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New exact asymptotically flat solutions of five-dimensional Einstein equations with horizon are found

to describe multidimensional black stars generated by matter on the brane, conceivably on high energy

colliders. The five-dimensional space-time is realized as an orbifold against reflection of a special extra-

space coordinate and matter on the brane is induced by tailoring of the five-dimensional Schwarzschild-

Tangherlini black hole metric.
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The attractive opportunity to discover mini black holes
on colliders has been within the scope of recent theoretical
investigations [1]. Black hole creation may be a conse-
quence of strong gravity at short distances [2] attainable in
high energy experiments if our space is realized on a
hypersurface—three-brane in a multidimensional space-
time [3,4]. One of the serious difficulties to predict these
processes [5,6] is related to correct (or better, exact) de-
scription of black hole geometry when the matter universe
is strictly situated on the three-dimensional brane but
gravity propagates into extra-space dimensions. So far,
several attempts have been undertaken to find such a
description [7,8] in which, however, a control on leaking
the matter into extra dimensions either was absent or only
approximate at asymptotically large distances (see review
in [6,9]). Another problem is in the appearance of deltalike
singularities in matter distribution hidden under horizon
for static locally stable black holes. But, in fact, black
objects must be produced on colliders from quarks and
gluons in the high energy density evolution [10] so that
matter always remains smoothly distributed on the brane.
Therefore, one expects that rather black stars are created
with matter both inside and outside an event horizon in a
finite brane-surface volume.

In this work, we search for new exact solutions of five-
dimensional Einstein equations with horizons to describe
multidimensional black stars generated by matter on the
brane. We restrict ourselves to the construction of brane-
world black stars with relatively small horizons as com-
pared to the size of extra dimension. The exact solutions
are found for one infinite extra dimension and can be used
as guiding ones to unravel the properties of black hole
objects to be created on ultrahigh energy colliders (LHC).
Different ways to allocate matter are analyzed by means of
tailoring two five-dimensional black holes in special
coordinates and cutting-and-pasting their parts on the
brane under design. Special attention is paid to the stress-
energy tensor from the bulk viewpoint vs an effective

stress-energy tensor on the brane defined with the help of
Einstein-SMS equations [11].
Let us outline how to implement matter distribution on a

brane in order to obtain an exact solution of five-
dimensional Einstein equations. We assume that the matter
is localized solely on a brane and is not spread out to the
bulk. To build a brane, we search for a metric gABðx; yÞ
which is a bulk vacuum solution of the Einstein equations
with an event horizon. Let us choose a hypersurface pa-
rameterized by coordinates x� while y is a fifth coordinate

taking a constant value along this surface. The indices A,
B ¼ ð0; 1; 2; 3Þ, 5; �, � ¼ 0, 1, 2, 3. Suppose that: a) the
induced metric g��ðx; yÞ is asymptotically flat for any

hypersurface y ¼ const and inherits the horizon; b) the
normal vector, orthogonal to a hypersurface y ¼ const is
spacelike everywhere across a horizon; c) in the chosen
coordinate systems g5Bðx; yÞ ¼ 0 and the remaining
metric components provide orbifold geometry gABðx; yÞ ¼
gABðx;�yÞ. These metrics are compatible with the Einstein
equations.
In order to generate a brane filled by matter, let us cut a

part of space while preserving the orbifold geometry,

gABðx; yÞ ) gABðx; jzj þ aÞ; (1)

where a is an arbitrary real constant. The brane is gener-
ated at z ¼ 0. In this approach the metric gABðx; z;aÞ
remains a solution of five-dimensional Einstein equations
whereas the matter is induced according to the Israel-
Lanczos junction conditions [12],

½g��K � K���þ0
�0 ¼ �5���; (2)

with �5 ¼ 1=M3� and M� is a Planck scale in five dimen-
sions. Then the metric g��ðx; aÞ is a metric projected on the

brane z ¼ 0 and the induced stress-energy tensor is located
on this brane. ½K���þ0

�0 ¼ 2K��jþ0 represents the extrinsic

curvature tensor discontinuity [13] defined by two limits
from both sides of the brane. We notice that the require-
ment of orbifolding makes a mean value of extrinsic
curvature on the brane vanishing and therefore the
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Regge-Teitelboim equations [14] for passive brane dynam-
ics [15] to be trivially satisfied [16]. Accordingly, the shape
of a brane is rigid.

Thus, in general, the Einstein equations in the bulk read,

ð5ÞGAB ¼ �5TAB; (3)

where the stress-energy tensor is taken as,

TAB ¼ ��
A�

�
B����ðzÞ: (4)

In terms of the extrinsic curvature tensor for an orbifold
space-time, one can reduce the five-dimensional Einstein
equations up to the Shiromizu-Maeda-Sasaki ones [11]
(SMS) to calculate the metric solely on the brane,

ð4ÞG�� � G�� ¼ �2
5��� � E�� � �4S��;

�4 � 1

M2
Pl

; (5)

where

��� ¼ 1

24
ð�2���� þ 6������ þ g��ð�3������ þ �2ÞÞ;

(6)

where � � ���. In order to define the conformal tensor
projection E�� we introduce the normal vector ðnAÞ ¼
ð0; 0; 0; 0;� ffiffiffiffiffiffiffiffiffiffiffi�g55

p Þ orthogonal to the brane, its covariant

counterpart nA ¼ gABnB, nAnA ¼ �1 and the projector
on the brane qBA ¼ �B

A þ nAn
B for the signature

ðþ;�;�;�;�Þ. Then the above tensor is related to the
conformal Weyl tensor [13] projected on the brane with the
help of qBA,

E�� ¼ ð5ÞCA
BCDnAn

CqB�q
D
� ; E

�
� ¼ 0: (7)

The SMS equations are taken in the form compatible with
asymptotic flatness of brane metrics.

The effective stress-energy tensor S�� as seen by an

observer on the brane is different from the bulk one being
quadratic in ��� and is also determined by the gravitational

energy flow from the bulk. However, we remind the reader
that the scalar curvature does not depend on the bulk
gravity flow E��,

ð4ÞR ¼ �2
5

12
ð3��� ��� � 2�2Þ:

To prepare a suitable coordinate system, we start from
the metric describing a five-dimensional static neutral
black hole [17,18] in Schwarzschild coordinates
ft; r; �1; �2; �g,

gAB ¼ �diag

�
�UðrÞ; 1

UðrÞ ; R
2; R2cos2�1; r

2

�
; (8)

where UðrÞ ¼ 1� M
r2
, M is related to the Schwarzschild-

Tangherlini radius M � r2Sch-T and for brevity R ¼ r cos�
is introduced. These coordinates run over the following

intervals �1< t <1, 0< r <1, �	=2 � �1 � 	=2,
0 � �2 � 2	, �	=2 � � � 	=2. Let us define the
Gaussian normal coordinates in respect to the hypersurface
� ¼ 0. The vector orthonormal to this hypersurface nA ¼
½0; 0; 0; 0; 1=r� and therefore, the required change of coor-
dinates involves two variables r ¼ rð�; yÞ, � ¼ �ð�; yÞ.
These functions satisfy the geodesic equations and their
solutions can be presented in the integral form,

jyj ¼
Z r

�

signðr� �Þx2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðx2 �MÞðx2 � �2Þp dx; (9)

� ¼ �
Z y

0
ðrðx; �ÞÞ�2dx ¼

Z r

�

signððr� �ÞyÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðx2 �MÞðx2 � �2Þp dx;

(10)

where inside the horizon r < � <
ffiffiffiffiffi
M

p
and outside the

horizon
ffiffiffiffiffi
M

p
<�< r. This coordinate system is well pre-

pared to fulfill the above formulated requirements support-
ing an orbifold geometry gABðx; yÞ ¼ gABðx;�yÞ. If the
normal coordinate y is taken as an arbitrary real number,
the respective range of variation for the coordinate � will
not normally coincide with the entire semiaxis. Its accept-
able values are thoroughly analyzed below.
We notice that the integrals in (9) and (10) can be

expressed through the standard elliptic integrals. In par-
ticular, inside the horizon,

jyj ¼ ffiffiffiffiffi
M

p �
K

�
�ffiffiffiffiffi
M

p
�
� F

�
r

�
;
�ffiffiffiffiffi
M

p
�

� E

�
�ffiffiffiffiffi
M

p
�
þ E

�
r

�
;
�ffiffiffiffiffi
M

p
��

;

� ¼ signðyÞ �ffiffiffiffiffi
M

p
�
K

�
�ffiffiffiffiffi
M

p
�
� F

�
r

�
;
�ffiffiffiffiffi
M

p
��

; (11)

and outside the horizon,

jyj ¼ �

�
K

� ffiffiffiffiffi
M

p
�

�
� F

�
�

r
;

ffiffiffiffiffi
M

p
�

�
� E

� ffiffiffiffiffi
M

p
�

�

þ E

�
�

r
;

ffiffiffiffiffi
M

p
�

��
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðr2 � �2Þðr2 �MÞp

r
;

� ¼ sgnðyÞ
�
K

� ffiffiffiffiffi
M

p
�

�
� F

�
�

r
;

ffiffiffiffiffi
M

p
�

��
:

The metric in new coordinates reads,

gAB ¼ �diag

�
�UðrÞ; r2r2�

�2UðrÞ ; R
2; R2cos2�1; 1

�
; (12)

where r ¼ rð�; yÞ, � ¼ �ð�; yÞ, R ¼ r cos�, r� � @r=@�.

From Eq. (11) at r ¼ 0 one finds the minimal value �min

which exists for any y, lies in the interval 0< �min <
ffiffiffiffiffi
M

p
and grows monotonously with increasing jyj. Thus, there is
a lower bound for variations of �. However, this lower
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bound in general is not equal to �min. Indeed let us analyze
the limits for variation of the angular variable � in (11) in
the limit r ¼ 0, and insert � ¼ �min. It can be shown that at
fixed y the variable j�j monotonously decreases with
increasing � thus, one can derive �max,

�max � signðyÞ�minffiffiffiffiffi
M

p K

�
�minffiffiffiffiffi
M

p
�
: (13)

Meanwhile the variable, �, runs between �	=2 and
	=2. Thus, for large y there exists a critical value of �min

for which j�maxj ¼ 	=2. We denote this value as �c. It
satisfies the following equation,

	

2
¼ �cffiffiffiffiffi

M
p K

�
�cffiffiffiffiffi
M

p
�
; �c ’ 0:79272

ffiffiffiffiffi
M

p
: (14)

From (11) at r ¼ 0 one obtains the critical value

yc ’ 0:69868
ffiffiffiffiffi
M

p
: (15)

Any hypersurface of constant y ¼ a with jaj< yc contains
the origin r ¼ 0 and therefore the stress-energy tensor TAB

generated by (1) reveals a pointlike delta-singularity at the
origin. For jaj> yc, the hypersurfaces intersect � ¼ 	=2
and do not pass r ¼ 0, see Fig. 1. On such hypersurfaces,
the minimal value of � is larger than �min. Further on
we will study only hypersurfaces which do not intersect
the singularity at r ¼ 0, i.e. for jaj> yc, to avoid deltalike
singularities in matter distributions. Thus, we presuppose
that black stars created on colliders must possess a smooth
matter-density.

Let us elucidate how the horizon looks in new coordi-

nates. The variable � runs between r and
ffiffiffiffiffi
M

p
, therefore the

horizon r ¼ ffiffiffiffiffi
M

p
corresponds to � ¼ ffiffiffiffiffi

M
p

. From (10) at

r ¼ � ¼ ffiffiffiffiffi
M

p
it follows that on the horizon � ¼ yffiffiffiffi

M
p , see

Fig. 1. Taking into account the range of variation of �, one
concludes that in new variables the horizon is a part of

cylinder-type surface with radius � ¼ ffiffiffiffiffi
M

p
and height

� 	
2
ffiffiffiffi
M

p < y < 	
2
ffiffiffiffi
M

p .

Now we examine a hypersurface of constant y ¼ a and
choose on it the following coordinates t, �, �1, �2. In
accordance with (12) the metric induced on the hypersur-

face can be obtained by projection ð5ÞgAB ! ð4Þg�� with�,

� ¼ 0, 1, 2, 3.
In normal Gaussian coordinates the extrinsic curvature is

determined by,

K�� ¼ � 1

2

@g��

@y
: (16)

Its trace,

K ¼ �3ryr� cos�� cos�rr�;y þ 2r�r sin��y
cos�r�r

; (17)

where r� � @r=@�, ry � @r=@y, �� � @�=@�, r�;y �
@2r=@�@y. Let us generate a brane following the tailoring
construction (1). Then quite remarkably the timelike com-
ponent of the stress-energy tensor �00 is positive for a

positive shift a which follows from the Israel matching
conditions (2). The sign of K is also correlated to the sign
of a and coincides with the sign of � for a > 0. Thereby
the positivity of a is required for realization of energy
conditions.
At large � its asymptotics reads,

K ¼ 4M2y3

3�8

�
1þO

�
y2

�2

��
; (18)

thereby confirming the asymptotic flatness of the brane.
The additional evidence for the flatness is given by the
asymptotics of scalar curvature,

ð4ÞR ¼ 4M2y2

�8

�
1þO

�
y2

�2

��
: (19)

On the horizon it remains finite and continuous,

Kj�¼ ffiffiffiffi
M

p ¼
�2sgnðyÞ

ffiffiffiffiffiffiffiffi
B

Bþ1

q
cos yffiffiffiffi

M
p þ 2 sin yffiffiffiffi

M
p

ffiffiffiffiffi
M

p
cos yffiffiffiffi

M
p

; (20)

where the constant B represents the following limit,

B � lim
�! ffiffiffiffi

M
p

r� �

�� ffiffiffiffiffi
M

p ¼ 1

2

�
cosh

�
2yffiffiffiffiffi
M

p
�
� 1

�
: (21)

In terms of this constant, the values of other geometrical
quantities on the horizon can be expressed. In particular,

FIG. 1. Pairs of hypersurfaces symmetric in respect to the
horizontal axis to be glued into a brane are shown by solid
curves. The circle of horizon in dim¼ 5 is depicted by the long
dashes.
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the scalar curvature on the horizon takes the following
value,

ð4ÞR ¼ �2
Bþ 1� cos2y� 4j sinyj ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ B
p ffiffiffiffi

B
p

cosy

ð1þ BÞcos2y
Let us discuss the matter-density radial distribution

using the Komar integral representation [13] for total
mass of a black star. The total mass in 4þ 1 dimension
is given by,

M ¼ 3

16	�5

Z
t¼const

dð4ÞVð5ÞRAB

AmB �

Z 1

0
dRf5ðRÞ;

(22)

where

f5ðRÞ ¼ � 3

8	�5

Z
d�1d�2

ffiffiffiffiffiffiffiffiffiffiffi
jð4Þgj

q
K0

0jy¼a

¼ � 3

2�5

r3cos2�r�

�ðr� cos�� r�� sin�ÞK
0
0jy¼a; (23)

and the radial coordinate R � rð�; aÞ cosð�; aÞ is chosen.
In Eq. (22) the Killing vector, 
 ¼ @t and the vector m
orthonormal to the hypersurface t ¼ const are used.

A different mass distribution is seen from the brane
viewpoint as being generated by the effective stress-energy
tensor S�� in (5). We again follow the Komar integral

representation which is based on the timelike component

of the Ricci tensor ð4ÞR0
0

ð4ÞR0
0 ¼ �M�ð2r�� cos�� r cos�þ 2�r sin���Þ

r6r� cos�
:

(24)

From (24) it can be derived that near singularity at
�ð�; yÞ ¼ 	=2 this component is positive whereas at the
infinity it is negative. The exact calculations show that the
3-dim Komar integral [13],

M ¼
Z 1

0
dRf4ðRÞ;

f4ðRÞ ¼
8	r3cos2�r�

ð4ÞR0
0

�4�ðr� cos�� r�� sin�Þ
��������y¼a

(25)

on the brane vanishes, which is in accordance with the
tidal character [8] of the black star metric �1=R2 at large
radius.

The comparison of two radial density distributions are
presented in Fig. 2

We see that in spite of the presence of a singularity in
ð4ÞR0

0, this function is integrable in (25) and moreover, this

singularity is completely suppressed by the volume factor.
Thus, we have shown that by cut-and-paste methods in

special Gaussian normal coordinates one can build the
exact geometry of a multidimensional black star with a

horizon, generated by a smooth matter distribution in our
universe.
In our approach, for a given total mass, the profiles of

available configurations for matter distribution are gov-
erned by the parameter a which is presumably related to
the collision kinematics when a black object (’’black
hole’’) is created by partons on colliders. When a > yc
the very distribution does not reveal any deltalike singu-
larity at the origin and therefore the density contribution in
its small vicinity is subdominant. For a larger a, the matter-
density happens to be more diluted approaching the normal

nuclear one and for a > 	
ffiffiffiffiffi
M

p
=2 the horizon disappears.

The apparent singularity at the origin RðaÞ ¼ 0 does not
lead to acausal dynamics due to finiteness of corresponding
components of metric and affine connections. Therefore, it
is not a harmful naked singularity. To resume, one could
think of the presented solution as a better approximation
for describing mini black hole creation on high energy
colliders than the more often used Schwarzschild-
Tangherlini one.
Certainly the tailoring method used to build black ob-

jects with matter localized on branes can be generalized to
the cases of charged and rotated black stars as well as black
rings [19]. However, more work must be done to extend the
solutions found on compact extra dimensions [16,20] and
warped geometries [21].
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FIG. 2. The matter-density radial distribution f5ðRÞ on the
brane with a ¼ 1:1, M ¼ 1 is presented for �5 ¼ 1 by a solid
curve. The effective matter-density f4ðRÞ is shown by the dashed
dotted line for the value �4 ¼ 50 to compare with f5ðRÞ. The
horizon is indicated by the long dashed line.
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