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The three-body problem is reexamined in the framework of general relativity. The Newtonian three-

body problem admits Euler’s collinear solution, where three bodies move around the common center of

mass with the same orbital period and always line up. The solution is unstable. Hence, it is unlikely that

such a simple configuration would exist owing to general relativistic forces dependent not only on the

masses but also on the velocity of each body. However, we show that the collinear solution remains true

with a correction to the spatial separation between masses. Relativistic corrections to the Sun-Jupiter

Lagrange points L1, L2, and L3 are also evaluated.
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I. INTRODUCTION

The three-body problem in the Newton gravity belongs
among classical problems in astronomy and physics (e.g.,
[1,2]). In 1765, Euler found a collinear solution for the
restricted three-body problem, where one of three bodies is
a test mass. Soon later, his solution was extended for a
general three-body problem by Lagrange, who also found
an equilateral triangle solution in 1772. Now, the solutions
for the restricted three-body problem are called Lagrange
points L1, L2, L3, L4, and L5, which are described in
textbooks of classical mechanics [2]. The Solar and
Heliospheric Observatory (SOHO) and WMAP launched
by NASA are in operation at the Sun-Earth L1 and L2,
respectively. The Laser Interferometer Space Antenna
(LISA) pathfinder is planned to go to L1. Lagrange points
have recently attracted renewed interests for relativistic
astrophysics [3,4], where they have discussed the gravita-
tional radiation reaction on L4 and L5 by numerical meth-
ods. As a pioneering work, Nordtvedt pointed out that the
location of the triangular points is very sensitive to the ratio
of the gravitational mass to the inertial one [5]. Along this
course, it is interesting as a gravity experiment to discuss
the three-body coupling terms at the post-Newtonian order,
because some of the terms are proportional to a product of
three masses asM1 �M2 �M3. Such a term appears only
for relativistic three (or more) body systems: For a relativ-
istic binary with two massesM1 andM2,M

2
1M2 andM1M

2
2

exist, but such three mass products do not. For a Newtonian
three-body system, we have only the terms proportional to
M1M2, M2M3, and M3M1. The relativistic periastron ad-
vance of the Mercury is detected only after much larger
shifts due to Newtonian perturbations by other planets such
as the Venus and Jupiter are taken into account in the
astrometric data analysis. In this sense, effects by the
three-body coupling are worthy to investigate.

After efforts to find a general solution, Poincaré proved
that it is impossible to describe all the solutions to the
three-body problem even for the 1=r potential. Namely, we
cannot analytically obtain all the solutions. Nevertheless,

the number of new solutions is increasing [6]. Therefore,
the three-body problem remains unsettled even for Newton
gravity.
The theory of general relativity is currently the most

successful gravitational theory describing the nature of
space and time, and well confirmed by observations.
Especially, it has passed ‘‘classical’’ tests, such as the
deflection of light, the perihelion shift of Mercury, and
the Shapiro time delay, and also a systematic test using
the remarkable binary pulsar ‘‘PSR 1913þ 16’’ [7]. It is
worthwhile to examine the three-body (or, more generally,
N-body) problem in general relativity. However, it is diffi-
cult to work out in general relativity compared with
Newton gravity, because the Einstein equation is much
more complicated [8] (even for a two-body system
[9–12]). So far, most of post-Newtonian works have fo-
cused on either compact binaries for an application to
gravitational waves astronomy or N-body equation of mo-
tion (and coordinate systems) in the weak field such as the
solar system (e.g., [13]). In addition, future space astro-
metric missions such as the Space Interferometry Mission
(SIM) and Gaia [14–16] require a general relativistic mod-
eling of the solar system within the accuracy of a micro arc
second [17]. Furthermore, a binary plus a third body have
been discussed also for perturbations of gravitational
waves induced by the third body [18–21].
The Newtonian three-body problem admits Euler’s col-

linear solution, where three bodies move around the com-
mon center of mass with the same orbital period and
always line up. The solution is unstable against small
displacements. Hence, it is unlikely that such a simple
configuration would exist owing to general relativistic
forces dependent not only on the masses but also on the
velocity of each body. The line could bend at a certain
location of one mass, which means a V-shape configura-
tion. The above Newtonian instability does not necessarily
come from small perturbations of acceleration. Therefore,
it is interesting to ask whether the general relativistic
gravity in the rather complicated form admits a collinear
solution or leads to such a V-shape solution. We shall also
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evaluate for the first time relativistic corrections to L1, L2,
and L3 for the Sun-Jupiter system.

Recently, a choreographic solution has been studied in
the framework of general relativity [22]. Here, a solution is
called choreographic in the celestial mechanics, if every
massive particles move periodically in a single closed
orbit. As a choreographic solution, the figure-eight one
was found first by Moore and rediscovered with its exis-
tence proof by Chenciner and Montgomery [23–27]. The
solution was shown to remain true at the first post-
Newtonian [22] and also the second post-Newtonian orders
[28]. Such an unexpected feature may be found in the
collinear solution.

This paper is organized as follows. First, we briefly
summarize a usual treatment of Euler’s collinear solution.
Next, we extend the formulation to the post-Newtonian
case by treating the Einstein-Infeld-Hoffman equation of
motion. We take the units of G ¼ c ¼ 1.

II. NEWTONIAN EULER’S
COLLINEAR SOLUTION

Let us briefly summarize the derivation of the Euler’s
collinear solution for the circular three-body problem in
Newton gravity. We consider Euler’s solution, for which
each mass moves around their common center of mass
denoted as XG with a constant angular velocity !.
Hence, it is convenient to use the corotating frame with
the same angular velocity !. We choose an orbital plane
normal to the total angular momentum as the x-y plane in
such a corotating frame. We locate all the three bodies
along a single line, along which we take the x coordinate.
The location of each mass MI (I ¼ 1, 2, 3) is written as
XI � ðxI; 0Þ. Without loss of generality, we assume x3 <
x2 < x1. Let RI define the relative position of each mass
with respective to the center of mass XG � ðxG; 0Þ, namely
RI � xI � xG (RI � jXjI unless xG ¼ 0). We choose
x ¼ 0 between M1 and M3. We thus have R3 <R2 < R1,
R3 < 0, and R1 > 0.

It is convenient to define a ratio as R23=R12 ¼ z, which is
an important variable in the following formulation. Then, we
have R13 ¼ ð1þ zÞR12. The equation of motion becomes

R1!
2 ¼ M2

R2
12

þ M3

R2
13

; (1)

R2!
2 ¼ �M1

R2
12

þ M3

R2
23

; (2)

R3!
2 ¼ �M1

R2
13

� M2

R2
23

; (3)

where we define

R IJ � XI �XJ; (4)

RIJ � jRIJj: (5)

Figure 1 shows a classical configuration at t ¼ 0. At t ¼
TN=2, this configuration is rotated by � radian, where TN

denotes the Newtonian orbital period.

First, we subtract Eq. (2) from Eq. (1) and (3) from Eq.
(2) and use R12 � jX1 � X2j and R23 � jX2 � X3j. Such a
subtraction procedure will be useful also at the post-
Newtonian order, because we can avoid directly using the
post-Newtonian center of mass [8,29]. Next, we compute a
ratio between them to delete !2. Hence, we obtain a fifth-
order equation as

ðM1þM2Þz5þð3M1þ2M2Þz4þð3M1þM2Þz3
�ðM2þ3M3Þz2�ð2M2þ3M3Þz�ðM2þM3Þ¼0: (6)

Now we have a condition as z > 0. Descartes’s rule of
signs (e.g. [30]) states that the number of positive roots
either equals that of sign changes in coefficients of a
polynomial or is less than it by a multiple of 2.
According to this rule, Eq. (6) has the only positive root
z > 0, though such a fifth-order equation cannot be solved
in algebraic manners as shown by Galois (e.g. [30]). After
obtaining z, one can substitute it into a difference, for
instance between Eqs. (1) and (3). Hence, we get !.

III. POST-NEWTONIAN COLLINEAR SOLUTION

In the previous part, the motion of massive bodies
follows the Newtonian equation of motion. In order to
include the dominant part of general relativistic effects,
we take account of the terms at the first post-Newtonian
order. Namely, the massive bodies obey the Einstein-
Infeld-Hoffman (EIH) equation of motion as [8,29]

dvK

dt
¼ X

A�K

RAK

MA

R3
AK

�
1�4

X

B�K

MB

RBK

� X

C�A

MC

RCA

�
�
1�RAK �RCA

2R2
CA

�
þv2

Kþ2v2
A�4vA �vK�3

2

�ðvA �nAKÞ2
�
� X

A�K

ðvA�vKÞMAnAK �ð3vA�4vKÞ
R2
AK

þ7

2

X

A�K

X

C�A

RCA

MAMC

RAKR
3
CA

; (7)

FIG. 1 (color online). Schematic figure for a classical configu-
ration of three masses denoted by M1 (red), M2 (green) and M3

(blue), which represent a Newtonian collinear solution. The
filled disks denote each mass at t ¼ 0. Definitions of a, RI ,
and RIJ are also indicated.
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where vI denotes the velocity of each mass in an inertial
frame and we define

n IJ � RIJ

RIJ

: (8)

Here, the middle term with vector ðvA � vKÞ has a zero
coefficient for the circular collinear case, while the remain-
ing accelerations are radial.

We obtain a lengthy form of the equation of motion for
each body. By subtracting the post-Newtonian equation of
motion forM3 from that forM1, for instance, we obtain the
equation as

R13!
2 ¼ FN þ FM þ FV!

2; (9)

where we denote a � R13 and the Newtonian term FN and
the post-Newtonian parts FM (dependent on the masses
only) and FV (velocity-dependent part divided by !2) are
defined as

FN ¼ M

a2z2
½ð�1 þ �3Þz2 þ ð1� �1 � �3Þ

� ð1þ z2Þð1þ zÞ2�; (10)

FM ¼� M2

a3z3
½ð4� 4�1 þ�3Þð1��1 ��3Þ

þ ð12� 7�1 þ 3�3Þð1��1 ��3Þzþð12��1 þ�3Þ
� ð1��1 ��3Þz2 þð8� 7�1 � 7�3 þ 8�1�3

þ 3�2
1 þ 3�2

3Þz3 þð12þ�1 ��3Þð1��1 ��3Þz4
þð12þ 3�1 � 7�3Þð1��1 ��3Þz5
þð4þ�1 � 4�3Þð1��1 ��3Þz6�; (11)

FV ¼ M

ð1þzÞ2z2 ½��2
1ð1��1��3Þ�2�1ð1þ�1��3Þ

�ð1��1��3Þzþð2�2�1þ�3þ6�1�3

�3�2
3þ�3

1�3�2
1�3�3�1�

2
3þ�3

3Þz2þ2ð2��1��3Þ
�ð1þ�1þ�3��2

1þ�1�3��2
3Þz3þð2þ�1�2�3

�3�2
1þ6�1�3þ�3

1�3�2
1�3�3�1�

2
3þ�3

3Þz4
�2�3ð1��1þ�3Þð1��1��3Þz5
��2

3ð1��1��3Þz6�; (12)

respectively. Here, we define the mass ratio as �I � MI=M
for M � P

IMI and frequently use �2 ¼ 1� �1 � �3. It
should be noted that in this truncated calculation we ignore
the second post-Newtonian (or higher order) contributions
so that we can replace, for instance, v1 by R1! (with using
the Newtonian R1) in post-Newtonian velocity-dependent
terms such as v2

1.
After straightforward but lengthy calculations, which

are similar to the above Newtonian case, we obtain a
seventh-order equation as

FðzÞ � X7

k¼0

Akz
k ¼ 0; (13)

where we define

A7 ¼ M

a
½�4� 2ð�1 � 4�3Þ þ 2ð�2

1 þ 2�1�3 � 2�2
3Þ

� 2�1�3ð�1 þ �3Þ�; (14)

A6 ¼ 1� �3 þM

a
½�13� ð10�1 � 17�3Þ

þ 2ð2�2
1 þ 8�1�3 � �2

3Þ þ 2ð�3
1 � 2�2

1�3

� 3�1�
2
3 � �3

3Þ�; (15)

A5 ¼ 2þ �1 � 2�3 þM

a
½�15� ð18�1 � 5�3Þ

þ 4ð5�1�3 þ 4�2
3Þ þ 6ð�3

1 � �1�
2
3 � �3

3Þ�; (16)

A4 ¼ 1þ 2�1 � �3 þM

a
½�6� 2ð5�1 þ 2�3Þ � 4ð2�2

1

� �1�3 � 4�2
3Þ þ 2ð3�3

1 þ �2
1�3 � 2�1�

2
3 � 3�3

3Þ�;
(17)

A3 ¼ �ð1� �1 þ 2�3Þ þM

a
½6þ 2ð2�1 þ 5�3Þ � 4ð4�2

1

þ �1�3 � 2�2
3Þ þ 2ð3�3

1 þ 2�2
1�3 � �1�

2
3 � 3�3

3Þ�;
(18)

A2 ¼ �ð2� 2�1 þ �3Þ þM

a
½15� ð5�1 � 18�3Þ

� 4ð4�2
1 þ 5�1�3Þ þ 6ð�3

1 þ �2
1�3 � �3

3Þ�; (19)

A1 ¼ �ð1� �1Þ þM

a
½13� ð17�1 � 10�3Þ þ 2ð�2

1

� 8�1�3 � 2�2
3Þ þ 2ð�3

1 þ 3�2
1�3 þ 2�1�

2
3 � �3

3Þ�;
(20)

A0 ¼ M

a
½4� 2ð4�1 � �3Þ þ 2ð2�2

1 � 2�1�3 � �2
3Þ

þ 2�1�3ð�1 þ �3Þ�: (21)

This seventh-order equation is symmetric for exchanges
between �1 and �3, only if one makes a change as z ! 1=z.
This symmetry may validate the complicated form of each
coefficient.
Once a positive root for Eq. (13) is found, the root z can

be substituted into Eq. (9) in order to obtain the angular
velocity !.
The angular velocity including the post-Newtonian

effects is obtained from Eq. (9) as
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! ¼ !N

�
1þ FM

2FN

þ FV

2R13

�
; (22)

where !N � ðFN=R13Þ1=2 denotes the angular velocity of
the Newtonian collinear orbit.

Figure 2 shows a numerical example for M1:M2:M3 ¼
1:2:3, R12 ¼ 1 and a=M ¼ 100, where the post-Newtonian
correction is of the order of 1%. In this figure, we employ
the inertial frame ð �x; �yÞ but not the corotating frame ðx; yÞ.
We assume x3 < x2 < x1 throughout this paper. This figure
suggests that as an alternative initial condition, we can
assume x1 < x2 < x3, which is realized at t ¼ T=2 (T ¼
orbital period) in this figure. It is natural that this is a
consequence of the parity symmetry in our formulation.
Numerical calculations for this figure show that the rela-
tivistic correction in Eq. (22) is negative, that is!<!N . It
should be noted also that the location of each mass at t ¼
T=2 is advanced compared with that at t ¼ TN=2 (a half of
the Newtonian orbital period). This may correspond to the
periastron advance (in circular orbits).

We produce this figure in two ways. One is that we use
our formulation to determine ! and consequently T. Also,
!N and TN are obtained at the Newtonian level. Next, we
rotate the configuration by angles �� ðTN=TÞ and �,
respectively. The other is that we directly see the evolution

of the post-Newtonian system. That is, we solve numeri-
cally the EIH equation of motion until t ¼ TN=2 and
t ¼ T=2, respectively. Both methods provide the same
plot. This agreement may also validate our formulation.
Finally, we focus on the restricted three-body problem

so that we can put z ¼ zNð1þ "Þ for the Newtonian root
zN . Substitution of this into Eq. (13) gives the post-
Newtonian correction as

" ¼ �
P
k

APNkz
k
N

P
k

kANkz
k
N

; (23)

where ANk and APNk denote the Newtonian and post-
Newtonian parts of Ak, respectively. For a binary system
of comparable mass stars, the correction " isOðM=aÞ. This
implies that a corrected length is of the order of the
Schwarzschild radius.
For the Sun-Jupiter system, general relativistic correc-

tions to L1, L2, and L3 become þ30, �38, þ1 [m],
respectively, where the positive sign is chosen along the
direction from the Sun to the Jupiter. Such corrections
suggest a potential role of the general relativistic three-
(or more) body dynamics for high precision astrometry in
our Solar System and perhaps also for gravitational waves
astronomy. They are very small but may be marginally
within the limits of the current technology, since the lunar
laser ranging experiment has successfully measured the
increasing distance of the Moon �3:8 cm=yr.

IV. CONCLUSION

We obtained a general relativistic version of Euler’s
collinear solution for the three-body problem at the post-
Newtonian order. Studying global properties of the
seventh-order equation that we have derived is left as
future work.
It is interesting also to include higher post-Newtonian

corrections, especially 2.5PN effects in order to elucidate
the secular evolution of the orbit due to the gravitational
radiation reaction at the 2.5PN order. One might see proba-
bly a shrinking collinear orbit as a consequence of a
decrease in the total energy and angular momentum, if
such a radiation reaction effect is included. This is a test-
able prediction.
It may be important also to search other solutions,

notably a relativistic counterpart of the Lagrange’s triangle
solution (so-called L4 and L5 in the restricted three-body
problem). Clearly it seems much more complicated to
obtain relativistic corrections to the Lagrange orbit.
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FIG. 2 (color online). Orbit of each mass representing the post-
Newtonian collinear solution in an inertial frame. We assume
M1ðredÞ:M2ðgreenÞ:M3ðblueÞ ¼ 1:2:3, R12 ¼ 1 and a=M ¼ 100.
The filled disks denote each mass at t ¼ 0, when M_1, M_2, and
M_3 are located from right to left on the horizontal axis, the
triangles at t ¼ TN=2, and the circles at t ¼ T=2, which can be
obtained also by the reflection of the filled disks with respect to
the �x ¼ 0 line.
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