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Within linearized perturbation theory, black holes decay to their final stationary state through the well-

known spectrum of quasinormal modes. Here we numerically study whether nonlinearities change this

picture. For that purpose we study the ringdown frequencies of gauge-invariant second-order gravitational

perturbations induced by self-coupling of linearized perturbations of Schwarzschild black holes. We do so

through high-accuracy simulations in the time domain of first and second-order Regge-Wheeler-Zerilli

type equations, for a variety of initial data sets. We consider first-order even-parity (‘ ¼ 2, m ¼ �2)

perturbations and odd-parity (‘ ¼ 2, m ¼ 0) ones, and all the multipoles that they generate through self-

coupling. For all of them and all the initial data sets considered we find that—in contrast to previous

predictions in the literature—the numerical decay frequencies of second-order perturbations are the same

ones of linearized theory, and we explain the observed behavior. This would indicate, in particular, that

when modeling or searching for ringdown gravitational waves, appropriately including the standard

quasinormal modes already takes into account nonlinear effects.
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I. OUTLOOK AND MOTIVATION

Black hole no-hair theorems [1,2] state that within
Einstein’s theory the end point of any system with enough
gravitational energy to form a black hole is remarkably
simple: it is uniquely characterized by one member of the
Kerr family1 [3], which is described by only two parame-
ters: the spin and mass of the final black hole.

As a consequence, the details by which different systems
decay to such end points have been of interest for many
decades. Pioneering studies were done by a number of
authors in the early 1970s, starting with studies of linear-
ized perturbations of nonrotating (Schwarzschild) black
holes (e.g., [4–6]). Press realized that there is always an
intermediate stage where the ringdown is dominated by a
set of oscillating and exponentially decaying solutions,
quasinormal modes (QNMs), whose spectrum depends
only on the mass of the black hole and the multipole index
‘ of the initial perturbation [7]. This regime is followed by
a power-law ‘‘tail’’ decay due to backscattering [8].

In the case of gravitational perturbations of nonrotating
black holes the relevant equations from which QNMs can
be inferred are the Regge-Wheeler [9] and Zerilli [10,11]
ones. For rotating black holes the corresponding one
(though based on a curvature formalism, as opposed to a

metric one) is the Teukolsky equation [12]. Their QNMs
were first studied by Teukolsky and Press [13]. See [14,15]
for comprehensive reviews on the rich area of QNMs.
The QNM with the lowest frequency is called the fun-

damental one. Since the subsequent ones (overtones) decay
much faster, the ringdown of Kerr black holes in linearized
theory is in practice described by a few oscillating modes
which decay exponentially in time, till they reach the tail
regime. It is interesting to note that the tail decay problem
for rotating black holes is still not completely understood
[16–20].
From an observational point of view this universal ring-

down spectrum is of great power: one can use a single
QNM detection to infer the mass and spin of the black
hole source, assuming general relativity to be correct.
Alternatively, through a two-mode detection one can test
general relativity and/or the assumption that a black hole is
the source of the measured signal [21]. The main idea is
that the QNM frequencies of both detections have to be
consistent with respect to their inferred masses/spins.
The LISA mission is expected to measure gravitational

waves in the low-frequency spectrum, ð10�5–10�1Þ Hz,
such as those emitted in the collision of supermassive
binary black holes (SMBBHs) [22]. Flanagan and
Hughes [23] showed that, quite generically, the signal to
noise ratio for these sources in the inspiral regime should
be comparable to that one in the ringdown. Therefore,
detection of SMBBHs by LISA through the measurement

1Charge is expected not to play a significant role in most
astrophysical scenarios.
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of QNMs seems to be feasible. Assuming a lower cutoff of
ð10�4–10�5Þ Hz and requiring that the QNM signal lives
long enough to travel once through LISA’s propagation
arms places a constraint on the mass range of the SMBBH
candidates: a few 105M� to ð108–109ÞM�.

A step beyond detection analysis is that one of parameter
estimation. In Ref. [22,24] it was found that through a
single QNM detection LISA would be able to accurately
infer the mass and spin of supermassive black holes: for
black holes with mass M * 105M� the errors in mass and
spin would be smaller than 1 part in 102, and smaller than 1
part in 105 for the more optimistic case M * 5� 105M�.

2

These predicted accuracies depend on the ringdown effi-
ciency �rd, defined as the fraction of mass radiated in ring-
down waves. In these references very conservative values
were used: �rd � 0:1%–3%. For example, it has been found
in numerical simulations of two equal-mass, nonspinning
black holes starting from quasicircular motion that around
�rd � 2%–3% of the total mass is radiated in the ringdown
regime [25]. The inclusion of different masses and/or spin
increases this value (see, for example, [26]).

In [22,24] it was also found that at least a second
detection of either mass or spin should be possible for
LISA. Resolving both mass and spin (or, equivalently, both
frequency and damping times associated with the QNM
oscillation of this second mode) might require a very large
critical signal-to-noise ratio, which might in turn need the
second mode to radiate a significant portion of the emitted
gravitational wave when compared to the first one.
Whether this is feasible or not can only be established by
giving precise predictions of the amplitudes for secondary
candidates.

Underlying in all these analyses is the implicit assump-
tion that quasinormal modes and their spectrum of associ-
ated frequencies accurately describe the (intermediate)
stage of the ringdown to a final Kerr stationary state.
Which is certainly the case in linearized theory, but at
the same time there is evidence that effects of self-
interaction in gravitational waves might be observable
with the expected sensitivity of LISA [27].

Similarly, quasinormal modes also play an important
role in the semianalytical modeling of intermediate mass
black holes (IMBH), such as in the effective one body
approach [28,29], where the gravitational wave as modeled
within this formalism is stitched to a ringdown one con-
sisting of QNMs by enforcing continuity of the wave and
its derivatives and using the values of quasinormal frequen-
cies as expected from linearized theory [30–32]. In this
context, it is worth recalling that in close-limit studies of
binary black holes it was found that corrections from
second-order perturbations were in some cases significant

[33]. For IMBHs, which could have total masses in the
range of �100M�–104M�, it is especially important to
accurately model the merger and ringdown since they
should fall in the frequency band of Earth-based gravita-
tional wave detectors. Although the existence of IMBHs is
still debatable, they could provide an interesting source for
Advanced LIGO and VIRGO if they are present in dense
globular clusters [34] (see also [35]). Recent observational
evidence of an IMBH can be found in [36–39].
The previous discussions motivate us to study how non-

linear perturbations of black holes decay in time: do they
do so just as in linearized theory or with a different
spectrum of frequencies? We carry out our study through
numerical simulations of first and second-order gauge-
invariant gravitational perturbations of Schwarzschild
black holes. We find that for all practical purposes, and
to high numerical accuracy, the complex decay frequencies
of second-order perturbations are the standard quasinormal
ones from linearized theory—in contrast to previous pre-
dictions in the literature [40–42]—and we explain why this
appears to be the case. Essentially, in all our simulations
we find that mode-mode couplings excite nonlinearities in
the early stages of the perturbations before the quasinormal
regime for the linearized perturbations kicks in. By the
time the latter happens, those couplings have decreased to
negligible values and the excited nonlinearities essentially
propagate as in linearized theory; and, in particular, they
decay with the standard QNM frequencies.
The structure of the paper is as follows. Section II re-

views the basics of Regge-Wheeler-Zerilli equations and
quasinormal modes, and Sec. III the main features of the
gauge-invariant approach here used for second-order per-
turbations. Section IV describes our numerical approach
and setup for solving the first- and second-order Regge-
Wheeler and Zerilli equations, and Sec. V presents and
discusses our main results.

II. FIRST-ORDER PERTURBATIONS OF
SCHWARZSCHILD AND QUASINORMAL MODES

Metric gravitational perturbations can be expanded in
tensor spherical harmonics. At the linear level modes with
different angular structure decouple from each other if the
background spacetime is spherically symmetric, as is the
case for the Schwarzschild metric. In addition, for each
multipole, perturbations of Schwarzschild can be further
split into two sectors with different parities, which also
decouple from each other in linearized theory.
For each multipole, each of these sectors is completely

described by a master function which depends on time
and radius. The Regge-Wheeler function contains all the
relevant information of the axial or odd-parity sector,
whereas the Zerilli one encodes the polar or even degrees
of freedom. These functions satisfy master evolution
equations,

2Only cases with M * 105M� are considered because other-
wise the QNM signal would be short lived enough that special
detection techniques might be needed.
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hf1g�m
‘ � VRW

f1g�m
‘ ¼ 0; (1)

hf1g�m
‘ � VZ

f1g�m
‘ ¼ 0; (2)

where f1g�m
‘ and f1g�m

‘ denote, respectively, the first-order

Zerilli and Regge-Wheeler functions for a given ð‘;mÞ
mode. The potentials that appear in these equations are
given by

VZ � ‘ð‘þ 1Þ
r2

� 6M

r3
r2�ð�þ 2Þ þ 3Mðr�MÞ

ðr�þ 3MÞ2 ; (3)

VRW � ‘ð‘þ 1Þ
r2

� 6M

r3
(4)

and are, in particular, independent of the azimuthal index
m. In these expressions � � 1

2 ð‘� 1Þð‘þ 2Þ, M is the

mass of the Schwarzschild black hole background, r its
areal radius, and h is the two-dimensional d’Alembertian
operator corresponding to the time and radial sector of the
background.

The complete spectrum of QNMs can be numerically
obtained by analyzing Eqs. (1) and (2) in the frequency
domain. Computing in this way the amplitudes of QNMs
for any given initial data is not so straightforward, though.
Bearing in mind our motivation of studying the behavior of
second-order perturbations, we instead solve Eqs. (1) and
(2) in the time domain. That is, we prescribe (a variety of)
initial data, evolve them, and analyze the solutions at
different observer locations as functions of time.

The early behavior of the solution depends on the type of
initial data, followed by the QNM ringdown of the black
hole. In Fig. 1 we show a typical solution of the Zerilli
equation, for a fixed observer at r ¼ 51:8M as a function of
time. The initial data for this particular case consist of a
Gaussian profile to the initial time derivative of the Zerilli

function, centered at r ¼ 20M with a width � ¼ 4M, and
the initial value of the Zerilli function itself is set to zero.
[This corresponds to what we call time-derivative initial
data in the following sections; see Eqs. (12) and (13)]. To
measure the complex QNM frequency we perform a nu-
merical fit to a function of the form

fðtÞ ¼ Aebt sin½aðt� t0Þ�; (5)

where the parameters to be fitted are A, a, b, and t0 and the
choice of the starting time for the QNM regime is chosen as
that one which optimizes the fit, as introduced and ex-
plained in Ref. [43]. The quasinormal frequency is there-
fore given as ! ¼ aþ bi. The expected value for the
fundamental QNM for an ‘ ¼ 2 perturbation is 0:37367�
0:08896i [15], while our fit for this simulation yields
0:37077� 0:08826i.

III. SECOND-ORDER GAUGE-INVARIANT
PERTURBATIONS OF SCHWARZSCHILD

BLACK HOLES

We study second-order gravitational perturbations of
Schwarzschild black holes using a gauge-invariant formal-
ism for arbitrary first- and second-order perturbations [44].
The key feature of this formalism is being able to consider
perturbations with arbitrary angular multipole structure,
and has been possible mostly due to the development of
a suitable theoretical framework [45,46] and to the advance
of very efficient symbolic algebra tools for tensor-type
calculations [47,48].
Next we very briefly summarize those results of the

formalism presented in [44] which are relevant for the
current work; see that reference for more details.
Because of the intrinsic nonlinearities of general rela-

tivity, any nontrivial solutions of Eqs. (1) and (2) generate
second-order contributions which are solutions of Zerilli
and Regge-Wheeler–type equations with source terms

hf2g�m
‘ � VRW

f2g�m
‘ ¼ f2gS�; (6)

hf2g�m
‘ � VZ

f2g�m
‘ ¼ f2gS�: (7)

The sources f2gS� and f2gS� depend quadratically on the

lower-order perturbations and their time and space deriva-
tives from both first-order sectors. That is, in general the
coupling of even (odd) parity modes generates odd (even)
parity second-order modes; see Appendix A for a detailed
description of the selection rules for this mode coupling.
Second-order Regge-Wheeler-Zerilli (RWZ) type func-

tions are not unique: one can add to them any quadratic
combination of the first-order ones and they will still be
gauge invariant and will still satisfy equations of the form
(6) and (7) with different sources. For this reason, asking
what are the ringdown frequencies of second-order RWZ
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FIG. 1 (color online). Solution to the first-order Zerilli equa-
tion at observer location r ¼ 51:8M.
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functions is not an unambiguous question; as opposed to,
say, asking what are the ringdown frequencies of the
emitted gravitational power. It turns out, however, that, as
discussed in [44] and made explicit below, since the

second-order quantities, like f2g�, f2g�, f2gS�, and
f2gS�,

that we use correspond to the ones labeled as regularized in
Ref. [44], there is a simple relationship between emitted
power and the RWZ functions. Under such choice of
second-order RWZ functions it is therefore unambiguous
and physically motivated to ask what are their ringdown
frequencies.

Reference [44] deals with the most general case for
these sources and computation of the radiated energy.
Here we quantitatively explore the ringdown frequencies
for some particular cases. Namely, we study first-order
(‘ ¼ jmj ¼ 2) even-parity and (‘ ¼ 2, m ¼ 0) odd-parity
perturbations and the modes that they generate through
self-coupling. That is, for simplicity we do not consider
the coupling between the mentioned even- and odd-parity
first-order modes. We do not explicitly list the sources
f2gS� and f2gS� for the cases here considered because

they are rather lengthy and complicated expressions, but
they are available from the authors upon request. The
generated modes and the radiated energy carried by them
are described next and summarized in Table I.

A. Case A: Even-parity ‘ ¼ jmj ¼ 2 perturbations
and generated modes

As discussed in Appendix A, the self-coupling between
these modes generates second-order (‘ ¼ 4, m ¼ �4)
even-parity (polar) ones, whereas the coupling between
them (m ¼ 2 with m ¼ �2) gives rise to second-order
(‘ ¼ 4, m ¼ 0), (‘ ¼ 2, m ¼ 0) and (‘ ¼ 0, m ¼ 0)
even-parity (polar) modes, and (‘ ¼ 3, m ¼ 0) and
(‘ ¼ 1, m ¼ 0) odd-parity (axial) ones. Since this paper
only deals with different radiative aspects of the system, we
can ignore modes with ‘ < 2.

Furthermore, we assume that the Zerilli functions f1g��2
2

that describe the first-order (l ¼ 2, m ¼ �2) modes are
real

f1g��2
2 2 R: (8)

This means that both modes are described by the same

real function, since generically the relation ðf1g�m
l Þ� ¼

ð�1Þmf1g��m
l holds, and, in essence, the system reduces

to a problem of self-coupling. The second-order even-
parity (polar) modes inherit this property, in such a way
that we only need three functions to describe them:

ff2g�0
2;

f2g�0
4;

f2g�4
4g:

Because of the assumption (8), none of the second-order
odd-parity (axial) modes are generated. This happens be-
cause the source for a m ¼ 0 mode must be real.
Schematically, the generic term of the source for this axial

(l ¼ 3, m ¼ 0) mode can be written as if1g�2
2
f1g��2

2 and it
is straightforward to see that its real part vanishes under the
assumption (8).
In this particular case A, the radiated power associated

with the mentioned modes for a given observer located at
robs as a function of time is given by

Powerðrobs; tÞ ¼ dE

dt
¼ �2

12�
j@tf1g�2

2j2

þ 9�4

640�
f2j@tf2g�4

4j2 þ j@tf2g�0
4j2g

þ �4

96�
j@tf2g�0

2j2 þOð�5Þ; (9)

where � is the perturbative parameter and all the expres-
sions on the right-hand side are evaluated, naturally, at
ðrobs; tÞ. In principle this equation is valid only at null
infinity but, as it is usually the case in computations, we
evaluate it at a finite radius.

B. Case B: Odd-parity (‘ ¼ 2, m ¼ 0) perturbations
and generated modes

In principle, following the selection rules, the odd-parity
(‘ ¼ 2, m ¼ 0) mode would generate by self-coupling the
second-order (‘ ¼ 0, m ¼ 0), (‘ ¼ 2, m ¼ 0), and (‘ ¼ 4,
m ¼ 0) even-parity modes, as well as the (‘ ¼ 1, m ¼ 0)
and (‘ ¼ 3, m ¼ 0) odd-parity ones. However, in this
axisymmetric case (m ¼ 0 for all modes), the Clebsch-

Gordan–like coefficients that appear in the sources f2gS�

and f2gS� vanish for those second-order modes with an

odd harmonic label ‘ (see Appendix A). Hence, none of
the second-order odd-parity modes are excited and, up to
this order, we are left with two radiative second-order
modes,

ff2g�0
4;

f2g�0
2g:

TABLE I. First-order modes considered and second-order ones generated by self-coupling.

First order Second order

Multipoles Parity Multipoles Parity

ð‘ ¼ 2 ¼ jmjÞ even (‘ ¼ 4 ¼ jmj), (‘ ¼ 4, m ¼ 0), (‘ ¼ 2, m ¼ 0) even

(‘ ¼ 2, m ¼ 0) odd (‘ ¼ 4, m ¼ 0, (‘ ¼ 2, m ¼ 0) even
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The radiated power is then given by

Powerðrobs; tÞ ¼ 3�2

32�
j@tf1g�0

2j2 þ
3�4

32�

�
3

20
j@tf2g�0

4j2

þ 1

9
j@tf2g�0

2j2
�
þOð�5Þ: (10)

IV. NUMERICAL APPROACH FOR SOLVING
THE MASTER EQUATIONS

We now describe in some detail our numerical approach
for evolving the first- and second-order RWZ equa-
tions, since in the past difficulties have been reported
with the high-order derivatives in the sources of these
equations.

We numerically solve the first- and second-order equa-
tions using a pseudospectral collocation method. The
spatial derivatives are computed using Chebyshev polyno-
mials and Gauss-Lobatto (GL) collocation points, and the
system is evolved in time using a standard fourth-
order Runge-Kutta scheme. We use a small enough time
step for the time integration so that the solution con-
verges exponentially with the number of collocation
points (see below). The accuracy of all the simulations
presented in this paper are at the level of double precision
round-off.

GL collocation points are not equally spaced; instead,
they cluster near the edges of the computational domain
(equally spaced points would not give exponential conver-
gence). For that reason it is standard to use a multidomain
approach. Here we subdivide our radial domain in (non-
overlapping) blocks of length 10M each, communicated
through a penalty technique. At the interface each incom-
ing characteristic mode uþ is penalized according to (see
[49] and references therein)

_uþ ¼ ð. . .Þ � �N2�

rblock
ðuþ � vþÞ

where vþ is the value of the same mode at the interface
point using the neighboring block, rblock is the size of the
corresponding block (10M in these simulations), � is the
associated characteristic speed, N the number of colloca-
tion points on that block, and � a penalty parameter chosen
here to be � ¼ 0:6. At the outer boundary each character-
istic incoming mode is similarly penalized to zero; though
this is done simply to achieve stability, in our simulations
the domain is large enough that our results are causally
disconnected from the outer boundary. The singularity of
the black hole is dealt with through excision. That is, by
using Kerr-Schild coordinates for the background space-
time and placing an inner boundary inside the event
horizon.

As an example, Fig. 2 shows a self-convergence test for
the first-order (‘ ¼ 2 ¼ m) Zerilli function, extracted at
r ¼ 51:8M,3 both changing the number of collocation
points as well as the time step. The initial data used for
such tests correspond to the same data used in Fig. 1,

f1g�2
2 ¼ 0; f1g _�2

2ðt ¼ 0; rÞ ¼ e�ðr�r0Þ2=�2
; (11)

with � ¼ 4M, r0 ¼ 20M, and the spatial domain r 2
½1:8M; 301:8M�. In Fig. 3 we also show the result of
a convergence test for the generated second-order
(‘ ¼ 4 ¼ m) Zerilli mode. From these figures we see that
using 30 collocation points per domain and a time step
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FIG. 2 (color online). Numerical errors for different spatial
resolutions using a fixed time step �t ¼ 0:01M (top), and for
different time steps using a fixed spatial resolution of N ¼ 60
points per domain (bottom). Both panels show the differences
between several resolutions and the most accurate one, which is
N ¼ 60 for the top panel and �t4 ¼ 0:0005M for the bottom
one. In both cases the observer is located at r ¼ 51:8M. We see
exponential convergence and errors in the order of double
precision round-off.

3We place observers at the beginning/end of each domain:
1:8M, 11:8M, 21:8M, etc.
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�t ¼ 0:001M gives a numerical error at the level of double
precision round-off; from hereon we use such resolutions
for all our simulations.

In order to compare the magnitude of the errors with
the solutions themselves, in Fig. 4 we show the absolute

values of the first-order f1g�2
2 and second-order

ff2g�0
2;

f2g�0
4;

f2g�4
4g Zerilli solutions from the previous

plots at their highest resolutions, all extracted at the same
observer location.

We note in passing that for most of the ringdown the
order of magnitude of the second-order Zerilli functions
appears to be comparable to (and in one case even larger
than) the first-order one. There is no contradiction in this,
since their contribution to the radiated energy is scaled by
�4, while the contribution of the first-order Zerilli function
is scaled by �2; see Eq. (9).

A. Setup of numerical simulations

We could introduce nonvanishing second-order modes
via initial second-order perturbations. However, we are
interested in mode-mode coupling. Put differently, we are
interested in the particular solution of Eqs. (6) and (7) (that
is, the one with vanishing initial data), since the homoge-
neous one will be exactly the same as at first order.
Therefore, in this paper we always impose vanishing initial
data for all the second-order modes and concentrate on
those modes generated by first-order mode coupling.
In the following section we solve the first-order RWZ

equations with four different types of initial data, varying
both the location r0 and width � of the initial data:
(1) time derivative (TD)

f1g�2
2ðt ¼ 0; rÞ ¼ 0; (12)

f1g _�2
2ðt ¼ 0; rÞ ¼ e�ðr�r0Þ2=�2

: (13)

(2) time symmetric (TS)

f1g�2
2ðt ¼ 0; rÞ ¼ Me�ðr�r0Þ2=�2

;

f1g _�2
2ðt ¼ 0; rÞ ¼ 0:

(3) approximately outgoing (OUT)

f1g�2
2ðt ¼ 0; rÞ ¼ Me�ðr�r0Þ2=�2

;

f1g _�2
2ðt ¼ 0; rÞ ¼ �ð1� 2M=rÞ@rf1g�2

2ðt ¼ 0; rÞ:
(4) approximately ingoing (IN)

f1g�2
2ðt ¼ 0; rÞ ¼ Me�ðr�r0Þ2=�2

;

f1g _�2
2ðt ¼ 0; rÞ ¼ ð1� 2M=rÞ@rf1g�2

2ðt ¼ 0; rÞ:

V. DECAY FREQUENCIES OF SECOND-ORDER
PERTURBATIONS

Ioka and Nakano have put forward the suggestion that at
second order new frequencies should appear in the ring-
down spectrum, which would be given by the sum of
different pairs of standard QNM frequencies. In particular,
according to this prediction, the dominant frequency would
correspond to the double of the standard fundamental one
from linearized theory [40,41]. This seems reasonable,
since the sources for the second-order master equations
are quadratic in the first-order modes, so one might well
expect that frequencies get summed-up in Fourier space.
The physical picture, however, appears to be at the same
time more subtle and simpler: our numerical simulations
indicate that in practice second-order perturbations
decay with the standard QNM frequencies from linearized
theory.
Recall that the physical process here studied is the

coupling of linear modes. That is, we initialize all

10-10

10-8

10-6

10-4

10-2

100

 0  50  100  150  200  250  300

ze
ril

li 
fu

nc
tio

n

t/M

{1}Ψ  l=2, m=2
{2}Ψ  l=2, m=0
{2}Ψ  l=4, m=0
{2}Ψ  l=4, m=4
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second-order perturbations to zero. The second-order
master equations have sources which are, indeed, quadratic
in the first-order modes. What we observe in all our
simulations, though, is that those sources quickly excite
the second-order perturbations and afterward decay very
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FIG. 5 (color online). Case A simulations: first-order (‘ ¼ 2,
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along with the source term for the second-order master equation
[Eq. (7)], as functions of time for different initial data profiles.
The source plays a role only at very early times in exciting the
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fast in time. As a consequence, once the second-order
modes have been excited and reached the regime in which
they oscillate with a constant complex frequency (i.e. what
in linearized theory corresponds to the QNM regime), they
essentially propagate with a vanishing source. In other
words, as first-order perturbations do. And, in particular,
they do oscillate and decay with the same, standard, QNM
frequencies from linearized perturbation theory.

We show this behavior in some detail for the four initial
data types (Sec. IVA) of case A perturbations (Sec. III A),
with r0 ¼ 20M and � ¼ 4M. Figure 5 shows the first-
order Zerilli function and the (‘ ¼ 2, m ¼ 0) second-order
one for different initial data profiles. In all cases the
source decays much faster than the second-order solution
itself and therefore its role in determining the behavior of
the latter by the time it enters the QNM regime is negli-
gible. From the same figure one can notice that the type
of initial perturbation does determine the time by which
the second-order Zerilli function enters the tail regime; but
this is not surprising, since it already happens for the first-
order one.

In order to gain further insight into these observations
we display the dynamics of first and second-order Zerilli

functions and the source term f2gS� of Eq. (7), now for the

(‘ ¼ 4, m ¼ 0) second-order mode. Figure 6 shows these
three quantities as functions of radius at different times.
The source term is dominant only during the first �20M,
later decaying at a fast rate to several orders of magnitude
below the second-order Zerilli function.

Table II shows the fitted QNM frequencies from our
numerical data, for the different initial-data profiles of

case A perturbations, with r0 ¼ 20M and � ¼ 4M. They
agree quite well with those predicted by first-order theory
for each of those modes.
As described in Sec. IV, our numerical simulations are of

very high accuracy (both at first and second order): all the
errors are at the level of double precision round-off,
�10�14–10�12 [see Figs. 2 and 3]. Therefore, we do not
consider lack of resolution as a possible reason for not
finding traces of the predicted new second-order QNM
frequencies in our simulations. Similarly, one might think

TABLE II. Measured quasinormal frequencies from our numerical simulations (case A). They
agree with those predicted by linearized theory, even for the second-order modes generated
due to mode-mode coupling. The predicted QNM frequencies from standard linearized pertur-
bation theory, as quoted in [15], are 0:37367� 0:08896i for ‘ ¼ 2 and 0:80918� 0:09416i
for ‘ ¼ 4 (in linearized theory there is degeneracy with respect to the azimuthal index m).
The relative errors for real and imaginary parts of the measured frequencies ! are computed as
j!�!exactj=j!exactj.

First order Second order

ID ‘ ¼ 2, m ¼ 2 err % ‘ ¼ 2, m ¼ 0 err %

TD 0:37077� 0:08826i 0.8 0:37334� 0:08883i 0.1

TS 0:37353� 0:08837i 0.2 0:37335� 0:08766i 0.3

IN 0:37061� 0:08887i 0.8 0:37373� 0:08945i 0.1

OUT 0:37107� 0:08624i 1.0 0:37074� 0:08902i 0.8

Second order

ID ‘ ¼ 4, m ¼ 0 err % ‘ ¼ 4, m ¼ 4 err %

TD 0:80916� 0:09418i 0.003 0:80916� 0:09418i 0.003

TS 0:80920� 0:09420i 0.005 0:80920� 0:09420i 0.005

IN 0:80918� 0:09416i 0 0:80918� 0:09416i 0

OUT 0:80931� 0:09425i 0.019 0:80931� 0:09425i 0.019
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FIG. 7 (color online). Residual from fitting a second-order
Zerilli function to a complex frequency mode. The fitted fre-
quency corresponds to the standard fundamental quasinormal
one for that multipole index, and the residual does not appear to
contain traces of twice that frequency (or any other).
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that those predicted frequencies are in fact present, but
with a very small amplitude. Figure 7 indicates that in
practice that does not seem to be the case: the residual of
the fit for the second-order Zerilli function [in the case
shown it is the (‘ ¼ 2, m ¼ 0) one, for TD initial data,
first-order perturbations]—defined as the function minus
its fit—does not appear at all to correspond to an oscillation
and decay with twice the standard complex fundamental
quasinormal frequency for that mode (or to an overtone).
Instead, it appears to be the residual associated with the
fact that QNMs are not complete.

For completeness, in Appendix B (Table III) we provide
results of the fitted frequencies for the four initial data
types of case A perturbations, now varying both the loca-
tion and width of the initial data; all of them support the
same conclusion.

Finally, we briefly discuss the results of some case B
[odd-parity (‘ ¼ 2, m ¼ 0) first-order mode] perturba-
tions, since the conclusions are identical. As discussed in
Sec. III B and summarized in Table I, they generate both
(‘ ¼ 4, m ¼ 0) and (‘ ¼ 2, m ¼ 0) even-parity second-
order modes. The fitted frequencies from the numerical
solutions (for a simulation of TD linear initial data with
r0 ¼ 20M and � ¼ 4M) for these second-order modes
yield, respectively, 0:37441� 0:08921i and 0:80932�
0:09419i, to be compared with the expected values from
perturbation theory: 0:37367� 0:08896i for ‘ ¼ 2 and
0:80918� 0:09416i for ‘ ¼ 4.

VI. FINAL REMARKS

In this paper we have numerically evolved first and
second-order self-generated gauge-invariant gravitational
perturbations of Schwarzschild black holes with a variety
of initial data sets, studying the oscillation and decay
behavior of nonlinear modes and, more specifically,
whether they correspond to the standard QNM frequencies
or to a different spectrum. We have found, in all cases, that
second-order modes decay through the standard QNM
frequencies, and that the picture behind this is remarkably
simple: first-order perturbations trigger high-order ones
through source terms which afterward rapidly decay in
time. Besides, by the time the solutions reach the regime
in which they oscillate and decay at a constant rate (the
QNM regime in the case of linearized perturbations), the
second-order modes for all practical purposes propagate as
in linearized theory.

Mode-mode coupling in the ringdown of black holes has
been previously studied through numerical simulations of
full Einstein equations [50,51]; however, no conclusions
seem to have been reached or sought for in terms of the
deviations in the ringdown spectrum from the linearized
one (presumably due to lack of resolution).

The fact that nonlinear aspects of Einstein’s equations
in the ringdown of black holes appear to already be
captured—at least in what concerns oscillation and decay

frequencies—by linearized perturbation theory is some-
how remarkable and should be of use both for modeling
black holes in the ringdown regime as well as in data
analysis searches of gravitational waves.
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APPENDIX A: MODE COUPLING:
SELECTION RULES

In this appendix we summarize, for completeness, the
selection rules for mode coupling [45,46]. A second-order
ðl; mÞ-mode gets a contribution from a pair of first-order

modes ðl̂; m̂Þ and ð�l; �mÞ if three conditions are obeyed. First,
the harmonic labels must be related by the usual composi-
tion formulas

jl̂� �lj 	 l 	 l̂þ �l; and m̂þ �m ¼ m: (A1)

Second, mode coupling must conserve parity. To any har-
monic coefficient with label l, we associate a polarity sign
� such that, under parity, the harmonic changes by a sign
�ð�1Þl. Polar/even-parity (axial/odd-parity) harmonics
have � ¼ þ1 (� ¼ �1). Then, parity conservation im-
plies the third condition,

ð�1Þ�lþl̂�l ¼ � �� �̂; (A2)

where �̂ and �� are the polarity signs corresponding to the

modes ðl̂; m̂Þ and ð�l; �mÞ, respectively. In particular, there is
a special case in which the coupling of two modes satisfy-
ing Eqs. (A1) and (A2) does not contribute to a second-
order mode, and the reason comes from the properties of
the Clebsch-Gordan–like coefficients that appear in the
product formula for the tensor harmonics [45]. In axisym-
metry ( �m ¼ m̂ ¼ 0) the mentioned Clebsch-Gordan–like

coefficients vanish if �lþ l̂þ l is odd.
This analysis can be extended to higher orders. In

particular, the parity condition implies that a collection
of k modes with harmonic labels fl1; . . . ; lkg and polarities
f�1; . . . ; �kg contributes to the mode ðl; �Þ only if
ð�1Þl� ¼ �k

i¼1ð�1Þli�i.
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APPENDIX B: NUMERICAL DECAY FREQUENCIES OF SECOND-ORDER PERTURBATIONS
FROM TIME DOMAIN SIMULATIONS
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