¼ �1þ 2R2ð1� �Þ
1� �

�2cos2�;

y ¼ �1� 2R2ð1� �Þ
1� �

�2sin2�;

(38)

and take conformal factor as � ¼ �2. Then, the multipole
moments of black ring with single angular momentum are
evaluated as

P ¼ R2�

1� �
; Pa ¼ 0; (39)

Q ¼ �2R4�
ð1þ �� 3�þ ��Þ

ð1� �Þ3 ; (40)

J ¼ 0; J� ¼ 2R3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð1þ �Þð�� �Þp
ð1� �Þ2 ; Jab ¼ 0;

(41)

and the reduced quadrupole moment becomes

Qred
BR ¼ � 2R4�ð1� �Þ2

ð1� �Þ3 � 0: (42)

As in static cases, the reduced quadrupole moments of
black ring solutions have always nonpositive value. In
the appearance of naked singularity with � ¼ 0, 1 or in
the Myers-Perry limit or flat metric limit, the reduced
quadrupole moment becomes to be zero.

C. Classification issue

As shown above, the Myers-Perry black hole and black
ring solutions with single angular momentum are classified
by (reduced) mass quadrupole moments completely. When
one specifies the ADM mass and angular momentum of
black ring solutions, there are two different solutions: thin
ring and fat ring solutions in a certain of parameter region.
To see this, it is useful to introduce the quantity j2 as

j2 � 27

32

J2ADM
M3

ADM

¼ ð1þ �Þ3
8�

: (43)

Regular black ring solution has the two independent
parameters R and � satisfying 0<R and 0< �< 1 as in
Eq. (35). If MADM and JADM of black ring are given, we
can compute the value of j2 and determine the parameter �.
However, in the range 27=32< j2 < 1, it is known that
there are two different solutions, that is, thin ring (1> �>
1=2) and fat ring solutions (� < 1=2) shown in Fig. 3.
Then, even if we assume the horizon topology of S1 �
S2, we cannot specify the solution only by MADM and
JADM. This is a well-known fact.

Then, one wonders if one can distinguish these two
solutions (thin or fat) by the reduced quadrupole moment.
The answer is yes. To see this, we define q as

q ¼ �4Qred
BR

P2
¼ 2ð1� �Þ3

�
: (44)

The relation between the normalized area of the event
horizon aH [4] and q is shown in Fig. 4. From Fig. 4, one
can see that we can determine the parameter R and � if the
reduced quadrupole moments Qred and mass monopole P
of black ring solutions are given. Thus, black ring solutions
are completely specified by the mass monopole and the
reduced quadrupole moments.
Here we comment on the multipole moments for black

objects with multiple horizons, e.g., black Saturn [7] and
orthogonal black di-ring solutions [10,11], although this is
beyond the scope of our current paper. As shown in
Appendix C, these solutions all have nonvanishing reduced

 0

 1

 0  1

a H

j2

FIG. 3. Normalized horizon area aH ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�ð1� �Þp

vs spin.
Even if given the spin j� �, the fat ring (� < 1=2) and thin ring
(� > 1=2) are not distinguished.

 0

 1

 0  1

a H

q

FIG. 4. Normalized horizon area vs quadrupole moment. If
given the quadrupole q, � is completely determined, that is,
thin or fat is specified.
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quadrupole moment. Regular black Saturn solution which
has no conical singularity has four independent parame-
ters. Hence, by tuning these parameters, black Saturn
has the same (reduced) quadrupole and angular dipole
moments of black ring solution. This means that these
multiple horizon solutions cannot be classified only by
monopole and quadrupole moments. Hence, we need the
information about the higher multipole moments for the
complete classification as we pointed out in static cases.
For the details, see Appendix C.

V. SUMMARYAND DISCUSSION

In this paper, we have defined mass and angular multi-
pole moments in five dimensional stationary space-times.
It is known that black holes and the black ring with or
without rotations cannot be distinguish by mass monopole
(ADM mass) and angular dipole moment (ADM angular
momentum). But, we could show that these black objects
with the single horizon can be classified by introducing the
(reduced) quadrupole moment. These moments are well-
defined in the center-of-mass gauge. In static cases, we
could see that the mass quadrupole moments capture the
existence of finite spacelike rods and the quadrupole
moments detects the deviation of the topology of the event
horizon from sphere. As seen in the previous section, this
interpretation is valid for the reduced quadrupole moment
in stationary cases.

Let us discuss the remaining works. When one wants
to classify black objects with multiple horizons, we need
the gauge independent definition of higher multipole
moments. However, our current definition of multipole
moments higher than quadrupole moments are not gauge
invariant even in center-of-mass gauge. Therefore, we have
to define the multipole moment carefully. Since the com-
putation itself of the multipole moment defined here is a
hard task, we would guess that the improvement is also a
hard one. This might be done by adding some extra terms
in our current definition of the multipole moments. It is
also interesting to extend the definition of multipole mo-
ments to nonvacuum cases like Einstein-Maxwell system
or so.

It is known that the metric is determined completely if
we specify the all mass and angular multipole moments in
four-dimensional space-times [32–34]. The method of the
proof of this theorem does not hold in five dimensions,
because the fact that the Weyl tensor for hab trivially
vanishes plays a key role of the proof in four dimensions.
Therefore, it is rather nontrivial if the metric can be deter-
mined only by mass and angular multipole moments. To
investigate this, it may be useful to use the rod structure. If
we can show that the parameters of the rod structure can be
constructed only by mass and angular multipole moments,
the five-dimensional black objects with single or multi-
ple horizons in stationary and two rotational symmetric

space-times will be classified only by mass and angular
multipole moments. This is also our future work.
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APPENDIX A: FIELD EQUATIONS

In this appendix, we describe the key ingredient behind
the definition of the mass multipole moments. We first

write down the vacuum Einstein equations Rð5Þ
ab ¼ 0 for

the metric of Eq. (1) as

D̂ 2� ¼ 1

2�
D̂a�D̂

a�� 1

2�
�̂ab�̂

ab; (A1)

D̂ a�̂ab ¼ � 3

2�2
�̂abD̂

a�: (A2)

R̂ab ¼ 1

2�
D̂aD̂b�� 1

4�
D̂a�D̂b�

� 1

4�2
ðĥab�̂mn�̂

mn � �̂am�̂
m
b Þ; (A3)

where D̂ and R̂ab are the covariant derivative and Ricci

tensor for ĥab respectively, and �̂ab ¼ 	̂abcde�
cr̂d�e.

Using the function P̂ ¼ 1� ffiffiffiffi
�

p
, we rewrite Eq. (A1) as�

D̂2 � R̂

6

�
P̂ ¼ � �̂ab�̂

ab

8
ð2� P̂Þ; (A4)

where R̂ is the Ricci scalar of ĥab. We can regard Eq. (A2)
as the Maxwell equations on the t ¼ const hypersurfaces
and �̂ab as the fields strength. From the conformal invari-
ance of the Maxwell equation in four dimensions, we can
suppose that the Maxwell field �̂ab is conformal invariant
�̂ab ¼ �ab under the conformal completion of Eq. (2).
Then, the conformal transformation transforms Eq. (A4)
into �

D2 � R

6

�
P ¼ �2 �ab�

abP

8
��

4
�ab�

ab; (A5)

where P ¼ ��1P̂. We can regard Eq. (A5) as a Poisson-
like equation with a certain of regular source. At spatial
infinity �, it becomes

D2P¼̂0: (A6)
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Therefore, it is natural to define multipole moment using
P and �ab.

APPENDIX B: BLACK RING SOLUTIONS WITH
TWO ANGULAR MOMENTA

In the main text, we focused on the black objects with
single angular momentum mainly. This is because we
wanted the argument to be as compact as possible. In this
appendix, we compute the multipole moments for black
ring with two angular momenta. The metric of black ring
with two angular momenta is given by [5]

ds2 ¼ Hðy; xÞ
Hðx; yÞ ðdtþ�Þ2 þ Fðx; yÞ

Hðy; xÞd�
2

þ 2
Jðx; yÞ
Hðy; xÞd�dc � Fðy; xÞ

Hðy; xÞdc
2

� 2k2Hðx; yÞ
ðx� yÞ2ð1� �Þ2

�
dx2

GðxÞ �
dy2

GðyÞ
�
; (B1)

where

� ¼ � 2k�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ �Þ2 � �2

p
Hðy; xÞ

�
ð1� x2Þy ffiffiffi

�
p

dc

þ ð1þ yÞ
1� �þ �

ð1þ �� �þ x2y�ð1� �� �Þ

þ 2�xð1� yÞÞd�
�
; (B2)

and

GðxÞ ¼ ð1� x2Þð1þ �xþ �x2Þ; (B3)

Hðx; yÞ ¼ 1þ �2 � �2 þ 2��ð1� x2Þyþ 2�xð1� �2y2Þ
þ �x2y2ð1� �2 � �2Þ; (B4)

Jðx; yÞ ¼ 2k2ð1� x2Þð1� y2Þ� ffiffiffi
�

p
ðx� yÞð1� �Þ2 f1þ �2 � �2

þ 2ðxþ yÞ��� xy�ð1� �2 � �2Þg; (B5)

Fðx; yÞ ¼ 2k2

ðx� yÞ2ð1� �Þ2 ½GðxÞð1� y2Þfðð1� �Þ2 � �2Þ

� ð1þ �Þ þ y�ð1� �2 þ 2�� 3�2Þg
þGðyÞð2�2 þ x�fð1� �Þ2 þ �2g þ x2fð1� �Þ2
� �2gð1þ �Þ þ x3�ð1� �2 � 3�2 þ 2�3Þ
� x4�ð1� �Þð�1þ �2 þ �2ÞÞ�: (B6)

The parameter ranges are 0< �< 1, 2
ffiffiffi
�

p
< �< 1þ �.

Regular black ring solutions with two angular momenta
have three independent parameters �, �, and k.

To compute the multipole moments, we introduce the
new coordinate ð�; �Þ defined by

x ¼ �1þ 4k2ð1� �þ �Þ
1� �

�2cos2�;

y ¼ �1� 4k2ð1� �þ �Þ
1� �

�2sin2�;

(B7)

and use the conformal factor of � ¼ �2. Then, the multi-
pole moments are computed as

P ¼ 4k2�

ð1� �þ �Þ ; Pa ¼ 0; (B8)

Q ¼ � 16�k4ð1� 5�� 5�2 þ �3 � 8��þ 3�2ð1þ �ÞÞ
ð1� �Þ2ð1� �þ �Þ2 ;

(B9)

Jc ¼ 16k3�
ffiffiffi
�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ �Þ2 � �2
p

ð1� �Þ2ð1� �þ �Þ ;

J� ¼ 8k3�ð1þ �� 6�þ ��þ �2Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ �Þ2 � �2
p

ð1� �Þ2ð1� �þ �Þ2 :

(B10)

Then the reduced quadrupole moment becomes

Qred ¼ � 8�k4ð1� �þ �Þ
ð1� �Þ2 : (B11)

As in one rotational case, the black ring has a negative
value for the mass quadrupole moment. Thus, in two rota-
tional case, the Myers-Perry black hole and black ring with
two angular momenta can be classified by the mass quad-
rupole moment.

APPENDIX C: CASES WITH MULTIPLE
HORIZONS

In this appendix, we consider the cases with multiple
horizons. In the main text, we focused on single horizon
cases and we could show that space-times are uniquely
specified by the multipole moments up to the quadrupole
components. We can show that it is not true for the cases
with multiple horizons. This section will be useful for
future study or comparison with single horizon cases.

1. Static cases

Here we compute multipole moments for static black
Saturn solution and static orthogonal black di-ring solution
(these rod structures are shown in Figs. 5 and 6). The
multipole moments are

P ¼ ðbBS � aBSÞ þ ðdBS � cBSÞ; Pa ¼ 0; (C1)

Q ¼ �4ðbBS � aBSÞðcBS � bBSÞ (C2)

for static black Saturn, and

P¼ðbOBD�aOBDÞþðdOBD�cOBDÞ; Pa¼0; (C3)
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Q ¼ Q1 þQ2; (C4)

Q1 ¼ �4ðbOBD � aOBDÞðcOBD � bOBDÞ;
Q2 ¼ 4ðeOBD � dOBDÞðdOBD � cOBDÞ

(C5)

for static orthogonal black di-ring.
We can see that in the quadrupole moments of the

static orthogonal black di-ring Q1 are the quadrupole mo-
ments of the black ring in the � rotational plane, and Q2 is
the quadrupole moment of the black ring in c rotational
plane. Hence, monopole and quadrupole moments are
‘‘linear’’ moments. Only by monopole and quadrupole
moments, we cannot distinguish between the static black
ring, black Saturn, and black di-ring. Static black Saturn
solutions have three independent parameters, for example,
bBS � aBS, cBS � bBS, and dBS � cBS. By tuning these
parameters, static black Saturn can have the same mass
monopole and quadrupole moments as the static black
ring’s. As in static orthogonal black di-ring solutions, we
can do the same thing because its solution has four inde-
pendent parameters. That is, there are several different
solutions with the same P and Q. This result suggests
that higher multipole moments are needed to classify all
of these solutions.

2. Stationary cases

Here, we compute the multipole moments for the sta-
tionary solutions with multiple horizons, black Saturn [7],
and orthogonal black di-ring [10]. Since the explicit form
of the metric is complicated, we show only the rod struc-
ture of the solutions (see Figs. 7 and 8). The metric of
stationary and two rotational symmetric solutions in five
dimensions can be written by Weyl form as

ds2 ¼ GABdx
AdxB þ e2�ðdR2 þ dz2Þ; (C6)

where xA ¼ ðt; �; c Þ. The rod structure is described by the
zero point of detGAB and their direction �A determined
from GAB�

A ¼ 0 at R ¼ 0. For computing the multipole
moments, it is better to introduce the new coordinate ð�; �Þ
defined through the relation

R ¼ 1

2�2
sin2�; z ¼ 1

2�2
cos2�; (C7)

and we choose the conformal factor as � ¼ �2.
The rod structure of black Saturn solution is shown in

Fig. 7. The angular velocities are given by

FIG. 6. Rod structure of static orthogonal black di-ring (OBD).

FIG. 5. Rod structure of static black Saturn (BS).

FIG. 7. Rod structure of black Saturn.

FIG. 8. Rod structure of orthogonal black di-ring.
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�BH
c ¼ 1

L
ð1þ 
2 �c2Þ

�
ffiffiffiffiffiffiffiffiffiffiffi

2
3

2
1

s

3ð1� 
1Þ � 
1ð1� 
2Þð1� 
3Þ �c2

3ð1� 
1Þ þ 
1
2ð1� 
2Þð1� 
3Þ �c22

;

(C8)

�BR
c ¼ 1

L
ð1þ 
2 �c2Þ

�
ffiffiffiffiffiffiffiffiffiffiffi

1
3

2
2

s

3 � 
2ð1� 
3Þ �c2


3 � 
3ð
1 � 
2Þ �c2 þ 
1
2ð1� 
3Þ �c22
;

(C9)

for each event horizons, that is, for the central black hole
and outer black ring. Note that the following regularity
condition is imposed:

�c 2 ¼ 1


2

�
	


1 � 
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1ð1� 
2Þð1� 
3Þð
1 � 
3Þ

p
�
; (C10)

where 	 ¼ 1ð�1Þ for �c2 >�
�1
2 ð �c2 <�
�1

2 Þ. Thus,
black Saturn solutions has four independent parameters
L, 
1, 
2, and 
3.
After some length calculations, the mass multipole

moments for black Saturn are computed as

P ¼ L2 
3ð1� 
1 þ 
2Þ � 2
2
3ð
1 � 
2Þ �c2 þ 
2½
1 � 
2
3ð1þ 
1 � 
2Þ� �c22

3ð1þ 
2 �c2Þ2

; (C11)

Pa ¼ 0; (C12)

Q¼ 4L4

ð
2
3ð1þ 
2 �c2Þ4Þ

ð
2
3½ð
2 � 
1Þð
2 � 
3Þ � 
3� þ 2
2


2
3½1þ 2ð
2 � 
1Þð
2 � 
3Þ � 
3� �c2

þ 
2
3½3
2
3f1þ 2ð
2 � 
1Þð
2 � 
3Þg � 
1ð1� 
1 þ 
2 þ 2
3Þ� �c22 þ 2
2
2
3½
2
3f2ð
2 � 
3Þð
2 � 
1Þ þ 
3g

þ 
1ð1þ 
1 � 
2 � 2
3Þ� �c32 þ 
2
2½
2

2

2
3fð
2 � 
1Þð
2 � 
3Þ � ð1� 
3Þg � 
1f
1 � 
2
3ð3þ 
1 � 
2 � 2
3Þg� �c42Þ:

(C13)

And the angular multipole moments are also computed as

J� ¼ 0; (C14)

J� ¼ 4L3


3ð1þ 
2 �c2Þ
ffiffiffiffiffiffiffiffiffiffiffi

2


1
3

s
½
2

3 � 
3 �c2½ð
1 � 
2Þ

� ð1� 
1 þ 
3Þ þ 
2ð1� 
3Þ� þ 
2
3 �c
2
2½ð
1 � 
2Þ

� ð
1 � 
3Þ þ 
1ð1þ 
1 � 
2 � 
3Þ�
� 
1
2 �c

3
2½
1 � 
2
3ð2þ 
1 � 
2 � 
3Þ��; (C15)

J�ab ¼ 0: (C16)

Next we consider the orthogonal black di-ring solution.
The rod structure is shown in Fig. 8. The angular velocities
are given by

�ð1Þ
� ¼ �j1

ðg� eÞðg� fÞ
2ðg� cÞ2ðg� aÞ ;

�ð1Þ
c ¼ �j2

ðe� aÞ2
2ðc� aÞðf� aÞðg� aÞ ;

(C17)

�ð2Þ
� ¼ �j1

ðg� fÞ
2ðg� aÞðg� dÞ ;

�ð2Þ
c ¼ �j2

ðd� aÞ2
2ðf� aÞðg� aÞ :

(C18)

The labeling of (1) and (2) specifies which event horizons
we consider. The regularity conditions is also imposed as

j21 ¼ 2
ðg� aÞðg� cÞ2ðg� dÞ
ðg� bÞðg� eÞðg� fÞ ;

j22 ¼ 2
ðb� aÞðc� aÞðf� aÞðg� aÞ

ðd� aÞðe� aÞ2 ;

(C19)

ða� dÞða� fÞða� gÞðb� eÞðb� gÞðc� dÞðc� eÞðc� fÞ
¼ ða� eÞ2ðb� dÞ2ðb� fÞ2ðc� gÞ2; (C20)

ðg� dÞðg� bÞðg� aÞðf� cÞðf� aÞðe� dÞðe� cÞðe� bÞ
¼ ðg� cÞ2ðf� dÞ2ðf� bÞ2ðe� aÞ2: (C21)

Note that there is the gauge freedom of z ! zþ const.
Thus, the orthogonal black di-ring has the four free
parameters.
The mass multipole moments for orthogonal black

di-ring are computed as

P ¼ ðc� aÞ þ ðg� eÞ; (C22)

Pa ¼ 0; (C23)

Q ¼ Q� �Qc ; (C24)
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where

Q� ¼ �4ðc� aÞ½ðb� aÞ þ ðd� cÞ þ ðf� eÞ�;
Qc ¼ �4ðg� eÞ½ðe� dÞ þ ðc� bÞ þ ðg� fÞ�: (C25)

We can interpret theQ� andQc as the quadrupole moment

of the black ring in the �- and c -rotational planes,
respectively.

The angular momentum multipole moment are

J�;c ¼ 0; (C26)

J� ¼ 2j1ðd� aÞ; Jc ¼ �2j2ðg� bÞðg� eÞðg� fÞ;
(C27)

J�;c
ab ¼ 0: (C28)

As in static cases, regular black objects with multiple
horizons have nontrivial quadrupole moments. These
solutions with multiple horizons have independent parame-
ters more than three. Hence, to classify these solutions, it is
necessary to evaluate higher multipole moments such as
mass 24-pole moments.
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