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We investigate features of perturbative gravity and supergravity by studying scattering in the ultra-

Planckian limit, and sharpen arguments that the dynamics is governed by long-distance physics. A simple

example capturing aspects of the eikonal resummation suggests why short-distance phenomena and, in

particular, divergences or nonrenormalizability do not necessarily play a central role in this regime. A

more profound problem is apparently unitarity. These considerations can be illustrated by showing that

known gravity and supergravity amplitudes have the same long-distance behavior, despite the extra light

states of supergravity, and this serves as an important check on long-range dynamics in a context where

perturbative amplitudes are finite. We also argue that these considerations have other important

implications: they obstruct both probing the conjectured phenomenon of asymptotic safety through a

physical scattering process, and ultra-Planckian scattering exhibiting Regge behavior. These arguments

sharpen the need to find a nonperturbative completion of gravity with mechanisms which restore unitarity

in the strong gravity regime.
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I. INTRODUCTION

One of the challenges in finding a quantum theory
of gravity is to formulate sharp physical questions. In
particular, we cannot define the theory through gauge-
invariant correlators of local operators, unlike with other
field theories. In formulating well-defined quantities, one
apparently has two choices. One is to define the gravita-
tional S-matrix or a modification of it accounting for soft
graviton divergences, analogous to those in QED. Another
choice is to formulate appropriate observables that are
approximately local, under certain conditions on the state,
etc.; we expect such observables to be relevant in cases
where a description is needed that does not directly refer to
asymptotic infinity, as in studies of quantum cosmology.

Nonrenormalizability has been regarded as another cen-
tral problem of quantum gravity, and, in particular, has
been a strong motivator for the development of string
theory, as well as for the study of supergravity (SUGRA)
and its order-by-order finiteness [1]. While some progress
has been made on formulating approximately local observ-
ables in relational approaches [2,3], we will focus on the
relevance of (non)renormalizability to the problem of find-
ing the S-matrix.

Some properties of the S-matrix, such as its analyticity
structure, crossing, and locality, were investigated, ac-
counting for essential aspects of gravity, in [4]. A particu-
larly interesting regime—that must be described by any
theory of gravity with asymptotically flat solutions and

Lorentz invariance—is that of scattering at energies far
beyond the Planck scale. This is because Lorentz invari-
ance, together with a very mild notion of locality, allows us
to consider asymptotic states with arbitrarily high energies,
that may then undergo an ultra-Planckian collision.
It is natural to investigate the role of renormalizability in

this regime. In particular, if individual loop amplitudes are
rendered finite by string theory or SUGRA, is this all that is
needed to ensure that the high-energy S-matrix can be
derived? Or, following another proposal, might a phenome-
non such as asymptotic safety [5,6] be critical in formulat-
ing quantum gravity?
A counterargument to this is that ultrahigh-energy scat-

tering in gravity in fact probes long-distance physics; this
phenomenon has been investigated in various works, par-
ticularly [4,7–11]. Masslessness of the graviton, together
with growth of the dimensionless gravitational coupling
with energy, are responsible for this behavior. If indeed
ultrahigh-energy gravitational scattering is governed by
long-distance dynamics, this suggests that short-distance
singularities in loop amplitudes are not centrally relevant.
Moreover, at ultrahigh energies and sufficiently low impact
parameter, classical gravity predicts black hole formation
[9,12]. Also, perturbative quantization about such a solu-
tion has been argued by Hawking [13] to violate unitary
evolution. Combining these facts suggests that in gravity,
unitarity is a more profound question than renormalizabil-
ity or finiteness [14].1
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1In electroweak theory, these two questions are closely con-
nected. However, the feature that in gravity, high energies probe
long distances, as we will explore further, appears to signifi-
cantly weaken such a link.
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A first reaction to this story might be that we cannot
sharply discuss the ultrahigh-energy regime in any case,
because there gravity is strongly coupled. However, this
appears not to be true. One can precisely describe high-
energy scattering in the regime of large impact parameters
or small momentum transfers—such as in the ultra-
Planckian scattering of the Earth and the Moon. Of course,
it is conceivable that the relativistic case could introduce
new features, so it is important to study its specifics. But,
there, as we will elaborate, at sufficiently large impact
parameters, amplitudes are well approximated by the
Born approximation. There are also general arguments
that for smaller impact parameters, there is still a consistent
loop expansion for gravity, producing the amplitudes of the
eikonal approximation [15–21].

However, when discussing loop amplitudes, one may be
uneasy that the perturbative infinities could be important,
or in theories where those infinites are removed, the new
states that do so are important. This question was probed
for string theory in [11,22], where it was argued that
excitation of strings does not significantly change the
picture of high-energy, long-range gravitational scattering,
and, in particular, does not interfere with the process
classically described as black hole formation.

Another place to investigate these questions is in
SUGRA, particularly in light of arguments that maximal
SUGRA may be perturbatively finite in four dimensions
[23]. Whether or not it is, superpartners regulate divergen-
ces at low loop order. A natural question is whether these
new states somehow alter the picture that ultrahigh-energy
scattering is dominated by semiclassical physics at suffi-
ciently large distance. Precise knowledge of certain
SUGRA amplitudes allows explicit checks of a possible
role of new states in modifying the physical picture.

In this paper, we investigate SUGRA amplitudes and
their match to the eikonal amplitudes, and subleading
corrections for large impact parameter. We indeed find
that the essential intuition, that graviton exchange domi-
nates this high-energy regime, holds. We will better under-
stand the nature of the cutoff that SUGRA supplies and will
argue that this cutoff does not play a central role in the
calculation of high-energy amplitudes. This then supports
the statement that perturbative finiteness, or renormaliz-
ability of amplitudes, are not a central focus in ultrahigh-
energy scattering. However, unitarity is. The apparent loss
of information in black hole formation and evaporation
is a serious issue, which has been argued to produce a
paradox [24,25].2 Assuming gravity does have a unitary
S-matrix, a critical question is what physical mechanisms
act to produce unitary evolution. The logic of the informa-
tion ‘‘paradox’’ indicates that these need to be nonlocal
on scales of the black hole in question, which can be

macroscopic. The need for these mechanisms to unitarize
gravity in this nonperturbative regime seems a critical
guide to the underlying physics [11,29,30].
Section II of this paper studies a toy integral that nicely

illustrates the interplay between the long-distance physics
of the eikonal amplitudes and the short-distance physics of
the cutoff; in this example, infinities in the perturbation
series clearly are a red herring. Section III reviews the
gravitational eikonal amplitudes, and Sec. IV applies the
lessons of the toy integral to these amplitudes. Section V
then investigates known explicit SUGRAamplitudes, at one
and two loops, and shows how they match to the eikonal
amplitudes in the relevant regime. It also gives a general
argument for why graviton exchange indeed dominates.
Section VI then discusses aspects of the resulting physi-

cal picture. Outside the black hole regime, scattering is
expected to be governed by saddle points related to colli-
sions of Aichelburg-Sexl shock waves. Even if the inter-
actions between these involve large momentum transfers,
this is due to exchange of many soft gravitons. The softness
of the individual gravitons has important consequences
regarding string excitation, if one works in string theory
[11,22], for the scale of soft radiation, and for the factori-
zation scale in gravitational scattering of hadrons. It also
raises an important question regarding the possible mean-
ing of an ultraviolet fixed point [5,6], and suggests that
ultrahigh-energy scattering does not exhibit Regge behav-
ior. We also make further comments on the problems of
finding a unitary description of scattering in the regime
where classically a black hole would form. Here, it appears
that perturbation theory fails, and as noted, new mecha-
nisms are likely needed as part of the nonperturbative
completion of gravity that unitarizes the theory while
matching onto a semiclassical picture of black hole for-
mation and evaporation.

II. A TOY INTEGRAL

As a warm-up example of the type of expression we will
encounter in high-energy gravitational scattering, let us
consider the integral

I ¼
Z 1

0
dbb3eig=b

2
; (2.1)

where g is a small constant. The integrand is singular at
b ¼ 0, but this can be managed by replacing the lower
limit using a cutoff at b ¼ ��1. An obvious approach to
evaluating this integral is to Taylor expand the exponential;
then, each term is trivially integrated, giving

I ¼ 1���4

4
þ ig

ð1���2Þ
2

� g2

2
log�

þ ig3

12
ð1��2Þ þ � � � : (2.2)

However, we of course find that the resulting expression
is very badly behaved as the cutoff is removed, � ! 1.

2Recent arguments for how a paradox is avoided appear in
[26–28].
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This is not to say that the integral is badly behaved. In fact,
the regulated integral can be found exactly, in terms of
known functions:

Ið�Þ ¼ g2

4

�
EiðigÞ þ 1

g

�
iþ 1

g

�
eig � Eiðig�2Þ

� 1

g�2

�
iþ 1

g�2

�
eig�

2

�
; (2.3)

where Ei is the exponential integral. Moreover, this
expression has a sensible limit as � ! 1; using the
asymptotic behavior of the exponential integral as
x ! 1,

Ei ðixÞ ¼ i�þ eix
�
� i

x
�

�
1

x

�
2 þO

�
1

x3

��
(2.4)

gives

Ið�Þ ¼ g2

4

�
EiðigÞ þ 1

g

�
iþ 1

g

�
eig � i�

�
þO

�
eig�

2

�2

�
:

(2.5)

Clearly, expanding the exponential is not the right thing to
do in order to evaluate the integral. There appear to be
close parallels in expressions describing gravitational
scattering.

III. GRAVITATIONAL EIKONAL AMPLITUDES

Consider gravitational scattering, in D dimensions, in
the ultrahigh-energy limit, E ¼ ffiffiffi

s
p � MD, with MD the

Planck mass. Since the dimensionless gravitational cou-
pling is usually thought to be GDE

D�2 � ðE=MDÞD�2, one
might expect this to be a strongly coupled problem.
However, that depends on the size of the momentum trans-
fer, t ¼ �q2, or impact parameter—scattering at a suffi-
ciently large impact parameter is dominated simply by the
Born approximation,

T0ðs; tÞ ¼ �8�GDs
2=t: (3.1)

For decreasing impact parameter, higher-loop amplitudes
become relevant, and one enters regimes where different
phenomena dominate; an overview of these regimes, with
further references, is provided in [4]. (Important earlier
references include [7,15,16,31,32].) In particular, it is ar-
gued there and in preceding references that the first loop
corrections to become important are the ladder and
crossed-ladder diagrams, which can be summed to give
the eikonal approximation to the amplitude.

Specifically, such a ladder diagram is exhibited in Fig. 1.
The eikonal approximation to the amplitude arises from
neglecting subleading terms in the momentum transfer
running through the individual rungs. In particular, if k
denotes a typical such momentum transfer, and pi an
external momentum, then the intermediate propagators of
the high-energy particles have denominators of the form

Di ¼ ðpi þ kÞ2 þm2 ¼ 2pi � kþ k2; (3.2)

and we neglect the second term. Likewise, in the vertices,
we neglect momentum transfers k� q compared to
the size of pi. The result is that the sum of ladder and
crossed-ladder diagrams at N-loop order can be written in
terms of the tree amplitude, T0ðs;�q2Þ, as

iTNðs; qÞ ¼ 2s

ðN þ 1Þ!
Z �YNþ1

j¼1

dD�2kj

ð2�ÞD�2

iT0ðs;�k2j Þ
2s

�

� ð2�ÞD�2�D�2

�X
j

kj � q?
�
; (3.3)

where the integrals are over the components of the
momenta transverse to those of the incoming particles in
the c.m. frame. The sum over all such amplitudes gives the
eikonal amplitude, which is written in terms of the eikonal
phase,

�ðx?; sÞ ¼ 1

2s

Z dD�2q?
ð2�ÞD�2

eiq?�x?T0ðs;�q2?Þ

¼ 4�

ðD� 4Þ�D�3

GDs

xD�4
?

; (3.4)

with �n the area of the unit n-sphere. The eikonal ampli-
tude is

iTeikðs; tÞ ¼ 2s
Z

dD�2x?e�iq?�x?ðei�ðx?;sÞ � 1Þ; (3.5)

in the integral, b ¼ jx?j plays the role of the impact
parameter, and thus the amplitude is naturally given in an
impact parameter representation.
An important question is to what extent the eikonal

amplitude is a good approximation to the exact amplitude,
and in what domain. First, note that a natural expansion
parameter is the eikonal phase (3.4). When this is small, the
eikonal amplitude can be approximated by the linear term
in �, which is exactly the Born amplitude. Corrections to
this become important at impact parameters where � be-
comes of order one. These impact parameters are directly
related to momentum transfers, since the integral (3.5) has
a saddle point which fixes b in terms of q. To write the
corresponding equation, we introduce the Schwarzschild
radius of the c.m. energy,

RðEÞ ¼ 1

MD

�
kDE

MD

�
1=ðD�3Þ

; (3.6)

where

1

2

3

4

FIG. 1. A ladder diagram with multiple graviton exchange.
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kD ¼ 2ð2�ÞD�4

ðD� 2Þ�D�2

: (3.7)

The saddle point is then at the momentum transfer

q=E ¼ �c � 1

E

@

@b
��

�
RðEÞ
b

�
D�3

; (3.8)

where �c is interpreted as the classical scattering angle.

IV. CORRECTIONS TO LONG-DISTANCE
SADDLE POINTS?

For momentum transfer given by (3.8) and such that
�> 1, the corrections to Born scattering given by the
eikonal amplitude become important. We wish to know
whether and when there are other significant corrections to
this amplitude.

There are multiple possible sources of corrections. First,
since gravity is nonrenormalizable, becoming more so for
D> 4, there is a question about how to define the N-loop
amplitudes that we are summing. There are multiple ap-
proaches to making these amplitudes better-behaved in the
UV. One is string theory, which regulates the UV diver-
gences by softening UV behavior through string extended-
ness. Another approach is supersymmetry, and it is known
that SUGRA amplitudes have improved UV behavior, and
it is even conjectured that in D ¼ 4 maximal SUGRA,
these amplitudes could be finite to all loop order [33].
But, if either of these are true, then there are many more
states beside the graviton that can propagate in loops,
and one might be concerned that these make important
corrections to the amplitudes (3.5). Finally, yet another
issue is that the approximation of (3.2), Di � 2pi � k,
worsens the UV behavior of the individual loop ampli-
tudes, since the denominators have decreased order in loop
momenta.

Consider first this last point. Expanding (3.5) in �, we
find that the resulting integrals produce arbitrarily large
inverse powers of a short-distance cutoff on x?. However,
the resulting behavior is closely analogous to that of (2.1).
This can, in particular, be seen by comparing the case
D ¼ 6. Given this, one has strong motivation to believe
that the divergent behavior in an ultraviolet cutoff �—i.e.,
at short distances—is largely a red herring. Certainly in the
case of the example (2.1), one finds a finite answer even at
infinite cutoff, and indeed the eikonal integral is likewise
dominated at the large-distance saddle point given by (3.8).
We expect that it is the physics near this saddle point, not at
very short distances, that dominates ultrahigh-energy
scattering.

Indeed, this directly addresses also the first concern,
since from this viewpoint the infinities contributing to the
nonrenormalizability appear not to play a central role. One
sees that the standard gravitational loop expansion about
flat space produces expressions that are divergent with the
cutoff, but that was also the case with the expansion of the

toy integral, (2.2). However, we saw this was simply not a
useful way to evaluate that integral.
It should be emphasized that the apparent dominance of

dynamics near the saddle point (3.8) means that in the high-
energy regime there is a strong sense in which long-
distance, rather than short-distance, physics is important.
This is a basic feature of gravity.3 As noted, there are even
deeper issues involving unitarity when one expands about
such saddle points; we will return to this question later in
the paper.
This brings us to the second concern, that states that may

be part of the theory, such as excited strings or superpart-
ners, could modify the gravitational amplitudes (3.5) even
at long distances. Possible such modifications due to string
behavior were considered in [11,22], and while present,
have a simple interpretation in terms of tidal excitation of
strings, once one reaches small enough impact parameters.
Perhaps of more concern are modifications due to other
massless states, such as gravitini, or scalars, or other super-
partners that might be exchanged over long distances.
A nice fact is that there has been a lot of study of

SUGRA amplitudes in the recent literature, and so there
are various concrete tests of this possibility. In particular,
since certain higher-loop SUGRA amplitudes are known
exactly, we can explore whether they are well approxi-
mated by the eikonal amplitudes in the regime of ultrahigh
energy and small momentum transfer. This serves as an
explicit check on the eikonal amplitudes getting the correct
long-distance physics. We should note that there is a
general argument, which we will elaborate later in the
paper, that other fields in the gravity multiplet contribute
only at subleading order in an expansion in q=E: since it is
the highest-helicity field in the multiplet, the graviton
couples with the most powers of E. Lower-helicity fields
have fewer powers of the energy in their couplings, and
thus are subdominant at high energies and long distance.
Nonetheless, it is nice to have explicit checks, from exact
SUGRA amplitudes, that one is not missing important
contributions to amplitudes.
It is also interesting to better understand how the

SUGRA amplitudes regulate the UV divergences order-
by-order in the loop expansion, given that certain
SUGRA amplitudes are finite to certain loop orders, and
in light of the all-order conjecture. One can try to better
understand the nature of the SUGRA regulation, in com-

3Note that this is closely similar to the UV/IR correspondence
of string theory, in which high energies produce long strings, and
there is some belief in the string community that these are even
more directly related through some correspondence between
excited string states and black holes. However, for evidence to
the contrary, see [11,22], which found a parametric separation
between extended string behavior and the long-range behavior of
gravity. For this reason, we focus on the gravitational aspects of
such behavior. Earlier references on the black hole aspects of this
behavior include [7–11], though as we will see in more detail,
this behavior also extends outside the black hole regime.
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parison with the above discussion, for amplitudes in the
high-energy regime.

But even if SUGRA is finite order-by-order, one might
ask whether this means that SUGRA gives a complete
description of the theory. In light of the preceding discus-
sion, we see that in the very high-energy regime, the order-
by-order divergences of terms in the loop expansion are not
necessarily centrally relevant to the problem of defining the
amplitudes. We will return to this point later in the paper.

V. SUPERGRAVITYAMPLITUDES
AND EIKONALIZATION

A. One-loop amplitudes

There has been significant success in explicit calculation
of amplitudes in SUGRA [1,33]. Let us consider a four-
point amplitude, as pictured in Fig. 2, corresponding to
exchange of two gravitons in the t channel. In a general
gravity theory—not necessarily supersymmetric—the am-
plitude will take the form

M1�loopðs; tÞ ¼ �ið8�GDÞ2
Z dDk

ð2�ÞD

� Fðpi; kÞ
k2ðp1 � kÞ2ðp2 þ kÞ2ðp1 þ p3 � kÞ2 ;

(5.1)

where Fðpi; kÞ is a polynomial expression that is of order 8
in the external and loop momenta, pi and k, respectively,
and can also depend on the polarizations of the particles.
The external states could be scalars, gravitons with definite
helicity, or other states. To get the full one-loop amplitude,
one adds to this the crossed box, pictured in Fig. 3, and
other one-loop diagrams whose details depend on the
structure of the theory.

Focus on the regime s � M2
D and�t=s � 1. The poly-

nomial F can be expanded in powers of the common high
energy, E ¼ ffiffiffi

s
p

Fðpi; kÞ ¼ s4 þ � � � ; (5.2)

where the leading term appears in generic theories.
Subsequent terms have fewer powers of E, and their details
depend on the matter content of the theory.

In theories where (5.1) is divergent for D< 8, this
comes from positive powers of k in the numerator, for
example, k4 in D ¼ 4 gravity coupled to a scalar. In such
a theory, one needs a cutoff in order to regulate the integral.
However, in supersymmetric theories, supersymmetric

and other cancellations can remove such divergences.
The exact one-loop gravity amplitude, including all of
the diagrams, takes the form of (5.1), plus two ‘‘crossed’’
contributions [33]. Specifically, defining

I1ðs; tÞ ¼
Z dDk

ð2�ÞD
1

k2ðp1 � kÞ2ðp2 þ kÞ2ðp1 þ p3 � kÞ2 ;
(5.3)

the full, convergent (for D< 8), one-loop N ¼ 8 SUGRA
amplitude is

M1ðs; tÞ ¼ �ið8�GDÞ2s4½I1ðs; tÞ þ I1ðt; uÞ þ I1ðs; uÞ�:
(5.4)

Thus, any terms of order k4 or higher in the expansion of
Fðpi; kÞ have been eliminated by cancellations. We can
think of the SUGRA theory as providing a regulator. Since
this theory only modifies Fðpi; kÞ in (5.1) significantly
when k� ffiffiffi

s
p

, we see that the regulator is effectively of
size �� ffiffiffi

s
p

.

B. Match to eikonal

We can now see how to obtain the eikonal amplitude T1

from the exact SUGRA amplitude (5.4), for s � M2
D,�t=s � 1. For concreteness, work in the center of mass

frame,

p1 ¼ ðE=2; E=2; 0Þ p2 ¼ ðE=2;�E=2; 0Þ; (5.5)

and apply a cutoff � & MD to the integral over loop
momentum k. In this limit, (5.4) becomes �ið8�GNÞ2s4
times the sum of three one-loop integrals corresponding to
the three scalar Feynman diagrams given in Fig. 4. In these
diagrams, the lines with arrows represent the high-energy
particles that are being scattered, and those without repre-
sent the low-energy gravitons that the particles exchange.
First of all, it is clear that Fig. 4(c) is subleading in

the circumstances considered, as gravitons with momenta
k � MD do not have enough energy-momentum to turn
p1 into p4 ¼ �p2 þ q. Furthermore, given that k2 �
M2

D � s, one can linearize the propagators of the high-
energy particles as described in Sec. III. With this approxi-
mation, the sum of Figs. 4(a) and 4(b) with the appropriate
prefactors can be shown [15–21] to be given by T1 in (3.3).
Note that, as expected, the relevant diagrams are the ladder
and crossed-ladder diagrams.
Thus, using an arbitrary large (but not ultralarge) cutoff

� on the loop momentum integrals, the one-loop amplitude

1 3

2 4

FIG. 2. Exchange of two gravitons.

1

2

3

4

FIG. 3. A crossed ladder with two gravitons.
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takes the eikonal form. We will shortly see that this is true
also at two loops. But first, note that these can be summed
into an expression of the form (3.5), up to corrections
small in t=s.

One might be concerned that the integrals deviate
from their eikonal approximations in the region of large
k, particularly given that SUGRA supplies the cutoff
�� ffiffiffi

s
p

. But, here we return to the discussion of Sec. IV.
The sum of the amplitudes gives an integral with similar
properties to our toy integral (2.1); thus, as there, we expect
that the correct way to evaluate this integral is to expand
around the long-distance saddle point. The apparently
large contributions as the cutoff is taken to a large value,
� ! ffiffiffi

s
p

in SUGRA, are apparently direct analogs
of the large terms in the expansion (2.2)—they, too, seem
to be a red herring. The amplitude in the eikonal regime
� * 1 should be essentially independent of this short-
distance cutoff, but this will be apparent only if it is

calculated in the correctly summed form. For large s and
small t, long-distance physics dominates.4

C. Two-loop amplitudes

As a further check, let us consider the two-loop case,
where things are similar, but more Feynman diagrams need
to be considered. The exact maximal SUGRA amplitude is,
up to phases and polarization factors depending on the type
of the external particles, given by [33]

M2 ¼ ð8�GDÞ3s4½s2I2Pðs; tÞ þ s2I2Pðs; uÞ þ u2I2Pðu; tÞ
þ u2I2Pðu; sÞ þ t2I2Pðt; sÞ þ t2I2Pðt; uÞ
þ s2I2NPðs; tÞ þ s2I2NPðs; uÞ þ u2I2NPðu; tÞ
þ u2I2NPðu; sÞ þ t2I2NPðt; sÞ þ t2I2NPðt; uÞ�; (5.6)

where

I2Pðs; tÞ ¼
Z dDk1

ð2�ÞD
dDk2
ð2�ÞD

1

k21k
2
2ðk1 þ k2Þ2ðk1 � p1Þ2ðk1 � p1 � p2Þ2ðk2 � p3Þ2ðk2 � p3 � p4Þ2

; (5.7)

I2NPðs; tÞ ¼
Z dDk1

ð2�ÞD
dDk2
ð2�ÞD

1

k21k
2
2ðk1 þ k2Þ2ðk1 � p2Þ2ðk1 þ k2 þ p1Þ2ðk2 � p4Þ2ðk2 � p3 � p4Þ2

: (5.8)

A graphical representation of the 12 integrals appearing in
(5.6) is given in Fig. 5. In order to obtain the two-loop
contribution T2 in (3.3) to the eikonal amplitude, one
proceeds as at one loop. First of all, given that �t=s � 1,
one can replace the factors of u2 in (5.6) by s2 and drop the
terms multiplied by t2. Furthermore, by looking at the
diagrams in Fig. 5, one sees that Figs. 5(b) and 5(d), i.e.,
the second and fourth terms in the bracket of (5.6), can be
neglected, as—in analogy towhatwas said for the third term
in (5.4)—the exchanged gravitons do not have enough
energy-momentum to turn p1 into �p4. One is therefore
left with six diagramswhose sum can be shown, by the same
techniques as at one loop, to be equal to the two-loop

contribution to the eikonal amplitude. Note that, as ex-
pected and as at one loop, the leading diagrams are the
ladder and crossed-ladder diagrams.

D. Graviton dominance

In particular, in the context of SUGRA, we find graviton
dominance in this high-energy, long-distance region. The
essential reason for this is that the graviton couples to the
stress tensor, yielding a coupling that grows with energy
faster than couplings of other states. For long-range be-
havior, one of course only considers massless exchanged
states.
To outline this argument further, first consider replacing

an exchanged graviton in Fig. 1 by a scalar with a non-
derivative coupling. In this case, the leading energy depen-
dence of the vertex changes as E2 ! M2

D, times a
dimensionless coupling. Only for a scalar with a coupling
to a two-derivative quantity, as with the stress tensor,

1 1 1

2 2 2

3 3 3

4 4 4

a) b) c)

FIG. 4. Scalar box integrals, entering the one-loop SUGRA amplitude.

4Note that in the case D ¼ 4, the gravitational amplitudes are
also IR divergent, but the same divergences occur both in the
exact amplitudes and in the eikonal approximation. They should
have the standard remedy, via a sum over soft emitted gravitons.
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would the scalars compete in the high-energy regime we
consider. We could likewise consider exchange of a vector
particle, coupled to a current; here the parametric replace-
ment is E2 ! EMD, up to dimensionless factors.

A similar story holds for exchange of fermions, such as
gauginos or gravitinos. In these cases, the propagator of the
exchanged particle behaves as k=k2. Thus, since there is an
extra power of the exchanged momentum in the diagram,
there is one fewer power of the energy E � k, resulting
from change of the vertex factor. (Of course, in this case,
the other particle exiting the vertex must also be fermionic
if the incoming particle was bosonic.)

Also, higher p-form fields couple with lower powers of
energy at the vertex than gravitons. The reason is that due
to the antisymmetry in the propagators and/or vertices, the
external momenta are contracted in such a way that only
one power of the high momentum appears.

This explains the quantitative sense in which gravity
dominates over other SUGRA states, far away from the
Bogomol’nyi-Prasad-Sommerfield limit.

VI. PHYSICAL CONSEQUENCES

We have argued for dominance of long-distance physics,
near a saddle point, in the high-energy limit. This occurs in
the eikonal regime, where � * 1, with the eikonal phase �
given in (3.4). As we have noted, once we enter that
regime, given in terms of impact parameter as

b & ðE=MDÞ2=ðD�4Þ=MD; (6.1)

which also corresponds to q * 1=b, the SUGRA loop
expansion about flat space becomes problematic—it is
analogous to the expansion of the exponential in our toy
integral, (2.1).

1 1

1 1

1 1

1 1

1 1

1 1

2 2

22

2 2

22

2 2

22

3 3

33

3 3

33

3 3

33

4 4

44

4 4

44

4 4

44

a) b)

c) d)

e) f)

g) h)

i) j)

k) l)

FIG. 5. Scalar integrals needed for the two-loop SUGRA amplitude.
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A. Semiclassical amplitudes

The eikonal approximation is, of course, closely con-
nected with the semiclassical approximation. Indeed, one
useful analogy for thinking about high-energy, long-range
gravitational scattering is as similar to Earth-Moon scat-
tering (ignoring, for the moment, bound state effects). In
the Earth-Moon system, the two interacting bodies have
ultra-Planckian energies. However, the momentum trans-
fers of individual gravitons is very small. It is through
exchange of many such gravitons that the Earth has an
appreciable effect on the Moon, which is well-described
through the classical field.

In the context where the energy is large due to ultrarela-
tivistic incoming particles, and in the large-distance limit, a
similar story seems to play out. That raises the question of
the classical description. It is, of course, known that the
classical geometry of an ultrarelativistic particle is an
Aichelberg-Sexl [34] shock wave. Moreover, there is an
exact solution describing two such colliding shock waves,
in the region outside of the future light cone of the inter-
section of the two shocks. This follows from the form of
the Aichelburg-Sexl solution,

ds2 ¼ �dxþdx� þ dxidxi þ�ð�Þ�ðx�Þdx�2 (6.2)

with

�ð�Þ ¼ �8GD� ln�; D ¼ 4;

¼ 16�GD�

�D�3ðD� 4Þ�D�4
; D > 4;

(6.3)

x� ¼ ðxþ; x�; xiÞ, �2 ¼ xixi, and � ¼ E=2. This is flat in
the regions both in advance of and behind the shocks. This
means that solutions describing incoming shocks from
opposite directions can be trivially glued together in their
common advance region, prior to the collision of the
shocks, to give an exact classical solution.

We expect the full classical solution (perhaps with some
smearing [35]) to correspond to the saddle point about
which we expand to compute quantum amplitudes.
Namely, once we reach the region (6.1), expanding about
flat space is no longer a particularly useful picture. Instead,
one should find the classical geometry of the colliding
shock waves, and then perform an expansion in perturba-
tions about that. This corresponds to a resummation of the
loop amplitudes to give the classical geometry.

The full classical geometry is not known, even for large
impact parameters, in the future of the collision. However,
for large impact parameters, we do expect a test-particle
approximation to furnish a first approximation. Namely, if a
test particle scatters in the Aichelburg-Sexl solution, and
we neglect its backreaction on that geometry, then it is
simply deflected by a classical deflection angle, given para-
metrically in terms of the energy and impact parameter by
(3.8). So, we might treat as an approximate solution the
collision of two such shocks, wherewe assume the center of

each shock is deflected along a corresponding geodesic in
the gravitational field of the other shock. The small expan-
sion parameter in this context should then be the deflection
angle, �c. Note from (3.8) that this is small for b � RðEÞ.
Indeed, such an expansion scheme seems essentially

similar to that of the worldline effective theory approach
of [36], used to derive solutions for neutron star or black
hole collisions. We suggest that a systematic such parallel
can be derived, and this is currently under exploration [37].
For impact parameters b & RðEÞ, with RðEÞ the

Schwarzschild radius given in (3.6), it is known that such
a collision produces a trapped surface, hence a black hole
[9,12]—that is, gravity becomes strongly coupled. We can
also see this is the region where subleading corrections to
the eikonal amplitudes become important, since the eiko-
nal amplitudes arose to leading order in an expansion in
�t=s, and by (3.8),

�t

s
�

�
RðEÞ
b

�
2ðD�3Þ

: (6.4)

It would be useful to more systematically understand
quantum corrections, and where one expects a valid per-
turbative expansion.5 First, note that from the perspective
of the expansion about flat space, in the region (6.1), one
can think of the eikonal sum as dominated by the terms of
order N � � in the expansion of the exponential [4], and
with the momentum transfer q roughly divided between the
lines, this corresponds to a characteristic momentum

k� q

N
� 1

b
(6.5)

in each of the exchanged graviton lines. That is, the total
momentum transfer q undergoes fractionation into a large
number of softer momentum transfers.
Another interesting question is whether nonrenormaliz-

able interactions, e.g., of the form �@n�, make important
contributions in any regime. We suggest that such pointlike
(thus, short-distance) interactions might be avoided in the
high-energy regime by controlling the impact parameter,
so that, for example, the wave functions of the incident
states have very small overlap. However, we leave this
question for future investigation.

B. Consequences of momentum fractionation

This picture (and improvement of it based on the
resummation indicated above) apparently has several
interesting consequences.

1. Tidal excitation

The relative softness of the momentum transfer figures
into the role of excitation of extended or composite objects,

5One useful way to systematize this is based on expanding
about the saddle point in the functional integral over metrics and
other fields.
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such as strings, in gravitational scattering. Specifically, if
the scattered objects are strings,6 there can be a large net
momentum transfer without exciting them. However, be-
low a certain threshold impact parameter, the tidal force
that a string experiences when crossing the gravitational
shock wave of the other string will excite it. This basic
effect was originally seen as diffractive excitation in [15]
before being given the tidal interpretation in [11]. There
has been some confusion about this effect, and it has even
been suggested that it might be responsible for information
escaping a black hole [38], but [11,22] argued that this kind
of excitation takes place on time scales that are parametri-
cally longer than horizon formation.

2. Soft radiation

Directly related to this, since at any one graviton
vertex the momentum transfer is small, �1=b, we expect
this to set the transverse momentum scale of soft
radiation. Properties of this radiation can be estimated by
methods of [39]; for example, [40] gives an estimate of the
resulting absorption from the elastic channel due to
such emission.

3. Factorization scale

Another consequence of this is that if one considers
black hole production in hadronic collisions, which could
be experimentally relevant in TeV-scale gravity models
[8,41],7 the relevant factorization scale in the context of
QCD processes is q� 1=b—this was noted and used in [8]
for computing black hole production cross sections, and
has been further elaborated by [43,44].

4. Asymptotic safety

We suggest that the softness of individual momentum
transfers also has an important consequence for the asymp-
totic safety program [5].8 The basic tenet of that program is
the existence of a fixed point in the high-energy limit.

If we ask about the possible physical meaning of such a
fixed point, a proposed answer appears in [5]: one should
define the couplings in terms of physical reaction rates, at a
given energy scale. Correspondingly, we should be able to
probe such a fixed point through physical processes, such
as high-energy scattering. A familiar example is the
asymptotically safe and free coupling of QCD, which can
be probed via, e.g., deep inelastic scattering. Indeed, one
might expect that such a phenomenon is only physically
meaningful and relevant to the extent it can be probed
through such processes.

For such a sharp physical test, the obvious regime
to investigate is high-energy scattering, with large

momentum transfer. However, we have argued that the
regime of high energies and large momentum transfer is
dominated by processes very far from single graviton ex-
change. In the physical processes we have described, one is
apparently not sensitive to the single graviton vertex, and
thus to the graviton coupling, at high momentum transfer,
since a large total momentum transfer arises from the
exchange of multiple soft gravitons, each of whose vertices
depend on the gravitational coupling in the low momentum
transfer regime, k� 1=b. Correspondingly, in quantum
gravity there is an apparent obstacle to physically probing
distances shorter than the Planck scale via scattering.
Thus, we see no clear way to relate the gravitational

coupling at a cutoff scale � ! 1 to physical high-energy
scattering. Instead, we enter a regime where, to the extent
that field theory is a good description, the physics is domi-
nated by multi-graviton exchange. It should be noted that
the dominant scattering process in this high-energy limit
has a many-particle final state; that is, 2 ! 2 scattering is
highly suppressed, particularly when one enters the strong
gravity regime, b & RðEÞ (see [4,40] for further develop-
ment of this point). We might conjecture that the vanishing
of GD seen in the formal calculations with � ! 1 inves-
tigated in the literature is connected to the relative unim-
portance of single graviton exchange in the high-energy
limit; this is a question worth further exploration.

5. Regge behavior

Another related matter is the possible Reggeization of
gravity [45,46], which has been considered an open ques-
tion. To address this, consider subleading diagrams to the
eikonal diagrams. One important class of such diagrams are
the H diagrams, pictured in Fig. 6. In particular, these were
found in Sec. V to be subdominant terms in the �t=s
expansion, in agreement with general arguments presented
in [4,31,32]. Regge behavior could make important contri-
butions to high-energy scattering if ladders such as those
shown in Fig. 7 become important. But, such diagrams will
only become relevant when the momentum flowing through
the ladder is sufficiently large, with the argument being
similar to that for the role of ladders in the eikonal approxi-
mation. However, we have argued that the dominant

1

2

3

4

FIG. 6. The H diagram.

6Similar statements are expected for any other extended ob-
ject, e.g., hydrogen atoms.

7For a review with some further references, see [42].
8For a review and further references, see [6].
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contribution to high-energy scattering in the regime (6.1)
instead involves many soft momentum transfers of size
(6.5) through the N � � lines. If these are the dominant
diagrams, then the ladders of Fig. 7 would appear to be
relatively highly suppressed, and the high-energy scattering
does not probe possible Regge behavior.

6. Strong gravity/perturbative breakdown

From the point of view of perturbation theory about flat
space, the H diagrams themselves only become important
in the regime �t� s, or b� RðEÞ. This is, of course, the
regimewhere, classically, a black hole would form. Indeed,
consider the class of diagrams consisting of graviton tree
diagrams, with all external gravitons attached to one or the
other of the two high-energy colliding particles. In this way
we can think of the colliding particles as sources. A similar
class of diagrams was considered by Duff [47], with an
external source which was a single massive particle. In that
case, Duff showed that the sum over graviton trees builds
up the Schwarzschild metric. This indicates that the same
should be true here, namely, that such tree diagrams should
be building up the classical geometry of the colliding
Aichelburg-Sexl shocks. When the impact parameter
reaches b� RðEÞ, and a black hole forms, this series
diverges, just as the Schwarzschild metric, thought of as
a perturbation about flat space, diverges at the horizon.

Of course, by the time this divergence occurs, one has
already passed beyond the region where one should resum,
and perturb about the colliding Aichelburg-Sexl geome-
tries, corresponding to the necessity of performing the
eikonal sum. So, a better framework for describing this
regime is precisely the perturbation theory in �t=s about
this lowest-order metric, à la [36], suggested above.
However, we expect that the basic feature of divergence
of this perturbation series remains, in the region �t� s,
or b� RðEÞ, where a black hole forms. The black hole
solution cannot be thought of as a small perturbation of
colliding Aichelburg-Sexl shock waves.

In short, at first one expands about flat space; in the
eikonal region, one must resum and expand around a

classical geometry corresponding to that of the collision
of two Aichelburg-Sexl geometries, which mutually de-
flect; but, by the time the classical black hole region is
reached, the classical solutions develop horizons (and sin-
gularities), and are not perturbatively related to either of
the preceding geometries.

C. Nonrenormalizability, unitarity,
and nonperturbative mechanics

This discussion appears to carry some important lessons
for quantum gravity, elaborating on points outlined
in [14].
First, in studying the high-energy dynamics, it appears

that the central issue is not necessarily renormalizability.
While a naive approach to the loop expansion in the high-
energy regime, like the expansion (2.2) of the toy integral
(2.1), involves arbitrarily divergent behavior, which must
be regulated, what we have argued is the more correct
dynamics do not centrally involve such short-distance
physics. It is true that a perturbative expansion about
flat space, or about classical geometries of colliding
Aichelburg-Sexl metrics, can have UV-divergent correc-
tions. But, in the regime of ultrahigh-energy scattering, one
is apparently only probing dynamics where individual
gravitons carry momenta well below MD, and correspond-
ingly, one is not probing short distances. This physics
appears largely insensitive to the details of a regulator
��MD. This is the gravitational version of a UV-IR
correspondence. These statements pertain both to the
eikonal regime, and to the black hole regime; their black
hole version has been previously emphasized, for example,
in [7–11,22].
This discussion neglects aspects of the black hole re-

gime, where one might think that in some sense one is
probing physics at distances �1=MD, when particles
‘‘reach the singularity,’’ or at the end stage of black hole
evaporation. However, the black hole regime presents what
has been argued [14] to be a much more serious and central
problem—a loss of unitarity.
Specifically, if one finds that resummations reproduce

the classical geometry, and if there is such a resummation
possible for b & RðEÞ, the classical geometry should be
that of a black hole. Then, the quantum amplitudes might
be expected to be given by that saddle point, and by
perturbations about it. However, we know that a naive
analysis of this problem violates unitarity badly, as first
showed by Hawking in arguing for loss of quantum infor-
mation [13]. Indeed, it has also been observed that there is
no way for gravitational scattering to be unitary in this
regime, i.e., for information to be returned, in a theory
described as local quantum field theory perturbations about
a background.9

1

2

3

4

FIG. 7. A t-channel ladder diagram that would contribute to
Regge behavior.

9For reviews, see [24,25].
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This argument strongly suggests that in order for the
theory to be unitarized in the regime corresponding to
classical black hole formation, the dynamics need to
have some intrinsic nonlocality, at least as described with
respect to the semiclassical geometry. This nonlocality
apparently must operate over distances of order RðEÞ, to
permit information escape from the horizon of a macro-
scopic black hole, by the necessary time scale t�
RðEÞSðEÞ originally found by Page [48], where SðEÞ is
the black hole entropy.

By this logic, the problem of unitarity appears to be a
deeper issue of quantum gravity than that of nonrenormaliz-
ability. If we accept that the as-yet-unknown mechanisms of
nonperturbative quantum gravity must achieve such unitar-
ization, this seems like a very important guide to under-
standing those mechanisms [11,29,30].10 We stress that this
is apparently not a short distance problem; if the lessons of

the discussion of the information problem are to be taken
seriously, modifications of physics at short distances
�1=MD cannot achieve such unitarization. This guide
thus seems particularly important in suggesting that the
requisite mechanics represent a significant departure from
local quantum field theory, at large distances, at least in the
unfamiliar realms of black holes.
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