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The Goldberger-Wise mechanism enables one to stabilize the length of the warped extra dimension

employed in Randall-Sundrum models. In this work we generalize this mechanism to models with

multiple warped throats sharing a common ultraviolet brane. For independent throats this generalization is

straightforward. If the throats possess a discrete interchange symmetry like Zn, the stabilizing dynamics

may respect the symmetry, resulting in equal throat lengths, or they may break it. In the latter case the

ground state of an initially symmetric configuration is a stabilized asymmetric configuration in which the

throat lengths differ. We focus on two- (three-) throat setups with a Z2 (Z3) interchange symmetry and

present stabilization dynamics suitable for either breaking or maintaining the symmetry. Though

admitting more general application, our results are relevant for existing models in the literature, including

the two-throat model with Kaluza-Klein parity, and the three-throat model of flavor with a broken Z3

symmetry.
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I. INTRODUCTION

The ultraviolet (UV) sensitivity of the Higgs mass in the
standard model (SM) makes it difficult to understand how
the Higgs can remain light in the presence of heavy new
physics. Mass corrections resulting from top quark loops
can dominate the Higgs mass, dragging it up to the cutoff
scale and thereby necessitating a fine-tuning to preserve a
light Higgs. This ‘‘hierarchy problem’’ provides perhaps
our best indication that new physics is likely to appear at
the TeV scale and it is hoped that the LHC will soon shed
light on this matter.

The Randall-Sundrum (RS) model [1] provides a
candidate solution to the hierarchy problem. This frame-
work allows one to generate natural scale hierarchies as
the infrared (IR) scale is realized as a warped down
incarnation of the Planck scale, MIR � e�kLMPl, where
kðLÞ is the curvature (length) of the warped extra dimen-
sion. Provided one can naturally realize the hierarchy
kL ’ Oð10Þ, the weak scale can be generated with
MIR � TeV and the Higgs mass protected from large cor-
rections. The relationship between the curvature and L is
determined by the dynamics that stabilize the extra dimen-
sion and the question of whether the RS model naturally
realizes the weak/Planck hierarchy translates into the
need for stabilization dynamics that naturally generate
kL ’ Oð10Þ.

Goldberger and Wise (GW) [2] have presented a mecha-
nism that successfully generates kL ’ Oð10Þ without the
need for input parameter hierarchies, thereby showing that

the RS model provides a genuine solution to the hierarchy
problem. The GW mechanism employs a bulk scalar field
with brane localized potentials that force the scalar to
acquire distinct nonzero values at the branes. The resulting
interplay between the shearing energy (which prefers the
extra dimension to be large) and the potential energy
(which tends to shrink the extra dimension) of the back-
ground scalar solution stabilizes the extra dimension at a
fixed finite value. Alternative methods for stabilizing L
have also appeared [3].
Besides the Planck and weak scales there may be other

scales present in nature. Examples of such scales occur
generically in models with gauge UV completions of the
type GUV � GSM, where GUV may be a grand unified
gauge group, or some other gauge extension of the SM,
that is broken to GSM at a posited high energy scale. The
flavor sector of the SM is also suggestive of new scales in
nature if the Yukawa couplings emerge as powers of a
dimensionless ratio h�fi=� for some flavon fields �f

and a cutoff �. Further scales may exist if the dark or
hidden sector of the Universe is not directly connected to
the weak scale. The dark matter itself may acquire its mass
by a distinct means to the SM fields, but even if the dark
matter obtains a weak scale mass it can couple to forces
whose mass scale is much lighter [4].
If the RS approach to the weak/Planck hierarchy is

realized in nature it is natural to ask if additional scales
can also be accommodated in this framework. The gravi-
tational background of the RS model can be referred to as a
warped throat and one can extend the RS gravitational
background by considering multiple warped throats glued
together at a common UV brane [5]. If the IR scales of
the distinct throats differ the warping that realizes the
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weak/Planck hierarchy in RS models can also be employed
to obtain additional mass scales.1 Such setups may have a
number of applications, including electroweak [7], flavor
[8,9], leptogenesis [10], axion [11], and hidden sector
physics [12,13]. If the IR scales of multiple throats are
related by symmetry one can also motivate dark matter
candidates [14]. As in RS models one must ensure that the
throat lengths are suitably stabilized to naturally generate
multiple hierarchical scales in multithroat models.

In this work we generalize the GW mechanism to mod-
els with multiple warped throats sharing a common ultra-
violet brane. We consider both independent throats2 and
throats possessing a discrete interchange symmetry like
Zn. In the former case the generalization is straightforward.
In the latter case the stabilizing dynamics may respect the
symmetry, resulting in equal throat lengths, or they may
break it, producing an asymmetric configuration in which
the throat lengths differ. We shall focus on two- (three-)
throat setups with a Z2 (Z3) interchange symmetry and
present stabilization dynamics suitable for either breaking
or maintaining the symmetry. Though admitting more
general application, our results are relevant for existing
models in the literature and we shall draw attention to some
of these as appropriate.

One of the main points that we seek to bring to the
readers attention is the new approach to discrete symmetry
breaking afforded by our constructs. Models with discrete
symmetries in four dimensions typically break the symme-
try spontaneously with a weakly coupled Higgs or via
strong dynamics at some energy scale. This symmetry
breaking scale usually maps to some IR scale in the theory,
like the top mass or some other fermion mass scale in
models with discrete flavor symmetries, but must also be
sufficiently shielded from SM fields to ensure compatibil-
ity with observations. One interesting aspect of discrete
symmetry breaking via GW scalars is that the symmetry
breaking can occur entirely at a high energy scale, like the
Planck scale, through UV localized dynamics and subse-
quently feed into the IR through the emergence of distinct
IR scales. This is interesting in the case of a discrete flavor
symmetry, like that recently discussed in [8], as the SM
fields need not couple directly to the source of symmetry
breaking in the UV. They may instead couple to IR flavor
fields in a flavor symmetric way and yet exist as part of a
flavor asymmetric theory in the IR. We suspect that our
ideas may admit interesting applications to flavor model
building and, in particular, geometric throat arrangements
may provide an alternative extra dimensional approach to
discrete flavor symmetries to that presented in [15].

Before proceeding we note that the field-theoretic ap-
proach to multithroat models [5] can be motivated by the
fact that string realizations of the RS model can contain
additional warped throats [16]. In the string picture these
emerge from the compact space that acts as the UV brane
in the RS approach and the notion of multiple throats glued
together in the UV serves to model this string picture.
Earlier phenomenological applications of the multithroat
setup can be found in [17].
The organization of this paper is as follows. In Sec. II we

present a single throat calculation to remind the reader of
the GW methodology and set our notations. We generalize
the GW mechanism to two independent throats in Sec. III.
We consider two throats related by a Z2 symmetry in
Sec. IV and three throats related by a Z3 in Sec V. In
both cases we present symmetry preserving and symmetry
breaking GWmechanisms. Section VI contains some com-
ments on models with n > 3 throats and the paper con-
cludes in Sec. VII.

II. GW MECHANISM IN A SINGLE THROAT

We would like to present an example calculation to
demonstrate the approach of GW. Rather than summariz-
ing the single throat calculation whose details can be found
in [2] we present a slightly modified calculation which,
despite failing to successfully stabilize the length of the
extra dimension, serves to demonstrate the methodology
and sets our notations. It is also useful in helping us under-
stand features that emerge in some of the multithroat
calculations that follow.
The metric we employ is defined by the interval

ds2 ¼ e�2ky���dx
�dx� � dy2 � GMNdx

MdxN; (1)

where M;N; . . . (�; �; . . . ) are the 5D (4D) Lorentz indi-
ces, the extra dimension is labeled by y 2 ½0; L�, and the
UV (IR) brane is located at y ¼ 0 (y ¼ L). GW considered
a bulk scalar in the above background with bulk action [2]

SB ¼ 1

2

Z
d4xdy

ffiffiffiffi
G

p ðGMN@M�@N��m2�2Þ; (2)

and brane localized actions

SUV ¼ � 1

2

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffi�guv
p ��ð�2 � u2Þ2; (3)

SIR ¼ � 1

2

Z
d4x

ffiffiffiffiffiffiffiffiffiffi�gir
p

�ð�2 � v2Þ2; (4)

where guv�� and g
ir
�� are the restrictions ofG�� to y ¼ 0 and

y ¼ L, respectively. Note that the boundary actions do not
possess any odd terms in the field � and consequently the
entire action is invariant under a Z2 symmetry � ! ��.
Also, we work with m2 > 0 here and in the generalizations
that follow.

1See [6] for an alternative way to realize a sub-TeV hidden
sector scale in addition to the weak/Planck hierarchy in the RS
framework.

2In this work an ‘‘independent throat’’ refers to a throat that is
part of a multithroat background but is not related to any of the
other throats by an interchange symmetry.
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We shall consider the case where the bulk and IR brane
actions retain their form SB and SIR but modify the UV
brane potential to3

SUV ¼ � 1

2

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffi�guv
p ��ð�2 þ u2Þ2; (5)

with u2 > 0. Variation of SB produces the bulk equation of
motion for � as

@N½
ffiffiffiffi
G

p
GMN@M�� þ ffiffiffiffi

G
p

m2� ¼ 0; (6)

which for @�� ¼ 0 has the solution

�ðyÞ ¼ Ae�þky þ Be��ky; (7)

where

�� ¼ 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þm2

k2

s
� 2� �: (8)

The bulk solution must satisfy the following boundary
conditions (BCs):

@y�ð0Þ � 2 ��ð�2ð0Þ þ u2Þ�ð0Þ ¼ 0; (9)

@y�ðLÞ þ 2�ð�2ðLÞ � v2Þ�ðLÞ ¼ 0; (10)

which, in the limit of large �, ��, are

�ð0Þ ¼ ��ð0Þ; (11)

�ðLÞ ¼ vþ ��ðLÞ; (12)

where4 �� ¼ Oð��1Þ.
Momentarily ignoring the �� corrections the leading

order IR boundary contributions to the potential for the
length of the extra dimension vanish and VðLÞ can be
written as

VðLÞ ¼ VBðLÞ þ VUV; (13)

where VUV ¼ ��u4=2þOð��1Þ and the bulk piece is

VBðLÞ ¼ k

2
½ð�þ 2ÞA2ðe2�kL � 1Þ þ ð�� 2ÞB2

ð1� e�2�kLÞ�: (14)

Enforcing the BCs on the bulk solution gives

A ¼ �B ’ ve��þkL; (15)

and for m2=k2 < 1 we may follow [2] and write � ¼ 2þ �
where � ’ m2=4k2, giving

VðLÞ ¼ 2kA2ðe2�kL � 1Þ þOð�Þ; (16)

’ 2kv2e�4kL þ � � � ; (17)

where the dots denote the constant piece and terms of
Oð��1Þ and Oð�Þ. This is the leading order potential L.
We would like to also determine theOð��1Þ corrections to
the potential. The corrections to the BCs are found to be

��ð0Þ ¼ k

2 ��u2
ðA�þ þ B��Þ ’ 2k

��u2
e�ð4þ�ÞkLv; (18)

��ðLÞ ¼ � k

4�v2
ðA�þe�þkL þ B��e��kLÞ ’ � k

�v2
v;

(19)

which give the following corrections to A, B:

�A ¼ ð��ðLÞ � ��ð0Þe��kLÞ
e�þkL � e��kL

’ �e��þkLv
k

�v2
; (20)

�B ¼ ð��ð0Þe�þkL � ��ðLÞÞ
e�þkL � e��kL

’ e��þkLv

�
k

�v2
þ 2k

��u2

�
:

(21)

This produces a correction to the bulk potential for L:

�VBðLÞ ’ �4kv2e�4kL

�
k

�v2

�
þ � � � ; (22)

and results in a nonzero contribution to VðLÞ from the
boundary potentials:

�VIRðLÞ ’ 2kv2e�4kL

�
k

�v2

�
þ � � � ; (23)

VUVðLÞ’
��u4

2
þ4kv2e�4kL

�
k
��u2

e�ð4þ2�ÞkL
�
þ��� : (24)

Putting all these results together the complete potential for
L through Oð��1Þ is given by

VðLÞ ¼ VB þ �VB þ �VIR þ VUV

’ 2ke�4kLv2

�
1� k

�v2

�
þ

��u4

2
þ � � � ; (25)

the minimum of which corresponds to L ! 1. Thus we
learn that if the GW scalar has a potential on the UV brane
whose minimum corresponds to a vanishing brane vacuum
expectation value (VEV), the potential for the length of the
extra dimension does not stabilize L at a finite value.
Instead the radius runs away and the extra dimension is

3Note that the minimum of this UV potential is nonzero and
will therefore contribute to the UV brane tension. In RS models
the UV brane tension must be related to the bulk cosmological
constant (CC) to ensure a vanishing 4D CC. In the presence of
the UV action (5) one should shift the usual RS brane tension
Vuv ! Vuv ��Vuv to cancel out this additional boundary ten-
sion and retain the standard RS solution. This constitutes a
modified version of the usual tuning of the 4D CC present in
RS models. It will be understood in the present work that this
shift of the UV brane tension has been undertaken whenever the
UV potential has a nonvanishing minimum so the usual RS
background solution holds.

4We generically refer to quartic parameters by � so that
Oð��1Þ also stands for terms ofOð ���1Þ. This applies throughout
the paper.
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not compactified. This feature will occur in some of the
multithroat scenarios below.

If one instead uses the UV action (3) as in [2] the
calculation carries through in the same fashion, however
instead of (25) one obtains

VðLÞ ’ 2ke�4kLðv� ue��kLÞ2
�
1� k

�v2

�
þ � � � : (26)

This potential differs from (25) in an important way since
the minimum is now at

L ¼ 1

�k
ln

�
u

v

�
; (27)

and the extra dimension is stabilized at a finite value. This
is the GW result. Notice that values of Lk�Oð10Þ are
easily obtained, an important feature that is necessary for
the IR scale to be naturally much less than the Planck scale,
MIR � e�kLMPl � MPl, as required to solve the hierarchy
problem [1].

For future reference we note that the observed failure of
the GW scalar to stabilize the extra dimension for a UV
potential minimized by �ð0Þ ¼ 0 holds more generally for
nonzero �ð0Þ ¼ u if u < v. If the energy density of the
scalar profile is dominated in the IR a runaway solution is
preferred as increasing the size of the extra dimension
redshifts this energy. The stable solution therefore requires
u=v > 1.

Following [2] we have neglected the backreaction of the
GW scalar on the metric in the above analysis. This is
acceptable provided u2=M3	 � 1 and v2=M3	 � 1, where
the 5D gravity scale M	 satisfies M2

Pl ’ M3	=k. The back-

reaction has been considered for a modified version of the
GW analysis in [18,19] and more recently a partial inclu-
sion of the backreaction in the GW scenario has appeared
[20]. Related analysis can also be found in [21]. We shall
not consider the backreaction in the generalizations that
follow and one should keep in mind that appropriate (and
obvious) generalizations of the conditions u2=M3	,
v2=M3	 � 1 must also hold.

We note that variations of the GW mehcanism for soft-
wall models have appeared [22] and that a 4D interpreta-
tion of the GWmechanism, based on AdS/CFT, exists [23].
In the dual 4D picture GW stabilization corresponds to
perturbing the CFT by introducing an ‘‘almost marginal’’
operator that explicitly breaks conformal invariance in the
UV. The (running) coupling of this operator is determined
by the profile for the bulk scalar in the 5D picture, and is
such that it runs slowly until reaching some critical value in
the IR, at which point it triggers a further spontaneous
breaking of the conformal symmetry. In multithroat mod-
els the separate throats are dual to distinct CFT’s that
couple via a common UV source of conformal symmetry
breaking (the common UV brane). Models with inter-
change symmetries among throats in 5D are therefore
dual to 4D theories with a discrete interchange symmetry

among distinct CFT’s, with the almost marginal operators
that perturb the CFT’s in the UV being identical. Models
with distinct throat lengths correspond to CFT’s with dif-
ferent UV perturbations whose couplings therefore reach
the critical value at which spontaneous symmetry breaking
occurs at different scales in the IR.

III. GW MECHANISM FOR TWO
INDEPENDENT THROATS

In this section we shall generalize the GWmechanism to
models with two independent warped throats glued to-
gether at a common UV brane. We label the two throats
as i ¼ 1, 2, with the metric in the ith throat defined by

ds2i ¼ e�2kyi���dx
�dx� � dy2i � Gi

MNdx
M
i dx

N
i ; (28)

where x�i � x� are the 4D coordinates and the warped
extra dimensions are labeled by x5i � yi 2 ½0; Li�. The
IR branes are located at yi ¼ Li and the common UV
brane sits at yi ¼ 0; 8 i. The gravitational sources neces-
sary to realize this background have been discussed in [5]
and we refer the reader there for details. In this section and
throughout we consider IR-UV-IR–type constructs. The
kinetic term for the massless radion in such setups has
the correct sign so the stability issues associated with the
UV-IR-UV setups are not present. Also note that we con-
sider a common bulk cosmological constant for the two
throats so that the curvature k is the same in both throats.
We consider a GW scalar�i in each throat with the bulk

action in the ith throat given by

SiB ¼ 1

2

Z
d4xdyi

ffiffiffiffiffiffi
Gi

p
ðGMN

i @M�i@N�i �m2
i �

2
i Þ: (29)

The IR brane localized actions are

SiIR ¼ � 1

2

Z
d4x

ffiffiffiffiffiffiffiffiffiffi
�giir

q
�ið�2

i � v2
i Þ2; (30)

and the action on the common UV brane is

SUV ¼ � 1

2

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffi�guv
p �X

i

��ið�2
i � u2i Þ2 þ 	�2

1�
2
2

�
;

(31)

where guv�� and ðgir��Þi are the restrictions of Gi
�� to yi ¼ 0

and yi ¼ Li, respectively. The total scalar action is thus

S ¼ X
i

ðSiB þ SiIRÞ þ SUV; (32)

which does not possess any odd terms in the fields�i and is
therefore invariant under two independent Z2 symmetries:

ZðiÞ
2 : �i ! ��i: (33)

These symmetries generalize the discrete symmetry of the
GW mechanism and serve primarily to simplify the
calculation.
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Variation of SiB produces the bulk equation of motion for
�i in the ith throat:

@N½
ffiffiffiffiffiffi
Gi

p
GMN

i @M�i� þ
ffiffiffiffiffiffi
Gi

p
m2

i �i ¼ 0; (34)

which for @��i ¼ 0 has the solution

�iðyiÞ ¼ Aie
�i
þkyi þ Bie

�i�kyi ; (35)

where

�i� ¼ 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þm2

i

k2

s
� 2� �i ¼ 2� ð2þ �iÞ; (36)

and �i ’ m2
i =4k

2 formi < k. The demand that the variation
of the action vanish on the boundaries leads to the BCs:

@y�ið0Þ � 2 ��ið�2
i ð0Þ � u2i Þ�ið0Þ � 	�2

j ð0Þ�ið0Þ ¼ 0;

i � j; (37)

@y�iðLiÞ þ 2�ið�2
i ðLiÞ � v2

i Þ�iðLiÞ ¼ 0: (38)

The potential for the throat lengths Li is a sum of
contributions from both the bulks and the branes and
may be written as

VðL1; L2Þ ¼
X
i

½Vi
BðLiÞ þ Vi

IRðLiÞ� þ VUVðL1; L2Þ: (39)

Inserting the solution (35) into the ith bulk action and
integrating over the extra dimension determines the bulk
contribution to the potential,

Vi
BðLiÞ ¼ k

2
½ð�i þ 2ÞA2

i ðe2�ikLi � 1Þ
þ ð�i � 2ÞB2

i ð1� e�2�ikLiÞ�: (40)

As in the GW case we consider large �, ��, so the leading
order BCs are �ið0Þ ¼ ui and �iðLiÞ ¼ vi, giving

Ai ’ e��i
þkLivi � uie

�2�ikLi ; (41)

Bi ’ uið1þ e�2�ikLiÞ � vie
��i

þkLi ; (42)

so that

Vi
BðLiÞ ¼ 2kA2

i ðe2�ikLi � 1Þ þOð�iÞ; (43)

’ 2ke�4kLiðvi � uie
��ikLiÞ2 þ � � � : (44)

To leading order the IR brane contributions vanish and the
UV brane contribution is a constant so that VðL1; L2Þ is
minimized at

Li ¼ 1

�ik
ln

�
ui
vi

�
: (45)

As one would expect this matches the GW result as we
have effectively neglected the coupling term 	�2

1�
2
2 on the

UV to leading order. To find the corrections induced by 	
we write

�ið0Þ ¼ ui þ ��ið0Þ; (46)

�iðLiÞ ¼ vi þ ��iðLiÞ; (47)

and find that

��iðLiÞ ’ � k

�iv
2
i

ðvi � uie
��ikLiÞ; (48)

and

��ið0Þ
’ k

��iu
2
i

�
ðvi � uie

��ikLiÞe��i
þkLi � 	

4k
u2jui

�
; i � j:

(49)

Enforcing the corrected BCs on the bulk solution results
in the following corrections to A, B:

�Ai ’ �e��i
þkLi

�
ðvi � uie

��ikLiÞ k

�iv
2
i

� 	

4

u2j
��iui

e��ikLi

�
;

i � j; (50)

�Bi ’ e��i
þkLiðvi � uie

��ikLiÞ
�

k

�iv
2
i

þ k
��iu

2
i

�
� 	

4

u2j
��iui

;

i � j: (51)

With these results we can calculate theOð��1Þ corrections
to VðL1; L2Þ. These include corrections to the bulk poten-
tials (�Vi

B), the IR boundary potentials (�Vi
IR), and the UV

potential, giving

VðL1;L2Þ ¼
X
i

½Vi
Bþ�Vi

Bþ�Vi
IR�þVUV

’X
i

2ke�4kLiðvi�uie
��ikLiÞ

�
ðvi�uie

��ikLiÞ



�
1� k

�iv
2
i

�
þ 	u2j

2 ��iui
e��ikLi

�
þ��� ; j� i;

(52)

where the dots denote subdominant terms and a constant
piece. To leading order in ��1 the minimum of VðL1; L2Þ is
given by

Li ¼ 1

�ik

�
ln

�
ui
vi

�
þ ln

�
1� 	u2jv

2
i �i

2 ��iu
2
i ðv2

i �i � kÞ
��
; j � i:

(53)

Thus the presence of independent GW scalars in each
throat, with a common UV brane coupling, generates a
potential for the throat lengths whose minimum is set by
finite values of L1;2. As in GWone may obtain Lik ’ Oð10Þ
without fine-tuning. The minimizing throat lengths return
to the usual GW result in each throat in the limit 	 ! 0,
which is to be expected as the stabilization dynamics of the
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two throats decouple in this limit. For finite 	 there is a
correction to the GW result.

In general the lengths (53) are expected to differ in each
throat. As such this generalization of the GW method is
useful for models with two independent throats with dis-
tinct IR scales, as in [12,13] in which the SM resides in one
throat with the usual order TeV IR scale and a hidden
sector resides in a second throat with an independent IR
scale. Reference [13] employed a hidden IR scale of order
a GeV, which corresponds L1=L2 � 0:8, and such a differ-
ence is easily obtained with Eq. (53). Our results could also
be employed in the scenario of [7] in which the third
generation is sequestered in a separate throat with an
independent IR scale relative to that in which the lighter
generations reside.

IV. GW MECHANISM FOR TWO THROATS
WITH A Z2

We would like to consider the interesting case where the
two throats are related by a Z2 interchange symmetry. Such
a gravitational background has already been employed in
the literature [14] and is of interest because the interchange
symmetry can affect dynamics and motivate phenomeno-
logical applications. The action of the interchange symme-
try is

Z2: y1 $ y2; (54)

with a corresponding action on the field content of each
throat:

F 1ðx�; y1Þ $ F 2ðx�; y2Þ: (55)

The fields F i could denote the wave function in the ith
throat of a field that propagates in both throats, an example
being a SM gauge boson propagating in two throats that are
subject to a ‘‘UED-like’’ [24] reflection parity. This sce-
nario was considered in [14] where it was shown that the
resulting KK-parity ensures stability of the lightest odd KK
mode, thereby motivating a dark matter candidate for RS
models. Alternatively the SM may be confined to one
throat with a hidden sector residing in the other, as would
occur in a multithroat version of the mirror matter models
[25–27]. Our interests here are primarily in the general-
ization of the GW mechanism to such a symmetric throat
arrangement, regardless of the specific application.

We label the throats as i ¼ 1, 2 where the metric in the
ith throat is again defined by

ds2i ¼ e�2kyi���dx
�dx� � dy2i � Gi

MNdx
M
i dx

N
i ; (56)

and we consider a GW scalar �i in each throat with the
action of the interchange symmetry being

Z2: �1 $ �2: (57)

The bulk action in the ith throat is

SiB ¼ 1

2

Z
d4xdyi

ffiffiffiffiffiffi
Gi

p
ðGMN

i @M�i@N�i �m2�2
i Þ; (58)

and the IR brane localized actions are

SiIR ¼ � 1

2

Z
d4x

ffiffiffiffiffiffiffiffiffiffi
�giir

q
�ð�2

i � v2Þ2; (59)

where ðgir��Þi is the restriction of Gi
�� to yi ¼ Li. Note that

the interchange symmetry requires equality of the bulk
masses m and the IR brane parameters � and v for scalars
in distinct throats. For @��i ¼ 0 the solution to the bulk

equations of motion are

�iðyiÞ ¼ Aie
�þkyi þ Bie

��kyi ; (60)

where �� is defined as

�� ¼ 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þm2

k2

s
� 2� � ¼ 2� ð2þ �Þ; (61)

with � ’ m2=4k2. The IR BC is

@y�iðLiÞ þ 2�ð�iðLiÞ2 � v2Þ�iðLiÞ ¼ 0; (62)

and we consider large � so that

�iðLiÞ ¼ v; i ¼ 1; 2; (63)

to leading order. We consider three distinct cases for the
UV brane potential in what follows. Each case has different
consequences for the structure of the resulting gravitational
background.

A. Preservation of the Z2 symmetry

First we shall present a generalized GW mechanism to
stabilize the two throats while preserving the Z2 inter-
change symmetry. In this case we write the action on the
common UV brane as

SUV ¼ � 1

2

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffi�guv
p f�þð�2

1 þ�2
2 � 2u2Þ2

þ ��ð�2
1 ��2

2Þ2g; (64)

where guv�� is the restriction of Gi
�� to yi ¼ 0. As in the

previous section the entire action is invariant under two
independent Z2 symmetries whose actions are defined by

ZðiÞ
2 : �i ! ��i:(65)

The corresponding UV BC is

½@y�i � 2�þð�2
i þ�2

j � 2u2Þ�i � 2��ð�2
i ��2

j Þ�i�jUV
¼ 0; i � j; (66)

and for large �� > 0 the leading order UV BCs are

�ið0Þ ¼ u; i ¼ 1; 2: (67)

Imposing the BCs on the bulk solutions and integrating
out the extra dimension generates the following potential
for L1;2:
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VðL1; L2Þ ’
X
i

2ke�4kLiðv� ue��kLiÞ2 þ � � � ; (68)

which is minimized at the usual GW value:

L1 ¼ L2 ¼ 1

�k
ln

�
u

v

�
: (69)

Equality of L1 and L2 implies preservation of the Z2

interchange symmetry in the presence of the stabilizing
dynamics. One might wonder however if the Oð��1Þ cor-
rections modify this equality; inclusion of these corrections
gives

VðL1; L2Þ ¼
X
i

½Vi
B þ �Vi

B þ �Vi
IR� þ VUV

’ X
i

2ke�4kLiðv� ue��kLiÞ2
�
1� k

�v2

�
þ � � � ;

(70)

and the minimum remains at (69).
This type of stabilization mechanism, in which an ini-

tially Z2 symmetric throat configuration remains Z2 sym-
metric as the GW scalars reach their minimum and fix the
value of the throat lengths, can be employed in, e.g., the
warped dark matter model of [14]. As the Z2 symmetry is
preserved any field properties dependent on this symmetry,
like the stability of the dark matter candidate, remain
in tact.

B. Breaking the Z2 symmetry

In this section we write the action on the common UV
brane as5

SUV ¼ � 1

2

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffi
�giuv

q
f�að�2

1 þ�2
2 � u2Þ2

þ �b�
2
1�

2
2g; (71)

which is also invariant under the two independent symme-
tries �i ! ��i. The UV BC is

½@y�i�2�að�2
i þ�2

j �u2Þ�i��b�
2
j�i�jUV¼0; i� j:

(72)

For large �a;b > 0 the leading order UV BCs correspond to

just one scalar acquiring a boundary VEV,

�1ð0Þ ¼ u; �2ð0Þ ¼ 0; (73)

where we label the field with a nonzero boundary VEV as
i ¼ 1. Imposing the BCs gives

A1 ’ ve��þkL1 � ue�2�kL1 ;

B1 ’ uð1þ e�2�kL1Þ � ve��þkL1 ;

A2 ¼ �B2 ’ e��þkL2v

(74)

and to leading order the potential for Li is

Vi
B ’ 2k


�
e�4kL1ðv� ue��kL1Þ2 þ � � � ; i ¼ 1;
e�4kL2v2 þ � � � ; i ¼ 2:

(75)

Including the Oð��1Þ corrections the full potential is
VðL1; L2Þ ¼

X
i

½Vi
B þ �Vi

B þ �Vi
IR� þ VUV

’ 2ke�4kL1ðv� ue��kL1Þ2
�
1� k

�v2

�

þ 2ke�4kL2v2

�
1� k

�v2

�
þ � � � ; (76)

yielding the following minimizing throat lengths:

L1 ¼ 1

�k
ln

�
u

v

�
and L2 ! 1: (77)

Observe that the Z2 symmetry has been broken as
L1 � L2; however only L1 remains finite with L2 running
away to infinity. This runaway is consistent with our ex-
ample calculation for a single throat in Sec. II.

C. Breaking the Z2 symmetry with finite throat lengths

We would like to find a stabilization configuration that
breaks the Z2 interchange symmetry of the two throats and
yet stabilizes both throats at finite lengths. In the preceding
sections the scalar action possessed two additional discrete

symmetries, ZðiÞ
2 : �i ! ��i, which generalize the discrete

symmetry employed in [2]. These symmetries prove too
restrictive if one seeks to stabilize both throats at finite
lengths as the asymmetric minimum of the resulting UV
potential induces a nonzero boundary VEV for only one of
the scalars. As discussed in Sec. II for the GW scalar, the
UV VEV must dominate the IR VEV in order to stabilize
the throat length. In this section we relax the symmetries

ZðiÞ
2 to permit an asymmetric minimum to the UV potential

which permits both scalars to take nonzero VEVs.
We employ the following UV action:

SUV ¼ � 1

2

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffi�guv
p f�að�2

1 þ�2
2 � u2Þ2 þ �b�

2
1�

2
2

���1�2 � 	ð�3
1�2 þ�1�

3
2Þg; (78)

where the � and 	 terms break the symmetries ZðiÞ
2 but

admit the following diagonal symmetry:

ZD
2 : �1;2 ! ��1;2: (79)

Retaining (58) and (59) for the bulk and IR actions, re-
spectively, we see that ZD

2 is a symmetry of the entire
action.

5This is a simple rewriting of the potential used in Sec. IVA
with the parameters �a;b and u related to the parameters used in
that section; see [28,29] for a discussion of a related potential.
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With the above UV action one obtains the following
BCs:

½@y�i � 2�að�2
i þ�2

j � u2Þ�i � �b�
2
j�i þ�

2
�j

þ 	

2
�jð�2

j þ 3�2
i Þ�jUV ¼ 0; i � j:

We again consider the limit where the coupling constants
in the UV Lagrangian are large and the derivative piece is
subdominant. However to simplify the calculation we con-
sider the case where the �a;b terms also dominate the� and

	 terms. This hierarchy of parameters6 is technically natu-
ral as the symmetry of the action is enhanced from ZD

2 to

Zð1Þ
2 
 Zð2Þ

2 in the limit �, 	 ! 0. We arrive at the follow-

ing leading order BCs:

�1ð0Þ ¼ u; �2ð0Þ ¼ �þ 	u2

2�bu
2

u; (80)

where terms of order ��2 are neglected.7

Based on what we have seen in the preceding sections
we can immediately deduce that the leading order potential
for the throat lengths is

VBðL1;L2Þ’2ke�4kL1ðv�ue��kL1Þ2

þ2ke�4kL2

�
v�ue��kL2 
�þ	u2

2�bu
2

�
2þ��� ;

the minimization of which gives

L1 ¼ 1

�k
ln

�
u

v

�
; (81)

L2 ¼ 1

�k

�
ln

�
u

v

�
þ ln

�
�þ 	u2

2�bu
2

��
: (82)

Thus the throat interchange symmetry is broken by the
stabilization dynamics and both throats acquire finite
lengths. With �b, �, 	 > 0 the second logarithm is nega-
tive and one has L2 < L1. Including the Oð��1Þ correc-
tions from the derivative pieces in the BCs gives

VðL1; L2Þ ¼
X
i

½Vi
B þ �Vi

B þ �Vi
IR� þ VUV

’ 2ke�4kL1ðv� ue��kL1Þ2
�
1� k

�v2

�

þ 2ke�4kL2

�
v� ue��kL2 
�þ 	u2

2�bu
2

�
2



�
1� k

�v2

�
þ � � � ; (83)

and the leading order expressions for L1;2 hold. This shows

that the generalized GW mechanism can successfully
break the interchange symmetry and fix the throat lengths
at finite values. Such a mechanism would be of use in a
flavor model based on a broken Z2 symmetry or in a
warped realization of the broken mirror model discussed
in [26].
Note that there is a sense in which symmetry breaking

occurs both in the UV (different GW VEVs) and in the IR
(different throat lengths) in the present example.
Ultimately it is the UV behavior of the GW scalars that
triggers the symmetry breaking, which then manifests in
the IR in the form of distinct IR scales. However, it is
interesting that the emergence of multiple energy scales in
the IR encodes information about the UV.
It is also important to make some comments on the

above solution. Stability of the solution requires the UV
boundary VEV to be larger than the IR VEVand therefore
the solution in the second throat necessitates

�
�þ 	u2

2�bu
2

�
>

v

u
: (84)

Accordingly one cannot take ð�þ 	u2Þ=ð2�bu
2Þ to be

‘‘too small’’ as the limit �b ! 1 corresponds to �2ð0Þ ¼
0 and results in the runaway solution L2 ! 1 found in the
previous section. If one demands that u=v does not greatly
exceed 10 based on naturalness arguments then there is
only a small window of parameter space in which our
results hold and our approximations can be trusted. More
generally there exists parameter space such that the asym-
metric minima of the UV boundary potential in Eq. (78)
has both�1ð0Þ � u and�2ð0Þ � u. These solutions require

that the ZðiÞ
2 symmetry breaking terms are not subdominant.

To see this note that in the limit 	 ¼ 0 the minima of the
UV boundary potential must satisfy

�1�2jUV ¼ �

2�b

; (85)

where no approximation has been made. Furthermore the
parameters must also satisfy �=�bu

2 < 1. Therefore the
solutions with both �1ð0Þ � u and �2ð0Þ � u require
ð�=�bu

2Þ � 1 and lie outside our approximation. There
is no difficulty of principle in employing these solutions,
however the calculation becomes considerably more cum-
bersome. For this reason we have considered the above
approximations which in any case demonstrate an ability to
stabilize the throat lengths via Z2 symmetry breaking
dynamics.
Before concluding this section we note that one can

break the Z2 interchange symmetry without introducing

ZðiÞ
2 breaking terms at the expense of an extended field

content. Introducing a UV localized scalar 
 that is odd
under Z2 permits a UV term/ 
ð�2

1 ��2
2Þ. If
 develops a

VEV the Z2 symmetry is broken and �1;2 acquire distinct

6As �a;b and 	 have different mass dimension to � this
statement must be made with reference to dimensionless quan-
tities by employing appropriate powers of a fixed reference scale
like the curvature.

7We have checked that this critical point of the UV potential is
indeed stable with �a;b � �, k, and �a;b > 0.
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UV boundary values resulting in distinct finite throat
lengths.

V. GW MECHANISM FOR THREE THROATS
WITH A Z3

Next we consider three throats related by a cyclic Z3

interchange symmetry, the action of which is given by

Z3: yi ! yiþ1; (86)

where i ¼ 1, 2, 3 labels the throats, yi labels the warped
extra dimension in each throat, and iþ 1 is defined mod 3
so that y3 ! y1. The metric in the ith throat is defined as
per Eq. (56) and the action of Z3 on the field content of
each throat is

F iðx�; yiÞ ! F iþ1ðx�; yiþ1Þ: (87)

To generalize the approach of GW to the three-throat
background we consider a set of GW scalars �i, one in
each throat, that transform under Z3 as �i ! �iþ1. The
bulk action in the ith throat is

SiB ¼ 1

2

Z
d4xdyi

ffiffiffiffiffiffi
Gi

p
ðGMN

i @M�i@N�i �m2�2
i Þ; (88)

where mass equality is enforced by the Z3 symmetry. The
IR brane localized actions take the standard form

SiIR ¼ � 1

2

Z
d4x

ffiffiffiffiffiffiffiffiffiffi
�giir

q
�ð�2

i � v2Þ2; (89)

where ðgir��Þi is the restriction of Gi
�� to yi ¼ Li and

equality of the constants � and v on the different branes
is again dictated by symmetry. With these actions the IR
BC in the ith throat is

½@y�i þ 2�ð�2
i � v2Þ�i�jIR ¼ 0: (90)

For large � one has �iðLiÞ ¼ v to leading order. A deter-
mination of the potential for Li requires specification of the
UV action. In what follows we first consider a UV action
that preserves the Z3 symmetry and then present others that
break it.

A. Preservation of the Z3 symmetry

In this section we present a generalized GW mechanism
for three throats subject to a Z3 interchange symmetry that
stabilizes the throats with identical lengths and therefore
preserves the Z3 symmetry. Applications for a symmetric
three-throat configuration have been discussed in [5].
These include a discrete family symmetry based on the
interchange of three identical throats and a geometric
realization of the trinification model [30]. The Z3 preserv-
ing system presented here provides an appropriate gravi-
tational background for the examples discussed in [5].

To obtain a Z3 preserving configuration we employ the
following UV action:

SUV ¼ � 1

2

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffi�guv
p �

��2
X
i

�2
i þ ��

�X
i

�2
i

�
2

þ ~�
X
i

�4
i

�
; (91)

where guv�� is the restriction ofG�� to yi ¼ 0. As this action

does not contain any odd terms in the fields �i the entire
action is invariant under three independent Z2 symmetries
whose actions are defined by

ZðiÞ
2 : �i ! ��i: (92)

These symmetries generalize the discrete � ! �� sym-
metry of [2].
Demanding that the variation of the action vanishes on

the UV brane gives the UV BC:�
@y�i þ�2�i � 2 ��

�X
j

�2
j

�
�i � 2~��3

i

�
UV

¼ 0: (93)

For large ��, ~�, �> 0 the leading order UV BCs are the
same for each scalar:

�2
i ð0Þ ¼

�2

2ð3 ��þ ~�Þ � u2; i ¼ 1; 2; 3: (94)

Imposing the BCs and calculating the potential gives

VðfLigÞ ¼
X
i

2kA2
i ðe2�kLi � 1Þ þOð�Þ; (95)

’ X
i

2ke�4kLiðv� ue��kLiÞ2 þ � � � ; (96)

which is minimized at the usual GW value:

Li ¼ 1

�k
ln

�
u

v

�
; i ¼ 1; 2; 3: (97)

Equality of L1, L2, and L3 preserves the Z3 interchange
symmetry to leading order. Including the Oð��1Þ correc-
tions modifies the potential to

VðfLigÞ ¼
X
i

½Vi
B þ �Vi

B þ �Vi
IR� þ VUV

’ X
i

2ke�4kLiðv� ue��kLiÞ2
�
1� k

�v2

�
þ � � � ;

(98)

but the minimum remains at (97) and the Z3 symmetry is
preserved.

B. Breaking the Z3 symmetry

For alternative applications of a three-throat background
one may prefer a Z3 symmetric action to produce three
throats with different lengths as a result of stabilization; see
[8] for example. We can achieve this by rewriting the UV
action as
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SUV ¼ � 1

2

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffi�guv
p �

�a

�X
i

�2
i � u2

�
2

þ �bð�2
1�

2
2 þ�2

2�
2
3 þ�2

3�
2
1Þ
�
;

and taking �a;b > 0. The absence of odd terms in the fields

�i ensures that the symmetries ZðiÞ
2 still hold. For large

�a;b > 0 the leading order UV BCs that minimize the UV

potential are

�1ð0Þ ¼ u; �2ð0Þ ¼ �3ð0Þ ¼ 0; (99)

which break the Z3 symmetry and stabilize one throat
(which we label as i ¼ 1) at

L1 ¼ 1

�k
ln

�
u

v

�
: (100)

However the vanishing UV boundary values for �2;3 to

leading order result in the i ¼ 2 and i ¼ 3 throat lengths
running away, L2;3 ! 1. This is similar to the broken Z2

symmetry case of Sec. IVB. Although this successfully
breaks the Z3 interchange symmetry of the throats the
runaway nature of the i ¼ 2, 3 throats means such a
solution is likely of limited phenomenological utility.

In order to stabilize L2;3 at finite values one should

introduce ZðiÞ
2 breaking terms in the UV action. A suitable

action is

SUV ¼ � 1

2

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffi
�giuv

q �
�a

�X
i

�2
i � u2

�
2 þ �bð�2

1�
2
2

þ�2
2�

2
3 þ�2

3�
2
1Þ ��ð�1�2 þ�2�3 þ�3�1Þ

� 	ð�1�2�
2
3 þ�2�3�

2
1 þ�3�1�

3
2Þ;��ð�1�

3
3

þ�2�
3
1 þ�3�

3
2Þ � �ð�1�

3
2 þ�2�

3
3 þ�3�

3
1Þ
�
;

(101)

where the terms with coefficients �, 	, �, and � break the

symmetries ZðiÞ
2 but do not break the throat interchange

symmetry Z3. The UV action remains invariant under the
diagonal discrete symmetry,

ZD
2 : �1;2;3 ! ��1;2;3; (102)

which is also preserved by the bulk and IR actions. With
this action the UV BCs are�
@y�i�

�
2�a

�X
‘

�2
‘�u2

�
þ�bð�2

j þ�2
kÞ
�
�i

þ�

2
ð�jþ�kÞþ	

2
ð�j�

2
kþ�k�

2
j þ 2�i�j�kÞ

þ�

2
ð�3

kþ 3�j�
2
i Þþ

�

2
ð�3

j þ 3�k�
2
i Þ
�
UV

¼ 0; (103)

where i � j � k � i. For computational simplicity we
consider the limit where the boundary potential terms
dominate the derivative piece in this BC. We further take

the �a;b terms to be larger than the ZðiÞ
2 symmetry breaking

terms, a technically natural limit. In this case the leading
order BCs are8

�1ð0Þ ¼ u; �2ð0Þ ¼ �þ �u2

2�bu
2

u � u2;

�3ð0Þ ¼ �þ �u2

2�bu
2

u � u3;

(104)

and to leading order the potential for L1;2;3 is

VðfLigÞ ¼
X
i

2kA2
i ðe2�kLi � 1Þ þOð�Þ; (105)

’ 2ke�4kL1ðv� ue��kL1Þ2
þ X

i¼2;3

2ke�4kLiðv� uie
��kLiÞ2 þ � � � : (106)

The minimum of this potential occurs at

L1 ¼ 1

�k
ln

�
u

v

�
; L2 ¼ 1

�k

�
ln

�
u

v

�
þ ln

�
�þ �u2

2�bu
2

��
;

L3 ¼ 1

�k

�
ln

�
u

v

�
þ ln

�
�þ �u2

2�bu
2

��
:

(107)

Note that all three throat lengths are finite and in general
Li � Lj for all i � j. Including the Oð��1Þ corrections

from the derivative pieces in the UV BCs the leading terms
of Eq. (106) pick up a factor of ð1� k=�v2Þ and the
minimum agrees with (107) to Oð��1Þ.
The fact that all three throat lengths are different reflects

the complete breaking of the Z3 interchange symmetry.
Such a GW scenario is relevant for, e.g., the work of [8] in
which a three-throat configuration with a Z3 interchange
symmetry was considered. In that work each generation of
SM fermions was confined to a different throat so the
interchange symmetry of the throats also served as a flavor
symmetry. The Z3 flavor symmetry was posited to be
broken by unspecified dynamics that result in different
throat lengths. The calculations of this section provide a
concrete realization of the gravitational background em-
ployed in that work. We note that the Z3 symmetry break-
ing structure obtained here is not precisely that envisioned
in [8]. While they sought to have the Z3 symmetry broken
by different throat lengths they also sought to have the UV
brane remain Z3 symmetric. Though our approach differs,
the UV symmetry breaking inherent in our methodology
may not significantly alter their conclusions. As the GW
scalars are odd under ZD

2 the coupling of SM fields to the
Z3 breaking parameters may be sufficiently sequestered to
retain the Z3 flavor symmetry to good approximation in the

8As in the Z2 case, the Hessian analysis indicates that this set
of solutions corresponds to a stable critical point as long as
�a;b > 0 is dominant.
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UV, provided the SM fermions are not charged under this
symmetry. It would be interesting to consider alternative
approaches to determine if a purely symmetric UV sector
can be found in conjunction with Z3 breaking in the IR. We
also note that ideas similar to those discussed here may be
relevant to the three-throat configuration of [10].

The comments made at the end of Sec. IVC for the
broken Z2 case also apply here. It is important that one
does not take the arguments of the second logarithms in the
expressions for L2;3 (107) to be too small compared to v=u
as one returns to the runaway solutions L2;3 ! 1 in the

limit �b ! 1. Solutions exist with �ið0Þ � u, 8 i, but

these require the ZðiÞ
2 symmetry breaking terms to be as

‘‘large’’ as the ZðiÞ
2 preserving terms. Calculations become

somewhat more cumbersome in this range of parameter
space.

For more general model building purposes one may wish
to break a discrete symmetry among multiple throats to a
discrete subgroup; that is one may desire some but not all
throat lengths to be equal after stabilization. In the limit
� ¼ � the present example provides a demonstration of
precisely this scenario. Observe from (107) that for � ¼ �
one has L2 ¼ L3. Thus instead of breaking Z3 completely
the breaking pattern Z3 ! Z2 would result. The equality of
� and � can be motivated by symmetry as in this limit the
Z3 
 ZD

2 symmetry of the UV potential is enhanced to
S3 
 ZD

2 . Thus the present example can be employed to
either break Z3 completely or to break it partially to a Z2

subgroup depending on the relation between � and �.

VI. MORE THAN THREE THROATS

The generalization of some of the preceding results to
n > 2 throats is straightforward. For n independent throats
one considers n GW scalars with bulk and IR actions
matching those of the two independent throat analysis in
Sec. III. The common UV action is generalized to

SUV ¼ � 1

2

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffi�guv
p �Xn

i¼1

��ið�2
i � u2i Þ2

þX
i�j

	ij�
2
i �

2
j

�
: (108)

In the limit where the ��i terms dominate the BCs the
resulting potential for the throat lengths VðfLigÞ is the
sum of n decoupled pieces, each of which match the GW
result to leading order. Thus the leading order expression
for the throat lengths that minimize VðfLigÞ is

Li ¼ 1

�ik
ln

�
ui
vi

�
: (109)

As in the two-throat case these expressions receive
Oð	ij= ��Þ corrections as a result of the UV localized inter-

actions among scalars.

For n throats related by a Zn symmetry the results of
Secs. IVA and VA can also be generalized. In those
sections, two- and three-throat systems that preserve Z2

and Z3 throat interchange symmetries were presented. This
is generalized by employing bulk scalars in each throat
with bulk and IR actions matching those in Sec. VA. The
Zn symmetric UV action is generalized to9

SUV ¼ � 1

2

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffi�guv
p �

��2
Xn
i¼1

�2
i þ ��

�Xn
i¼1

�2
i

�
2

þ ~�
Xn
i¼1

�4
i

�
:

(110)

For large ��, ~�, �> 0 the leading order UV BCs are

�2
i ð0Þ ¼

�2

2ðn ��þ ~�Þ � u2; i ¼ 1; 2; . . . ; n; (111)

and the throat lengths are fixed at

Li ¼ 1

�k
ln

�
u

v

�
; i ¼ 1; 2; . . . ; n; (112)

thereby preserving the Zn symmetry and generalizing the
earlier results. Just as the n ¼ 3 case permits a geometric
realization of the trinification model the symmetric n ¼ 4
case would similarly admit a geometric realization of the
quartification group [32]. Following the methodology we
have presented in the previous sections symmetry breaking
scenarios for n > 3 throats can also be obtained.

VII. CONCLUSION

In this work we have generalized the GWmechanism for
stabilizing the single warped throat of the RS model to
multithroat backgrounds in which distinct warped throats
share a common UV brane. We have shown that, due to a
combination of IR and UV dynamics, the throat lengths
can be stabilized at finite values in such setups. We con-
sidered independent throats for which the GW results
generalize in a straightforward way and throats related by
a discrete interchange symmetry. In the latter case we
provided examples where the stabilization dynamics can
either preserve or break the interchange symmetry. Our
results are applicable to a broad class of multithroat models
and have direct relevance for existing models in the
literature.
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