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Rapidly rotating Myers-Perry black holes in d � 6 dimensions were conjectured to be unstable by

Emparan and Myers. In a previous publication, we found numerically the onset of the axisymmetric

ultraspinning instability in the singly spinning Myers-Perry black hole in d ¼ 7, 8, 9. This threshold also

signals a bifurcation to new branches of axisymmetric solutions with pinched horizons that are

conjectured to connect to the black ring, black Saturn and other families in the phase diagram of

stationary solutions. We firmly establish that this instability is also present in d ¼ 6 and in d ¼ 10, 11.

The boundary conditions of the perturbations are discussed in detail for the first time, and we prove that

they preserve the angular velocity and temperature of the original Myers-Perry black hole. This property is

fundamental to establishing a thermodynamic necessary condition for the existence of this instability in

general rotating backgrounds. We also prove a previous claim that the ultraspinning modes cannot be pure

gauge modes. Finally we find new ultraspinning Gregory-Laflamme instabilities of rotating black strings

and branes that appear exactly at the critical rotation predicted by the aforementioned thermodynamic

criterium. The latter is a refinement of the Gubser-Mitra conjecture.
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I. INTRODUCTION

The turn of the century witnessed a renewed interest in
Einstein’s gravity. The research focus extends nowadays to
numerical simulations of the full-time evolution (inspiral,
merger and ring-down phases) of black hole binary sys-
tems [1], numerical simulations of high-energy collisions
of black holes [2], and the study of higher-dimensional
black holes [3], mainly in vacuum and in asymptotically
anti–de Sitter (AdS) spacetimes. The former two endeavors
are of the utmost interest for gravitational wave experi-
ments. On the other hand, the latter program was triggered
by the quest for a microscopic description of black holes in
a theory of quantum gravity (string theory), by the emer-
gence of TeV-scale gravity scenarios relevant for the LHC,
and by the realization that black holes describe thermal
phases of gauge theories in holographic gauge/gravity
dualities. The properties of higher-dimensional black
holes, namely, their stability, will be the main focus of
the present work, and we review its motivations in more
detail next.

Black hole thermodynamics and the thermal spectrum of
Hawking radiation strongly suggest the existence of a
statistical mechanical description of black holes in terms
of some underlying microscopic degrees of freedom. This

microscopic description necessarily requires quantum
gravity. One of the most compelling candidates for such
a theory is string theory, which inevitably requires gravity
in extra dimensions. Furthermore, the observation that the
black hole entropy is proportional to the horizon area
strongly suggests that the quantum degrees of freedom of
the black hole are distributed over a surface [4]. This led to
the formulation of the holographic principle according to
which quantum gravity in a given volume should have a
description in terms of a quantum field theory on its
boundary. The last decade witnessed concrete realizations
of this holographic idea, namely, the AdS/conformal field
theory (CFT) duality and more generically the gauge/
gravity correspondence [5]. The application of these ideas
to certain classes of higher-dimensional black holes has
already provided a statistical description of some of their
thermodynamic properties. Successful examples include:
i) a statistical counting of the Bekenstein-Hawking entropy
[6], ii) a microscopic description of Hawking emission in
near-extremal black holes [7], iii) a microscopic descrip-
tion of superradiant emission [8], iv) the map between the
Hawking-Page phase transition in asymptotically AdS
black holes and the confinement/deconfinement phase
transition in gauge theories that share some common prop-
erties with QCD [9], and v) the identification of the qua-
sinormal modes of oscillation of a black hole with the
thermalization frequencies of the perturbed holographic
field theory [10], to mention but a few. Following these
early successes, the gauge/gravity correspondence has ma-
tured and is nowadays a field of research on its own.
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Mainly due to the fact that this is a weak/strong coupling
duality, it is recognized as a powerful technical tool to
understanding not only gravity but also strongly coupled
gauge theories. In recent years this correspondence has
been extended to other systems of interest, namely, the
fluid/gravity correspondence [11,12] and more recently the
condensed matter/gravity correspondence [13]. These de-
velopments indicate that gravitational physics is becoming
a valuable technical tool to understanding several other
branches of physics. Given the holographic nature of these
correspondences, and since we are often interested in
gauge theories in four dimensions, it is therefore important
to develop our understanding of gravity in five and higher
dimensions.

The LHC will soon be operating at the TeV energy
frontier. Although it was designed to find the Higgs boson
and study particle physics beyond the standard model,
there is the possibility that the LHC will discover extra
dimensions. Indeed, in recent years various TeV-scale
gravity or braneworld scenarios have been proposed ac-
cording to which extra dimensions might be detected at the
energy scales probed by the LHC (see [14] for a review).
The motivation for these proposals is the solution of
the hierarchy problem, i.e., the huge difference between
the Planck scale and the electroweak scale. By proposing
the existence of sufficiently ‘‘large’’ extra dimensions, the
fundamental (d-dimensional) Planck mass can be of the
order of the electroweak energy (� 1 TeV). The most
fascinating outcome of these scenarios is the possibility
of producing microscopic black holes at the LHC. This
could allow for the experimental determination of the
fundamental scale of gravity, the number of extra dimen-
sions, and the decay product of higher-dimensional black
holes, including the first evidence of Hawking evaporation
[14]. This fascinating possibility provides an extra moti-
vation to undertake the study of higher-dimensional black
holes.

Stimulated by the advances in higher-dimensional gravi-
tational physics, there is an intensive ongoing program to
extend analytical tools and numerical relativity to higher
dimensions. The Newman-Penrose and Geroch-Held-
Penrose formalisms, and the resulting Petrov classification,
which are important to classify solutions and study their
stability, have been extended to d > 4 [15]. The separabil-
ity of some class of perturbation equations and the exis-
tence of completely integrable geodesic equations in some
higher-dimensional black holes are possible due to the fact
that there are hidden and explicit symmetries associated
with the principal conformal Killing-Yano tensor [16]. The
study of higher-dimensional gravity is also motivating the
development of completely new analytical tools, like the
blackfold approach [17,18], to construct perturbative solu-
tions based on the fact that for higher-dimensional black
holes the horizons can have widely separated length scales.
Simultaneously, the first nonlinear numerical codes in

higher dimensions are starting to be developed, mainly to
study the time evolution of instabilities in black holes
[19–21]. This is expected to be an area of active research
in the near future. In addition, the challenges of higher-
dimensional black hole physics have motivated the intro-
duction of new numerical tools, like the spectral methods
[22–24].
Last but not least, another motivation to study higher-

dimensional black holes is the understanding of these
objects per se. Indeed, to uncover the mathematical struc-
ture of Einstein’s gravity and its solutions one should treat
the number of spacetime dimensions d as a free parameter
in the theory. We should be able to distinguish between the
universal properties of the theory and the dimension-
dependent ones.
It has been known since the 1970s that 4d black holes are

the simplest gravitational objects in Nature. Hawking’s
black hole topology theorem states that a 4d black hole
must have an event horizon with spherical topology [25].
Together with Hawking’s rigidity theorem [25], this led to
the proof of the 4d uniqueness theorems [26]. As a result, a
4d vacuum black hole is fully specified by its conserved
charges: mass M and angular momentum J. Therefore,
there is a unique black hole in 4d Einstein gravity—the
Kerr solution—which has an upper bound on its angular
momentum, J � GM2 (G being Newton’s constant).
However, are these universal properties of gravity? Or
are some of them dimension dependent?
The last decade has provided a cascade of fascinating

answers to these questions (see [3] for a review). The
higher-dimensional arena is populated by new solutions
besides the Myers-Perry (MP) black hole with Sd�2 topol-
ogy [27]—the (nontrivial) counterpart of the 4d Kerr so-
lution. The simplest black object in d dimensions is a black
string with horizon topology Sd�3 � R or a black brane
with Sd�2�n � Rn, constructed by adding trivial flat direc-
tion(s) to the metric of the Schwarzchild geometry. The
most surprising analytical solution however is the 5d black
ring found by Emparan and Reall [28]. This solution is
asymptotically flat, has horizon topology S2 � S1 and in
some regions of the parameter space can carry the same
conserved charges as the singly spinning Myers-Perry
black hole. Therefore, this solution explicitly demonstrates
that the topology and uniqueness theorems do not general-
ize straightforwardly to higher dimensions when rotation is
considered.1 Indeed, the generalization of the black hole
topology theorem imposes much weaker restrictions on the
horizon topology [31]. In addition, the 5d uniqueness
theorems, restricted to geometries with two Uð1Þ Killing
isometries, explicitly show that, in order to uniquely spec-
ify a black hole solution, one has to fix the conserved

1The situation is considerably different for static solutions.
Indeed, it is proven that the Schwarzschild-Tangherlini black
hole is the unique static solution [29], and moreover this black
hole is stable at the linear mode level [30].
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charges and other parameters not related to them [32] (see
also [33] for some earlier work). Using the complete
integrability of the five-dimensional Einstein’s vacuum
equations restricted to solutions with R�Uð1Þ2 Killing
isometries, it has also been possible to construct explicitly
the black rings with rotation only along the S2 (which
possess conical singularities) [34],2 the regular doubly
spinning black ring [36], and regular asymptotically flat,
multiblack-hole objects like black Saturns [37], di-rings
[38], and bi-cycling rings [39]. These solutions provide
further examples of the richness of higher d gravity. In d >
5, the integrability methods are not available, but the
perturbative blackfold approach of [17] has provided evi-
dence for the existence of black objects with other (non-
spherical) topologies [18,40]. All these solutions have
multiple Uð1Þ rotational symmetries and need to be organ-
ized in a classification scheme. To provide such a classifi-
cation we must address the question of to what extent the
rigidity theorem extends to higher dimensions. In higher
dimensions, stationarity only implies the existence of one
rigid rotational symmetry [41]. However, all higher-
dimensional solutions known exactly have more than one
such symmetry. A fundamental question is whether there
are stationary black holes with less symmetry than those
solutions. This possibility was first raised in [42], where
the existence of stationary black holes with a single Uð1Þ
was conjectured. We shall return to this fundamental issue
below.

Having these explicit solutions, the next natural question
is whether they are dynamically stable against linear per-
turbations. Start with the Kerr solution in vacuum. Smarr
observed that, as the rotation increases, the horizon
Gaussian curvature at the poles starts positive, becomes
zero at a critical rotation, and then goes negative before the
Kerr bound J ¼ GM2 is reached [43]. He further noticed
that a similar behavior occurs in rotating fluid droplets held
by surface tension, where this behavior signals an insta-
bility. However, soon after Smarr made this remark,
Teukolsky used the Newman-Penrose formalism to find
the master equation that governs the gravitational pertur-
bations of the Kerr black hole, which was used by Whiting
to show the mode-by-mode stability of the Kerr black
hole [44].

What about MP black holes? For d � 6, the rotation of a
singly spinning MP can grow unbounded, as already no-
ticed in [27]. This led Emparan and Myers to propose that,
for sufficiently high rotation, these black holes should
become unstable against what was called the ultraspinning
limit [45]. The natural way to check the presence of this
instability would be to apply a linear perturbation analysis
using the Newman-Penrose formalism, this time for d � 6.
Unfortunately, although this formalism and the associated

Geroch-Held-Penrose formalism have been extended to
higher dimensions, it is extremely difficult if not impos-
sible to manipulate the equations to get decoupled master
equations for the perturbations [15]. So, in practice, we
cannot use it yet to treat the perturbation problem analyti-
cally.3 Given these limitations, Emparan-Myers provided
solid heuristic arguments, that we highlight next, to con-
jecture the existence of an instability for a sufficiently large
rotation [45]. Take anMP black hole rotating along a single
plane for simplicity. In the ultraspinning regime, a � rþ
(where a ¼ d�2

2
J
M , and rþ is the horizon radius), the black

hole horizon flattens out along the plane of rotation, and its
shape can be approximated by that of a black disk of radius
a and thickness rþ [45]. In fact, one can take a precise limit
in which the MP black hole metric near the rotation axis
reduces to the metric of a static black membrane with
horizon topology Sd�4 � R2, and where the world volume
directions of the membrane correspond to the directions
along the original rotation plane [45]. This is a far-reaching
observation since black membranes are afflicted by the
Gregory-Laflamme (GL) instability [48]. This led the au-
thors of [45] to conjecture that ultraspinning MP black
holes should be unstable under a Gregory–Laflamme-
type of instability (see Sec. II A for more details).
According to the arguments of [45], this instability should
become active when a� rþ, and it provides an effective
dynamical bound on the angular momentum. As often
occurs in physical systems, and, in particular, in the context
of black branes [49], the stationary threshold of the ultra-
spinning instability is expected to signal also a bifurcation
point in a phase diagram of solutions into a new branch of
pinched black objects. New thresholds are expected at
higher rotations, from which additional branches of
pinched solutions should bifurcate. These conjectured sta-
tionary solutions preserve the original MP symmetries, but
they have spherical horizons distorted by ripples along the
polar direction and are conjectured to connect to the black
ring and black Saturn families in a phase diagram of sta-
tionary solutions [40].
The main purpose of the present study is to firmly

establish the properties of the threshold of this ultraspin-
ning instability. A practical use of the Newman-Penrose
formalism in higher dimensions is not yet available, so we
will resort to a numerical approach. In a previous publica-
tion, we have already addressed this problem in d ¼ 7, 8, 9
[23]. This paper, however, extends the former study in
several directions. We present for the first time the prop-
erties of the instability in the six-dimensional case. This is
an important case since d ¼ 6 is the lowest dimension
where the instability is present, and it was not addressed

2Reference [35] was able to construct the same solution in
‘‘ringlike’’ coordinates without using integrability methods.

3Some subsectors of the perturbations of some classes of MP
black holes have been decoupled [46,47], but none of them
shows signs of any instability, and indeed they do not contain
the kind of perturbations relevant for the ultraspinning
instability.
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in [23] due to numerical difficulties. Moreover, we discuss
the instability in d ¼ 10 and d ¼ 11 dimensions that are
relevant for string theory. We also address the d ¼ 5 case,
in which the black hole does not have an ultraspinning
regime (in the sense that is defined in Sec. II B).
Consequently, no instability that preserves the spatial
isometries of the background can be present, as we confirm
numerically. At a more technical level, we will provide the
first detailed discussion of the boundary conditions of the
problem. While doing so we will prove that the ultraspin-
ning modes preserve the temperature and angular velocity
of the background, an aspect that was not discussed in [23].
This is a key point in formally establishing the thermody-
namic criterium (which is a necessary condition, not a
sufficient one) for the critical rotation above which black
holes can be afflicted by the ultraspinning instability. It can
be seen as a refinement of the Gubser-Mitra conjecture
[50,51]. This thermodynamic criterium was first proposed
in [23] and further developed in [24]. We will also prove
the claim of [23] that the ultraspinning threshold modes
that we find cannot be pure gauge modes.

The ultraspinning instability is not unique to singly
spinning MP black holes. Indeed, [24] found that it is
also present in the case of MP black holes with equal
angular momenta along the bðd� 1Þ=2c rotation planes
that are allowed in d dimensions (here bc stands for the
smallest integer part). This occurs in spite of the fact that,
for these black holes, contrary to the singly spinning case,
the angular momenta have an upper bound. The key point
is that the aforementioned thermodynamic criterium (to be
discussed in Sec. II B) still allows for an ultraspinning
regime. In the equal spins case and in odd spacetime
dimensions, the geometry is codimension-1, i.e., it only
depends on the radial coordinate. This simplifies consid-
erably the analysis of the perturbed Einstein equations
since they reduce to a coupled system of ordinary differ-
ential equations. For this reason, the detailed study of the
time dependence of the instability is much simpler, and
[24] found, as expected, that the modes responsible for the
ultraspinning instability grow exponentially with time.
This fact provides strong confidence for the expectation
that a similar situation occurs in the singly spinning case.

The analysis of the ultraspinning instability in the equal-
spins case [24] gave the first evidence for the existence of a
new family of topologically spherical black hole solutions
with only a single rotational symmetry, i.e., solutions that
saturate Hawking’s rigidity theorem in higher dimensions
[41]. There is a previous example of a black object with a
single rotational symmetry but different horizon topology
[18]: the ‘‘helical’’ black rings that can be perturbatively
constructed using the blackfold approach [17]. These de-
velopments confirm the conjecture put forward in [42] and
can fairly be seen as one of the most important legacies of
the ultraspinning instability studies and of the blackfold
approach. More recently [53], near-horizon geometries of

extremal black holes have been found with a single rota-
tional symmetry.
The plan of the paper is as follows. In Sec. II, we will

review the ultraspinning instability conjecture as formu-
lated in [45], together with the refined thermodynamic
criterium of [23,24], and we will formulate the problem
of finding the modes responsible for the ultraspinning
instability as an eigenvalue problem. In Sec. III, we will
discuss the boundary conditions appropriate to the problem
at hand, and we will prove that the threshold modes
searched numerically cannot be pure gauge. In Sec. IV,
we will present our results, and finally we will close with a
discussion (Sec. V). The Appendix contains the technical
details of the horizon embeddings.

II. THE ULTRASPINNING INSTABILITY

In Sec. II A, we will review the work of , where the
conjecture of the ultraspinning instability of singly spin-
ning MP black holes was first formulated. In Sec. II B, we
will review the thermodynamic arguments that led the
authors of [23,24] to extend the ultraspinning conjecture
to other classes of black holes which need not admit an
arbitrarily large angular momentum (per unit mass).
Finally, in Sec. II C, we will formulate our perturbation
problem as an eigenvalue problem.

A. Motivations

The metric of the d-dimensional asymptotically flat MP
black hole spinning in a single plane is given by [27]:

ds2 ¼� �ðrÞ
�ðr; �Þ ðdt� asin2�d�Þ2

þ sin2�

�ðr; �Þ ½ðr
2 þ a2Þd�� adt�2 þ �ðr; �Þ

�ðrÞ dr2

þ�ðr; �Þd�2 þ r2cos2�d�2
ðd�4Þ; (2.1)

where d�2
ðd�4Þ is the line element of a unit (d� 4)-sphere

and

�ðr;�Þ¼ r2þa2cos2�; �ðrÞ¼ r2þa2�rd�3
m

rd�5
: (2.2)

This solution of the Einstein vacuum equations is charac-
terized by two parameters, namely, the mass-radius rm and
the rotation parameter a,

rd�3
m ¼ 16�GM

ðd� 2ÞAd�2

; a ¼ d� 2

2

J

M
; (2.3)

whereAd�2 ¼ 2�ðd�1Þ=2=�½ðd� 1Þ=2� is the volume of a
unit-radius (d� 2)-sphere, G denotes Newton’s constant,
and M and J are the Arnowitt-Deser-Misner mass and
angular momentum, respectively. The (outer) event hori-
zon lies at the largest real root r ¼ rþ of �ðrÞ ¼ 0, that is,

r2þ þ a2 � rd�3
m

rd�5þ
¼ 0: (2.4)
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For d ¼ 4 a regular horizon exists for all values of a up to
the Kerr bound, a ¼ rm=2 (a ¼ GM), which corresponds
to an extremal (i.e., zero temperature) black hole with finite
size horizon area. In d ¼ 5 the situation is somewhat
similar: a regular solution exists for all values of a strictly
smaller than rm.

4 The solution with a ¼ rm corresponds to
a naked singularity. On the other hand, for d � 6, �ðrÞ
always has a (single) positive real root for all values of a,
and therefore there exist black holes (which are always
nonextremal) with arbitrarily large angular momentum per
unit mass. These black holes were dubbed ‘‘ultraspinning’’
in [45] and they will be the object of our study in this paper.

In the limit of large angular momentum, these black
holes can be characterized by two widely separated length
scales on the horizon [45]. Let ‘k denote the characteristic
length scale in the directions parallel to the rotation plane,
and ‘? in the directions perpendicular to it. For a � rþ,
we have ‘k � a and ‘? � rþ, that is, ‘k � ‘?. Therefore,
the MP black hole spreads out along the plane of rotation
and it resembles a black membrane.5 This observation has
far-reaching consequences because black branes are
known to be unstable [48]. This led the authors of [45] to
conjecture that rapidly rotating MP black holes should be
unstable under Gregory–Laflamme-type perturbations that
preserve the symmetries of the (d� 4)-sphere. More pre-
cisely, choosing a cylindrical basis in polar coordinates
(� ¼ a sin�, �) on the plane of the membrane, in the a !
1 limit, the unstable modes should be of the form [45]

h�� � e�tJmð��Þeim� ~h��ðrÞ; (2.5)

where � is the wave number along the direction parallel to
the rotation. In this paper we will only address the axisym-
metric case (m ¼ 0), for which the radial profile is given by
a cylindrical wave J0ð��Þ. By extrapolating these obser-
vations to finite (but sufficiently large) a, one concludes
that there should exist unstable modes that depend only on
r and � and do not break any of the symmetries of the
background black hole [45].

By considering the thermodynamics of singly spinning
MP black holes, the authors of [45] observed that, for
d � 6, these objects exhibit two markedly different behav-
iors depending on the value of a. For instance, consider the
temperature of these black holes:

T ¼ 1

4�

�
2rd�3þ
rd�2
m

þ d� 5

rþ

�
: (2.6)

For fixed mass, rþ is a monotonically decreasing function
of a. Therefore, it follows from (2.6) that, starting from
a ¼ 0, the temperature decreases as a increases, as in the
Kerr black hole case. However, at

�
a

rþ

�
mem

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
d� 3

d� 5

s
)

�
a

rm

�
d�3

mem

¼ d� 3

2ðd� 4Þ
�
d� 3

d� 5

�ðd�5Þ=2
; (2.7)

the temperature reaches a minimum and then it starts
growing like �r�1þ as a increases. This is the kind of
behavior for the temperature of a black membrane as the
rotation increases. This point was proposed to give an order
of magnitude for the appearance of the instability [45].
Notice from (2.7) that the membranelike behavior occurs
for a * rþ in all dimensions (see the first column in
Table I). The main result of this paper, which builds on
[23], will be to show that this picture is indeed correct.
Furthermore, it is known [49] that the threshold zero-mode

(jkj ¼ kc, � ¼ 0) of the GL instability gives rise to a new
branch of static nonuniform strings. This led the authors of
[45] to conjecture that the zero-modes of the ultraspinning
instability should give rise to a sequence of new branches of
stationary and axisymmetric black holes that preserve all the
R�Uð1Þ � SOðd� 3Þ isometries of the singly spinning
MP black hole and that have ripples along the polar direction
�. This conjecture was further refined in [40], which argued
that this structure of an infinite sequence of lumpy black
holes is in fact needed in order to connect singly spinningMP
black holes to black rings, black Saturns and other black
objects which include multiple concentric rings that should
exist in d � 6 (see Fig. 1).

B. Black hole thermodynamics and the ultraspinning
instability conjecture

In this subsection, we will refine the arguments of [45]
that we have reviewed above, and we will present the
closely related conjecture made in [23]. The basic
statement of this conjecture is that classical instabilities
associated with stationary zero-modes can only appear in a
regime which we call ultraspinning. We analyze this re-
gime for the MP family of solutions. We will also argue

TABLE I. Values of the rotation a=rm for the first four har-
monics of stationary perturbation modes (kc ¼ 0). The estimated
numerical error is �3� 10�3 in d ¼ 6, 7 and �5� 10�3 in
d ¼ 8, 9, 10, 11.

d ða=rmÞj‘¼1 ða=rmÞj‘¼2 ða=rmÞj‘¼3 ða=rmÞj‘¼4

6 1.097 1.572 1.849 2.036

7 1.075 1.714 2.141 2.487

8 1.061 1.770 2.275 2.725

9 1.051 1.792 2.337 2.807

10 1.042 1.795 2.361 2.855

11 1.035 1.798 2.373 2.879

4Notice that for the black ring of [28] the angular momentum
is bounded from below, but otherwise it can be arbitrarily large.

5Reference [45] showed that by taking a ! 1, rm ! 1 and
� ! 0 while keeping r̂d�5

m ¼ rd�3
m =a2 and � ¼ a sin� fixed, the

singly spinning MP black hole metric (2.1) near the rotation axis
� ¼ 0 reduces to the metric of a black membrane. In particular,
the spatial directions along the world volume of the membrane
correspond to the directions along the original plane of rotation
in (2.1).
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that a stationary zero-mode of the black hole can corre-
spond (i) to a change in the parameters of the solution, if
the zero-mode can be predicted by the condition of local
thermodynamic stability, or (ii) to the threshold of a clas-
sical instability of the black hole, which in our case will
correspond to the prediction of [45].

1. The ultraspinning regime

As discussed before, it was conjectured in [45] that
rapidly rotating MP black holes with a single spin in
d � 6 were unstable for Gregory–Laflamme-type modes.
An order of magnitude estimate for the critical rotation,
Eq. (2.7), was given by considering the thermodynamic
behavior.

The estimate for branelike behavior is actually a zero-
mode of the thermodynamic Hessian

� S�	 	 � @2Sðx
Þ
@x�@x	

; x� ¼ ðM; JiÞ; (2.8)

which we readily generalized to accommodate several
spins. The condition of local thermodynamic stability is
the positivity of this Hessian. It was shown in [24] that
�S�	 possesses at least one negative eigenvalue for any

asymptotically flat vacuum black hole (only the Smarr
relation and the first law are required). Hence all such
black holes are locally thermodynamically unstable. In
the MP family, this is the only negative eigenvalue for
small rotations. For d � 6, as the rotation increases, the
black hole acquires an additional thermodynamic instabil-
ity, and a corresponding Gregory–Laflamme-type instabil-

ity of the associated black branes. (This is a refinement of
the Gubser-Mitra conjecture [50].)
Reference [51] (see [53,24] for the rotating case) showed

that a zero-mode of the thermodynamic Hessian is also a
zero-mode of the action, i.e., an on-shell stationary pertur-
bation of the black hole. However, this type of zero-mode
consists of an infinitesimal change in the asymptotic
charges of the black hole solution, within the MP family.
In the singly spinning case, Eq. (2.7) signals a degenerate
point for which an infinitesimal change in the angular
momentum at fixed mass does not change the temperature
or the angular velocity of the MP black hole (indeed, our
metric perturbations preserve these quantities, as we dis-
cuss later). This corresponds to the inflection point 0 in
Fig. 1. Notice that we are using the MP equation of state
SðM; JiÞ to identify the zero-mode. Hence it does not have
to be related to the bifurcation to a new family of solutions,
and to the instability commonly associated with a bifurca-
tion. Only zero-modes of the black hole which are not
associated with the degeneracy of the Hessian (2.8) can
represent bifurcations and instabilities.
Reference [23] and the present work confirm numeri-

cally the conjecture of [45], showing that a zero-mode
appears at (2.7), i.e., when the Hessian (2.8) is degenerate.
More important, it is confirmed that additional zero-modes
which are not thermodynamic in origin occur for higher
rotations. The latter zero-modes are thresholds for classical
instabilities of the black hole, as explicitly verified for MP
codimension-1 solutions in [24].
Zero-modes which are thermodynamic in origin can be

identified as the zero-modes of the simpler reduced
Hessian

Hij 	 �
�

@2S

@Ji@Jj

�
M
¼ �Sij; (2.9)

as shown in [24]. In the MP family, the eigenvalues of Hij

are all positive for small enough angular momenta, at fixed
M. However, as some or all of the angular momenta are
increased, some eigenvalues of Hij may become negative.

We define the boundary of the region in which Hij is

positive definite to be the ultraspinning surface.
Following [23], we shall say that a given black hole is
ultraspinning if it lies outside the ultraspinning surface.
Hence, as one crosses the ultraspinning surface, the black
hole will develop a new thermodynamic instability, and the
associated black branes will develop a new classical insta-
bility. This is in addition to the usual Gregory-Laflamme
instability already present at small angular momenta.
Reference [23] conjectured that classical instabilities

whose threshold is a stationary and axisymmetric
zero-mode occur only for rotations higher than a thermo-
dynamic zero-mode, i.e., in the ultraspinning regime. We
emphasize that the conjecture gives a necessary condition
for this instability, not a sufficient one. Notice that by
‘‘axisymmetric’’ we mean that the @� Killing isometry

(or �i@�i
for more spins) is preserved.

FIG. 1. Phase diagram of entropy vs angular momentum, at
fixed mass, for MP black holes in d � 6 illustrating the con-
jecture of [45] (see also [40]): At sufficiently large spin the MP
solution becomes unstable, and at the threshold of the instability
a new branch of black holes with a central pinch appears (A). As
the spin grows, new branches of black holes with further axi-
symmetric pinches (B;C; . . . ) appear. We determine the points
where the new branches appear, but it is not yet known in which
directions they run. We also indicate that, at the inflection point
(0), where @2S=@J2 ¼ 0, there is a stationary perturbation that
should correspond to neither an instability nor a new branch but
rather to a zero-mode that moves the solution along the curve of
MP black holes, as discussed in Sec. II B.
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The intuition leading to the conjecture is that modes of
lower symmetry are usually the most unstable ones. For
instance, the original Gregory-Laflamme instability occurs
for the s-wave of the transversal black hole. An additional
classical instability will arise after a critical value of the
rotation, and it will correspond to a p-wave of the trans-
versal black hole. As the rotation is increased, higher-order
waves may become unstable. Now, if we consider a black
hole instead of a black brane, the s-wave and the p-wave
are associated with the asymptotic charges, mass and an-
gular momenta. Therefore they are associated with purely
thermodynamic instabilities. Higher-order waves, on the
other hand, may become classically unstable as the rotation
is increased, starting with the d-wave. Notice that these
waves do not affect the asymptotic charges.6

The fact that the thresholds of classical instabilities
should be associated with bifurcations to different black
hole families highlights the connection between stability
and uniqueness. See, e.g., [40].

2. Zero-modes of the Myers-Perry family

Let us now examine the particular form ofHij in the case

of general MP solutions, with N ¼ bðd� 1Þ=2c spins. We
use the expressions in [27]. The horizon area, related to the
entropy by S ¼ A=4, is

A ¼ Ad�2

r1��þ

YN
i¼1

ðr2þ þ a2i Þ; (2.10)

where � ¼ 0, 1 for odd and even d, respectively. The
surface gravity �, related to the temperature by T ¼
�=2�, and the angular velocities on the horizon �i are
given by

�¼ rþ
XN
i¼1

1

r2þþa2i
�2��

2rþ
; �i¼ ai

r2þþa2i
: (2.11)

The asymptotic charges, the mass M and the angular
momenta Ji, which uniquely specify a solution, are
given by

M ¼ ðd� 2ÞAd�2

16�
rd�3
m ; Ji ¼ 2

d� 2
aiM: (2.12)

The reduced thermodynamic Hessian can be explicitly
derived,

Hij ¼ ðd� 2Þ�
M�

�
r2þ � a2i

ðr2þ þ a2i Þ2
�ij þ 2

�i�j

�

�
rþ

ðr2þ þ a2i Þ2

þ rþ
ðr2þ þ a2j Þ2

� 1

2rþ
þ

~�2

�

��
; (2.13)

where there is no sum over i, j, and we have defined ~�2 	P
i�

2
i . The matrix is positive definite in the static case,

ai ¼ 0 8 i, and also in (nonextremal) d ¼ 4, 5.
In the singly spinning case, say, a 	 a1 � 0, we have

H11¼2ðd�2Þðd�3Þ�rþðr2þþa2Þ
M½ðd�3Þr2þþðd�5Þa2�3
�½ðd�3Þr2þ�ðd�5Þa2�;

Hij¼ðd�2Þ�
M�r2þ

�ij for ði;jÞ� ð1;1Þ: (2.14)

There is a single zero-mode in d � 6 which occurs pre-
cisely for (2.7). The associated eigenvector is �i1, so that
the angular momenta which vanish in the background
solution are not excited by the perturbation, i.e., the zero-
mode keeps the black hole within the singly spinning MP
family. The ultraspinning regime occurs for rotations
higher than Eq. (2.7). Reference [23] and the present
work find classical instabilities whose thresholds occur in
that regime only.
In the equal spins case, whose analysis is also simple,

we have

Hij ¼ ðd� 2Þ�
M�

�
r2þ � a2

ðr2þ þ a2Þ2 �ij þ 2
�2

�

�
2rþ

ðr2þ þ a2Þ2

� 1

2rþ
þ n�2

�

�
Qij

�
; (2.15)

where Qij ¼ 1 8 i, j. An eigenvector Vi of Hij must then

be an eigenvector of Qij, which leaves only two options:

the eigenvector is such that Vi ¼ V 8 i, or it is such thatP
iVi ¼ 0. In the former case, there can be no zero-mode,

since this would require

r2þ � a2

ðr2þ þ a2Þ2 þ 2
�2

�

�
2rþ

ðr2þ þ a2Þ2 �
1

2rþ
þ N�2

�

�
N ¼ 0;

(2.16)

which can be simplified to a2 ¼ �ðd� 3Þr2þ=ð2� �Þ, and
thus has no solution for a. Hence no instability occurs for
modes that preserve the equality between the spins, which
is consistent with the results of [24,54]. However, the
N � 1 eigenvalues associated with

P
iVi ¼ 0 do change

sign once at jaj ¼ rþ.
7 Therefore, an ultraspinning region

exists even though the angular momenta are bounded by
extremality, and indeed a classical instability was found in
d ¼ 9 [24].

6In the codimension-1 case (odd-dimensional equal spins)
studied in [24], where there is a precise harmonic decomposition
of perturbations in terms of scalar harmonics of CPN , it was
explicitly shown that the first zero-mode changed only the
angular momenta, breaking their equality, and that the next
zero-modes (associated with classical instabilities/bifurcations)
did not affect the asymptotic charges.

7Notice that [24] used a different radial variable, related to the
variable used in this paper by ~r2 ¼ r2 þ a2, so that the ultra-
spinning surface is at jaj ¼ ~rþ=

ffiffiffi
2

p
.
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C. The eigenvalue problem

According to the preceding discussion, we are interested
in modes that preserve the R�Uð1Þ � SOðd� 3Þ sym-
metries of the background MP black hole (2.1), depending
only on the radial and polar coordinates, r and �. Thus we
consider the following general ansatz for the perturbed
metric h��

8:

ds2 ¼ � �ðrÞ
�ðr; �Þ e

��0½dt� asin2�e�!d��2

þ sin2�

�ðr; �Þ e
��1½ðr2 þ a2Þd�� ae��!dt�2

þ�ðr; �Þ
�ðrÞ e��0½drþ � sin�d��2

þ�ðr; �Þe��1d�2 þ r2cos2�e��d�2
ðd�4Þ; (2.17)

where f��0; ��1; ��0; ��1; �!; �; ��g are small quan-
tities that describe our perturbations and they are functions
of ðr; �Þ only. Unfortunately, a decoupled master equation
that governs the gravitational perturbations, analogous to
the Teukolsky equation [44] in the case of the Kerr black
hole, is not known for (2.1). Therefore, in this paper wewill
solve numerically the coupled partial differential equations
that govern the class of perturbations we are interested in.
Choosing the traceless-transverse (TT) gauge,

h�� ¼ 0 and r�h�� ¼ 0; (2.18)

the variation of the Ricci tensor in vacuum gives the
following equations of motion:

ð4LhÞ�� 	 �r�r�h�� � 2R�
�
�
�h�� ¼ 0; (2.19)

where 4L is the Lichnerowicz operator. Following [23]
(see also [24]), we will consider a more general eigenvalue
problem,

ð4LhÞ�� ¼ �k2ch��: (2.20)

This problem arises when one considers the stability of a
uniform rotating black string,

dsstring ¼ g��dx
�dx� þ dz2; (2.21)

under perturbations of the form

dsstring ! dsstring þ eikczh��ðxÞdx�dx�; (2.22)

where g�� is the metric of the singly spinning MP black

hole (2.1). The same problem arises when one considers
the quadratic quantum corrections to the gravitational par-
tition function in the saddle-point approximation [55] (see
[22] for the application to the Kerr-AdS black hole).

Our reason for considering (2.20) instead of trying to
solve (2.19) directly is that MATHEMATICA has very power-
ful built-in routines to solve generalized eigenvalue prob-
lems of this form. Thus, our approach will be to look for

solutions of (2.20) (which will generically have kc � 0),
and vary the rotation parameter a until we find a zero-
mode, i.e., a mode with kc ¼ 0. Therefore, the solutions
with kc � 0 will correspond to new kinds of GL instabil-
ities and inhomogeneous phases of ultraspinning black
strings (see also [54]). On the other hand, the kc ¼ 0modes
will correspond to asymptotically flat vacuum black holes
with deformed horizons of the kind conjectured in [40,45],
as shown in Fig. 1.
Finally, notice that the ansatz in (2.17) is the most

general one that respects the isometries of the background
MP black hole and is preserved under diffeomorphisms
that depend only on ðr; �Þ. Ultimately, this is necessary and
sufficient to guarantee that (2.20) forms a closed system of
equations.9

III. BOUNDARY CONDITIONS
AND GAUGE FIXING

In the following subsections we will discuss in detail the
boundary conditions that we need to impose on the metric
perturbations in order to solve (2.20). In the present situ-
ation, we have to specify boundary conditions at the hori-
zon, r ¼ rþ, at asymptotic infinity, r ! 1, at the rotation
axis � ¼ 0, and at the equator � ¼ �=2. In the following,
we shall discuss the appropriate boundary conditions at the
boundaries of the integration domain. In the final part of
this section we show that the threshold stationary axisym-
metric zero-modes obeying these boundary conditions
cannot be pure gauge.

A. Boundary conditions at the horizon

We shall demand regularity of the metric perturbations
on the (future event) horizon Hþ by imposing the regu-
larity of the Euclideanized perturbed geometry on Hþ.10

This approach allows us to discuss more straightforwardly
the perturbations in the temperature and in the angular
velocity.
For r 
 rþ, we can write �ðrÞ ¼ �0ðrþÞ�

ðr� rþÞ þO½ðr� rþÞ2� with �0ðrþÞ> 0,11 so that the
near-horizon geometry of (2.1) reads

8This ansatz is equivalent to the one presented in [23], but we
found that this new form was better suited for the numerics (see
Sec. III E).

9For the same reasoning, if we were considering time-
dependent nonaxisymmetric perturbations [that preserve the
transverse (d� 4)-sphere], we would also need to excite metric
components of the type htr, ht�, h�r, h��, etc. We leave this
interesting problem for future work.
10This is equivalent to transforming the metric into regular
coordinates on Hþ (e.g., in-going Eddington-Finkelstein coor-
dinates) and requiring that metric perturbations are finite onHþ
in the new coordinate system.
11Recall that for d � 6, the singly spinning MP black hole
cannot be extremal and therefore �0ðrþÞ> 0 holds for all values
of the rotation parameter a. The d ¼ 5 case is special because
there is a bound on the rotation whose saturation gives a nakedly
singular solution. Therefore we shall only consider nonextremal
solutions with �0ðrþÞ> 0.
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ds2 
 ��ðrþ; �Þ�0ðrþÞðr� rþÞ
ðr2þ þ a2Þ2 dt2

þ �ðrþ; �Þ
�0ðrþÞðr� rþÞdr

2 þ �ðrþ; �Þd�2

þ ðr2þ þ a2Þ2sin2�
�ðrþ; �Þ

�
d�� a

r2þ þ a2
dt

�
2

þ r2þcos2�d�2
ðd�4Þ: (3.1)

This suggests the introduction of a new azimuthal
coordinate

~� ¼ ���Ht; �H ¼ a

r2þ þ a2
; (3.2)

with ~�� ~�þ 2�. Wick-rotating the time coordinate,

t ¼ �i~�; ~� ¼ �

2�TH

with

TH ¼ �0ðrþÞ
4�ðr2þ þ a2Þ ; and ~�� ~�þ 1

TH

; (3.3)

and defining a new radial coordinate � as

r ¼ rþ þ�0ðrþÞ
4

�2; (3.4)

the Euclidean near-horizon (r 
 rþ) geometry of the back-
ground solution (2.1) can be written in a manifestly regular
form:

ds2 
 �ðrþ; �Þ½�2d�2 þ d�2� þ �ðrþ; �Þd�2

þ ðr2þ þ a2Þ2sin2�
�ðrþ; �Þ d ~�2 þ r2þcos2�d�2

ðd�4Þ: (3.5)

Indeed, at the @� axis of rotation (� ¼ 0) we have an

explicitly regular S2 with no conical singularity.
Moreover, the polar coordinate singularity at � ¼ 0 can
be removed by a standard coordinate transformation into
Cartesian coordinates ðx; yÞ. Note that a conical singularity
at � ¼ 0 is avoided because we have chosen the period of
the original Euclidean time coordinate ~� to be 	 ¼ 1=TH.
To sum up, regularity at the horizon of the background
solution requires that we identify ð~�;�Þ � ð~�;�þ 2�Þ �
ð~�þ 	;�� i�H	Þ. Furthermore, this procedure identi-
fies�H with the angular velocity of the black hole and TH

with its temperature.
The boundary conditions for the metric perturbations

can now be determined, demanding that h��dx
�dx� is a

regular symmetric 2-tensor when expressed in coordinates
where the background metric is regular. To do this, intro-
duce manifestly regular 1-forms,

E�¼�2d�¼xdy�ydx; E�¼�d�¼xdxþydy: (3.6)

In terms of these 1-forms, the metric perturbation near the
horizon reads

h��dx
�dx� 
 �ðrþ; �Þ

�
��0 � 2a2sin2�

�
�ðrþ; �Þ�0ðrþÞ þ 2rþðr2þ þ a2Þ

�2ðrþ; �Þ�0ðrþÞ
�
�!

�
�2d�2 þ�ðrþ; �Þ��0d�

2

þ 4�ðrþ; �Þ sin�
�0ðrþÞ

�

�2
E�d�� 4iaðr2þ þ a2Þ2sin2�

�ðrþ; �Þ�0ðrþÞ
�!

�2
E�d ~�þ�ðrþ; �Þ��1d�

2

þ ðr2þ þ a2Þ2sin2�
�ðrþ; �Þ ��1d ~�2 þ r2þcos2�2��d�2

d�4: (3.7)

Regularity of the perturbed geometry then requires that

�; �! ¼ Oð�2Þ; ��0 � ��0 ¼ Oð�2Þ;
@���1; @���1; @��� ¼ Oð�Þ; (3.8)

near � ¼ 0.
It is important to note that we have imposed regularity of

both, and separately, the background metric �g�� and the

perturbed metric h��. This implies that perturbations obey-

ing (3.8) preserve the angular velocity and temperature of
the background black hole.12

The regularity analysis of the boundary conditions is
not complete without checking that the boundary
conditions (3.8) are consistent both with the eigenvalue
Lichnerowicz equations (2.19) and with the TT gauge
conditions (2.18). We have explicitly confirmed this
consistency. That is, the first term in the series expan-
sion of the eigenvalue Lichnerowicz equations vanishes
after we impose (3.8). On the other hand, we can use
the TT gauge conditions to express, e.g., f��0; ��1; ��g
as functions of f��0; ��1; �!; �g and their first
derivatives. Again, the first term of a series expan-
sion of these TT gauge conditions is consistent with
(3.8).

B. Boundary conditions at the axis of rotation

We follow the same strategy as in the previous subsec-
tion, and we first discuss the regularity of the unperturbed
background geometry (2.1) at the axis of rotation (� ¼ 0),

12Notice that we could have chosen different boundary con-
ditions by requiring regularity of the full metric g�� ¼ �g�� þ
h��. Perturbations obeying such boundary conditions would
generically change the temperature and angular velocity of the
background geometry, and we shall not consider them here, but
they would necessarily lead to a singular h�� seen as a 2-tensor
on the background g��.
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where @� vanishes. In the region near � ¼ 0, the back-

ground geometry (2.1) reads

ds2
� �ðrÞ
r2þa2

dt2þ2a

�
1� �ðrÞ

r2þa2

�
dtd�þðr2þa2Þ

�ðd�2þ�2d�2Þþr2þa2

�ðrÞ dr2þr2d�2
ðd�4Þ: (3.9)

This metric can then be cast in manifestly regular form by
changing to standard Cartesian coordinates ðx; yÞ in the
��� plane.

To find the boundary conditions that the metric pertur-
bations must satisfy at � ¼ 0 we require that h��dx

�dx� is

a regular symmetric 2-tensor when expressed in coordi-
nates where the background metric is regular. Introducing
the manifestly regular 1-forms,

E�¼�d�¼xdxþydy; E�¼�2d�¼xdy�ydx;

(3.10)

the metric perturbation reads

h��dx
�dx�
� �ðrÞ

r2þa2
��0dt

2þr2þa2

�ðrÞ ��0dr
2

þr2þa2

�ðrÞ �E�drþ 2a

r2þa2
½ðr2þa2

þ�ðrÞÞ�!�ðr2þa2Þ��1þ�ðrÞ��0�E�dt

þðr2þa2Þ½��1d�
2þ��1�

2d�2�
þr2��d�2

ðd�4Þ: (3.11)

Regularity of the perturbed geometry then implies

��1 � ��1 ¼ Oð�2Þ;
@��; @��!; @���0; @���0; @��� ¼ Oð�Þ: (3.12)

Again we have explicitly checked that the boundary con-
ditions (3.12) are consistent both with the eigenvalue
Lichnerowicz equations (2.19) and with the TT gauge
conditions (2.18).

C. Boundary conditions at the equator

Introducing a new polar coordinate x ¼ cos�, we find
that the metric (3.13) near x ¼ 0 (� ¼ �=2) is given by

ds2 
 ��ðrÞ � a2

r2
dt2 � 2a

r2
½r2 þ a2 � �ðrÞ�dtd�

þ ðr2 þ a2Þ2 � a2�ðrÞ
r2

d�2 þ r2

�ðrÞdr
2

þ r2ðdx2 þ x2d�2
ðd�4ÞÞ: (3.13)

Once more, this geometry can be put in a manifestly
regular form by changing to Cartesian coordinates.

As in the previous subsections, we now demand that the
metric perturbation h��dx

�dx� is a regular symmetric 2-

tensor when expressed in coordinates where the back-

ground metric is regular at x ¼ 0. Introducing the mani-
festly regular 1-forms,

Ex ¼ xdx; E� ¼ x2d�ðd�4Þ; (3.14)

the metric perturbation near x ¼ 0 reads

h��dx
�dx�
�½�ðrÞ�a2���0þ2a2�!

r2
dt2

þðr2þa2Þ2��1�a2�ðrÞð��0þ2�!Þ
r2

d�2

þ2a

r2
½ðr2þa2þ�ðrÞÞ�!�ðr2þa2Þ��1

þ�ðrÞ��0�dtd�þ r2

�ðrÞ��0dr
2

� r2

�ðrÞ
�
�

x
�@x�

�
Exdrþr2ð��1dx

2

þx2��d�2
ðd�4ÞÞ: (3.15)

Regularity of the perturbed geometry for x ! 0 then re-
quires that

� ¼ OðxÞ; ��� ��1 ¼ Oðx2Þ;
@x�!; @x��0; @x��0; @x��1 ¼ OðxÞ: (3.16)

Again we have explicitly checked that the boundary con-
ditions (3.16) are consistent both with the eigenvalue
Lichnerowicz equations (2.19) and with the TT gauge
conditions (2.18).

D. Boundary conditions at the asymptotic infinity

At spatial infinity, r ! 1, we will require that the
perturbations preserve the asymptotic flatness of the space-
time. This means that they must decay strictly faster than
the background asymptotic solution which, near spatial
infinity, reduces to Minkowski spacetime.13

In the asymptotic region, the eigenvalue Lichnerowicz
equations (2.19) reduce simply to hh�� ’ �k2ch��. The

regular solutions (there are also irregular solutions that
grow exponentially) of these equations decay as

h��jr!1 � 1

r�
e�kcr ! 0; (3.19)

13More precisely, consider a spacetime ðM; gÞ which contains
a spacelike hypersurface Mext diffeomorphic to Rn n BðRÞ,
where BðRÞ is a coordinate ball of radius R. The spacetime is
said to be asymptotically flat if the induced metric h on Mext and
the extrinsic curvature K satisfy

hij � �ij ¼ Okðr��Þ; Kij ¼ Ok�1ðr�1��Þ; (3.17)

where r is the radial coordinate in Rn, and we write f ¼ Okðr	Þ
if f satisfies

@k1 . . .@k‘f ¼ Oðr	�‘Þ; 0 � ‘ � k: (3.18)
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for some constant � � 0 that depends on the particular
metric component and the number of spacetime dimen-
sions d. Therefore, for kc � 0, our perturbations decay
exponentially to zero at the spatial infinity and hence
asymptotic flatteness is guaranteed.

Ultimately one would be interested in studying modes
with kc ¼ 0, since these correspond to exact perturbative
solutions to Einstein vacuum equations in d spacetime
dimensions. In this case, one would have to worry about
the fall off of the metric perturbations. However, in our
numerical method we will never be able to find modes for
which kc ¼ 0 exactly, and therefore the fall-off conditions
at infinity for these modes are not an issue for us.

E. Imposing the TT gauge conditions
and the boundary conditions

We have to solve the Lichnerowicz eigenvalue problem
(2.20) for the seven metric perturbations described in
(2.17), namely, f��0; ��1; �; �!; ��0; ��1; ��g, subject
to the TT gauge conditions (2.18). The gauge conditions
allow us to eliminate three functions in terms of the other
four and their first derivatives. In this paper we choose to
express f��0; ��1; ��g as functions of f��0; ��1;
�; �!g and their first derivatives. Notice that this choice
differs from that in [23], where the independent variables
were chosen to be f��0; ��1; �; ��g. The reason is that
the present choice allowed us to obtain good numerical
results in d ¼ 5, 6. As discussed in Sec. III D, for kc � 0,
our (regular) perturbations vanish exponentially for r !
1. However, in addition to the exponential decay, one also
has a power law behavior as in (3.19). This apparently
irrelevant extra power law decay seems to make all the
difference for the stability and/or accuracy of the numeri-
cal code in d ¼ 5, 6. For d ¼ 7, 8, 9, we obtain exactly the
same results as in [23].

To summarize, we solve the gauge conditions (2.18) for
f��0; ��1; ��g in terms of f��0; ��1; �; �!g and their
first derivatives. Making these substitutions in the full set
of the perturbation equations (2.20), we find that only four
equations remain of second order in f��0; ��1; �; �!g.
Explicitly, these equations are

ð4LhÞrr ¼ �k2chrr; ð4LhÞr� ¼ �k2chr�;

ð4LhÞ�� ¼ �k2ch��;

að4LhÞtt þ r2 þ a2 þ a2sin2�

ðr2 þ a2Þsin2� ð4LhÞt�

þ a

ðr2 þ a2Þsin2� ð4LhÞ��

¼ �k2c

�
ahtt þ r2 þ a2 þ a2sin2�

ðr2 þ a2Þsin2� ht�

þ a

ðr2 þ a2Þsin2� h��

�
; (3.20)

and they constitute our final set of equations to be solved.

A nontrivial consistency check of our procedure is to
verify that the final equations (3.20) imply the remaining
equations, which are of third order in the independent
variables. We have verified that this is indeed the case.
We will solve numerically the final eigenvalue problem

(3.20) using spectral methods (see, e.g., [56]). In order to
do so, we find it convenient to introduce new radial and
polar coordinates,

y ¼ 1� rþ
r
; x ¼ cos�; (3.21)

so that 0 � y � 1 and 0 � x � 1. The implementation of
the method requires less computational power if all func-
tions obey Dirichlet boundary conditions on all boundaries.
Therefore, we redefine our independent functions accord-
ing to

q1ðy; xÞ ¼
�
1� rþ

r

�
xð1� xÞ��0ðy; xÞ;

q2ðy; xÞ ¼ r�1
m ð1� xÞ�ðy; xÞ;

q3ðy; xÞ ¼
�
1� rþ

r

�
xð1� xÞ��1ðy; xÞ;

q4ðy; xÞ ¼ x�!ðy; xÞ;

(3.22)

so that the qi’s vanish at all boundaries. This guarantees
that the boundary conditions discussed in the previous
subsections, equations (3.8), (3.19), (3.16), and (3.12), are
correctly imposed.

F. Zero-modes are not pure gauge

In this subsection, we will argue that the TT gauge
conditions (2.18) plus our boundary conditions (3.8),
(3.19), (3.16), and (3.12) ensure that our modes are physical
and not a gauge artifact.
For kc > 0, the TT conditions completely fix the gauge

since the action of the Lichnerowicz operator on a pure
gauge mode is trivial, �Lrð���Þ ¼ 0. However, TT per-

turbations with kc ¼ 0 can be pure gauge [48], and there-
fore it could be that the stationary perturbation kc ! 0
marking the onset of a new ultraspinning instability is
not physical. In the rest of this subsection, we will show
that there is no regular pure gauge perturbation that obeys
our boundary conditions, (3.8), (3.19), (3.16), and (3.12).
Under a gauge transformation with gauge parameter ��,

the metric perturbation transforms as

h�� ! h�� þ 2rð���Þ: (3.23)

The most general gauge parameter that preserves our an-
satz (2.17) is of the form

� ¼ �rðr; xÞdrþ �xðr; xÞdx; (3.24)

where x ¼ cos�. We will now prove that such a gauge
parameter �� cannot generate a pure gauge metric pertur-
bation that is regular on all boundaries.
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A TT gauge perturbation generated by �� must satisfy
r��

� ¼ 0 andh�� ¼ 0. If we introduce the antisymmet-

ric tensor F�� ¼ r½���� and we consider Ricci flat back-

grounds, these conditions reduce to

@�ð ffiffiffiffiffiffiffi�g
p

��Þ ¼ 0; @�ð ffiffiffiffiffiffiffi�g
p

F��Þ ¼ 0: (3.25)

Assuming that the solutions of these equations are
separable,

�rðr; xÞ ¼ RrðrÞXrðxÞ; �xðr; xÞ ¼ RxðrÞXxðxÞ; (3.26)

the first equation in (3.25) reduces to

@rðrd�4�RrÞ ¼ �rd�4Rx;

@xðxd�4ð1� x2ÞXxÞ ¼ ��xd�4Xr;
(3.27)

where � is a separation constant. Similarly, a combination
of the r and x components of the second equation in
(3.25) yields

@rðrd�4�@rRxÞ ¼ �rd�4Rx;

@xðxd�4ð1� x2Þ@xXrÞ ¼ ��xd�4Xr;
(3.28)

where � is a second separation constant. Combining the
equations (3.27) and (3.28), we further find that

Rr ¼ �

�
R0
x; Xx ¼ �

�
X0
r: (3.29)

We will take Eqs. (3.27) and (3.29) as our independent
equations.

The second equation in (3.28) has the solution

XrðxÞ ¼ C1F

�
d� 3� K

4
;
d� 3� K

4
;
d� 3

2
; x2

�

þ C2x
5�dF

�
7� d� K

4
;
7� d� K

4
;
7� d

2
; x2

�
;

(3.30)

where C1;2 are integration constants, and we have defined

K 	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðd� 3Þ2 þ 4�
p

. For d � 6 (where we find the un-
stable modes), this solution diverges as C2x

5�d at x ¼ 0
unless we set C2 ¼ 0. In addition, a logð1� xÞ divergence
at x ¼ 1 can only be avoided if � satisfies the following
quantization condition:

� ¼ 2‘ðd� 3þ 2‘Þ; for ‘ ¼ 0; 1; 2; . . . ; (3.31)

which follows from the property �ð�‘Þ ¼ 1 for nonneg-
ative integer ‘.

At this point we just have to solve the first equation in
(3.28) with � given by (3.31). For our purposes it is
sufficient to obtain the behavior of the solution near the
horizon and near infinity. Near the horizon, r 
 rþ, the
most general solution behaves like

RxðrÞ 
 a0 þ a1 log

�
1� rþ

r

�
) RrðrÞ


 �a1
2‘ðd� 3þ 2‘Þ

1

r� rþ
; (3.32)

where we used (3.29). However, (3.23) implies that such a
diffeomorphism would generate metric perturbations of the
form

hrr
 �a1
2‘ðd�3þ2‘Þ

1

ðr�rþÞ2
; hrx
 �a1PðxÞ

2ðr�rþÞ ; (3.33)

which diverge at the horizon. Therefore, our regularity
requirements at the horizon force us to set a1 ¼ 0.
Similarly, near infinity a Frobenius analysis gives the
asymptotic solution

RxðrÞ 
 b0r
�ðd�3þ2‘Þ þ b1r

2‘: (3.34)

The term in this equation proportional to b1 generates,

through (3.23), a metric perturbation of the form hrr /
b1r

2ð‘�1Þ near infinity. This perturbation must decay
strictly faster than the unperturbed background solution
(which at infinity is Minkowski), which implies that we
have to impose b1 ¼ 0 for any ‘ � 0.
Summarizing, the gauge parameter (3.24) that could

potentially generate a metric perturbation that is regular
both at the horizon and at infinity must have the asymptotic
behavior

RxðrÞjr!rþ 
 a0; RxðrÞjr!1 
 b0r
�ðd�3þ2‘Þ: (3.35)

We can now complete our proof. Notice that

0 �
Z 1

rþ
drrd�4�ðrÞ½@rRxðrÞ�2

¼ rd�4�ðrÞRxðrÞ@rRxðrÞj1rþ
�

Z 1

rþ
dr@r½rd�4�ðrÞ@rRxðrÞ�RxðrÞ

¼ �2‘ðd� 3þ 2‘Þ
Z 1

rþ
rd�4RxðrÞ2 � 0; (3.36)

where we used (3.35) and (3.28). But these relations can be
satisfied only for RxðrÞ ¼ 0, which in turn implies that
RrðrÞ ¼ 0 and hence �� ¼ 0.
Therefore, we have proved that there is no regular gauge

parameter (3.24) that could potentially generate the metric
perturbations that we consider, Eq. (2.17). Thus, we con-
clude that our regular zero-mode perturbations cannot be
pure gauge.

IV. RESULTS

In this section, we present our results for the spectrum of
negative modes of the Lichnerowicz operator. The actual
spectrum in d ¼ 5, 6, 7 is displayed in Fig. 2; for the other
values of d up to d ¼ 11, the results are qualitatively
similar to d ¼ 6, 7 and we expect the same to be true for
all values of d with d > 11. Following [23], we plot the
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dimensionless negative eigenvalue �k2cr
2
m as a function of

the (dimensionless) rotation parameter a=rm. In Figs. 3 and
4 we show the actual metric perturbations f��0; ��1;
�; �!g for d ¼ 7, and in Fig. 6 we display the embed-
dings of the unperturbed and the perturbed horizons for the
same number of spacetime dimensions.

A. Results for d ¼ 5

Reference [24] proved that MP black holes (not neces-
sarily singly spinning) are always locally thermodynami-
cally unstable. Therefore, it follows from the arguments in
Sec. II B that the spectrum of the Lichnerowicz operator
should admit at least one negative eigenvalue. Since in d ¼
5 the Hessian (2.14) is positive definite, the expectation is
that the Lichnerowicz operator should admit one and only
one negative mode. Our results for the spectrum of the
Lichnerowicz operator are depicted in Fig. 2 (left), and
indeed they confirm this expectation. As the rotation is
increased, kc increases, in agreement with the results of
[22,24,54]. If we interpret this result from the black string
perspective, then more modes jkj< kc are GL-unstable,
which is expected since the centrifugal force should make
the string ‘‘more unstable.’’ The negative mode diverges as
kc / 1=ðrm � aÞ, in the singular limit a ! rm.

B. Results for 6 � d � 11

The situation in d � 6 is more interesting. The spectrum
of the Lichnerowicz operator in d ¼ 6, 7 is displayed in
Fig. 2 (center) and (right). We label the different branches
that intersect kc ¼ 0 at finite a=rm by successive integers
‘ ¼ 1; 2; 3; . . . , and we refer to the corresponding modes as
harmonics, although the equations we are solving do not
seem to separate. The values of a=rm at which the first few
branches intersect kc ¼ 0 are summarized in Table I. We
note that for each branch the corresponding integer ‘
coincides with the number of zeros that the metric pertur-
bations ��0ðx; yÞ and ��1ðx; yÞ have on the horizon y ¼ 0
(see Fig. 3).

First, we notice that the Lichnerowicz operator has a
negative eigenvalue for all values of a=rm. This is in
agreement with the thermodynamic argument in
Sec. II B. However, for d � 6, singly spinning MP black
holes admit an ultraspinning regime. The ultraspinning
surface, which determines the boundary of this region (in
parameter space), is given by the onset of the membrane-
like behavior (see (2.7)):

�
a

rm

�
d�3

mem
¼ d� 3

2ðd� 4Þ
�
d� 3

d� 5

�ðd�5Þ=2
: (4.1)

According to the thermodynamic argument in Sec. II B,
precisely at this value of a=rm the Lichnerowicz operator
should develop a new negative eigenvalue, and we find that
this is indeed the case. In the first column of Table I, we
display our numerical results for the critical values of a=rm
for the ‘ ¼ 1mode in various dimensions. We find that the
numerical results agree very well with the values of a=rm
computed from (4.1). We emphasize that the ‘ ¼ 1 mode
should correspond to a variation of the parameters within
the MP family of solutions such that it preserves the
temperature and angular velocity of the background.
(This mode is in correspondence with point 0 in Fig. 1.)
Therefore this mode should not correspond to an instability
of the black hole. However, it should give rise to a new type
of classical instability of the associated black string, in
which the horizon is deformed along both the direction of
the string and the polar direction of the sphere.
For a=rm > ða=rmÞmem, i.e., in the ultraspinning regime,

there appears an infinite sequence of new negative modes.
The values of a=rm at which the ‘ ¼ 2, 3, 4 branches
intersect kc ¼ 0 are displayed in Table I. These modes
do not admit a thermodynamic interpretation and therefore
they should correspond to new perturbative black holes
with deformed horizons (see points A, B, and C in Fig. 1).
In particular, the ‘ ¼ 2mode should signal the onset of the
ultraspinning instability conjectured in [45]. For d ¼ 7 the
actual metric perturbations ��0, ��1, �, �� for the ‘ ¼
1, 2 modes are displayed in Figs. 3 and 4. Figures 3(a)–3(d)
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FIG. 2. Negative modes of the singly spinning MP black hole in d ¼ 5 (left), d ¼ 6 ( center), and d ¼ 7 (right).
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show that, for each of the ‘ ¼ 1, 2 modes, the number of
zeros that ��0ðx; yÞ and ��1ðx; yÞ have on the horizon
(y ¼ 0) coincides with the integer ‘. We have checked that
the same is also true for the higher harmonics with ‘ > 2.

According to the discussion in Sec. II A, an important
prediction of [45] is that, in the a ! 1 limit and in a region
close to the axis � 
 0, the threshold axisymmetric modes
at the horizon should be well approximated by a Bessel
function J0ð��Þ. In order to check if, for large a and close
to the horizon and the axis, our perturbations reduce to a
Bessel function (at least qualitatively), we have fitted our
numerical results in d ¼ 7 for �ðrÞhrr with a=rm ¼ 4:38
and k2cr

2
m ¼ 0:114,14 with a Bessel function:

�J0ð��Þ; with � ¼ �1:868; � ¼ 5:564; (4.2)

and � ¼ a sin�. The results are depicted in Fig. 5, and they
show that the agreement is quite remarkable. We should
emphasize though that the argument of [45] only applies in

the strict limit mentioned above. For our data, a=rm is
relatively large (compared to the onset of the ultraspinning
instability) but nevertheless finite, and therefore only a
qualitative agreement with the prediction of [45] should
be expected. This is what Fig. 5 shows.
To confirm our interpretation and visualize the effect of

these perturbations on the horizon of the background MP
black hole, in Fig. 6 we compare the embedding diagrams
of the unperturbed and the perturbed horizons in d ¼ 7.
(See the Appendix for the technical details of the embed-
ding diagram construction.) For other values of d the
picture is qualitatively similar. From the embeddings we
conclude that the effect of the ‘ ¼ 2 modes is to create a
pinch centered on the axis of rotation; the ‘ ¼ 3 modes
create a pinch at a finite latitude and the ‘ ¼ 4 modes
create two pinches, one centered on the rotation axis and
the other at a finite latitude. These are precisely the kind of
deformations depicted in Fig. 1.
Finally we notice that the value of ða=rmÞcrit for every

‘ > 1 increases with the number of spacetime dimensions
d. It would be interesting to explore if the perturbative

FIG. 3 (color online). Functions ��0ðx; yÞ and ��1ðx; yÞ for the ‘ ¼ 1 mode [Figs. 3(a) and 3(c)] and ‘ ¼ 2 mode [Figs. 3(b) and 3
(d)], respectively. The number of zeros at y ¼ 0 (the horizon) coincides with the integer ‘.

14For these results, y ¼ 0:0034.
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approach of [17] can capture the dynamics of these insta-
bilities in the a ! 1 limit.

V. DISCUSSION

In this paper we have studied in detail the properties of
the onset of the ultraspinning instability in singly spinning
MP black holes in d � 6. This instability is captured by a
class of perturbations that preserve the R�Uð1Þ �
SOðd� 3Þ symmetries of the background, as well as the
angular velocity and temperature of the original MP black
hole. These perturbations (in the TT gauge) must satisfy
the Lichnerowicz system of equations (2.19). Our strategy
however was to solve the more general eingenvalue prob-
lem (2.20) because: i) there are powerful numerical rou-
tines to solve generalized eigenvalue problems of this kind;
and ii) this strategy also allows us to study Gregory–
Laflamme-like instabilities of the associated black string.
In short, varying the rotation parameter a of the back-
ground black hole (2.1), we searched for the negative
modes of the problem (2.20), i.e., for solutions that have
generically kc � 0. We found several families of negative

modes that exhibit an underlying harmonic structure,
although the equations that we solve do not seem to
separate. We used this to suggestively label the several
branches by an integer ‘. This integer coincides with the
number of zeros of the metric perturbations on the horizon.
The family ‘ ¼ 0 always has kc � 0 and coincides with
the well-known negative mode of the Schwarzchild-
Tangherlini solution when the rotation parameter a van-
ishes [55,57]. This family therefore describes the critical
mode jkj ¼ kc of the original Gregory-Laflamme instabil-
ity of the black string [48] when a ¼ 0, and our results
show how it evolves as the rotation increases: the value of
the threshold wave number kc increases with the rotation.
The branches with ‘ � 1 are more interesting since they

intersect the kc ¼ 0 axis at a critical a > 0 (see Table I).
Thus they not only describe new types of Gregory-
Laflamme instabilities of rotating black strings, but they
also represent, for ‘ � 2, true instabilities of the MP black
hole. For black strings, the onset of these instabilities is
conjectured to signal a bifurcation to new branches of
nonuniform black strings in which the horizon is deformed
along both the direction of the string and the polar

FIG. 4 (color online). Functions �ðx; yÞ and �!ðx; yÞ for the ‘ ¼ 1mode [Figs. 4(a) and 4(c)] and ‘ ¼ 2mode [Figs. 4(b) and 4(d)],
respectively.
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direction of the transverse sphere. At a given rotation, the
‘ ¼ 1 mode has the shortest wavelength k�1

c , and hence it
should dominate the instability of the black string.

From now on, we focus our attention only on the con-
sequences of our findings for the stability of the MP black
holes. The critical rotation where the ‘ ¼ 1 mode appears
can be predicted by the thermodynamic argument of
[23,24] (see Sec. II B), which can be seen as a refinement
of the Gubser-Mitra conjecture. Accordingly, this mode
does not correspond to a true instability of the MP black
hole. Instead, we have interpreted it as a thermodynamic
mode that corresponds to a variation of the parameters
within the MP family of solutions such that it preserves
the temperature and angular velocity of the background
(Sec. IV, and point 0 in Fig. 1).

The modes with ‘ � 2 describe the onset of true ultra-
spinning instabilities of the MP black hole. In Sec. IV, we
have studied the deformations that these modes produce on
the horizon of the black hole for d ¼ 7 ( just for concrete-
ness) and found that they give rise to the kind of deforma-
tions predicted in [40]. In addition, we have shown that, for
large a and near � ¼ 0, our numerical results are well
approximated by a Bessel function, which is in agreement
with the heuristic arguments of [45]. Altogether, these
results provide solid evidence in favor of the ultraspinning
instability conjectured in [40,45]. The thresholds of the
ultraspinning instabilities are expected to signal bifurca-
tions to new branches of axisymmetric solutions with
pinched horizons in a phase diagram of stationary solutions

(see points A; B;C; . . . in Fig. 1). Although these pinched
black holes have the same isometries as the original MP
black hole, their spherical-topology horizons are distorted
by ripples along the polar direction. When continued in the
full nonlinear regime, these new branches of solutions are
conjectured to connect to the black ring and black Saturn
families [40]. Although we have identified the critical
values of the rotation where these new branches of pinched
black holes appear, unfortunately with our methods we
cannot determine if they will have larger or lower entropy
in the phase diagram S vs J at fixed total mass. This would
require going beyond linear order in perturbation theory.
We have limited our study to stationary perturbations,

and therefore we cannot claim to have found an unstable
mode, i.e., a linear perturbation (satisfying our boundary
conditions) that grows exponentially with time; we have
found only the stationary zero-modes that signal the onset
of the instability. Including time dependence is not con-
ceptually difficult; it is only technically harder. As pointed
out in footnote 9, consistency of (2.20) requires turning on
extra components of the perturbed metric. This problem is
however of fundamental interest since its solution would
provide a definite proof of the ultraspinning instability
together with information on its time scale. The analogous
stability problem, including time dependence, was studied
in [24] in the context of odd-dimensional MP black holes
with equal angular momenta in all rotation planes. There,
the analogue of the ‘ ¼ 1 zero-mode is also present, and
the time-dependent analysis confirmed the absence of a
black hole instability in this sector. We take this result as
good evidence in support of a similar interpretation in the
singly spinning case.
The d ¼ 5 case is special. As [45] already pointed out,

the d ¼ 5 singly spinning MP black hole does not have an
ultraspinning regime (in the sense of Sec. II B) and there-
fore a priori there is no argument that suggests the exis-
tence of an instability within the class of perturbations that
preserve the isometries of the background. In this paper we
have confirmed this picture since in d ¼ 5 we found only
one negative mode (the ‘ ¼ 0 branch) which has kc � 0
for all values of a such that a < rm. The d ¼ 4 case has
already been discussed in [22].
An interesting open question to be addressed is whether

the ultraspinning instability is also present in MP black
holes in AdS. This background might introduce new fea-
tures and physics that deserve a study. In particular, AdS
might exhibit new black hole phases with an interesting
interpretation in the holographic dual field theory. In fact,
pinched plasma balls [58], new kinds of deformed plasma
tubes [59] and rotating plasma-ball instabilities [60] have
been found in the context of Scherk-Schwarz-AdS. The
spectral methods that we have employed can also be applied
in AdS spacetimes (see [22] for an application in d ¼ 4).
The existence of an ultraspinning regime is not unique to

MP black holes. For instance, the five-dimensional black
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FIG. 5 (color online). Comparison between our �ðrÞhrr for
a=rm ¼ 4:38 and k2cr

2
m ¼ 0:114 in d ¼ 7 (dots) and the fitting

function �J0ð��Þ (dashed line). The solid (red) line corresponds
to the interpolating polynomial to our data and should only serve
to guide the eye. To obtain the plots, the minimum value of x was
taken to be xmin ¼ 0:69804, since the comparison should be
relevant near the rotation axis at x ¼ 1.
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rings also admit a certain ultraspinning regime. Namely, in
the limit of arbitrarily large angular momentum, the black
ring resembles a boosted black string [61], which is known
to suffer from GL instabilities [62]. Moreover, the argu-
ments in [28,62,63] suggest that black rings should suffer
from this GL instability for relatively low values of the
angular momentum. Although these GL modes would
break the symmetries of the background, it is interesting
to ask whether there are zero-modes which can be captured
by our methods. In fact, black rings are expected to suffer
from other types of instabilities. For instance, fat rings are
expected to be unstable under changes of their radius [63],
and doubly spinning black rings are conjectured to suffer
from similar instabilities as well as from superradiant
instabilities associated with the rotation along S2 [64].

Rotating asymptotically flat black holes can also suffer
from instabilities which break the axisymmetry. Recently,
the authors of [19,20] performed a remarkable fully non-
linear numerical evolution of a perturbed singly spinning
MP solution in d � 5 and found that these black holes are
dynamically unstable against nonaxisymmetric bar-mode

perturbations. The endpoint of this instability (at least in
the regime of rotations explored in [20]) seems to be
another MP black hole with a smaller angular momentum.
Notice however that, because the axisymmetry is broken,
the threshold of the instability is not expected to be sta-
tionary, and thus there will be no bifurcation to a new
stationary family of black holes. The existence of such
an instability had also been conjectured by Emparan and
Myers in [45] using a thermodynamic argument of a differ-
ent type to the one explored in the current paper.15 This
bar-mode instability is certainly different in nature from
the axisymmetric instability, which is not present in the
d ¼ 5 case. Moreover, the bar-mode instability becomes
active at slightly lower rotations: compare the critical

FIG. 6 (color online). Embedding diagrams [Figs. 6(a)–6(c)] at ða=rmÞcrit of the d ¼ 7 black hole horizon, unperturbed (light blue),
and perturbed (dark red) with the ‘ ¼ 2, 3, 4 harmonics (in this order). The embedding Cartesian coordinates Z and X lie along the
rotation axis � ¼ 0 and the rotation plane � ¼ �=2, respectively. We also show the logarithmic difference between the embeddings of
the perturbed (Z‘¼2;3;4) and unperturbed (Z0) horizons. The number of spikes corresponds to the number of crossings between the two

embeddings. Each þ sign indicates that the perturbation bulges out relative to the background, and the � signs indicate the opposite
situation. Figures 6(d)–6(f) provide a three-dimensional illustration of the spatial sections of the horizon, with the (d� 4)-sphere
suppressed at every point, with the same color code.

15The original argument of [45] for the bar-mode instability is
the following: The entropy of a highly rotating black hole can be
smaller than that of two boosted Schwarzchild-Tangherlini
black holes in orbital motion. Therefore it should be entropically
favored to the system to develop a nonaxisymmetric
configuration.
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values of a=rm for the onset of the bar instability in Table 1
of [20] with the critical values of a=rm for the onset of the
ultraspinning instability in our Table I. It would certainly
also be interesting to study the nonlinear time evolution of
the axisymmetric ultraspinning instability.

In addition, in the presence of certain matter or a cos-
mological constant, rotating or charged black holes (in-
cluding the Kerr solution) can be unstable due to the
superradiant phenomena [47,65–67]. Consider a black
hole with angular velocity �H (or with chemical potential
�H). If the frequency ! and the angular momentum m (or
charge e) of a scattering wave satisfy the relation !<
m�H (or !< e�H), the scattering is superradiant: the
wave extracts rotational energy (or electromagnetic en-
ergy) from the background and gets amplified. The pres-
ence of an effective reflective potential barrier, which may
be due to the mass in a massive scalar field case or due to
the AdS gravitational potential, combined with superra-
diance can then lead to multiple wave amplification and
reflection that render the system unstable. This can occur
for scalar, electromagnetic or gravitational (but not fermi-
onic) waves. Such an unstable system is often called a
‘‘black hole bomb’’ [65]. It would be interesting to deter-
mine the endpoint of this superradiant instability [47,66],
and there is active ongoing research in this direction [68].
The spectral methods might also be useful to tackle this
problem.

Returning to Smarr’s expectation of an instability in
rotating black holes based on an analogy between rotating
black holes and fluid droplets [43], it is interesting that the
expectation is realized in higher dimensions with the ultra-
spinning instability. That this happens is no longer seen as
a mere analogy but a consequence of the gauge/gravity
correspondence. Black holes are thermodynamic objects,
and as such one should expect that, in a long wavelength
regime (compared to the energy scale set by the tempera-
ture), they should have an effective hydrodynamic descrip-
tion. The first attempt to materialize this idea was the
membrane paradigm [69]. More recently, the AdS/CFT
duality motivated further research in this direction which
culminated with the formulation of the fluid/gravity corre-
spondence [12], which provides a precise hydrodynamic
description of asymptotically large AdS black holes. In
addition, we should mention the blackfold approach of
[17,18] which also provides a hydrodynamic description
of asymptotically flat black holes in the regime where this
approximation applies. In both latter cases, the formal
connection between gravity and fluid dynamics is estab-
lished through a derivative expansion of the Einstein
equations.

In this context, it is therefore no surprise that many of the
aforementioned black hole instabilities have a hydrody-
namic description. The Gregory-Laflamme instability [48]
of black strings is in correspondence with the Rayleigh-
Plateau instability in fluid tubes [59] and with damped

unstable sound wave oscillations [70]. The subject of our
study, the ultraspinning instability and the associated new
phases of pinched stationary black holes, also possesses a
fluid description as ultraspinning pinched plasma balls
[58]. Finally, the bar-mode nonaxisymmetric instability
[19] was also conjectured to exist in black holes due to
its presence in rotating fluids [60].
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APPENDIX: EMBEDDING DIAGRAMS

In this Appendix, we summarize the main ingredients of
the embeddings presented in Fig. 6. Since the kind of
perturbations we are considering preserve the transverse
(d� 4)-sphere, we will henceforth suppress it and concen-
trate on the nontrivial four-dimensional part of the metric.
In order to be able to visualize the geometry of the horizon
for all values of the rotation parameter, we will adopt the
embedding proposed in [71] in the context of the Kerr-
Newman black hole.
Recall that for both the perturbed and the unperturbed

geometries, the spatial cross sections of the future event
horizon Hþ are hypersurfaces of constant t and r ¼ rþ.
Here rþ denotes the location of the event horizon of the
background MP black hole. The induced metric on this
hypersurface [suppressing the transverse (d� 4)-sphere]
can be written as

ds22d ¼ Vð�Þd�2 þ �2d�2; with � ¼ ffiffiffiffiffiffiffiffiffi
g��

p jrþ ;

and Vð�Þ ¼ gxxjrþ
�
dx

d�

�
2
;

(A1)

where x ¼ cos�. This two-dimensional surface of revolu-
tion can be embedded into Euclidean four-dimensional
space E4 via the map ð�;�Þ � ðX; Y; Z; RÞ defined by

ðX; Y; ZÞ ¼ �

�0

ðFð�Þ; Gð�Þ; Hð�ÞÞ;

R ¼ Rð�Þ; and Fð�Þ2 þGð�Þ2 þHð�Þ2 ¼ 1;

(A2)

and the induced metric for the associated 2-surface is
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ds2
E4

¼ dX2 þ dY2 þ dZ2 þ dR2

¼
�
��2

0 þ
�
dR

d�

�
2
�
d�2 þ �2d�2: (A3)

We ask the reader to see [71] for a detailed understanding
of the second equality.

Introducing the scale parameter � and the distortion
parameter 	,

� ¼ ðr2þ þ a2Þ1=2; 	 ¼ aðr2þ þ a2Þ�1=2; (A4)

it follows that

gxxjrþ ¼ �2fðxÞ;

g��jrþ ¼ �2fðxÞ�1; with fðxÞ ¼ 1� x2

1� 	2ð1� x2Þ :
(A5)

Then, from ds2
E4

¼ ds22d, we get

R0ðxÞ ¼ �fðxÞ�1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f0ðxÞ2

4�0

s
: (A6)

Reality of this expression requires that �0 � jf0ðxÞj=2 for
0 � x � 1 which is satisfied if

�0 � 1

2
max
x2½0;1�

jf0ðxÞj: (A7)

In the embedding diagrams shown in Fig. 6, the
Cartesian coordinate Z was chosen to be given by the
RðxÞ that solves (A6). Similarly, X was chosen to be given

by the function fðxÞ1=2 defined in (A5).
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