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The Lichnerowicz and Israel theorems are extended to higher order theories of gravity. In particular it is

shown that Schwarzschild is the unique spherically symmetric, static, asymptotically flat, black-hole

solution, provided the spatial curvature is less than the quantum gravity scale outside the horizon. It is then

shown that in the presence of matter (satisfying certain positivity requirements), the only static and

asymptotically flat solutions of general relativity that are also solutions of higher order gravity are the

vacuum solutions.
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I. INTRODUCTION

While general relativity (GR) remains the most success-
ful classical theory we have, one may question whether it is
possible for there to be corrections to it. Indeed we expect
GR to break down as we approach the Planck scale where
the quantum theory of gravity (whatever it is) will become
dominant. In this sense GR is not a full physical theory but
only an excellent approximation to some (presumably)
complicated underlying theory, with the approximation
getting better and better as the scales we consider are
further and further from the Planck scale.1

Over the past century there have been many important
theorems proved about the solutions and structure of GR
and an important question is whether these theorems are
also valid in theories that deviate from GR at some scale. In
this paper we will look, in particular, at two theorems, first
the Lichnerowicz theorem [2], which tells us that the only
static, asymptotically flat, geodesically complete, vacuum,
solution to Einstein’s equations is flat space-time. We then
consider the Israel theorem [3], which demonstrates that
the only static, asymptotically flat, vacuum space-time,
which contains past and future event horizons (that inter-
sect on a surface that is topologically S2) is given by the
Schwarzschild metric.2 This ‘‘no-hair’’ theorem is a strik-
ing result in classical GR, and extensions of it to more
general gravity theories, in particular, as we approach the
scales on which GR is expected to be violated, would
provide us with insight into the transition from GR to full
quantum gravity.

The action for GR is the well-known Einstein-Hilbert
action which is linear in the Ricci scalar R (here for
simplicity we neglect the cosmological constant). A

natural extension of this is to include terms of higher
powers of curvature invariants to find

S Grav: ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
�

�2
R� �0ℏRabcdRabcd

� �ℏRabRab þ �ℏR2 þOðR3Þ
�
; (1.1)

where we have written only terms that are only second
order in the curvature. Throughout we will use Latin
indices to label space-time components a; b; . . . ¼
0; . . . ; 3, our signature is ð�;þ;þ;þÞ, and our conven-
tions for curvature are Rabc

d ¼ @b�
d
ac þ � � � and Rab ¼

Rc
acb. In Eq. (1.1) the coefficients �0, �, �, and � are

dimensionless numbers and �2 ¼ 32�G, so GR is recov-
ered simply by setting the coefficients of the higher order
terms to zero (�0 ¼ � ¼ � ¼ 0) and taking � ¼ 2. Also
note that the presence of the ℏ in Eq. (1.1) is only due to
dimensions; i.e. this remains a classical theory. If these
correction terms are motivated from some quantum gravity
theory, then we may expect the coefficients �0, �, and � to
be of the order of unity; however, in general they can take
any value.
In fact, in 4 dimensions, the Gauss-Bonnet combination

of second order curvature invariants integrates to a topo-
logical invariant, i.e.

RabcdRabcd � 4RabRab þ R2 ¼ total divergence; (1.2)

which we can use to eliminate the RabcdRabcd term from
Eq. (1.1). Thus, up to second order in the curvature, the
most general correction to GR comes from the action

S Grav: ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
�

�2
R� �ℏRabRab þ �ℏR2

�
:

(1.3)

This is the theory that we will work with, and in the
following we refer to it as fourth order gravity, since the
equations of motion involve, at most, fourth derivatives of
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1It is important to note that here the Planck scale can include

both very small (UV) scales and very large (IR) scales (see for
example [1]).

2The Israel theorem also shows that the Reissner-Nordström
metric must be the solution if the vacuum is replaced by an
electromagnetic field.
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the metric. Historically, theories of this type with � ¼ 0
were considered for many reasons, not least because of
their improved behavior under renormalization; however, it
was shown that without a term linear in R, the theory (for
� ¼ 0) does not couple to matter correctly [4]. The theory
with general � was first considered in [5] and later in [6],
where a perturbative analysis around the Schwarzschild
solution was performed, while the initial value formulation
of the theory was given in [7]. The consequence for black
holes in higher dimensions have been considered in [8].
The cosmological implications of fourth order gravity were
investigated in [9–12], with the extension to include (ten-
sor) perturbations appearing only recently [13]. The spe-
cial case in which the correction terms are conformal
(when � ¼ 3�, which gives the Bach-Einstein equations)
has received considerable attention (see for example [14])
and has recently appeared in the context of noncommuta-
tive geometry [15], with much work going into restricting
the parameters of this form of the theory via cosmological
and astrophysical observations [16–20]. More generally,
corrections to GR of this type are expected from string
theory (see for example [21]), renormalization group tech-
niques [22], and loop quantum gravity [23].

In addition there has been a great deal of phenomeno-
logical work on the cosmological consequences of higher
order gravity theories, usually in the form of fðRÞ theories
(see, for example, [24–26]). Despite this it is important to
note that theories defined by Eq. (1.3) cannot represent true
physical theories for arbitrary coefficients due to the pres-
ence of ghosts [6,27,28]. Not only are ghosts a problem for
the quantization of the theory, they also lead to a break-
down of causality at the classical level. Note however that
with certain restrictions on the coefficients (e.g. � ¼ 0 and
�< 0), all the difficulties associated with these ghosts can
be eliminated. Here we will take the (conservative) view
that, just as for GR, fourth order gravity should be consid-
ered only as an approximation to the underlying, full
theory (which is presumable free of ghosts, etc.).

In this paper we shall demonstrate three key results, the
first two being an extension of the Lichnerowicz (Sec. III)
and Israel (Sec. IV) theorems to fourth order gravity (for
space-times satisfying some restriction on the magnitude
of the spatial curvature) suffice to demonstrate that
Schwarzschild is the unique, spherically symmetric, static,
asymptotically flat, vacuum solution to the theory.3 The
final result (Sec. V) considers nonvacuum solutions to the
theory and demonstrates that for static, asymptotically flat
space-times with matter satisfying certain positivity re-
quirements, it is only the vacuum solutions of GR and

fourth order gravity that agree; all other solutions of GR
fail to be solutions of fourth order gravity.

II. STATIC SOLUTIONS OF THE EQUATIONS
OF MOTION

Varying the action given in Eq. (1.3) with respect to the
metric, one finds [6]

Hab ¼ ð�� 2�ÞR;a;b � �hRab � 1

2
ð�� 4�ÞgabhR

þ 2�RcdRacbd � 2�RRab

� 1

2
gabð�RcdRcd � �R2Þ � �

ℏ�2

�
Rab � 1

2
gabR

�

¼ � 1

2ℏ
Tab: (2.1)

Considering the vacuum, the trace part gives the Klein-
Gordon equation for the Ricci scalar:

ð�� 3�Þ
�
h� ���2

2ð�� 3�Þ
�
R ¼ 0: (2.2)

It is well known that there are no static, asymptotically
constant solutions of the Klein-Gordon equation for a
scalar field (see for example [29]); however, since the
method used to prove this result will be the one that is
later extended to the full equation of motion, Eq. (2.1), we
give it explicitly here.
Theorem II.1.—If the space-time is static (Ltgab ¼ 0)

and DaR ! 0 sufficiently fast at infinity, then
ðh�m2ÞR ¼ 0, for m � 0 2 R implies R ¼ 0. If the
space-time is static and R ! 0 sufficiently fast at infinity,
the equation hR ¼ 0 implies R ¼ 0.
Proof.—We decompose the metric into components

parallel and perpendicular to the constant time spacelike
hypersurfaces S via gab ¼ hab � 1

� tatb, where ta is the

timelike Killing field, which has norm tata ¼ �� and
hab is spatial metric on S. Note the following useful
identities:

L tR ¼ tbrbR ¼ 0; (2.3)

ratb ¼ 1

2�
ðtbra�� tarb�Þ; (2.4)

and

tara� ¼ 0: (2.5)

Using these one can readily show that

gabrarbR�m2R ¼ DaDaRþ 1

2�
ðDa�ÞðDaRÞ

�m2R ¼ 0; (2.6)

where Da is the spatial covariant derivative compatible

with hab. Multiplying this equation by �1=2R and integrat-
ing it over the entire spatial slice, one finds

3This result holds for black holes in which the spatial curva-
ture outside the horizon is small relative to the scale set between
���2 and ℏ�. If these corrections come from some quantum
gravity theory, this restriction is essentially that the spatial
curvature be small compared to the quantum gravity scale.

WILLIAM NELSON PHYSICAL REVIEW D 82, 104026 (2010)

104026-2



Z
S

ffiffiffi
h

p
d2x

�
�1=2RDaDaR

þ 1

2
��1=2RðDa�ÞðDaRÞ �m2�1=2R2

�
¼ 0: (2.7)

Integrating the first term by parts this becomes

Z
S

ffiffiffi
h

p
d3x½Dað�1=2RDaRÞ � �1=2ðDaRÞðDaRÞ

�m2�1=2R2� ¼ 0: (2.8)

If the spatial slice is asymptotically constant, i.e.DaR ! 0
sufficiently fast at infinity, then the boundary term van-
ishes. The second and third terms in the integrand of
Eq. (2.8) are manifestly negative definite and hence each
term must vanish at every spatial point. If m � 0, this
implies R ¼ 0, for the case of m ¼ 0 this gives DaR ¼ 0,
and hence we additionally require that R ! 0 at infinity in
order to find R ¼ 0. j

Note that here we require only thatDaR ! 0 (or R ! 0)
sufficiently fast at infinity, which is satisfied by asymptoti-
cally constant (or flat) space-times but is in general a
weaker condition. In the following we will consider
asymptotically constant (or flat) space-times since they
are of more interest; however, all the results hold also for
the weaker condition given above.

The basic method of this proof is the following.
Decompose the metric onto (and perpendicular to) constant
time spacelike hypersurfaces and use this to write the four-
dimensional covariant derivatives as spatial, three-
dimensional covariant derivatives plus correction terms.
Multiply the resulting equation by a suitable factor and
integrate over the spacelike hypersurface. Prove that, up to
boundary terms, the integrand has a definite sign and hence
vanishes at each spatial point. This is precisely the same
method that we will use to prove that, with some restric-
tions on the magnitude of the spatial curvature on S, there
are no static, asymptotically constant solutions to the trace-
free part of Eq. (2.1), which, using Theorem II.1 can be
written as

ℏ�
�
hRab � �

ℏ��2
Rab þ 1

2
gabR

cdRcd � 2RcdRacbd

�
¼ 0;

(2.9)

for �� 3� � 0. Since Eq. (2.9) is rather more compli-
cated than Eq. (2.2), we proceed by first proving a series of
lemmas.4

Lemma II.2.—If the space-time is static and asymptoti-
cally constant, then ðh�m2ÞRab ¼ 0, for m � 0 2 R
implies Rab ¼ 0. If the space-time is static and asymptoti-
cally flat, then hRab ¼ 0 implies Rab ¼ 0.

Proof.—We begin by noting several identities, which are
proved in the appendix:

tarat
brbRcd ¼ 2½ðRaðcrdÞtbÞðrbt

aÞ þ Rabðrct
bÞðrdt

aÞ�;
(2.10)

ðrdt
cÞðrat

dÞ ¼ �1

4�2
tctaðrd�Þðrd�Þ þ 1

4�
ðrc�Þðra�Þ;

(2.11)

1

2�2
habðra�ÞtctdrbRcd ¼ 1

2�
ðra�Þðrð3Þ

a RÞ; (2.12)

and

1

�
tctdhabrah

e
breRcd ¼ DaDð3Þ

a R; (2.13)

where ð3ÞR is the three-dimensional Ricci scalar formed
from the spatial metric hab. Now, decomposing gab ¼
hab � 1

� tatb one finds

ðh�m2ÞRab ¼ habrah
e
breRcd� 1

�
tatbrarbRcd�m2Rcd

¼ 0: (2.14)

Noting the staticity of Rab,

L tRab � taraRcd þ Radrct
a þ Rcardt

a ¼ 0; (2.15)

and using Eq. (2.10) and (2.11), one can show (see the
appendix) that Eq. (2.14) becomes

habrah
e
breRcd þ 1

2�
habðra�ÞðrbRcdÞ

þ 1

4�3
½tctaðrb�Þðrb�Þ � �ðrc�Þðra�Þ�Rad

� 1

2�2
½tard�� tdra��½tbrc�� tcrd��Rba

þ 1

4�3
½tdtaðrb�Þðrb�Þ � �ðrd�Þðra�Þ�Rac

�m2Rcd ¼ 0: (2.16)

We now project this equation onto the spatial slice S with
hceh

d
f and define the projection of Rab onto S as �Rab �

hcah
d
bRcd to find

DaDa
�Ref þ 1

2�
ðDa�ÞðDa �RefÞ

� 1

4�2
ðDe�ÞðDa�Þ �Raf � 1

2�3
ðDf�ÞðDe�ÞtatbRab

� 1

4�2
ðDa�ÞðDf�Þ �Rea �m2 �Ref ¼ 0: (2.17)

Noting that the extrinsic curvature of the spatial slice
vanishes (as can be shown by direct calculation) the
Codacci and Gauss equations reduce to

hbat
cRbc ¼ 0; (2.18)4A similar line of argument has used in [29].
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1

�
tatbRab ¼ ð3ÞR; (2.19)

where we have use Theorem II.1 to set R ¼ 0. Using these
relations in Eq. (2.17) we find

DaDa
�Rcd þ 1

a�
ðDa�ÞðDa �RcdÞ

� 1

4�2
ðDc�ÞðDa�Þ �Rad � 1

2�2
ðDd�ÞðDc�Þð3ÞR

� 1

4�2
ðDa�ÞðDd�Þ �Rca �m2 �Rcd ¼ 0: (2.20)

Multiplying this by �1=2 �Rcd and integrating over the three-
dimensional spatial slice gives

Z
S

ffiffiffi
h

p
d3x

�
Dað�1=2 �RcdDa

�RcdÞ � �1=2ðDa �RcdÞðDa
�RcdÞ

� 1

2
��3=2 �Rcd �RadðDc�ÞðDa�Þ

� 1

2
��3=2ð3ÞR �RcdðDd�ÞðDc�Þ � �1=2m2 �Rcd

�Rcd

�

¼ 0: (2.21)

We now project Eq. (2.16) perpendicular to the spacelike
hypersurface with tbtc and again use the Codacci and
Gauss equations [Eq. (2.18) and (2.19), respectively] to
find

tctdhabrah
e
breRcd þ 1

2�
tctdhabðra�ÞrbRcd

� 1

2�
ðrb�Þðrb�Þð3ÞR� 1

2�
ðra�Þðrb�ÞRab

� �m2ð3ÞR ¼ 0: (2.22)

Multiplying this by ��1=2ð3ÞR, integrating over the three-
dimensional hypersurface, and using the identities given in
Eqs. (2.12) and (2.13) gives

Z
S

ffiffiffi
h

p
d3x

�
Dað�1=2ð3ÞRDð3Þ

a RÞ � �1=2ðDað3ÞRÞðDa
ð3ÞRÞ

� 1

2
��3=2ðDa�ÞðDa�Þðð3ÞRÞ2

� 1

2
��3=2ðDa�ÞðDb�Þ �Rab

ð3ÞR� �1=2m2ðð3ÞRÞ2
�
¼ 0:

(2.23)

Finally, adding Eqs. (2.21) and (2.23) one finds

Z
S

ffiffiffi
h

p
d3x

�
Dað�1=2 �RcdDa

�Rcd þ �1=2ð3ÞRDa
ð3ÞRÞ

� �1=2ðDa �RcdÞðDa
�RcdÞ � �1=2ðDað3ÞRÞðDa

ð3ÞRÞ
� 1

2
��3=2ð �RcdDc�þ ð3ÞRDd�Þð �RadD

a�

þ ð3ÞRDd�Þ � �1=2m2ð �Rcd �Rcd þ ðð3ÞRÞ2Þ
�
¼ 0: (2.24)

This is sufficient to prove the desired result; however, there
is a simplification that can be made by noting that the
contracted Bianchi identity raðRab � 1

2gabRÞ ¼ 0 implies

that

�R dcD
d�þ ð3ÞRDc� ¼ �2�Da �Rac: (2.25)

Substituting this into Eq. (2.24) explicitly removes the
derivatives of � from the integrand and ensures that �
only appears with positive powers. This will be crucial
when we consider space-times with (null) horizons.
In any case, asymptotic constancy, i.e. DaRcd ! 0 at

infinity, ensures that the boundary terms in Eq. (2.24)
vanish. All the remaining terms are negative definite and
hence each term must independently vanish at every spatial

point. Form � 0 this implies ð3ÞR ¼ 0 and �Rcd ¼ 0, which
together with Theorem II.1 and Eq. (2.18) implies Rab ¼ 0.

For them ¼ 0 case we find that Dð3Þ
a R ¼ 0 and Da

�Rcd ¼ 0
and hence additionally require asymptotic flatness in order
to find Rab ¼ 0. j
This result is easily extended to include the third term in

Eq. (2.9) by using the fact that by Theorem II.1 we can set
R ¼ 0.
Lemma II.3.—If the space-time is static and asymptoti-

cally constant, then the pair of equations R ¼ 0 and
ðh�m2

1ÞRab þm2gabR
cdRcd ¼ 0, for m1 � 0 2 R and

m2 2 R, imply Rab ¼ 0, while for m1 ¼ 0, additionally
requiring the space-time to be asymptotically flat implies
Rab ¼ 0.
Proof.—From the equation ðh�m2

1ÞRab þ
m2

2gabR
cdRcd ¼ 0 it follows that

½�1=2 �Rcdhach
b
d þ ��1=2ð3ÞRtatb�½ðh�m2

1ÞRab

þm2
2gabR

cdRcd� ¼ 0: (2.26)

Recalling that tat
a ¼ �� and noting that hab �Rab ¼ ð3ÞR

we see that Eq. (2.26) reduces to

½�1=2 �Rcdhach
b
d þ ��1=2ð3ÞRtatb�ðh�m2

1ÞRab ¼ 0; (2.27)

which is independent of the value of m2. By Lemma II.2,
for m1 � 0, this implies Rab ¼ 0, provided the space-time
is static and asymptotically constant, while form1 ¼ 0 and
the space-time being static and asymptotically flat implies
Rab ¼ 0. Indeed integrating Eq. (2.27) over the spatial slice
exactly gives Eq. (2.24). j
The final step that is required in order to allow us to

consider Eq. (2.9) is to extend the above lemmas to include
a term of the form RabRacbd. To do this note that by using
the definition of the Riemann tensor

ðrarb �rbraÞRcd ¼ Rabc
eRed þ Rabd

eRce (2.28)

and the fact that the contracted Bianchi identity, for R ¼ 0,
gives
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rcRb
c ¼ 1

2rbR ¼ 0; (2.29)

we can write (for R ¼ 0)

RcdRacbd ¼ �rcraRb
c þ RacRb

c: (2.30)

Thus we see that this term is in fact closely related tohRab

and can be dealt with in a similar manner.
Lemma II.4.—For a static space-time the following

relation holds:

Z ffiffiffi
h

p
d3x½ð�1=2 �Refhaeh

b
f þ��1=2ð3ÞRtatbÞRacbdR

cd�

¼
Z ffiffiffi

h
p

d3x½Dað��1=2 �RefDe
�Rafþ�1=2ð3ÞRDb �RabÞ

þ�1=2ðDa
�RefÞðDe �RafÞ þ�1=2ðDa �RacÞðDb

�RbcÞ
� 2�1=2ðDc �RcaÞðDað3ÞRÞ þ�1=2½ �Ra

b
�Rb

c
�Rc

a � ðð3ÞRÞ3��:
(2.31)

Proof.—To show this we project Eq. (2.30) onto the
spatial surface S with haeh

b
f and use the identity

haeh
b
frcraRb

c

¼ haeh
b
f

�
hcd � 1

�
tctd

�
rcraRbd ¼ DaDe

�Ra
f

� 1

4�2
ðDe�ÞðDf�Þð3ÞR� 1

4�2
ðDe�ÞðDd�Þ �Rfd

þ 1

2�
ðDf�ÞðDð3Þ

e RÞ þ 1

2�
ðDa�ÞðDe

�RfaÞ; (2.32)

where the second equality comes from the tedious but
straightforward algebra coming from bringing the hbft

d

inside both covariant derivatives and repeatedly using
Eqs. (2.4), (2.5), (2.18), and (2.19).
Substituting this expression into Eq. (2.30), multiplying

by �1=2 �Ref, and integrating over S, one finds

Z
S

ffiffiffi
h

p
d3x½�1=2 �Refhaeh

b
fRacbdR

cd� ¼
Z
S

ffiffiffi
h

p
d3x

�
Dað��1=2 �RefDe

�RafÞ þ �1=2ðDa
�RefÞðDe �RafÞ

þ 1

4
��3=2ð3ÞR �RefðDe�ÞðDf�Þ þ 1

4
��3=2 �Ref �RfdðDe�ÞðDd�Þ � 1

2
��1=2 �RefðDf�ÞðDð3Þ

e RÞ þ �1=2 �Ra
b
�Rb

c
�Rc

a

�
: (2.33)

Similarly we project Eq. (2.30) along tatb to find

tatbRcdRacbd ¼ �tatbrcraRb
c þ RacRb

ctatb

¼ 1
2½ðDa

�Ra
bÞðDb�Þ þ �RabDaDb�

þ ð3ÞRDaD
a�� � �½ð3ÞR�2; (2.34)

where the second equality follows from the staticity of the
space-time and, again, repeated use of Eqs. (2.4), (2.5),
(2.18), and (2.19).

Multiplying Eq. (2.34) by ��1=2ð3ÞR and integrating over
S, one finds
Z
S

ffiffiffi
h

p
d3x½��1=2ð3ÞRtatbRcdRacbd�

¼
Z
S

ffiffiffi
h

p
d3x

�
Da

�
1

2
��1=2ð3ÞR �RabD

b�

þ 1

2
��1=2ð3ÞRð3ÞRDa�

�
þ 1

4
��3=2ð3Þ �RabðDa�ÞðDb�Þ

þ 1

4
��3=2ð3ÞRð3ÞRðDa�ÞðDa�Þ � 1

2
��1=2 �RabðDð3Þ

a RÞ

� ðDb�Þ � �1=2ð3ÞRðDð3Þ
a RÞðDa�Þ � �1=2½ð3ÞR�3

�
:

(2.35)

Finally, adding Eqs. (2.33) and (2.35) and using the con-
tracted Bianchi identity given in Eq. (2.25) demonstrates
the desired result, Eq. (2.31). j

III. GENERALIZED LICHNEROWICZ THEOREM
FOR FOURTH ORDER GRAVITY

Using the lemmas proved in the previous section, we
will now extend the Lichnerowicz theorem to fourth order
gravity (for � � 0 and � � 3�), provided the spatial
scalar curvature satisfies certain bounds.
Theorem III.1.—Consider a static space-time, with a

spatial slice that is topologically R3, in which the spatial
curvature everywhere satisfies the following two condi-
tions:

m2 � ð3ÞR � 0; �Ra
b
�Rb

aðm2 þRÞ � 0; (3.1)

where R is defined as

R � �Ra
b
�Rb

c
�Rc

a

�Ra
b
�Rb

a

: (3.2)

Let the space-time be asymptotically constant, unless both
of the inequalities in Eq. (3.1) are saturated, in which case
let the space-time be asymptotically flat. Then for such a
space-time the equations R ¼ 0 and

hRab �m2Rab þ 1
2gabR

cdRcd � 2RcdRacbd ¼ 0 (3.3)

imply Rab ¼ 0.
Proof.—The equation

hRab �m2Rab þ 1
2gabR

cdRcd � 2RcdRacbd ¼ 0 (3.4)

implies,
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I � ð�1=2 �Refhaeh
b
f þ ��1=2ð3ÞRtatbÞðhRab �m2Rab

þ 1
2gabR

cdRcd � 2RcdRacbdÞ ¼ 0: (3.5)

By Lemmas II.3 and II.4 and Eqs. (2.24) and (2.25) of
Lemma II.2 the integral of Eq. (3.5) over the constant time
slice S isZ
S

ffiffiffi
h

p
d3xðIÞ¼

Z
S

ffiffiffi
h

p
d3xfDa½�1=2ðð3ÞRDð3Þ

a R

þ �RcdDa
�Rcd� �RefDe

�Raf�ð3ÞRDb �RbaÞ�
��1=2ðDa �RcdÞðDa

�RcdÞ�2�1=2ðDa
�RbcÞ

�ðDb �RacÞ��1=2½Dað3ÞR�2Dc �Ra
c�

�½Dð3Þ
a �2Db �Rab���1=2½ �Rcd

�Rcdðm2þRÞ
þðð3ÞRÞ2ðm2�ð3ÞRÞ�g¼0: (3.6)

Asymptotic constancy ensures that the boundary terms
vanish, while the final two terms are negative definite if the
spatial curvature satisfies the properties

m2 � ð3ÞR � 0; �Ra
b
�Rb

aðm2 þRÞ � 0: (3.7)

Finally, as shown in the appendix, the combination

ðDa �RcdÞðDa
�RcdÞ þ 2ðDa

�RbcÞðDb �RacÞ � 0 (3.8)

for all �Rab. Thus each term in the integrand of Eq. (3.6) is
negative definite and hence required to vanish. Thus
DcRab ¼ 0 and if either of the inequalities in the expres-
sions given in Eq. (3.7) fail to be saturated in any open
region, Eq. (3.6) implies Rab ¼ 0. If the expressions in
Eq. (3.7) are saturated everywhere, then asymptotic flat-
ness is required to imply Rab ¼ 0 everywhere. j

The equations of motion of fourth order gravity (with
�� 3� � 0) imply R ¼ 0 (by Theorem II.1) and [from
Eq. (2.9)]

ℏ�ðhRab �m2Rab þ 1
2gabR

cdRcd � 2RcdRacbdÞ ¼ 0;

(3.9)

with m2 ¼ ���2ℏ�1��1. Thus, provided the spatial cur-
vature everywhere obeys the bounds

ð3ÞR � �

ℏ��2
; R � � �

ℏ��2
; (3.10)

there are no nontrivial, static, asymptotically constant vac-
uum solutions to fourth order gravity (with �� 3� � 0
and � � 0).

IV. GENERALIZED ISRAEL THEOREM FOR
FOURTH ORDER GRAVITY

The result proved in Sec. III demonstrates that there are
no static, vacuum solutions to fourth order gravity for
space-times which have a spatial section that is topologi-
callyR3, but one may ask whether a similar result holds for
space-times in which the spatial slice contains a boundary.
In particular, in order to consider space-times with a
(static) black hole, we need to allow for a null, interior
boundary to our space-time, i.e. the equal time hypersur-
faces become null. At first sight the presence of boundary
terms in Eq. (3.6) would appear to be a significant difficulty
for such a space-time; however, on the horizon, the normal
to the spatial hypersurface, na, becomes null, i.e. nana ¼
� ¼ 0, and hence the boundary terms vanish. Thus, if the
space-time is asymptotically constant (which ensures the
boundary terms at infinity also vanish) and all interior
boundaries are null, the result of Sec. III will still apply.
Theorem IV.1.—Consider a static space-time, in which

the spatial curvature everywhere satisfies the following two
conditions:

ð3ÞR � �

ℏ��2
; R � � �

ℏ��2
: (4.1)

Let the space-time be asymptotically constant, unless both
of the inequalities in Eq. (4.1) are saturated, in which case
let the space-time be asymptotically flat. Let the spatial
slice be bounded by a null surface that is topologically S2.
Then the only solution to fourth order gravity (with � � 0
and �� 3� � 0), in the region exterior to the null surface,
is Rab ¼ 0.
Proof.—As in Theorem III.1, the equations of motion

for fourth order gravity imply [Eq. (3.6)]

Z ffiffiffi
h

p
d3xðIÞ ¼

Z ffiffiffi
h

p
d3xfDa½�1=2ðð3ÞRDð3Þ

a Rþ �RcdDa
�Rcd � �RefDe

�Raf � ð3ÞRDb �RbaÞ� � �1=2ðDa �RcdÞðDa
�RcdÞ

� 2�1=2ðDa
�RbcÞðDb �RacÞ � �1=2½Dað3ÞR� 2Dc �Ra

c�½Dð3Þ
a � 2Db �Rab� � �1=2½ �Rcd

�Rcdð���2��1 þRÞ
þ ðð3ÞRÞ2ð���2��1 � ð3ÞRÞ�g ¼ 0: (4.2)

At infinity the boundary terms vanish because the spatial
section is asymptotically constant, while on the interior
boundary they vanish because � ¼ 0. Thus, just as in
Theorem III.1, provided the three-dimensional curvature
satisfies the conditions

�

ℏ��2 � ð3ÞR � 0;
�

ℏ��2
þR � 0;

each term in the integrand of Eq. (4.2) is negative definite
and hence vanishes. If either of these inequalities is not
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saturated everywhere, asymptotic constancy is sufficient to
imply Rab ¼ 0; otherwise, asymptotic flatness is
required. j

Since fourth order gravity implies Rab ¼ 0 (for asymp-
totically constant and static space-times), provided

ð3ÞR � �

ℏ��2
; R � � �

ℏ��2
; (4.3)

even in the presence of null boundaries, it follows that the
only spherically symmetric solution is the (exterior of the)
Schwarzschild metric.

It is important to note here that this result relies on the
existence of a null boundary to the equal time hypersurfa-
ces and the existence of a vacuum (Tab ¼ 0) everywhere
between this horizon and infinity. This is true for a (static,
vacuum) space-time containing an event horizon; however,
the result cannot be applied to the exterior of a general
spherical object that does not contain such a horizon. In
particular this result does not imply that the metric outside
a spherically symmetric distribution of matter will be
Schwarzschild, unless that matter is entirely contained
within the event horizon. This agrees with the (perturba-
tive) results of (for example) [6].

V. NONVACUUM SOLUTIONS

In Secs. III and IV we showed that for Tab ¼ 0, the
static, asymptotically constant solutions of GR are
also solutions to fourth order gravity (with � � 0 and ��
3� � 0), at least in the case of space-times that have a
spatial topology of R3 (Theorem III.1) or space-times that
have internal null boundaries (Theorem IV.1), and whose
spatial curvature everywhere satisfies Eq. (4.3). A natural
question that one may ask is whether this connection
between the solutions of GR and fourth order gravity

extends to the nonvacuum case, i.e. Tab � 0. We will
now demonstrate that it does not. In fact below we show
that for static, asymptotically flat space-times containing a

barotropic fluid with equation of state ! � �3�1=3 �
�0:6933, only the vacuum solutions of the two theories
coincide, with all other solutions being distinct.
Theorem V.1.—Consider an asymptotically flat solution

to GR, GRgab, with matter satisfying

Z ffiffiffi
h

p
d3xTa

bT
b
cT

c
a � 0: (5.1)

Then GRgab is a solution to fourth order gravity (with � �
0 and � � 3�) iff Rab ¼ 0.
Proof.—Consider a solution to Einstein’s equations:

���2ðRab � 1
2gabRÞ ¼ 1

2Tab (5.2)

that is static and asymptotically flat. Substituting this into
the equations of motion for fourth order gravity [Eq. (2.1)],
we find

ð�� 2�ÞR;a;b � �hRab � 1
2ð�� 4�ÞgabhR

þ 2�RcdRacbd � 2�RRab

� 1
2gabð�RcdRcd � �R2Þ ¼ 0: (5.3)

The trace of Eq. (5.3) is

ð�� 3�ÞhR ¼ 0: (5.4)

Then by Theorem II.1, for �� 3� � 0, this implies
R ¼ 0. Thus Eq. (5.3) becomes

� �½hRab þ 1
2gabR

cdRcd � 2RcdRacbd� ¼ 0; (5.5)

which by Theorem III.1 implies [see Eq. (3.6)]

Z ffiffiffi
h

p
d3xðIÞ ¼

Z ffiffiffi
h

p
d3xfDa½�1=2ðð3ÞRDð3Þ

a Rþ �RcdDa
�Rcd � �RefDe

�Raf � ð3ÞRDb �RbaÞ� � �1=2ðDa �RcdÞðDa
�RcdÞ

� 2�1=2ðDa
�RbcÞðDb �RacÞ � �1=2½Dað3ÞR� 2Dc �Ra

c�½Dð3Þ
a � 2Db �Rab� � �1=2½ �Ra

b
�Rb

c
�Rc

a � ðð3ÞRÞ3�g ¼ 0:

(5.6)

Thus, if

Z ffiffiffi
h

p
d3x½ �Ra

b
�Rb

c
�Rc

a � ðð3ÞRÞ3� � 0; (5.7)

then each term in the integrand is negative definite and
hence vanishes.

However it is easy to show that

Ra
bR

b
cR

c
a ¼ gadgbegcfRbdRceRfa

¼ �Ra
b
�Rb

c
�Rc

a � ðð3ÞRÞ3; (5.8)

where the second equality follows from decomposing
gab ¼ hab � 1

� t
atb, using the Codacci and Gauss equations

[Eqs. (2.19) and (2.18)] and noting that R ¼ 0. Thus each
term in the integrand of Eq. (5.6) is negative definite, and
hence vanishes, provided

Z ffiffiffi
h

p
d3Ra

bR
b
cR

c
a � 0: (5.9)

Using Eq. (5.2) and the fact that R ¼ 0 for these solutions,
this condition can be written as

Z ffiffiffi
h

p
d3xTa

bT
b
cT

c
a � 0: (5.10)

Thus, for matter satisfying Eq. (5.10), a static, asymp-
totically flat solution to GR is also a solution to fourth order
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gravity iff Rab ¼ 0, which, by Theorems III.1 and IV.1
corresponds to the (static, asymptotically flat) vacuum
solutions in both GR and fourth order gravity. Thus, other
than the vacuum, there are no static, asymptotically flat
solutions to GR, with matter satisfying Eq. (5.10), that are
also solutions to fourth order gravity. j

If we consider a perfect fluid, the energy-momentum
tensor can be written as Ta

b ¼ �uaub þ Pð�a
b þ uaubÞ,

with ua a unit timelike vector tangent to the observer’s
worldline, P the fluid’s pressure, and � its energy density.
Equation (5.10) then becomes

Z ffiffiffi
h

p
d3xð�3 þ 3P3Þ � 0: (5.11)

Assuming the strong energy condition holds, � � 0, then
this condition is trivial for all matter with positive pressure.
If we consider a barotropic fluid with equation of state
parameter !, i.e. P ¼ !�, then Eq. (5.10) reduces to

Z ffiffiffi
h

p
d3xð1þ 3!3Þ � 0: (5.12)

This is, in particular, satisfied for! � �3�1=3 � �0:6933
everywhere, and hence for dust (! ¼ 0) and radiation
(! ¼ 1=3) fluids.

Thus for a static, asymptotically flat, space-time con-

taining a single, barotropic fluid for which ! � �3�1=3

everywhere, no solutions to GR remain (static and asymp-
totically flat) solutions to fourth order gravity.

One can also consider, for example, the energy-
momentum tensor of a Maxwell field:

Ta
b ¼

1

4�

�
Fa

cF
c
b �

1

4
gabF

d
eF

e
d

�
; (5.13)

with Fab the electromagnetic field tensor. For such a field,
one can directly check that

Ta
bT

b
cT

c
a ¼ 1

64�3

�
1

8
ðTrF2Þ3 � 3

4
ðTrF4ÞðTrF2Þ � TrF6

�

� 0; (5.14)

where the matrix F is given by Fa
b and hence is antisym-

metric and the final inequality follows from direct compu-
tation, for a general antisymmetric matrix.

VI. CONCLUSIONS

In Secs. (III and IV) we demonstrated that there are no
nontrivial, static, asymptotically constant solutions to
fourth order gravity, provided the three-dimensional cur-
vature satisfies the following two conditions:

ð3ÞR � �

ℏ��2
and R � � �

ℏ��2
; (6.1)

everywhere outside a null horizon. The meaning of these
conditions is the following. We require the three-

dimensional scalar curvature, measured by both ð3ÞR and
R, to be everywhere smaller in magnitude than the scale
set by the ratio between ���2 and ℏ�. This is exactly the
scale at which corrections to general relativity will become
significant. If these corrections are motivated by quantum
corrections to general relativity, then this will be the quan-
tum gravity scale. Thus our results can interpreted as
follows: There are no nontrivial, static, asymptotically
constant, vacuum solutions to fourth order gravity, so
long as the three-dimensional scalar curvature is every-
where less than the quantum gravity scale. In particular for
black holes, this implies that the Schwarzschild solution is
the unique, spherically symmetric, static, asymptotically
constant vacuum solution to fourth order gravity, unless the
three-dimensional scalar curvature exceeds the quantum
gravity scale outside the horizon, a condition that is easily
achieved for macroscopic black holes.
This also demonstrates the fact that the no-hair theorem

applies to fourth order gravity provided that the spatial
curvature (outside the horizon) is everywhere less than the
quantum gravity scale. Note however that the converse
does not follow; i.e. if the spatial curvature outside the
horizon is greater than the quantum gravity scale,
Theorem IV.1 does not imply that there are additional
(static, asymptotically flat) solutions.
Finally, in Sec. V, we demonstrated that for matter

satisfying the rather mild condition

Z ffiffiffi
h

p
d3xTa

bT
b
cT

c
a � 0; (6.2)

except for the vacuum, none of the static, asymptotically
flat solutions to GR are solutions to fourth order gravity. In
particular, this includes space-times containing single,
barotropic fluids with equations of state everywhere sat-

isfying! � �3�1=3, such as relativistic and nonrelativistic
baryons and fermions. A specific application of this is that
the GR solutions for (static, asymptotically flat) stars will
fail to be solutions in fourth order gravity (for the same
matter distribution). This agrees with the results of [6],
which gives the solutions to fourth order gravity for a
particular, extended, spherically symmetric, system (calcu-
lated perturbatively and close to the origin) which is shown
not to be Schwarzschild.
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APPENDIX

In this appendix we prove various useful (if rather
laborious) identities. First consider tarat

brbRcd, for a
static space-time. Using the staticity condition

L tRab ¼ 0 ) taraRcd ¼ �2RaðdrcÞta; (A1)

we can write

tarat
brbRcd ¼ 2½ðrbt

aÞRaðdðrcÞtbÞ þ RabðrðdtaÞðrcÞtbÞ�
� Rbdt

ararct
b � Rcbt

arardt
b: (A2)

Using tcrc� ¼ 0 and hence that raðtcrc�Þ ¼ 0, we find

tcrcra� ¼ �ðrat
cÞðrc�Þ: (A3)

Thus,

tcrcrat
d ¼ 1

2�
ðtctdrcra�� tat

crcrd�Þ

¼ 1

2�
ð�tdðrat

cÞðrc�Þ þ taðrdtcÞðrc�ÞÞ ¼ 0;

(A4)

where the final equality follows from expanding ratc ¼
1
� ðt½cra��Þ. Using this in Eq. (A2) gives

tarat
brbRcd ¼ 2½ðrbt

aÞðRaðdrcÞtbÞ þ Rabðrct
bÞðrdt

aÞ�;
(A5)

which is Eq. (2.10).
By using ratc ¼ 1

� ðt½cra��Þ and recalling that

tara� ¼ 0, we find

ðrbt
cÞðrat

dÞ ¼ 1

4�2
ðtcrd�� tdrc�Þðtdra�� tard�Þ

¼ �1

4�2
tctaðrd�Þðrd�Þ þ 1

4�
ðrc�Þðra�Þ;

(A6)

which is just Eq. (2.11).
In order to show Eq. (2.14) note that

1

�
tctdrbRcd ¼ rb

�
1

�
tctdRcd

�
� Rcdr

�
1

�
tctd

�
: (A7)

Now we use the fact that for a static space-time, the
extrinsic curvature of the constant time hypersurfaces van-
ishes (this can be checked by direct computation). Thus the
Gauss equation [Eq. (2.19)] gives

1

�
tatbRab ¼ ð3ÞR� R; (A8)

while the Codacci equation [Eq. (2.18)] is simply
tahbcRab ¼ 0. A consequence of the Codacci equation
and tcrc� ¼ 0 is

taðrb�ÞRab ¼ 0: (A9)

Using this and the Gauss equation in Eq. (A7) gives

1

�
tctdrbRcd ¼ rbðð3ÞR� RÞ: (A10)

With this we directly find Eq. (2.14):

1

2�2
habðra�ÞtctdrbRcd ¼ 1

2�
ðra�Þðraðð3ÞR� RÞÞ:

(A11)

Similarly, by noting

1

�
tctdhabrah

e
breRcd¼habra

�
1

�
tctdhebreRcd

�

�hab
�
ra

�
1

�
tctd

��
rbRcd (A12)

and using Eq. (A10) we find

1

�
tctdhabrah

e
breRcd ¼ DaD

aðð3ÞR� RÞ; (A13)

which is Eq. (2.17).
A key equation of Lemma II.2 is Eq. (2.16), which we

derive here. By decomposing gab ¼ hab � 1
� tatb we have

hRab �m2Rab ¼ habrarbRcd � 1

�
tatbrarbRcd

�m2Rcd ¼ 0: (A14)

Splitting the projection hab ¼ hachbc and bringing one of
the 3-metrics, inside the covariant derivative the first term
becomes

habrarbRcd ¼ habrah
e
breRcd; (A15)

where we used the fact that, because ragbc ¼ 0, we have

rahbc ¼ ra

�
1

�
tbtc

�
; (A16)

and habratb ¼ 0 by symmetry. For the second term in
Eq. (A14), we again use the fact that rcgab ¼ 0 to find

rchab ¼ rc

�
1

�
tatb

�
) tarcta ¼ �taratc ¼ � 1

2
rc�;

(A17)

where the second line follows by expanding the right-hand
side, taking the trace over ða; bÞ and noting thatrðatbÞ ¼ 0.
Using Eqs. (A5) and (A15) in Eq. (A14) gives

habrah
e
breRcd þ 1

2�
habðra�ÞðrbRcdÞ

þ 1

4�3
½tctaðrb�Þðrb�Þ � �ðrc�Þðra�Þ�Rad

� 1

2�2
½taðrd�Þ � tdðra�Þ�½tbðrc�Þ

� tcðrd�Þ�Rba þ 1

4�3
½tatdðrb�Þðrb�Þ

� �ðra�Þðrd�Þ�Rca �m2Rcd ¼ 0; (A18)

which is Eq. (2.16).
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Finally, we need to show that the terms given in Eq. (3.8)
are positive, i.e. that

ðDa
�RbcÞðDa �RbcÞ þ 2ðDa

�RbcÞðDb �RacÞ � 0: (A19)

To do this, consider an arbitrary tensor Tabc that is sym-
metric in the final two indices, i.e. Tabc ¼ Tacb. Now we
use a tetrad basis, eia, that is orthonormal, i.e. eiae

a
j ¼ �i

j, to

decompose the (positive definite) metric as

hab ¼ eiae
j
b�ij: (A20)

With this one can write

TabcTabc ¼ hadhdehcfTabcTdef ¼ TijkTmnp�
im�jn�kp;

TabcTbac ¼ haehbdhcfTabcTdef ¼ TijkTmnp�
in�jm�kp:

(A21)

We now form the combination

TabcTabc þ 2TabcTbac (A22)

and expand out the Einstein summations. Since Tabc is a
three index tensor, the three possibilities we need to con-
sider are the indices are the same, one is distinct, and all are
distinct. The first possibility clearly involves only positive
terms. In the orthonormal tetrad basis given by Eq. (A20)
these are

TabcTabc þ 2TabcTbac ¼ 3ðT111T111 þ T222T222

þ T333T333Þ þ � � � ; (A23)

where the dots remind us that there are other terms we need
to account for. The terms in Eq. (A22) that arise from one
index being distinct, with the other two being the same,
can, by using Eq. (A20), be grouped to give

TabcTabcþ2TabcTbac¼
X
i�j

ð2TiijþTijjÞð2TiijþTijjÞþ��� ;

(A24)

where there is no implicit summation over repeated indices
and again the dots indicate that there we are considering
only certain terms. Finally we need to account for the terms
in Eq. (A22) for which all the indices are distinct, which
are given by

TabcTabc þ 2TabcTbac

¼ X
i�j�k

2ðTijk þ Tjik þ TkijÞðTijk þ Tjik þ TkijÞ þ � � � ;

(A25)

where again there is no implicit summation over repeated
indices and the dots indicate that there are additional terms.
In Eqs. (A24) and (A25), crucial use has been made of the
fact that Tijk ¼ Tikj. Finally, putting these together we find

that, in this orthonormal tetrad basis,

TabcTabc þ 2TabcTbac

¼ 3
X
i

TiiiTiii þ
X
i�j

ð2Tiij þTijjÞð2Tiij þTijjÞ

þ X
i�j�k

2ðTijk þTjik þTkijÞðTijk þTjik þTkijÞ; (A26)

where once again there is no implicit summation over
repeated indices. Clearly each term in Eq. (A26) is posi-
tive. It is worth noting here that this result holds in any
number of dimensions, provided the metric hab is positive
definite.
One may be concerned by the fact that if Tabc were also

antisymmetric in the first two indices, the combination
given on the left-hand side of Eq. (A26) would appear to
be negative. However there are no three index tensors that
are antisymmetric in the first pair of indices and symmetric
in the second pair, as can easily be checked:

Tabc ¼ �Tbac ¼ �Tbca ¼ Tcba ¼ Tcab ¼ �Tacb

¼ �Tabc: (A27)

Equation (A26) holds for any three index tensor that is
symmetric in its final pair of indices and, in particular, it
holds for Tabc ¼ Da

�Rbc; thus,

ðDa
�RbcÞðDa �RbcÞ þ 2ðDa

�RbcÞðDb �RacÞ � 0; (A28)

as required.

[1] A. Adams, N. Arkani-Hamed, S. Dubovsky, A.
Nicolis, and R. Rattazzi, J. High Energy Phys. 10 (2006)
014.

[2] A. Lichnerowicz, Theories Relativistes de la Gravitation
et de l’Electromagnétisme (Masson, Paris, 1955).

[3] W. Israel, Phys. Rev. 164, 1776 (1967).
[4] E. Pechlaner and R. Sexl, Commun. Math. Phys. 2, 165

(1966).
[5] C. Gregory, Phys. Rev. 72, 72 (1947).

[6] K. S. Stelle, Gen. Relativ. Gravit. 9, 353
(1978).

[7] D. R. Noakes, J. Math. Phys. (N.Y.) 24, 1846
(1983).

[8] Valeri P. Frolov and Ilya L. Shapiro, Phys. Rev. D 80,
044034 (2009).

[9] A. A. Starobinsky, Phys. Lett. 91B, 99 (1980).
[10] A. A. Starobinsky and H-J. Schmidt, Classical Quantum

Gravity 4, 695 (1987).

WILLIAM NELSON PHYSICAL REVIEW D 82, 104026 (2010)

104026-10

http://dx.doi.org/10.1088/1126-6708/2006/10/014
http://dx.doi.org/10.1088/1126-6708/2006/10/014
http://dx.doi.org/10.1103/PhysRev.164.1776
http://dx.doi.org/10.1007/BF01773351
http://dx.doi.org/10.1007/BF01773351
http://dx.doi.org/10.1103/PhysRev.72.72
http://dx.doi.org/10.1007/BF00760427
http://dx.doi.org/10.1007/BF00760427
http://dx.doi.org/10.1063/1.525906
http://dx.doi.org/10.1063/1.525906
http://dx.doi.org/10.1103/PhysRevD.80.044034
http://dx.doi.org/10.1103/PhysRevD.80.044034
http://dx.doi.org/10.1016/0370-2693(80)90670-X
http://dx.doi.org/10.1088/0264-9381/4/3/026
http://dx.doi.org/10.1088/0264-9381/4/3/026


[11] H. J. Schmidt, Int. J. Geom. Methods Mod. Phys. 4, 209
(2007).

[12] K. I. Macrae and R. J. Riegert, Phys. Rev. D 24, 2555
(1981).

[13] W. Nelson (unpublished).
[14] H. J. Schmidt, Astron. Nachr. 306, 67 (1985).
[15] A. H. Chamseddine, A. Connes, and M. Marcolli, Adv.

Theor. Math. Phys. 11, 991 (2007).
[16] W. Nelson and M. Sakellariadou, Phys. Rev. D 81, 085038

(2010).
[17] W. Nelson and M. Sakellariadou, Phys. Lett. B 680, 263

(2009).
[18] W. Nelson, J. Ochoa, and M. Sakellariadou, Phys. Rev. D

82, 085021 (2010).
[19] W. Nelson, J. Ochoa, and M. Sakellariadou, Phys. Rev.

Lett. 105, 101602 (2010).
[20] D. Kolodrubetz and M. Marcolli, Phys. Lett. B 693, 166

(2010).

[21] C. Johnson, D-Branes (Cambridge University Press,
Cambridge, England, 2003).

[22] M. Reuter and F. Saueressig, Phys. Rev. D 65, 065016
(2002).

[23] M. Bojowald and A. Skirzewski, Int. J. Geom. Methods
Mod. Phys. 4, 25 (2007).

[24] T. P. Sotiriou and V. Faraoni, Rev. Mod. Phys. 82, 451
(2010).

[25] A. de la Cruz-Dombriz, A. Dobado, and A. L. Maroto,
Phys. Rev. D 80, 124011 (2009).

[26] S. Nojiri and S. D. Odintsov, Int. J. Geom. Methods Mod.
Phys. 4, 115 (2007).

[27] S. Kawai, M. a. Sakagami, and J. Soda, Phys. Lett. B 437,
284 (1998).

[28] A. De Felice, M. Hindmarsh, and M. Trodden, J. Cosmol.
Astropart. Phys. 08 (2006) 005.

[29] H.-J. Schmidt, Ann. Phys. (Leipzig) 499, 361
(1987).

STATIC SOLUTIONS FOR FOURTH ORDER GRAVITY PHYSICAL REVIEW D 82, 104026 (2010)

104026-11

http://dx.doi.org/10.1142/S0219887807001977
http://dx.doi.org/10.1142/S0219887807001977
http://dx.doi.org/10.1103/PhysRevD.24.2555
http://dx.doi.org/10.1103/PhysRevD.24.2555
http://dx.doi.org/10.1002/asna.2113060206
http://dx.doi.org/10.1103/PhysRevD.81.085038
http://dx.doi.org/10.1103/PhysRevD.81.085038
http://dx.doi.org/10.1016/j.physletb.2009.08.059
http://dx.doi.org/10.1016/j.physletb.2009.08.059
http://dx.doi.org/10.1103/PhysRevD.82.085021
http://dx.doi.org/10.1103/PhysRevD.82.085021
http://dx.doi.org/10.1103/PhysRevLett.105.101602
http://dx.doi.org/10.1103/PhysRevLett.105.101602
http://dx.doi.org/10.1016/j.physletb.2010.08.018
http://dx.doi.org/10.1016/j.physletb.2010.08.018
http://dx.doi.org/10.1103/PhysRevD.65.065016
http://dx.doi.org/10.1103/PhysRevD.65.065016
http://dx.doi.org/10.1142/S0219887807001941
http://dx.doi.org/10.1142/S0219887807001941
http://dx.doi.org/10.1103/RevModPhys.82.451
http://dx.doi.org/10.1103/RevModPhys.82.451
http://dx.doi.org/10.1103/PhysRevD.80.124011
http://dx.doi.org/10.1142/S0219887807001928
http://dx.doi.org/10.1142/S0219887807001928
http://dx.doi.org/10.1016/S0370-2693(98)00925-3
http://dx.doi.org/10.1016/S0370-2693(98)00925-3
http://dx.doi.org/10.1088/1475-7516/2006/08/005
http://dx.doi.org/10.1088/1475-7516/2006/08/005
http://dx.doi.org/10.1002/andp.19874990508
http://dx.doi.org/10.1002/andp.19874990508

