PHYSICAL REVIEW D 82, 104031 (2010)

Spinning compact binary inspiral. II. Conservative angular dynamics
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We establish the evolution equations of the set of independent variables characterizing the 2PN rigorous
conservative dynamics of a spinning compact binary, with the inclusion of the leading order spin-orbit,
spin-spin, and mass quadrupole-mass monopole effects, for generic (noncircular, nonspherical) orbits.
More specifically, we give a closed system of first order ordinary differential equations for the orbital
elements of the osculating ellipse and for the angles characterizing the spin orientations with respect to the
osculating orbit. We also prove that (i) the relative angle of the spins stays constant for equal mass black
holes, irrespective of their orientation, and (ii) the special configuration of equal mass black holes with
equal, but antialigned spins, both laying in the plane of motion (leading to the largest recoil found in
numerical simulations) is preserved at 2PN level of accuracy, with leading order spin-orbit, spin-spin, and

mass quadrupolar contributions included.
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L. INTRODUCTION

Compact binaries composed of neutron stars or stellar
size black holes are among the most likely sources to
emit gravitational waves in the frequency range of the
Earth-based gravitational wave detectors LIGO and
Virgo [1]. Supermassive black holes in the mass range of
3 X 10° + 3 X 10° solar masses reside in the centers of
galaxies and following the merger of their host galaxies,
they also merge. In the process they create powerful gravi-
tational waves, detectable in the lower mass range by the
space mission LISA [2].

By definition the inspiral is the regime of the orbital
evolution, during which the post-Newtonian (PN) parame-
ter € = Gm/c*r = (v/c)* (where m = m, + m, is the
total mass, and r and v the orbital separation and relative
velocity of the binary) is small and where the leading order
dissipation is due to the gravitational waves. As two gal-
axies merge, their supermassive black holes are subject to
both gravitational radiation and dynamical friction. The
former overcomes the latter at about &;,, = 1073 (the actual
number only weakly depends on both the stellar distribu-
tion and mass [3]). During the inspiral which follows, the
parameter € increases. When & approaches its value at the
innermost stable orbit, the PN description becomes in-
creasingly nonaccurate, therefore the subsequent plunge
is better described by numerical evolutions, or as an alter-
native, by expressions traced back to the PN approach,
arising either from the effective one-body model, cali-
brated to numerical relativity simulations [4] or from a
phenomenological transition phase, with coefficients again
calibrated by comparison with specific, numerically gen-
erated waveforms [5]. Finally, the ringdown follows, when
the newly formed black hole radiates away its physical
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characteristics, with the exception of mass, spin, and pos-
sibly electric charge (for a review of quasinormal modes of
black holes see Ref. [6]).

The spin and quadrupole moment of the supermassive
black hole at the Galactic center can be measured via
astrometric monitoring of stars orbiting at milliparsec dis-
tances [7], and this can also be a test of the general
relativistic no-hair theorem.

The spin affects the horizon of the black holes, therefore
those observations on black holes which indicate the size
of the horizon will also lead to indirect spin magnitude
estimates. (Estimating the quadrupole moment from ob-
serving a two-dimensional projection of the horizon would
be less straightforward.) Both stellar size and supermassive
black holes can have accretion disks and jets in their active
periods. Whenever these observations are connected to the
presence of a jet and the direction of it can be identified
(projection effects may again obstruct this), we also obtain
information on the black hole spin axis, assuming it is
aligned with the symmetry axis of the magnetic field and
hence the jet direction. Jets from rotating black holes have
been shown to be stable [8]. Spin direction can be also
inferred from observations on the radiation of the accretion
disk.

Such observational spin estimates can be made at least
by four methods:

(i) Reverberation mapping of the observed optical/X-ray
lines (highly excited Mg, O, C) in active galaxies to
determine the radius and velocity pattern of the Broad
Line Region. This depends on the metric, decreasing
with increasing spin. From such considerations the mass,
spin and spin orientation of the black holes can be esti-
mated [9]. In particular, information on the spin direction
of the central black hole of the Seyfert galaxy Mrk 110 was
obtained by estimating the central black hole mass in two
independent ways. First, assuming that the broad emission
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lines are generated in gas clouds orbiting within an accre-
tion disk, the mass could be determined as function of the
inclination angle of the accretion disk. Secondly, detecting
the gravitational redshifted emission in the variable frac-
tion of the broad emission lines, a central black hole mass,
which is independent on the orientation of the accretion
disk could be deduced [10].

(i1) There is a strong effort towards imaging with milli-
meter Very Long Baseline Interferometry (VLBI) the event
horizons of Sagittarius A* (SgrA*) and Virgo A (M87),
which again depend on the spin. For SgrA*, the radio
source at the center of our Milky Way, millimeter and
infrared observations require the existence of a horizon
[11]. Analysing the peaks of the power density spectra in
the light curves of X-ray flares from the Galactic Center
black hole the mass and spin were inferred [12]. A compact
emission region (bright spot) in a circular orbit and the
lightcurves of its observed flux and polarization depend on
the mass and spin of the black hole. The emitted polariza-
tion fraction is polarised orthogonally to the spin axis of
the black hole [13]. Unlike SgrA*, M87 exhibits a power-
ful radio jet, allowing future VLBI data to constrain the
size of the jet footprint, the jet collimation rate, and the
black hole spin [14].

(iii) The size of the jet launching region in Active
Galactic Nuclei (AGN) is determined by the Blandford-
Znajek effect, which in turn depends on the spin [15].
Measurement of the diameter of the jet base (e.g. in
MS87) gives evidence for small sizes, regarded as signature
of a large spin [16].

(iv) The low-energy cutoff in the energetic electron
spectra of the jets suggested by the radio spectra [17] is
conveniently explained by the pion decay resulting from
proton-proton collisions [18]. The latter mechanism re-
quire a relativistic temperature in the accretion disk near
the foot of the jet, which translates to the central black hole
spinning extremely fast [19].

Some of these methods will certainly also work for
stellar size black holes due to scale invariance arguments
in accretion phenomena. The jet/disk geometry has been
constrained for the stellar black holes XTE J1118 + 480
and GX 339-4 [20].

From all these observations we conclude that it is nec-
essary to include the spin and quadrupole moment of black
holes when modeling their binary systems.

In this paper we investigate the 2PN rigorous conserva-
tive dynamics during the inspiral of a spinning compact
binary system, by including leading order spin-orbit (SO),
spin-spin (SS), and mass quadrupole-mass monopole (QM)
effects, for generic (noncircular, nonspherical) orbits.
Because of these interactions the spins undergo a preces-
sional motion [21,22]. Various aspects related to the lead-
ing order contribution to both the conservative and
dissipative part of the dynamics due to the SO interaction
were discussed in Refs. [23-25], while the corrections
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represented by the SS coupling in Refs. [25,26], and by
the QM coupling in Refs. [27-29]. The radial motion under
the Newton-Wigner-Pryce spin supplementary condition
[30], with all these contributions included, is fully solved
in Ref. [31]. The Hamiltonian approach including spins has
been also widely discussed [32]. Based on numerical work,
empirical formulas for the final spin have been proposed in
Ref. [33]. Zoom-whirl orbits, which were known to exist
for particles orbiting Kerr black holes [34], also appear in
the framework of the PN formalism [35], their likeliness
increasing with the spin [36]. Gravitational wave emission
can lead to a spin-flip [37,38] in X-shaped radio galaxies
[37,39]. It is a more recent result that for mass ratios
0.3 + 0.03 the combined effect of SO precession and
gravitational radiation will result in a substantial spin-flip
already in the inspiral phase [3,40].

With the spins and mass quadrupole moments included,
the number of variables in the configuration space in-
creases drastically. In Ref. [41] a minimal and conveniently
chosen set of independent variables for such a system was
established. Notational correspondence of some of these
variables with quantities employed in Refs. [42-44], where
the dynamics of spinning compact binaries (without mass
quadrupolar contributions) has been also discussed, is
established in Appendix A. Beside the masses m;, the
number of independent variables characterizing the total
and orbital angular momenta (J and L, respectively) and
spins S; was shown to be 6, chosen either as

(a) 3 angles (spanned by the Newtonian orbital angular
momentum Ly with the total angular momentum J and
with the spins S;, denoted as a and «;, respectively) and
3 scales [the normalized magnitudes of the spins
Xi = (c/G)(S;/m?) and the magnitude of the total angular
momentum J], or equivalently as

(b) 5 angles and a scale. In this case the dimensionless
spin magnitudes y; could be replaced by the azimuthal
angles i; of the spins, measured in the plane of motion
from a suitably defined node line [ (the intersection of
the planes perpendicular to the total orbital momentum
J=L +S;+8S, and to the Newtonian orbital angular
momentum Ly). The relation between the two sets of
variables is given by Eqgs. (46)—(47) of [41].

In the present paper we discuss the conservative dynam-
ics of these two sets of independent variables. All lengths
involved (J and y;) are constants of motion, as J is con-
served to 2PN accuracy [23] and the spins undergo a
precessional motion [21,22]. Therefore our goal reduces
to the study of the dynamics of the angular variables. In
the process we also derive the evolutions of the parameters
(a,, e,) of the osculating ellipse, of the spin relative angle y
span by Sl and Sz, and of the periastron, given by the
Laplace-Runge-Lenz vector Ay.

We start with a discussion of the evolutions under a
generic perturbing force in Sec. II. First we monitor how
the Keplerian dynamical constants evolve. This allows us
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to determine both the evolution of (a,, e,) and of the
vectors ﬁN, AN, and ascending node vector I. We also
determine here how the evolution of the true anomaly
parameter y, (measured from AN to the actual location
of the reduced mass particle) is modified by the perturbing
force. The specific perturbing force components generated
by PN, 2PN, SO, SS, and QM effects are listed in
Appendix B, together with the components of the spin
precession angular velocity.

Employing these results, also the spin evolution equa-
tions discussed in detail in[41], we are able to derive in
Sec. III the evolution of «. Equation (14) and (15) of [41]
show that once the evolution of y, and a are established,
the evolution of the angle ¢, measured from Ito AN, and
of the angle — ¢, measured from [ to an arbitrary inertial
axis X 1 J (see Fig. 1 of [41]) also follow, which complete
the characterization of the evolution of the Euler angles.
Then, in Sec. IV we derive the evolutions of k;, v, and ;.
With this we fulfill the task of characterizing the evolution
of the variables composing the independent sets (a) and (b).

We discuss special spin configurations in Sec. V and
present our Concluding Remarks in Sec. VI.

Notations and conventions—The gravitational constant
G and speed of light ¢ are kept in all expressions. For any
vector V we denote its magnitude by V and its direction
by V.

The reduced mass is u = m;m,/m. We assume that
m; = m,, thus the mass ratio v = m,/m; =1 and the
symmetric massration = u/m = v/(1 + v)> € [0, 0.25].

The mass quadrupole moment originates entirely from
rotation, being therefore characterized by a single
quadrupole-moment scalar Q; = —(G*/cYwy?m3}, with
the parameter w € (4, 8) for neutron stars, depending on
their equation of state, stiffer equations of state giving
larger values of w [27,45] and w = 1 for rotating black
holes [46]. The negative sign arises because the rotating
compact object is centrifugally flattened, becoming an
oblate spheroid.

The inertial system JK; has the arbitrary inertial x axis X
and J as its z axis. We also define the noninertial systems
XK, and K, with Ly as the common z axis, the x axes
being [ and AN, respectively. Then the y axes are m =
Ly X I for K; and Qn = Ly X Ay for K.

II. EVOLUTIONS IN TERMS OF A GENERIC
PERTURBING FORCE

Although there is no notion of gravitational force within
general relativity, in the PN regime the motion of a com-
pact binary can be regarded as a perturbed Keplerian
motion, with perturbations coming from the difference in
the predictions of general relativity with respect to
Newtonian gravity. Therefore, one can adopt the terminol-
ogy of celestial mechanics regarding the modifications
induced by general relativity as perturbing forces.

PHYSICAL REVIEW D 82, 104031 (2010)

Any perturbed Keplerian motion is characterized by an
acceleration

G
a=——"f+Aa )
r

We find it convenient to express Aa in the basis K, with
basis vectors {f;)} = (An, Qn, L) as

3
Aa = afg @)
i=1

A. Keplerian dynamical constants

Starting from the definitions of the Keplerian constants
of motion Ey = uv?/2 — Gmu/r, Ly = ur X v, and
AN = v X Ly — Gmut, it is straightforward to show that

Ey = uv-Aa, (3
Ly = ur X Aa, 4)

AN=Aa><LN+V><LN
= w[2(v-Aa)r — (r- Aa)v — (r - v)Aa]. (5)
By employing the decomposition of r and v in the basis
K4, given by Egs. (B1) and (B2), also the decomposition
of the perturbing force acting on the unit mass (2), and

finally the generic formula for the time-derivative of any
vector V,

. . d
V=VV+V_YV, (6)

we obtain for the magnitudes
mu?
Ly

Ly = (aycosy, — ay siny,)ur,

w(Ay + Gmucosy,)
Ly

EN = —a Sin/\/p + a,

bl

Ay = a,Ly + (a5 cosy, — ajsiny,)

v wr(Ay + Gmu cosy,)

Ly , (7

and for the directions

d . Mmoo N N

ELN = a4 ar(sm)(,,AN — cosy,Qn),

d + Ly Gmu®> .

EAN = I:—alA—N + Ly rsiny ,(a,; cosy,

. A ro. N
—a s1nxp>]QN —asing Ly, (®)
N

where r is given in terms of the true anomaly parameter y,
by the standard formula (B20).
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B. Radial semimajor axis a, and radial eccentricity e,

We note that the constraint A% = (Gmu)? + 2EL%/u
is preserved by the evolutions (7), therefore only two
of these equations are independent. From them we can
also derive evolution equations for the parameter p, =
L%/Gmpu? and eccentricity e, = Ay/Gmpu of the conic
orbit. For bounded orbits we could introduce the semi-
major axis a, = p,/(1 —€2) = LY /Gmu*(1 — 2) =
—Gmu/2Ey of the osculating ellipse instead, and derive
evolution equations for the pair (a,, e¢,). In this way we
obtain two Lagrange planetary equations:

) 247
.=
" [Gm(1—e

R I:ar(l_e%)ill/z
e = —_—
4 Gm

» ay(1+2e,cosx, +cos?x,) —

%)]1/2[_‘11 Sin/\/p + aZ(er + COSXp)]: ©)]

(1+e,cosx,)
(10)

Here we have employed the true anomaly parametrization
(B20) written in terms of osculating ellipse orbital
elements

ar(l - E%)

= 11
1 +e.cosy, (1

C. The noninertial system XK 4

Rewriting Egs. (8) in the form of precess1on equatlons
by inserting AN = QN X LN, QN = —AN X LN in the
first expression and QN = LN X AN, LN = —QN X AN
in the second, and also computing the time derivative of
QN from its definition gives

o =Qu X1, (12)
with the angular velocity vector

r COS A
7M /Yp AN + as
LN N

MrSiny, L
Oy = a3 TPQN - [ -

a
IAN
Gmu’r siny,

Ly
P iy a3)

+ (ay siny, — a,cosy,)

With this we have established the time evolution of the
noninertial basis Kj.

The PN order of Q, is O(Q,) =& 20(a;/c).
Employing the contributions to a; from Appendix B and
Eq. (58) of [41] one finds

ay(e, +cosy,)siny,
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O(QLY) = 0(£)O(1, NO(T™Y),
O(QF™) = 0(£*)0(1, n, n*)O(T ™),

0(0°) = @(83/2>[f o, ) Jorr
k=1
O(Q53) = O(£?)O(n) 1 x,O(T 1),

2
oQM) = (9(82)(9(77)[2 @<V2k*3>wkxi]@<r'>, (14)
k=1

with T being the radial period, defined as twice the time
elapsed between consecutive 7+ = 0 configurations.

A couple of immediate remarks are in order:

(1) Ifaz = 0 (no perturbing force is pointing outside the
plane of motion), Ly (the plane of motion) is conserved,
while both AN and QN undergo a precessional motion
about LN (in the conserved plane of motion).

(2) If a; = a, = 0 (the perturbing force is perpendicular
to the plane of motion), then AN undergoes a precessional
motion about QN and vice-versa, while I:N precesses
about r.

D. True anomaly Yy,

As the basis {f;)} is comoving with the plane of motion
and the periastron, the position vector r = x'f;) [with x'
given by Eq. (B1)] changes according to v = )'cif(i) +
x'f g = ¥ + x'Qy X £, A straightforward computa-
tion, employing

X' = Fcosy, — rx,siny,,

X2 = Fsiny, + rx,cosx,,

B =0, (15)
then leads to
Ly=ur [, + Q" | ) (16)
From here
L
, T (Q, Ly =5 (17)

Therefore, the deviation from the Newtonian expression is
due to the component of 2, along I:N. The importance of
Eq. (17) lies in allowing us to pass from time derivatives
to derivatives with respect to y, in the evolution equations
(7), (9), and (10), which then become ordinary differential
equations.

It is also immediate to derive v? and calculate Ey as

(P +Pig)  Gm o
Ey = 3 RS M S )
2
r A
@, Ly (18)
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By inserting Eq. (17), we obtain the radial equation

2 2Ey
M r

Remarkably, all terms arising from the precession of the
basis vectors cancelled out and we formally recovered the
radial equation for the Keplerian motion. This is not sur-
prising, as the dynamical quantities Ey, Ly refer to the
osculating ellipse.

2Gm L%
+ - (19)
nor

E. Ascending node I

The basis vectors of K are related to the basis vectors
of XK, by arotation in the x-y plane with angle — ,, thus

I= cos:,l/PAN — sin:,bp()N, (20)

1 = sing Ay + cosy, Q. 1)

The time derivative of the direction of the ascending node
is therefore found as

d ~

S . d »
El = — ¢, (singf ,AN + cosiy ,Qn) + cosgprAN

- sinzﬁp%QN
= cosif ,(Qy — ngﬁN) X AN
—sing ,(Qy — ll’pI:N) X Qn
= (@, — ¢, Ly X1 (22)

Similarly we can derive the evolution of m as

%Iﬁ = ¢p(cos¢pAN - sinz,b,,QN) + sinz//p%AN
+ cos%,%QN
= costy ,(y — l.ppﬁN) X Qn
+ sing ,(Qy — z'ﬁpI:N) X AN
= (@ — i, Ly) X 1. (23)

As it was to be expected, the unit vectors [ and undergo a
precession characterized by the angular velocity vector

Q, =9, ¢,Lx 24)

III. EULER ANGLE EVOLUTIONS

Now we have all necessary elements for deriving
the evolution of the angles which enter the set of indepen-
dent variables. First we remark that the time derivative
of the definition of the argument of the periastron ¢, =
arccos(l - Ay), by employing Eqs. (12) and (22), gives an
identity.

PHYSICAL REVIEW D 82, 104031 (2010)

A. Inclination «

From the definition of the inclination a =
arccos(J - Ly), employing the constancy of J up to 2PN
[23] and the derived precession equation for Ly, we find

. d . . .
—Sinad:J'ELN:J'(ﬂAXLN)
=0, (LyXxJ)=—sinaQ, -, (25

thus

+
i=a, ,u,rcos(z//; Xp)‘ 26)

B. Longitude of the ascending node — ¢,
By employing Eq. (14) of [41] we find the evolution of
the azimuthal angle —¢,, of the ascending node / as

. sin +
b= —a 22 T X0) 27
Ly sina

Quite naturally, both the orbital inclination and the ascend-
ing node can be changed only by a force perpendicular to
the orbit.

C. Argument of the periastron i,

From Eq. (15) of [41] and Eq. (27) the evolution of
¥, + x, emerges as
Ly prsin(y, + x,)

b,+Xx,=—5—a
Vot X wrr  ° Lytana

(28)

Again, only the perturbing force component along I:N
contributes. Combining Egs. (28) and (17) leads to the
evolution equation of the third Euler angle.
wrsin(yr, + x,)

Ly tana ’
The left-hand side is Q; - I:N, such that the unit vectors [
and m undergo a precession characterized by the angular
velocity vector

QA'I:N_I;bp:a3

(29)

wr « . .
Q, = a3a[COSXpAN + siny,Qn

(30)

tana
The first two terms of the bracket combine to f. If there is
no perturbing force perpendicular to the orbit, [ and stay
unchanged.
The evolution of ¢, in detail reads

N sin(, + x,) I:N:I-

b= —ar Y (asing, — a cosy,) ST S0
14 AN 14 14 LNAN
rsin +
gy sty £ Xp) 31)
Ly tana

Equations (26), (27), and (31) are Lagrange planetary
equations for the angular orbital elements. With the use of
Eq. (17), by passing from time derivatives to derivatives
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with respect to y,, these become ordinary differential
equations. During the inspiral the perturbing force compo-
nents a; arise as a combination of relativistic (PN and
2PN), SO, SS, and QM contributions, and are given in
Appendix B.

IV. SPIN ANGLE EVOLUTIONS
A. Spin polar angles «;

The spin polar angles ; = arccos(S; - Ly) evolve due
to the spin precessions (see Appendix B) and the evolution
of Ly, as

- SinKiki = (QA X IAJN) : Si + I:N : (Ql X Sl)
= (24 — Q) (Ly X8, (32)

In order to proceed, we need the expression (B3) of the
spin, such that

LyXS= sink,[sin(¢, — ¥)AN + cos(f, — ¥)QN]

(33)
and we find
ki =(Q; - Ay)sin(y, — ¢) + (- Qu) cos(¢,
— ) - 032‘_; sin(y,, + x, — ¥). (34)

The relative orientation of spins with respect to the
orbital angular momentum is unchanged only if the per-
turbing force lies in the plane of motion (a; = 0) and if the
spin precession axis is along I:N. The latter condition is
obeyed by the SO precession, but not by its SS and QM
corrections (except for perfect perpendicularity of the
spins to the orbital plane, when also a3 = 0 holds, see
Appendix B, thus k; = 0). Starting from this and the re-
mark a; * O(g/2), and also the estimates (B35), we find

O (k) = O(£*)O(n)wix; + OW* ) x;1O(T ). (35)

B. Relative spin angle y

For this we take the derivative of its definition y =
arccos(Sy - S,) and obtain

—sinyy = (Q; — Q,) - (5, X S,). (36)

If the spins are either aligned or antialigned with each
other, such that Sl X éz = (0, then y = 0, irrespective of
the mass ratio.

Otherwise, by employing Eqgs. (56) of [41] and also
(Sl X Sz) . Si = 0, we rewrite the condition (36) as
2 ((V —v7h

———sinyy = 5

3G LN + {f' . [(1 - Wzl/_l)SZ

— (- wlv)sl]}f) (8 x8). G

PHYSICAL REVIEW D 82, 104031 (2010)

Equal mass (v = 1) black holes (w; = 1) trivially imply
v = 0, irrespective of the orientations of the spins.
For the generic case from Eq. (B3) we have

A

S XS, = [cosk; sink, sin( , — )
— sink; cosk, sin(y, — ¥1)]Ax
+ [cosk sink, cos(if, — i)
— sink; cosk, cos(i, — ¥ 1)]10N
+ sink; sink, sin(, — )Ly, (38)

then

(Sq X S,) - t = cosk; sink, sin(z,bp +t X, — ¥>)
— sink; cosk, sin(y, + x, — ¥1),

(S; X S,) - Ly = sink; sink, sin(¢, — ¢)). (39)

Thus, we can rewrite Eq. (37) in detail as

A . (w=vhH . )
36L, sinyy = 5 sink sink, sin(¢, — i)
S
+ [(1 — wyr 1) =% sink, cos(¢f — i)
Ly

—(1 - wlv)f—; sink; cos(yf — l,//l):l

X [cosk; sink, sin(if — i)

— sink; cosk, sin( — )], (40)

where ¢y = y, + i ,. Again, it is manifest that the relative
angle of the spins stays constant for equal mass black
holes, irrespective of their orientation.

Starting from the above remark, Eq. (36) and the esti-
mates (B35), we find

O (7) = O(e)O(**)O(T™"). (41)
Thus, the angle y changes faster than «;.

C. Spin azimuthal angles ¢;
Eq. (30) of [41]

S; = sink; cos,l + sink; singyxh + cosk; Ly (42)

gives ¢; = arctan[(rh - S;)/(I - S;)] for the spin azimuthal
angles, unless «; =0, 7 (the spins are aligned or
antialigned to the Newtonian orbital angular momentum)
or ¢; = /2, 37/2 (the projections of the spins in the
plane of motion are perpendicular to the node line).

In the generic case the spin azimuthal angles evolve
according to
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— tani,l) iSl

(1 +tany,) (I - S;) = (th o

(e
dt
As both [ and i precesses about £, , while S; about ;,
we find

d N\ a
—tany,—1)-§;. 43
a5 0) -8 (43)

W ;sink; = (cosy ;xh — sim/f,f) (Q; —Q;) X Si], (44)

or, by employing Egs. (20) and (21):

i; sink; = [sin(, — YAy + cos(if, — AN
[(Q; — ;) X §] (45)

with the vector products £; X Si and Q; X Si, given by
Egs. (B39) and (B6), respectively. We obtain

gy = (Q; - Ly) + [(€ - QN)SiH(¢p — ) — (Q;-Ay)

r .
X cos(¢f, — ;)] cotk; — as Z—N[cota sin( , + x,)

— cotk;cos(x, + ¢, — ;)] (46)
With this we have completed the derivation of all required

evolution equations.
|

G*m

. M (x50 SS QM
K; = 2c3r3 (Kl + Ki + Ki ),
sin(, + xp, — ¥1) < -
SO _ _ P P i 2k—3
K T D @3+ 3)x

Gmu COSXP k=1

x [2cos(wp Xy ) + %[uowp — ) — Bsiny, sin(g, + x, m)]],

i — ;) +sin(y; —

K$S = 023y [3sin2¢, + 2x, —
K = 3w,y sin(yp, + 2x, = 2451,

All contributions K30, K55, K™ are of the same order. In
general the expression for «; does not vanish, not even in the
special case of equal mass (v = 1), maximally spinning
(x; = 1) black holes (w; = 1) on circular orbit (Ay = 0),
when

2l
G [2s1n(21/fp +2x, — 2¢;) + 2sin2¢,

+2Xp_¢i_¢j)+351n(¢j_¢i)]~ (49)

Therefore, in general, a configuration with the spins in the
plane of motion is not preserved.

However, in the special case f; = ¢; + 7 and equal
mass (v = 1), equal spin (xy, = x;) black holes (w; = 1)
we find

k[=
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Starting from Eq. (46) and the estimates (B35) we find
O () = O()O(1, n)O(T ). (47)

The change in the azimuthal angle of the spins is one PN
order higher than the Keplerian orbital evolution.

V. SPECIAL CONFIGURATIONS

As a by-product of the calculations carried on in this
paper we have recovered the known result that the plane of
motion is changed only by perturbing forces pointing out-
side the plane of motion, thus by the SO, SS, and QM
perturbations. We have shown that the relative angle of the
spins stays constant for equal mass black holes, irrespec-
tive of their orientation. We have also proven that unless
the spins are perpendicular to the plane of motion (k; = 0),
the polar spin angles will change under these perturbations.

The nonprecessing (x; = 0) and precessing (generic ;)
cases have been discussed separately in the literature
(see Refs. [47,48], respectively) in connection with the
recoil of the final black hole [49]. From among the pre-
cessing cases the antialigned spin configuration with the
spins laying in the orbital plane has received special
attention as numerical investigations have shown that it
leads to the highest kick velocity.

We have now the means to investigate such a configu-
ration analytically. First we specialize to spins laying in the
orbital plane, k; = /2. After some algebra, Eq. (34) gives

(48)
i)l
N G*m?

az =0, Qi'AN=Tg1’X1COS(l//p_ ),

R G2 2
Q- Qu =~ 55y sin(w, — ), (50)

7

Q; - 2 2G3Jcosa

such that according to Eq. (34) k; = 0.'

'The SO contribution to K; vamshes while the SS and QM
contributions cancel. A glance at K given by Egs. (48) shows
that without imposing the black hole condition w; = 1 the SS
and QM contributions do not cancel, therefore the result does not
hold for equal mass, identically spinning neutron stars.
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Then one has to check whether the condition imposed on
i, is consistent with their evolution. With a; = 0 Eq. (B6)

gives ; X Si = 0, while from Eq. (B39) we get
Q; x§; Jcosa[sm(l//p ¥ )AN
+ COS(lﬁp — )Qx] (51
such that Eq. (46) simplifies to
b= G J cosa. 52)

223

As the right-hand side does not depend on the index i, the
imposed antialignment of the spins can be maintained over
time. This is also evident from Eq. (36). We have also
checked that the constraints (46)—(47) of [41] are trivially
obeyed.

Therefore the special configuration of equal mass black
holes with equal, but antialigned spins, both laying in the
plane of motion is preserved by the conservative PN dy-
namics, with leading order SO, SS, and QM contributions
included. This stands as the main result of this section.

Equation (48) of [41] allows us to rewrite
. 7G
‘//i - 2¢ N2 3 3

with the coefficients [given by Egs. (39)-(40) of [41]]
specified for equal mass as

Ly(1 + epy + €2pn), (53)

1/v\2 13 Gm
6PN=§<E) Ty (>4)
o= () - By 2 0oy
PN 28\ e 32 %r 32 ¢*r\c
+<GT’") (55)
Cc°r

VI. CONCLUDING REMARKS

In this paper we have established the conservative evo-
lution equations of the two independent sets of variables
characterizing a spinning compact binary during its inspi-
ral, established in [41], with leading order SO, SS, and QM
contributions included. As the lengths J and y; are con-
stants, this reduces to angular evolutions. The evolutions of
the variables complementing the set (J, y;), the inclination
«, and the spin polar angles «; were given as Egs. (26) and
(34). The evolution equations for the spin azimuthal angles
Y, (replacing y; as independent variables) were given by
Eq. (46). These time derivatives (and all others computed
throughout the paper) can be transformed to derivatives
with respect to y, by employing Eq. (17) in the form
dr \pr? dx,

PHYSICAL REVIEW D 82, 104031 (2010)

The true anomaly y, becomes the only independent vari-
able by employing the parametrization r(y,), Egs. (B20)
and (B21).

The system is closed by the evolution of the argument of
the periastron ¢, given as Eq. (31), the last two Eqgs. (7)
giving Ay and Ly, the analytical expression (B17)—(B19)
of the perturbing acceleration components «;, the expres-
sions (B39) and (B6) of the of the spin precessional angular
velocity components (Q Ay) and (Q; - Qy), finally the
vector products ©; X S; and @, X §;, given by Eqgs. (B39)
and (B6), respectlvely

Therefore, we have derived a closed system of first
order ordinary differential equations for the variables
(a, k;, ¥, ¥ ,, Ay, Ly) evolving in terms of the true anom-
aly x,, ready for numerical evolution. From this set,
(a, k;, ;) are independent variables characterizing the
spinning binary configuration, while (¢ ,, Ay, Ly) charac-
terize the orbit.

In another way of counting, replacing (A, Ly) and their
evolutions by the orbital elements (a,, e,) and Egs. (9) and
(10), respectively; also including the evolution Eq. (27) for
the longitude of the ascending node — ¢, we have obtained
evolutions for (i) the orbital elements (a,, e,, @, ¥ ,, —¢,,)
characterizing the perturbed Keplerian motion and for
(ii) the spin angles (k;, ¢ ;) characterizing the spin orienta-
tions with respect to this perturbed Keplerian orbit.

As a by-product, we have proven that the relative angle
of the spins stays constant for equal mass black holes,
irrespective of their orientation.

Also, unless the spins are perpendicular to the plane of
motion, the polar spin angles change under the perturbations.
There is one notable exception under this rule: the special
configuration of equal mass black holes with equal, but
antialigned spins, both laying in the plane of motion is
preserved by the conservative dynamics. This is the configu-
ration which led to maximal recoil found in numerical simu-
lations [48], and our investigations show that it is conserved
during the inspiral to a 2PN accuracy, with leading order
spin-orbit, spin-spin, and mass quadrupole effects included.
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APPENDIX A: COMPARISON OF NOTATIONS
WITH RELATED LITERATURE

In this Appendix we compare the notations established
in [41] and thoroughly employed in this paper with corre-
sponding notations in the literature.

First we establish the correspondence of the Euler angles
(—¢, a, ) employed in [41] and standard celestial
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mechanics angular orbital elements in Table 1. The celes-
tial mechanics angular orbital elements ({2, ¢, ) are de-
fined with respect to a reference plane and a reference
direction contained within it, both inertial. The node line
is defined as the intersection of the reference plane with the
plane of motion; the angle span by it with the reference
direction is the longitude of the ascending node (); the
relative angle of the two planes is the inclination ¢ and
the angle span by the ascending node with the direction of
the periastron in the argument of the periastron w. The
Euler angles (—¢,, , ¢,) employed in [41] are defined
similarly, but with respect to the inertial system JK; with

TABLE 1.
elements.

PHYSICAL REVIEW D 82, 104031 (2010)

%and J standing as the x and z axes [any X L J standing as
the reference direction and the reference plane given by
& §=Tx%)1

The various systems of reference necessary for the
description of the motion were also discussed in
Refs. [42,43]. We establish the correspondence in
Table II. While in these papers a quasicircular orbit was
assumed, the results of [41] hold for generic orbits.
A correspondence can be established as long as J can be
viewed as an inertial axis.

Finally we compare the notations of Ref. [44] with the
notations of [41] in Table III.

Comparison of the notations in [41] and standard celestial mechanics angular orbital

Reference [41]

Celestial mechanics

Euler angles (—dwa, ¥p)
True anomaly
Equation (14) of [41]

sing

Equation (15) of [41] l.ﬂp + X, = % + ¢, cosa

d’ _ _gl%an(tbﬁxp)
n

angular orbital Q, 1, w)
elements
true anomaly v
N _ s tan(w+v)
Q=i sine .
w+v==2%—Qcost

TABLE II.

Comparison of the notations in Refs. [42,43] and [41].

Reference [43] (based on [42])

Reference [41]

Orbit circular elliptical, Ay # 0
Corresponding quantities (w, Mw) (5% = G"—;sm, %83/2)
Corresponding equation numbers (16), (18) (25) and (26), (15)

Plane of motion

Orthonormal inertial source system
Orthonormal basis in the plane of motion
Euler angles

Line of sight in the (x, z) plane

orthonormal base (n, A)
(e, ey, €f)
(ef, €3)
(P, ¢, @)

© = arccos(e? - N)

nonorthogonal base (%, ©
K= &3 J),if J=¢é’
(4 m), it J = es
Wb =)+ xpr a0 T— ), if J = &8
N

® = arccos(J - N), § = Zi?@

TABLE III.

Comparison of the notations in Refs. [44] and [41].

Reference [44] Reference [41]

Orbit
Corresponding quantities

Inertial axis

Inertial orthonormal basis L J, (to J)

Inertial orthonormal basis L Ly (the K basis)
Basis comoving with u

Symmetric mass ratio

Polar and azimuthal angles of Ly in K;

Phase

circular elliptical, Ay # 0
((‘)orb’ U3 = Mworb) (5';’2 = (37:71 83/2, % 83/2)
Jo J

%) G 9)

(')QL) yL) ({) ’/h)
(n, A) (7, Ly X 7)

v € [0,0.25] 1 € [0,0.25]

(v, @) (.32~ ¢,)
q)(l) l/f = ¢p + Xp
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APPENDIX B: DECOMPOSITION OF THE
ACCELERATION AND SPIN ANGULAR
VELOCITY VECTORS IN THE SYSTEM

XK 4 DURING THE INSPIRAL

In this Appendix we give the decomposition of the
accelerations and of the precessional angular velocities of
the spins in the system J4. The ingredients we need are
Egs. (19) and (20) of [41] for the decomposition of the
position and velocity vectors:

A

r= COSXPAN + sinXpQN, B1)

Gm N
vV = ® [— siny,Ay + (cosx,,
Ly

A A
+ —N)QN ] (B2)
mu
In the system JK; the spin is given by Eq. (30) of [41]. By
employing Egs. (20) and (21) we rewrite it in the system
K, as

S = sinkfcos(¢, — ¥)Ay —sin(yy, — ¥,)Qx]
+ cosk; L. (B3)
We also need
P XS, = cosxk(sin,\/,,AN - COSXPQN)
— sinkg sin(f, + x,, — YL, (BY)

A A A A
VXS, = © COSKk[<COSXp + —N)AN + SinXpQN]
N mu
Gmu .
7 it s1nKk|:cos(¢,, +Xp — i)
N
AN ©
+ ———cos(¢y, — l//k)ilLN’ (B5)
Gmpu
and
. r [[sink; . .
Q; X§; = Z {[ Sln(‘f/p — ;) Sm('vbp + XP)
N no

. A Sink;
+ cosk; 31nxp]AN + I:tanal cos(¢p, — ;)

A

X sin(¢, + x,) — cosk; cosXp]QN

— sink; sin(tpp + Xy~ v,b,-)I:N}. (B6)
Egs. (3)—(5) of [41] give
S, = gmz"?Vzi_3Xi, (B7)
G? .
Q= _FwimznV21_3Xi2mi- (B8)

PHYSICAL REVIEW D 82, 104031 (2010)

1. Acceleration

The general relativistic, SO, SS, and QM contributions
to the acceleration, with the SO part given in the Newton-
Wigner-Pryce spin supplementary condition (NWP SSC)
[25,28], by employing Egs. (B7) and (B8) are:

Aa = apn + aArpN + ag](\)’vp + agg + aQM, (Bg)
with
G G 3
cr r 2
+2(2 - n)iv}, (B10)

apN =

2

Gm{[ (12+29n)< ) + (3 — 4n)v?

15
+—77(1—317)r ——n(3 4n)itv

2 »nGm 7.

——(13—4n)—v —2+259+29*)—i |

2 r r
—%I:n(15+4n)v2—(4+41n+8172)G—m

r

373 +2n)f2]fv}, (B11)

2.2
aNWP G m 77
SO

Z(4V2k 34 3)y { N (o - Sf

—(vX8§) + 7(f~ X Sk)}, (B12)

3G3m f A i & e
agg = — 777/\/1)(2{[(51 Sz) 5(F-Sp(F - Sy)IE
+ (f' * Sz)sl + (f' * SI)SZ}’ (BIS)
3.3, 2
aqu = — i e IR NG

+ Z(r . Sk)Sk} (B14)
After inserting Eqs. (B1)—(B5), the projections a; = Aa -
) with £ = (AN, QN, ﬁN), they can be readily found.
For explicit expressions we also need

A

- Sy = sinkgcos(f, + x, — ), (B15)

A

Si-S,= ). (B16)

COSK| COSK, + sink sink,cos(, —

The acceleration components are

104031-10
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M
ay = aiN +ai™ + a0 + afS + a

’

G G 3 G
atN =2—n; 202+ n)—m — (1 +3n)v?> +Zni* |cosy, — 22— n)Fi mu
c 2 L

sin)(p},
N

S

Gm 2 15 . 3 . Gm
- {[ (12+29 )( ) @A)t (1 =3t =0 = dn)ted = 213 — 4 T2

G Gmui
—Q+259+ 27;2)—mf2:|cos/\/p + [n(IS A — (4+41n+ 8772)—'"— 3n(3 + 27;)#] 2’2’” sinX,,},
r N

G*m? 3L G 37 Ay
450 — m77|:<2M1\;_ Zvﬂ)cos/y,,—i-%sin/\/p LN]Z(4v2k 3+ 3) i cosky,

aj 3.3
3G3m? . .
ays = —Tﬁxl,\/z{cosxl COSKy COS X, + sinky sinko[[cos(fy — i) —5cos(h, + x, — i) cos(P, + x, — ¥2)]
X COSXp + COS(d’p + Xp— IIIZ)COS((//p - lr//l) + COS('ﬁp + Xp— ¢1)COS(¢p - ll’z)]},
3G m3 .
a?M = Z w73 xt{cosy, — sin?kycos(h, + x, — p)lScosy,cos(g, + x, — i) — 2cos(r, — )]}
(B17)
a, = PN + aZPN + aSO + ags + aQM,
G 3 G A
atN =—{[2(2 + n)— —(1+3n)v? + S ]sin/\/p +22 - n)F Zvlu (COS,\/p + Gnivu)}
G Gm\?2 15 3 G
a3N = 4—’"2{[—(12 + 29n)(—m) + (3 — At + (1 = 3n)i* — 203 — 4n)itv? — (13 — 4n)—p?
c're|L4 r 8 2 2 r
G G
—(2+257+ 2n2)7mf2]sin)(p - [n(ls +4An? — (4 +41n+ 87;2)7'" —3n(3+ 2n)i2]
X Gm'u'i(cos + A—)}
G*m®y[(3Ly Gmu\ . 37 2 _
as0 = e |:<2Mr L )sm)(,, — Ecos,\/p];mvzk 3+ 3) y, cosky,
3G3m? , . .
ass = —Tﬂ,\/l/\@{cosxl oSk, siny, + sink; sinky[[cos(fy — ¢hy) —5cos(¢h, + x, — ) cos(¢, + x, — ¥2)]
X SinXp - COS(l/lp + Xp — ¢’2) Sin((//p - lr//l) - COS(',ZIP + Xp — l/fl)SiIl('J’p - '7[’2)]};
3G°m 2 . . . .
aM = _TJ;WW%*S)&{SIH){,} —sinkgcos(¢, + x, — Y)[5siny, cos(ih, + x, — ) + 2sin(¢r, — )1},
(B18)

and

M
a; = a3° + ags + aQ

>

G2 2 G
a0 =" 1’ (41/2" 3+ 3) xy sinkg{—— ome cos(if, + x %) + cos(w ) | —= sm(zp +x, — Uk,
3 Ly r P I4 P r
3G3m . .
a$S = o X1Xa[cosk; sink, cos(¢f, + x, — ) + cosk, sink; cos(¢f, + x, — Ul
3G3
a?M = Ry i Zw ph= 3/\/k sin2k cos(f, + x, — ). (B19)
; - P
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In the above expressions we still need to employ
Egs. (20)—(21) and (23) of [41]

LY

- , B20
w(Gmu + Ay cosy,) (B20)
A
i =" siny,, (B21)
Ly
Gmu)? + A% + 2GmuAy cos
2 (Gmu) N MmuAy COSXp (B22)

Ly
in order to rewrite r, 7, and v? in terms of the chosen
dynamical variables.

Also, as Ly is not among the chosen independent vari-
ables, we need to express it in terms of them. For this, first
we give the SO part of the orbital angular momentum in the
NWP SSC:

A

JJ =

Gm
4cr
2

-3 Sin(wp - lpz) -

[
{

G [ 23 G
+ LN(I + €pN + 62PN) + —m'T] [V21_3 m 7](47/21 3 + 3)]X, COSK; }LN
¢ =

202r

Here epy and €ypy are given by Eqgs. (39)—(40) of [41]. The
projections along the basis vectors [, m, Ly of the XK,
system are

s : 2i-3 Gm 2i-3
0= in sink;| v 73 cosi; + En(4v +3)

i=1

X [cos(2x, +2¢, — ;) — cosz//,-]:l, (B26)

cJ sina

i G .
Z Xi SinkK; I:VQF3 singr; + _rzn n(4v? 3 + 3)
4cer

X [sinx, +2¢, — ¢;) — sim//[]il, (B27)

Gm? & .
Jcosa = LN(I + €pN + eZPN) + —n Z[V2l73
¢ i3
G

ey (B28)

m 77(41/2’ 3+ 3)]X, COSK;.

*These are the equations in the NWP SSC corresponding to
Egs. (46)—(48) of [41], which were written in the covariant SSC.

n(4r* 73 + 3)[sin(y, —

PHYSICAL REVIEW D 82, 104031 (2010)

2
LYWP — 27'“ Z (4 + 337 2)S [ X (£ XS;)]
=
G 3

2 2(41/2’ 3+ 3) . {sink;

i=

X [COS(ZXp + lﬂp - llbl)

4cr

— cos(h, = ) Ay + sink [sin(2x, + ¢, — )
+sin(y, — #)]10ON — 2cosk; Ly} (B23)
As expected its order is
LNWP _
(9<—LS° ) — 0= 0O, ¥ Yy, (B24)
N

The total angular momentum J =L + S; +S, in the
system K, then becomes, using Egs. (B3) and (B23):

2 2 ] G ) .
" 3 xasined| 0 cos(, — ) = gm0+ Ioos(, — )~ cos(2x, + b, — )] JAx
=1

b+ sin2y, + i, — %)J]QN}

(B25)

The last equation enables us to express L to 2PN accuracy
in terms of the chosen independent variables:

Ly =J({1 - €pN —
Gm2 2
-

€pn T €3y) cosa

[(1 — epy) ¥ 3
=
Gm

=52, n(4v¥ 3 + 3)])(, COSK;. (B29)

We also give the series expansion of its reciprocal:

1_1+€PN+€2PN+(Gm2) n
Ly Jcosa cJcosa) J cosa

Gm

— 24y, +3 +
2czr"n( Xv X+)] (

[(1 + €)X

GmZ 2 772
cJ cosa) J cosa

Gm
X [(1 + epn) Xy — Trn(4XV + 3X+)]Xv

2 3 2 4
Y (o o)
cJcosa) Jcosa cJcosa/) Jcosa

(B30)

where we employed the notations
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2 Note that the 2PN contribution of 1/L, is rather messy
X+ = Z XiCOSK; = X1 COSK| T X) COSKp, (fourth rank in the spins), nevertheless for our purposes we
=1 need it only to 1PN accuracy (it enters only in PN terms or
2 higher, and the desired accuracy is 2PN).
Xv = Z 273 xicosk; = v x| cosky + vx; cOsky. We also give here the detailed expression in terms

i=1 of orbital elements of epy, which is necessary at this

(B31)  accuracy:
|

1—-3n (v)Z - )Gm (7= ) (Gmu)* + (1 = 3n)A% + 42 — n)GmpuAy cosy,
€on = v —
PN 3 n 2y 2212
__Omul s s - +(7- B32
- 2C2J2C082(1 [( n)er ( n)er COSXp ( 77)] ( )

2. Spin angular velocity

The spin undergoes a pure precession, therefore its magnitude is unchanged, while its direction changes as

iSi =Q; xS, (B33)
dt

where, after employing Egs. (B7), (B8), (B1), (B3), and (B15) in Egs. (56) of [41] the angular velocity vector is found as
Q= 0% + 05 + oM,
G4 + 3372

QiSO B 2c2p3 LyLn,
QS = %1/2/*3 [sink {[3cos(, + x, — ;) cosy, — cos(y, — ¢ ;)]A
i 20373 Xj j p T Xp J Xp p AN
+B3eos(ihy + xp = )sink, + sin(, — §,)1Qx} — cosw Ly
o =GN s + Xp — Ay + siny,Q B34
i T 3,8 SWiXiSInK cos(f, + x, — ¥)(cosy,Ay + siny,Qn), (B34)

with j # i. Their PN order is
0(Q°) = 0()0(1, > O(T™),
O(Q5S) = 0(3)O(n) O(v*~3) x,0(T ™), (B35)
0Q") = 02 0(n)w;x,0(T7).

The projections employed in the main text are

~ G2m2n . .
Q- Ay = 5373 {v¥ 73 x;sink;[Bcos(ip, +2x, — ;) + cos(yy, — )]
+ 3w, x; sink;[cos(f, + 2x, — ;) + cos(, — Y1},
0, @ = LI 02 sin 3sin(w, + 20, — ) — s, — )
+ 3w, x; sink[sin(¢r, + 2x, — ;) — sin(y, — ¢ )1},
Q;-Ly= GU+ 3,77 ;63;32[)](:05(1 - G;CT:? (40773 + 3) x, cosk; + v¥73(5 + 3177 %) y; cosk;]. (B36)

We also need
Q; X Si = [(€; - IAJN) sink; Sin(lﬂp — )+ Q- QN) COSK[]AN + [(€; - IAJN)SinKi COS(lﬁp — )
— (Q; - Ay) cosk;JQy — sink[(€2; - Ay) sin(, — ;) + (€ - Qn) cos(if, — ;). (B39)
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